
MATHEMATICS OF COMPUTATION
Volume 87, Number 310, March 2018, Pages 987–1011
http://dx.doi.org/10.1090/mcom/3216

Article electronically published on May 31, 2017

FAST ALGORITHMS FOR FINDING PATTERN AVOIDERS

AND COUNTING PATTERN OCCURRENCES

IN PERMUTATIONS

WILLIAM KUSZMAUL

Abstract. Given a set Π of permutation patterns of length at most k, we
present an algorithm for building S≤n(Π), the set of permutations of length
at most n avoiding the patterns in Π, in time O(|S≤n−1(Π)| · k + |Sn(Π)|).
Additionally, we present an O(n!k)-time algorithm for counting the number of
copies of patterns from Π in each permutation in Sn. Surprisingly, when |Π| =
1, this runtime can be improved to O(n!), spending only constant time per
permutation. Whereas the previous best algorithms, based on generate-and-
check, take exponential time per permutation analyzed, all of our algorithms
take time at most polynomial per outputted permutation.

If we want to solve only the enumerative variant of each problem, computing
|S≤n(Π)| or tallying permutations according to Π-patterns, rather than to
store information about every permutation, then all of our algorithms can be
implemented in O(nk+1k) space.

Our algorithms extend to considering permutations in any set closed un-
der standardization of subsequences. Our algorithms also partially adapt to
considering vincular patterns.

1. Introduction

Over the past thirty years, the study of permutation patterns has become one
of the most active topics in enumerative combinatorics. Given a pattern π ∈ Sk

and a permutation τ ∈ Sn, a π-hit or copy of π in τ is a k-letter subsequence of τ
order-isomorphic to π. For example, 857 is a 312-hit in 18365472 (Figure 1). If τ
contains no π-hits, we say that τ avoids π and is in Sn(π). Moreover, for a set of
patterns Π, Sn(Π) =

⋂
π∈Π Sn(π).

Permutation patterns were first introduced in 1968, when Donald Knuth char-
acterized the stack-sortable n-permutations as exactly those avoiding 312, of which
there are the Catalan number Cn [20]. In 1985, Simion and Schmidt began a sys-
tematic study of the combinatorial structures of Sn(Π) for Π ⊆ S3 [25]. Since
then, permutation patterns have found applications throughout combinatorics, as
well as in computer science, computational biology, and statistical mechanics [19].
In addition to the combinatorial structures of Π-hits being of interest for individ-
ual Π, researchers have worked to build a more general theory. The most famous
result is the former Stanley-Wilf Conjecture, posed in the 1980s independently by
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Richard Stanley and Herbert Wilf, and proven in 2004 by Marcus and Tardos, which
prohibits |Sn(Π)| growing at a more than exponential rate [23]. Other work has
focused on characterizing when two sets Π1 and Π2 are Wilf-equivalent, meaning
that |Sn(Π1)| = |Sn(Π2)| for all n [5, 19].

Unfortunately, running large-scale experiments involving permutation patterns is
generally regarded as quite difficult [3]. In particular, detecting whether a pattern
π appears in a permutation w is NP-hard [6]. In this paper, however, we will
circumvent this problem by detecting not whether π appears in a single permutation
w, but instead finding the π-hits in large collections of permutations, allowing us
to obtain algorithms which run in polynomial (and sometimes even constant) time
per permutation. In contrast, the best previously known algorithms, based on
generate-and-check, run in exponential time per permutation.

Significant research has already been conducted towards finding a fast algorithm
for determining whether τ ∈ Sn(π), which we will refer to as the PPM problem.

Permutation Pattern Matching Problem (PPM): Given τ ∈ Sn and π ∈ Sk,
determine whether τ ∈ Sn(π).

In 1998, Bose, Buss, and Lubiw showed that PPM is NP-hard in general [6]. Since
then, research on PPM algorithms has traveled down two paths, the first to find an
exponential-time algorithm with a small exponent, and the second to find fast PPM
algorithms for special cases of π. Notable progress in the first direction includes

an O(1.79n · nk) algorithm due to Bruner and Lackner [8], and a 2O(k2 log k) · n
algorithm due to Guillemot and Marx [12]. Notable progress in the second direction
includes polynomial-time algorithms when π is separable [3, 6, 13, 15, 28]; an easily
parallelized linear-time algorithm when |π| = 4 [3, 14]; and an algorithm whose
runtime depends on a natural complexity-measure of π, running fast for π with small
complexity-measure [1]. Additionally, results have been found for more general
types of patterns such as vincular patterns [7].

For experimental research purposes, however, most permutation-pattern compu-
tations involve not just one permutation, but many. Indeed, the two most common
computations are to build all of S≤n(π), or to count copies of π in each τ ∈ Sn.

Permutation Pattern Avoiders Problem (PPA): Given a permutation π ∈ Sk

and n ∈ N, construct all permutations of size at most n that avoid the pattern π.

Permutation Pattern Counting Problem (PPC):Given a permutation π ∈ Sk

and n ∈ N, find the number of copies of π in each permutation of size at most n.

One common approach to PPA and PPC, which we will refer to as generate-
and-check, is to iterate through candidate permutations and apply PPM to each
candidate [2, 3, 27]. However, recent algorithms introduced by Inoue, Takahisa,
and Minato take a different approach, representing sets of permutations in highly
compressed data structures called ΠDD’s, and then using ΠDD-set-operations to
solve PPA and PPC [16,17]. Although the asymptotic nature of their algorithms is
unknown due to the enigmatic compression performance of ΠDD’s, their algorithms
experimentally run much faster than the generate-and-check approach.

In this paper, we introduce the first provably fast algorithms for PPA and PPC.
Surprisingly, PPC can be solved in Θ(n!) time (Theorem 5.5), spending only amor-
tized constant time per permutation despite π appearing n!

(
n
k

)
/k! times as a pattern

in Sn. Similarly, PPA can be solved in O(|S≤n−1(π)| · k + |Sn(π)|) time, spending
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linear time per output permutation. Our algorithms are the first proven to spend
subexponential time per output permutation.

In Section 6, for the enumerative versions of PPA and PPC, we show how to
implement both algorithms in O(nk+1k) space, making them practical even for
very large computations on small machines.

Both algorithms extend to considering a set of patterns Π (of possibly varying
lengths), rather than just a single pattern π. Interestingly, their runtimes depend
only on k = maxπ∈Π |π|, building Sn(Π) in time O(|S≤n−1(Π)| · k+ |Sn(Π)|) (The-
orem 4.6) and counting Π-patterns in each τ in Sn in time O(n! · k) (Theorem 5.4).
Additionally, our algorithms easily adapt to finding avoiders and counting copies of
patterns in Π in arbitrary downsets of permutations; for example, efficiently find-
ing the separable permutations which are Π-avoiders. We also partially extend our
results to when π is a vincular pattern.

Our algorithms open new doors for data-driven research studying the structure
of permutation classes. Previously daunting large-scale computations are now eas-
ily within reach. For example, our software can generate |S1(Π)|, . . . , |S16(Π)| for
every Π ⊆ S4 (regardless of |Π|) in just under twenty-five minutes on our Amazon
C3.8xlarge machine.1 A brief analysis of the resulting number sequences reveals
that hundreds of OEIS sequences seemingly previously unaffiliated with pattern
avoidance can be used to enumerate |Sn(Π)| for some Π. Several of these seem
quite interesting. For example, OEIS sequence A204746 [26] counts the number
of n × n binary arrays with every 3 × 3 subblock containing exactly three runs
of three equal elements, where each run can be on a horizontal, vertical, diago-
nal, or antidiagonal. We conjecture that this sequence enumerates |Sn(Π)| for 67
distinct Π ⊆ S4 (after accounting for trivial symmetries), among the shortest of
which is Π = {2341, 2314, 4213, 2413, 4132, 1432, 1234}. Our software, our data on
Π ⊆ S4, and our OEIS-matches analysis can be found at https://github.com/

williamkuszmaul/patternavoidance. A full description of the analysis is avail-
able in [22].

The layout of this paper is as follows. In Section 2, we introduce (mostly stan-
dard) conventions. In Section 3, we introduce and analyze a simplified version of
our PPA algorithm, which is then refined in Section 4, and extended to PPC in
Section 5. In Section 6, we modify our algorithms to achieve good space utilization.
In Section 7, we compare our algorithms (running in serial) experimentally to the
best alternatives. Finally, Section 8 concludes with directions of future work and
some results on vincular patterns.

2. Definitional preliminaries

In this section, we set conventions for the paper. We begin by discussing pattern
avoidance.

Definition 2.1. A permutation in Sn is a word containing each letter from 1 to n
exactly once.

Definition 2.2. Given a word τ of n distinct letters, the standardization st(τ ) is
the permutation σ ∈ Sn such that τi < τj exactly when σi < σj .

Example 2.3. The standardization of 5397 is st(5397) = 2143.

1Run in parallel with hyperthreading enabled for a total of 36 hardware threads. Our code is
parallelized using Cilk.

https://github.com/williamkuszmaul/patternavoidance
https://github.com/williamkuszmaul/patternavoidance
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Figure 1. Example 123-hit and 312-hit in 18365472. In this fig-
ure, a permutation is represented graphically. A square is placed
at position i, j when the i-th element of the permutation is j. In
the left figure the subword 367 is shown to form a 123-hit, and in
the right figure the subword 857 is shown to form a 312-hit.

Definition 2.4. Two words τ1 and τ2 are order-isomorphic if st(τ1) = st(τ2).

Definition 2.5. Let π ∈ Sk and τ ∈ Sn. A π-hit is any subword of τ order-
isomorphic to π. On the other hand, τ avoids the pattern π if τ has no π-hits

Example 2.6. An example 123-hit in 18365472 is the subword 367, while an ex-
ample 312-hit is the subword 857. These hits are shown graphically in Figure 1.
Observe however, that there is no 3124-hit in 18365472. Thus 18365472 avoids the
pattern 3124.

Similarly, if Π is a set of permutations, then the Π-hits are just the π-hits for
each π ∈ Π. And a permutation τ ∈ Sn avoids Π if it has no Π-hits. In this context,
Π may be referred to as a set of patterns, and we say that τ avoids the patterns in
Π.

Next, we introduce common shorthand for sets which we will study.

Definition 2.7. We use S≤n to denote S1 ∪ S2 ∪ · · · ∪ Sn.

Definition 2.8. Let π (resp. Π) be a pattern (resp. set of patterns), and D be a
set. Then D(π) (resp. D(Π)) is the subset of D which avoids π (resp. Π).

Example 2.9. Since Sn is the set of permutations of size n, the set Sn(123) is the
set of permutations of size n with no increasing subsequence of length three.

Our algorithms will build data about permutations up from data about smaller
permutations. Consequently, they are designed to work on downsets of permuta-
tions.

Definition 2.10. A set of permutations D is a downset if for all τ ∈ D, for all
non-empty subwords τ ′ of τ , st(τ ′) ∈ D.

Examples of downsets include S≤n, the permutations with j or fewer inversions
(for a constant j), the permutations with j or smaller major index, the permutations
avoiding a given set of patterns, and the separable permutations. Additionally, the
unions and the intersections of downsets are also downsets.
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Next, we introduce notation for obtaining from a permutation τ a new permu-
tation that is either one smaller or one larger in size.

Definition 2.11. Given τ ∈ Sn and i ∈ {1, . . . , n + 1}, we define τ ↑i to be the
permutation obtained by inserting n+ 1 to be in the i-th position of τ .

Definition 2.12. Given τ ∈ Sn and i ∈ {1, . . . , n}, we define τ ↓i to be the
standardization of the word obtained by removing the letter (n− i+ 1) from τ .

Example 2.13. For example, 13524 ↑2= 163524, while 13524 ↓2= st(1352) = 1342.

Note that ↑i and ↓i are not inverses. Whereas ↑i inserts a letter into the i-th
position, ↓i removes the i-th largest-valued letter. Though subtle, these distinctions
will play a critical role in the optimizations presented in Section 4.

It will often be useful to refer to the word formed by the largest k-letters of a
permutation as the k-upfix of the permutation. For example, the 3-upfix of 15234
is 534.

3. PPA in time polynomial per avoider

In this section, we introduce the key ideas for obtaining an asymptotically fast
algorithm to build S≤n(Π). Combined, these ideas yield a simple algorithm running
in time O(S≤n−1(Π)n2k), the first algorithm to spend only polynomial time per Π-
avoiding permutation. This algorithm can additionally be adapted to build D(Π)
for a downset D (assuming constant-time membership queries for D.) In later
sections, we will introduce techniques for reducing the polynomial term and for
achieving good space bounds.

Our algorithm relies fundamentally on a simple observation which transforms
pattern detection into a dynamic programming problem. Whereas detecting whether
a permutation τ ∈ Sn contains a pattern π ∈ Sk naively takes time O

((
n
k

)
k
)
, Propo-

sition 3.1 shows how to perform the same computation in polynomial time using
information about smaller permutations.

Proposition 3.1. Let Π be a set of patterns, each of length at most k, and let τ
be a permutation length n. Pick X to be any set of at least min(k + 1, n) distinct
entries of τ . Then τ lies in Sn(Π) if and only if the following two conditions hold:

(1) τ /∈ Π and
(2) for each entry x ∈ X, the standardization of τ with the entry x removed

lies in Sn−1(Π).

Proof. Suppose τ ∈ Sn(Π). Then condition (1) holds trivially, and condition (2)
holds because S≤n(Π) is a downset.

On the other hand, suppose conditions (1) and (2) hold. Observe that if the
standardization of τ with the letter x removed lies in Sn−1(Π), then any Π-hit in
τ must use the letter x. Thus condition (2) implies that any Π-hit in τ must use
at least min(k + 1, n) distinct letters of τ . If k < n, this is impossible, since the
longest pattern in Π is length at most k. If k ≥ n, then τ can only contain a Π-hit
if that Π-hit comprises all of τ , a contradiction by condition (1). �

Example 3.2. In Figure 2, we apply Proposition 3.1 to 25143 and to 34215 in
order to determine whether each avoids 123. For each permutation, we remove its
first, second, third, and fourth letters, standardize the result, and record whether it
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Letter removed Permutation in S4 Avoids 123?
First letter: 25143

4132 yes
Second letter: 25143

2 143 yes
Third letter: 25143

14 32 yes
Fourth letter: 25143

241 3 yes

Letter removed Permutation in S4 Avoids 123?
First letter: 34215

3214 yes
Second letter: 34215

3 214 yes
Third letter: 34215

23 14 no
Fourth letter: 34215

231 4 no

Figure 2. Applying Proposition 3.1 to determine whether 25143
and whether 34215 avoid the pattern 123.

avoids 123. Assuming that we have already computed which 4-letter permutations
avoid 123, this entire process takes polynomial time for each permutation.

Because all four tests pass for 25143, we conclude that it avoids the pattern 123.
On the other hand, 34215 fails two tests and contain a 123 pattern.

The decision to remove each of the first four letters was arbitrary, since Proposi-
tion 3.1 allows us to use any four letters. In fact, our actual algorithms will always
use the letters n, n − 1, . . . , (n − max(k + 1, n) + 1) when testing for avoidance.
Although unmotivated for the time being, this decision will make optimizations in
Section 4 easier to discuss.

Armed with Proposition 3.1 we can now derive a fast algorithm. The simplest
algorithm for building S≤n(Π) is to brute-force check whether each permutation τ
in S≤n is Π-avoiding. If we do this by checking every |π|-subsequence of τ for each
π ∈ Π, this takes time

O

(∑
π∈Π

n!

(
n

|π|

)
|π|

)
.

This formula becomes simpler if Π comprises l permutations of size k. In this
case, the algorithm runs in time O

(
n! ·

(
n
k

)
kl
)
.

Our first task is to shrink the n! term. Observe that S≤n(Π) is a downset.
Consequently, every element in Sn(π) can be obtained by inserting n into some
position of a permutation in Sn−1(Π). Thus we can build Sn(Π) from Sn−1(Π)
by checking pattern-avoidance for each permutation τ obtained by inserting n into
some position of an element in Sn−1(Π). Since there are at most |Sn−1(Π)| · n
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Algorithm 1: DetectAvoider

Input: Hash table H such that H ∩ Sn−1 = Sn−1(Π), Hash table Π,
k := maxπ∈Π |π|, Permutation τ ∈ Sn

Output: Whether τ ∈ Sn(Π)
if τ ∈ Π then

return false;

for i ∈ {1, . . . ,min(k + 1, n)} do
if τ ↓i 	∈ H then

return false;

return true;

such τ , this yields an algorithm which generates S≤n(Π) in time

O

(
|S≤n−1(Π)| · n ·

(
n

k

)
· kl

)
.

Our next task is to shrink the
(
n
k

)
and eliminate the dependence on l. Recall

that Proposition 3.1 shows that if Sn−1(Π) is already computed, then checking
whether τ ∈ Sn(Π) for some τ ∈ Sn can be achieved in O(kn) time, rather than
in O

((
n
k

)
· kl

)
time. In particular, to see that τ ∈ Sn(Π) we need only check that

τ 	∈ Π and that τ ↓i∈ Sn−1(Π) for each i ∈ [min(k + 1, n)] (Algorithm 1). This
brings our total runtime down to O(|(S≤n−1(Π)| · n2k). Note that the number of
patterns in Π does not increase the time needed to detect whether a permutation
is Π-avoiding.

Theorem 3.3. Let Π be a set of patterns and k = maxπ∈Π |π|. The set S≤n(Π)
can be constructed in O(|(S≤n−1(Π)| · n2k) time.

Proof. By Proposition 3.1, this is accomplished through Algorithm 2. Note that
one can easily obtain each τ ↓i from τ in O(n) time. �

Remark 3.4. Note that for single patterns π, we have |Sn(π)| ≤ |Sn+1(π)| for all
n. In particular, depending on π, one of the maps τ → τ ↑1 or τ → τ ↑n+1 is
an injection from Sn(π) to Sn+1(π). Thus for a single pattern, our algorithm is
efficient even if we only want to compute Sn(π), with runtime O(|Sn(π)| · n3k),
which using results from the next section can be reduced to O(|Sn(π)| · nk).

However, |Sn(Π)| ≤ |Sn+1(Π)| need not be true when |Π| > 1. For example, if
Π contains the increasing pattern of length a and the decreasing pattern of length
b, then by the Erdös-Szekeres theorem, no permutation of length greater than
(a+ 1)(b+ 1) + 1 is Π-avoiding [11].

Observe that Algorithm 2 can be easily modified to generate S≤n(Π) ∩ D for
downsets D, assuming membership in D can be determined in constant time.
In particular, prior to checking whether NewPerm is an avoider, we throw out
NewPerm if it is not in D. In fact, using the optimized version of Algorithm 2
which will be presented in Section 4 (Theorem 4.6), we can build D(Π) in time
O(|D(Π) ∩ S≤n−1|n). An example candidate for D is the set of permutations in
S≤n with j or fewer inversions for a fixed j; in particular, by keeping track of
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Algorithm 2: BuildAvoiders

Input: Hash table Π, k := maxπ∈Π |π|, n
Output: A hash table containing S≤n(Π)
UnorderedSet Avoiders;

Queue Unprocessed;

if 1 	∈ Π then
Unprocessed.enqueue(1);

Avoiders.add(1);

while not Unprocessed.empty() do
Perm := Unprocessed.dequeue();

for i ∈ {1, . . . , P erm.size() + 1} do
NewPerm := Perm↑i;
if DetectAvoiders(Avoiders, Π, k, NewPerm) then

Avoiders.insert(NewPerm);

if NewPerm.size() < n then
Unprocessed.enqueue(NewPerm);

return Avoiders;

the inversion statistic for permutations in UnprocessedQueue, one can detect when
NewPerm has inversion statistic greater than j in constant time.2

Other examples of downsets include the separable permutations, and the per-
mutations with major index at most a fixed constant. Recently, the study of per-
mutation avoidance with respect to permutation statistics such as major index and
inversion number have become of particular interest [10, 24].

4. Optimizations for PPA

In the preceding section, we presented Algorithm 2 which builds S≤n(Π) in time
O(|(S≤n−1(Π)|·n2k). In this section, we introduce two optimizations, each of which
reduces the runtime by a factor of n, bringing the total runtime down by a factor
of n2 to O(|S≤n−1(Π)| · k + |Sn(Π)|). The first optimization relies on encoding
permutations as integers, allowing permutation operations to be performed using
bit manipulations. The second optimization performs pattern detection on multiple
permutations at once, leading to additional speedup.

Because Sn and Sn(π) grow quickly, foreseeable applications of our algorithms
are likely to use permutations that can be easily stored in a few machine words.
Consequently, we assume that words can be stored as integers, with the i-th j-bit
block representing the i-th letter for some fixed j (which we call the block-size;
words may not contain a letter larger than 2j). Using this assumption, we can
shave off a factor of n from Algorithm 2’s runtime.

Theorem 4.1. By representing permutations as integers, Algorithm 2 can be im-
plemented to run in time O(|S≤n−1(Π)| · nk).

2In this case, a clever implementation could further reduce the time to O(|D(Π)| · k) by only
considering Perm ↑i for values of i large enough to keep the number of inversions below j.
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Proof. The analysis from Theorem 3.3 of Algorithm 2 assumes that each compu-
tation of τ ↑i or τ ↓i takes time O(n). In this analysis, we will show that in the
context of Algorithm 2, and with a bit of extra bookkeeping, these computations
can each be reduced to constant time. In particular, each τ ↑i can be accomplished
in constant time using bit hacks, and each τ ↓i+1 can be obtained from τ ↓i using
bit hacks and information about τ−1.

Note that the following operations are constant time for integers representing a
word τ stored as a permutation with block-size j: τ (i), which returns the i-th letter
of τ ; setpos(τ, i, j), which sets the i-th letter of τ to value j; insertpos(τ, u, v),
which slides the final n − u + 1 letters of τ one position to the right, and inserts
the value v in the u-th position; and killpos(τ, i), which slides the final n − i
letters of τ one to position the left, erasing the i-th position. These are each easily
implemented using standard integer operations, including bit shifting, which allows
for multiplication and division by powers of two in constant time. For example, if
τ is an integer representing a word, then

killpos(τ, i) = τ mod 2j(i−1) + �τ/2ij
2j(i−1),

which can be implemented in C as

τ&((1 << (j ∗ i− j))− 1) + (τ >> (i ∗ j)) << (j ∗ i− j).

Using these basic operations, if τ represents a permutation in Sn, we can compute
τ ↑i= insertpos(τ, i, n+1) in constant time. We can compute τ ↓i+1 from τ ↓i and
τ−1 (i.e., the integer representation of the inverse permutation) in constant time by
inserting n− i into position τ−1(n− i+1) of τ ↓i, and then killing the τ−1(n− i)-th
letter of the result. Finally, we can also compute (τ ↑i+1)−1 from (τ ↑i)−1 and τ in
constant time, by incrementing the τ (i)-th position of τ ↑i and decrementing the
(n + 1)-th position. Consequently, for Algorithm 2, all computations of τ ↑i and
τ ↓i can be performed in constant time, as long as one also computes and stores
(τ ↑i)−1 when computing τ ↑i.

This reduces the runtime for Algorithm 2 from O(|S≤n−1(Π)| · n2k), as derived
in Theorem 3.3, to O(|S≤n−1(Π)| · nk), as desired. �

Surprisingly, we can further optimize the algorithm to shave off another linear
factor. To do this, we must introduce the notion of an extension map.

Definition 4.2. Let τ ∈ Sn(Π). Let I be the set of i ∈ [n + 1] such that τ ↑i∈
Sn+1(Π). Then the extension map ΨΠ(τ ) of τ is the (n + 1)-letter bit map with
i-th letter equal to 1 exactly when i ∈ I, and equal to 0 otherwise.

Example 4.3. Consider 12 ∈ S2(123). Observe that Ψ123(12) is 110 because
inserting 3 in either of the first two positions of 12 results in another 123-avoider
but inserting 3 in the third position does not.

Definition 4.4. Let j ∈ [n] and τ ∈ Sn(Π). Let I be the set of i ∈ [n + 1] such
that τ ↑i↓j+1∈ Sn(Π). Then the (n− j + 1)-ignoring extension map ΨΠ

n−j+1(τ ) of
τ is the (n+ 1)-letter bit map with i-th letter equal to one exactly when i ∈ I.

Example 4.5. Consider 53412 ∈ Sn(123). Then the 4-ignoring extension map of
53412 tells us for which i we can insert 6 in position i to get a permutation whose
only 123-patterns involve the letter 4. Consequently, Ψ123

4 (53412) = 111110.



996 WILLIAM KUSZMAUL

The next theorem shows how to count Π-avoiders in only O(k) time per avoider.
In addition to the integer operations traditionally used in the RAM model, the
algorithm uses two operations which most modern machines implement in a single
instruction. The first is popcount, which returns the number of 1s in an integer’s
binary representation. The second is ctz, which returns the number of trailing
0-bits of an integer, starting at the least-significant bit position.

Theorem 4.6. Let Π be a set of patterns, the longest of which is length k. The
values |S1(Π)|, . . . , |Sn(Π)| can be computed in time O(|(S≤n−1(Π)| · k). Moreover,
in time O(|(S≤n−1(Π)| · k + |Sn(Π)|), one can construct S≤n(Π).

Proof. Our computational model allows us to store O(n) bits in an integer. As a
result, we can store extension maps as unsigned integers, allowing us to perform
integer operations on them in constant time.

Consider a Π-avoiding permutation τ ∈ Sm(Π) for some m ≥ k. (We will handle
smaller τ later.) By Proposition 3.1,

ΨΠ(τ ) =
∧

j∈[n−k,n]

ΨΠ
j (τ ),

where
∧

denotes the and operator. (Call this Observation (1).)
Moreover, given τ−1 and ΨΠ(τ ↓m−j+1), we can compute ΨΠ

j (τ ) in constant time.

(Call this Observation (2).) In particular, since ΨΠ(τ ↓m−j+1) is the extension
map of the standardization of τ with j removed, and since ΨΠ

j (τ ) is the j-ignoring

extension map of τ , we get the following relationship. For i ∈ [1, τ−1(j)], the i-th
bit of ΨΠ

j (τ ) is the same as that of ΨΠ(τ ↓m−j+1); and for i ∈ [τ−1(j) + 1, n + 1]

the i-th bit of ΨΠ
j (τ ) equals the (i − 1)-th bit of ΨΠ(τ ↓m−j+1). Thus ΨΠ

j (τ ) can

be obtained from ΨΠ(τ ↓m−j+1) by shifting bits in positions τ−1(j) + 1, . . . , n+ 1
to the right by one, and inserting a copy of the τ−1(j)-th bit in the (τ−1(j)+ 1)-th
position.

Combining Observations (1) and (2), we can build {ΨΠ(τ ) : τ ∈ Sm(Π)} in time
O(|Sm(Π)| · k) out of {(τ, τ−1) : τ ∈ Sm(Π)} and {ΨΠ(τ ) : τ ∈ Sm−1(Π)}. If
m = n − 1, then at this point we can use the popcount instruction to count the
number of on-bits appearing in extension maps of permutations in Sm(Π). This
takes O(|Sn−1(Π)|) time and gives us a value for |Sn(Π)|. If m < n − 1, then we
want to build {(τ, τ−1) : τ ∈ S≤m+1(Π)} and then repeat the entire process for
m+ 1.

From the extension maps of avoiders in Sm, we can obtain Sm+1(Π) in time
O(|Sm+1(Π)|) by repeatedly taking advantage of the ctz operation in order to
extract the 1-bit positions from each map. Constructing {τ−1 : τ ∈ Sm+1(Π)} is
not as easy however, and would take O(|Sm+1(Π)| · n) time to do naively. We are
saved, however, by the fact that we only need each τ−1 to be correct in its largest
k values. Thus if we choose to only update these values, then we can obtain the
inverses in time O(|Sm+1(Π)| · k).

At this point we have an algorithm which only starts to work once we have
already built the avoiders in Sk. In particular, Observation (1), which states that

ΨΠ(τ ) =
∧

j∈[n−k,n]

ΨΠ
j (τ ),
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may not hold if |τ | < k (if τ ↑i∈ Π, then the formula may falsely identify τ ↑i as an
avoider). This is easily fixed, however, by simply checking Π-membership for each
detected avoider. �

5. Counting pattern occurrences in S≤n

Building on the ideas in Sections 3 and 4, in this section we present a dynamic
algorithm for counting Π-hits in each permutation of Sn in O(n!k) time. Interest-
ingly, when |Π| = 1, this can be improved to an O(n!) time algorithm. Additionally,
given a preconstructed downset D ⊆ S≤n and the inverses of each τ ∈ D, our al-
gorithm extends to run in O(|S|k) time. The inverses for each τ ∈ D are required
so that τ ↓1, . . . , τ ↓k+1 may be computed in O(k) time (using the same technique
as in Theorem 4.1); recall, however, that they can be obtained at no additional
asymptotic cost if we build D through repeated applications of the ↑i operation.

For this section, fix Π to be a set of patterns, k = maxπ∈Π |π|, and n ∈ N. For
permutations τ , let P (τ ) denote the number of Π-hits in τ .

Definition 5.1. Let Pi(τ ) be the number of Π-hits in τ containing the entire i-upfix
of τ . (Recall that the i-upfix of τ refers to the i largest-valued letters in τ .)

Example 5.2. Suppose τ = 1234 and Π = {123}. Then P0(τ ) = 4, P1(τ ) = 3,
P2(τ ) = 2, P3(τ ) = 1, and P4(τ ) = 0.

Observe that P0(τ ) = P (τ ). Surprisingly, whereas P (τ ) satisfies no straightfor-
ward recurrence relation, Pi(τ ) does. The following proposition can be thought of
as a natural extension of Proposition 3.1 from the context of pattern detection to
the context of pattern counting.

Proposition 5.3. Let τ ∈ Sn. Then

Pi(τ ) =

⎧⎨
⎩

Pi+1(τ ) + Pi(τ ↓i+1) if i < n and i ≤ k,
1 if i = n and τ ∈ Π, and
0 otherwise.

⎫⎬
⎭

Proof. Suppose i < n and i ≤ k. Then the Π-hits in τ using τ ’s entire (i+1)-upfix
are counted by Pi+1(τ ), and the Π-hits in τ using τ ’s entire i-upfix but not τ ’s
entire (i+ 1)-upfix are counted by Pi(τ ↓i+1).

Suppose i = n. Then the i-upfix of τ forms a pattern in Π if and only if τ ∈ Π.
Finally, if i > k or i > n, then Pi(τ ) = 0. In particular, if i > k, then no pattern

in Π can use all of the first i letters of τ , since k = maxπ∈Π |π|. �

Given a permutation τ and its inverse τ−1, and using the optimizations intro-
duced in Theorem 4.1, Proposition 5.3 yields an O(k) algorithm to compute each
Pi(τ ) for a permutation in terms of each Pi(τ

′) for smaller permutations τ ′ (Algo-
rithm 3).3 Note that Algorithm 3 treats each Pi as a globally accessible hash table
mapping permutations to integers, and that Algorithm 3 assumes access to Π and
k.

Theorem 5.4. Given a downset D ⊆ S≤n, and the inverse of each d ∈ D, one can
construct P (τ ) for each τ ∈ D in O(|D| · k) time.

3Recall τ−1 is needed for fast computation of τ ↓i for i ∈ {1, . . . , k + 1}.
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Algorithm 3: Count(τ): Counting Π-hits in τ .

Input: Permutation τ ∈ Sn

Output: Assigns values to Pi(τ ) for each i ∈ {0, . . . , k + 1}
Pk+1(τ ) := 0;

for i ∈ {k, . . . , 0} do
Pi(τ ) := 0;

if i = n and τ ∈ Π then
Pi(τ ) := 1

if i < n then
Pi(τ ) := Pi(τ ↓i+1) + Pi+1(τ );

Proof. Given D, bucket-sort can be used to construct each of D ∩ Si for 1 ≤ i ≤ n
in O(|D|) total time. One can then use Algorithm 3 to compute P (τ ) for each
τ ∈ (D ∩ Si) for i from 1 to n (as well as Pi(τ ) for O(k) different i). This takes
O(|D|·k) time. Note that we are assuming each τ ↓i in the algorithm takes constant
time to compute; this is easily accomplished using the exact same technique as in
Theorem 4.1, and is the reason we require the inverse of each d ∈ D. �

The algorithm in Theorem 5.4 can also be adapted for downsets D ⊆ S≤n for
which set membership is conditional on the number of Π-hits of a permutation.

For one important example of this, suppose D is the set of permutations in S≤n

with j or fewer Π-hits for some fixed j. Since D is a downset, every element in
Sn ∩ D is of the form τ ↑i for some i ∈ {1, . . . n} and τ ∈ Sn−1 ∩ D. Thus we
can build Sn ∩ D out of Sn−1 ∩ D while simultaneously using Proposition 5.3 to
compute P (τ ) for each τ ∈ D. To accomplish this, we use Algorithm 4 to identify
whether a permutation τ is in Sn ∩D based on values of Pi(τ

′) for τ ′ ∈ Sn−1 ∩D.
At the same time, if Algorithm 4 concludes that a permutation is in Sn ∩ D, it
computes Pi(τ ) for each i. In turn, Algorithm 5 uses Algorithm 4 to compute each
Pi(τ ) for all τ ∈ D. Observe that Algorithm 5 runs in O(|D∩S≤n−1| ·nk) time. In
particular, for each permutation τ in D ∩S≤n−1, we run Algorithm 4 on each τ ↑i.

When j = 0, Algorithm 5 simply builds S≤n(Π). In fact, in this case the algo-
rithm can be cleaned up to become Algorithm 2.

Theorem 5.4 allows us to count Π-hits in each τ ∈ Sn in O(n!k) time. Surpris-
ingly, this can be improved even further when |Π| = 1.

Theorem 5.5. Let π ∈ Sk. Then the number of π-hits in each τ ∈ Sn can be
computed in Θ(n!) time, regardless of k.

Proof. For a permutation τ , let i be the smallest i such that the i-upfix of τ is
not order-isomorphic to the i-upfix of π. Then Pi(τ ) = 0. Thus we can modify
Algorithm 3 to not bother computing Pj(τ ) for j > i. In particular, Pj(τ ) for j > i
will never be requested later in the algorithm; any τ ′ such that τ ′ ↓k= τ for some
k > i will also have its i-upfix not order-isomorphic to π’s.

Note that given that the (i−1)-upfix of τ is order-isomorphic to the (i−1)-upfix
of π, and using information about τ−1, one can check whether the i-upfix is as well
in constant time. With this in mind, we can analyze our new algorithm.
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Algorithm 4: CountHitsBounded Counts Π-hits in τ if τ has at most j
Π-hits (and is thus said to be in D); returns false if τ has more than j Π-hits.

Input: HashTable H such that H ∩ Sn−1 = D ∩ Sn−1, Permutation τ ∈ Sn, j
Output: Returns whether τ has ≤ j Π-hits. If true, assigns values to Pi(τ )

for each i ∈ {0, . . . , k + 1}
Pk+1(τ ) := 0;

for i ∈ {k, . . . , 0} do
Pi(τ ) := 0;

if i = n and τ ∈ Π then
Pi(τ ) := 1;

if i < n then
if τ ↓i+1 	∈ H then

for r ∈ {k + 1, . . . , i+ 1} do
Pr.remove(τ );

return false;

Pi(τ ) := Pi(τ ↓i+1) + Pi+1(τ )

if P0(τ ) > j then
for i ∈ {k + 1, . . . , 0} do

Pi.remove(τ );

return false;

return true;

Algorithm 5: BuildPermsWithBoundedHits

Input: n, j, Π
Output: Returns set of permutations τ in S≤n with ≤ j Π-hits; Also

computes values of Pi(τ ).
UnorderedSet D;

Queue Unprocessed;

if 1 	∈ Π or j ≥ 1 then
Unprocessed.enqueue(1);

D.add(1);

while not Unprocessed.isempty() do
Perm := Unprocessed.dequeue();

for i ∈ {1, . . . , P erm.size+ 1} do
NewPerm := Perm↑i;
if CountHitsBounded(D, NewPerm, j) then

D.insert(NewPerm);

if NewPerm.size() < n then
Unprocessed.enqueue(NewPerm);

return D;
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Let Tr be the indicator function taking value 1 when the r-upfix of a permutation
is order-isomorphic to π’s r-upfix. Then the new algorithm spends time propor-
tional to O(1) +

∑
r Tr(τ ) on each permutation τ . However, E(Tr(τ )) ≤ 1/r! over

all τ ∈ S≤n. Thus the algorithm runs in O(n!) time. �

In fact, we conjecture that the same trick reduces Algorithm 1 to anO(|Sn−1(π)|n)
time algorithm for any pattern π. This would not necessarily reduce the runtime
of the enumeration algorithm in Theorem 4.6 to O(|Sn−1(π)|), however, since the
algorithm would still be asymptotically bottle-necked by the updating of inverses.
Regardless, the hack can be added to both algorithms to reduce cache misses.

To prove the conjecture, one would show that E(Tr(τ )) is small for τ from
Sn(π) ↑:= {τ ↑i| i ∈ {1, . . . , n}, τ ∈ Sn−1(π)}. For example, when π = 123 · · · k,
this can be done as follows. Suppose τ ∈ Sn(π) ↑ has an increasing r-upfix
p1p2 · · · pr. Since τ ’s r-upfix is in increasing order and τ avoids 12 · · · k, it follows
that any reordering of the letters in τ ’s r-upfix will also result in a permutation
avoiding 12 · · · k. If we reorder the letters in the r-upfix to be p2p3p4 · · · pi with
p1 inserted in some position other than the first, then we see that we can match
each τ ∈ Sn(π) ↑ having an increasing r-upfix with r − 1 permutations, each in
Sn(π) ↑ and each with an increasing (r − 1)-upfix (but not an increasing r-upfix).
It follows that E(Tr(τ )) ≤ E(Tr−1(τ ))/r over τ ∈ Sn(π) ↑, implying the conjecture
for π = 123 · · · k. In fact, proving E(Tr(τ )) ≤ E(Tr−1(τ ))/c for any constant c > 1
would be sufficient, which is why the conjecture seems very likely to be true in
general.

Remark 5.6. In practice, the technique introduced in Theorem 5.5 is worth imple-
menting even for large sets of patterns Π (for both PPA and PPC). In order for
this to be efficient, however, one needs to quickly identify whether the i-upfix of a
permutation τ is an i-upfix of any permutation π ∈ Π. An efficient technique for
this, taking constant time per i-upfix, is discussed in Appendix A.

6. Eliminating the memory bottleneck and making parallelism easy

So far, our algorithms have required space nearly proportional to their runtime.
In this section we restructure our algorithms so that, without changing their run-
times, we asymptotically reduce space usage to at most O(nk+1k). Consequently,
our algorithms are practical for even very large computations on small comput-
ers. At the same time, these changes make our algorithms easily implemented in
parallel.

Of course, if one wants to actually store Sn(Π) or P (τ ) for each τ ∈ Sn, then
space efficiency is futile. However, in this section, we assume that the goal is
enumeration, to either evaluate |Sn(Π)| or to tally how many τ ∈ Sn have each
value of P (τ ).

For this entire section, define T to be the inclusion tree of all permutations,
meaning that a node v has children v ↑i for each i ∈ [1, |v|+1]. For a node v, define
v’s j-th level children Cj(v) to be the set of nodes in the (j + 1)-th level of the
subtree of which v is the root. In particular, these are the permutations in S|v|+j

whose smallest |v| letters are order-isomorphic to v.
The following lemma will play a key role in improving memory utilization. In

particular, the recursions on which both our PPA and PPC algorithms are based
compute information about a given τ ∈ Sn based only on information about τ ↓i
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for each i ∈ min(n, k + 1). Lemma 6.1 tells us that we can therefore compute
information about the (k + 1)-th level children of v based only on information
about the k-th level children of v.

Lemma 6.1. For a given a set of permutations A, define A ↓i as {s ↓i: s ∈ A}.
Then for any node v ∈ T and for any positive integers i and j satisfying i ≤ j,

Cj(v) ↓i⊆ Cj−1(v).

Proof. The elements of Cj−1(v) are precisely the permutations in S|v|+j−1 with v as
their |v|-downfix (i.e., the word formed by the letters 1, . . . , |v| is order-isomorphic to
v). Every element of Cj(v) also has |v|-downfix v. Moreover, |v|+j−i+1 > |v| since
i ≤ j, implying that every element of Cj(v) ↓i has |v|-upfix v as well, completing
the proof. �

Our approach to PPC in Section 5 uses O((n − 1)!k) space. In particular, we
perform a breadth-first traversal of T ∩S≤n, using Proposition 5.3 at each node v to
compute each Pi(v). However, Lemma 6.1 suggests an O(nk+1k)-space approach.

Theorem 6.2. Let Π be a set of patterns, the longest of which is length k. We can
count permutations in Sn by Π-hits in O(n!k) time using O(nk+1k) space.

Proof. If n < k, then Algorithm 3 is already sufficient. Otherwise, we restructure
the algorithm as follows.

First compute Pi(τ ) for each τ ∈ S≤k using the Algorithm 3 (in O(k!) space).
Then traverse T ∩ S≤n−k depth-first. When visiting a node v, compute each Pi(c)
for each c ∈ Ck(v). Observe that by Lemma 6.1 this computation depends only
on elements of Ck(v ↓1), which we will have already computed due to the depth-
first nature of our computation.4 Having computed each Pi of each c ∈ Ck(v), we
update our tally of how many permutations have each number of Π-hits, and we
then store each Pi(c) (to be accessed while visiting v’s children in T ). However,
when we return to v’s parents during our depth-first traversal of T , we no longer
need to store these Pi(c) values and we throw them out.

At a given point in the traversal of T ∩Sn−k, we may store as many (P0, P1, . . . ,

Pk)-tuples as O(
∑n−k

i=0 (i + 1)(i + 2) · · · (i + k)), bounding our memory usage at
O(nk+1k); note that the space needed to keep tally of permutations by Π-hits is
bounded above by

(
n
k

)
+
(

n
k−1

)
+ · · ·+

(
n
1

)
≤ nk+1. �

Remark 6.3. When |Π| = 1, we can use the technique from Theorem 5.5 to obtain
O(nk+1)-space usage, since instead of storing entire (k+ 1)-tuples of Pi’s, we store
on average a constant number per permutation. Additionally, the technique brings
the runtime down to O(n!).

We can apply a similar optimization to the PPA algorithm introduced in Theo-
rem 4.6.

Theorem 6.4. Let Π be a set of patterns, the longest of which is length k. The
values |S1(Π)|, . . . , |Sn(Π)| can be computed in time O(|(S≤n−1(Π)| · k) and space
O(nk).

4Note that as a base case we consider Ck of the empty permutation to be the permutations of
size k.
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Proof. If n ≤ k−1, then Theorem 4.6 is already sufficient, requiring space no more
than n! ≤ nk. Otherwise, we restructure the theorem’s algorithm as follows.

As a base case, use the algorithm from Theorem 4.6 to count Π-avoiders in
S≤k−1(Π) and build the extension map for each avoider in Sk−1(Π).

Computing the extension map for an avoider v uses only the extension maps
of v ↓1, . . . , v ↓k. Therefore, by Lemma 6.1, to build the extension maps for each
permutation in Ck−1(v)∩S≤n(Π), it suffices to have stored the extension maps for
each permutation in Ck−1(v ↓1) ∩ S≤n(Π). Thus after we have built the extension
maps for Sk−1(Π) as a base case, we can restructure the algorithm from Theorem
4.6 as follows. We perform a depth-first traversal on T∩Sn−k. When visiting a node
v, build the extension map of each permutation in Ck−1(v) ∩ S≤n(Π). Store these
extension maps to be accessed later in the depth-first traversal; upon returning to
v’s parents, however, we throw these extension maps away.

In order for this to not compromise the algorithm’s runtime, there is a slight
subtlety. We need to be able to build Ck−1(v)∩S≤n(Π) out of Ck−1(v ↓1)∩S≤n(Π)
in time O(|Ck−1(v ↓1) ∩ S≤n(Π)| · k + |Ck−1(v) ∩ S≤n(Π)|). To accomplish this,
when visiting v ↓1 in the depth-first traversal, one partitions Ck−1(v ↓1) ∩ S≤n(Π)
according to the position of |v| relative to 1, 2, . . . , |v| − 1.5 Then, when visiting v,
one can build Ck−1(v)∩S≤n(Π) from the extension maps of elements of Ck−1(v ↓1)
∩ S≤n(Π) having |v| in the same position relative to 1, 2, . . . , |v| − 1 as in v.6 This
resolves the issue, allowing us to retain our original runtime.

At any given moment in the algorithm, at each depth of the depth-first traversal,
we store no more than nk−1 extension maps. Thus the algorithm uses O(nk) space.

�
In practice, if Ck(v)∩S≤n(Π) is never very large for any v, then the space usage

for PPA may be much smaller than O(nk). In particular, the expected memory

consumption at a given instance in the algorithm is O(
∑n−1

j=k |Sj(Π)|/|Sj−k+1(Π)|),
which by the former Stanley-Wilf conjecture (proven in [23]), grows at most linearly
with n (with a potentially large constant depending on Π). Thus, a large machine
running many pattern-avoidance computations in parallel can treat space usage as
growing linearly with n.

In addition to reducing space-usage asymptotically, the optimizations in this
section make parallelizing our algorithm easy. Indeed, by visiting multiple of a
node’s children at a time, the depth-first traversals of T can be parallelized without
risking write-conflicts for hash maps containing either extension maps or Pi-values.
Although we test our algorithms in serial in Section 7, we have released a parallelized
implementation at https://github.com/williamkuszmaul/patternavoidance.

7. Implementations and performance comparisons

In this section, we test our algorithms’ performance against other algorithms.7

Our implementations represent the i-th letter of a permutation in the i-th nibble

5Since the algorithm in Theorem 4.6 remembers the positions of the final k letters of the inverses
of the permutations in Ck−1(v ↓1)∩S≤n(Π), we can build this partition in time O(k|Ck−1(v ↓1)
∩ S≤n(Π)|).

6Recall that the ctz operator can be used to quickly determine for which positions an extension
map takes value 1

7All of our experiments are run in serial on an Amazon C4.8xlarge machine with two Intel
E5-2666 v3 chips running at 2.90GHz; we are running Fedora 22 with kernel 4.0.4-301; we compile
using g++ 5.1.1.

https://github.com/williamkuszmaul/patternavoidance
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of a 64-bit integer, allowing for permutations of size up to 16. However, in our
released code (https://github.com/williamkuszmaul/patternavoidance), one
can choose the settings option of allowing for larger permutations.

In Section 7.1, we test our algorithm for finding |Sn(Π)| against the naive
generate-and-check algorithm and PermLab’s more sophisticated generate-and-
check algorithm. Along the way, we reimplement PermLab’s algorithm, introduc-
ing optimizations resulting from our 64-bit representation of a permutation, and
increasing efficiency for large sets of patterns. The difference in performance be-
tween PermLab’s and our algorithm is most clear for large sets of large patterns;
this is important because for large patterns, Sn(Π) likely often only becomes com-
binatorially interesting when there are sufficiently many patterns to incur natural
structure.

In Section 7.2, we test both of our algorithms for PPA and PPC against algo-
rithms introduced by Inoue, Takashisa, and Minato [16, 17]. Their algorithms use
a compression technique to get extremely good performance in certain cases. We
suggest directions of future work for integrating those techniques into our algorithm
for generating Sn(Π).

Our implementations and tests are available at:

https://github.com/williamkuszmaul/patternavoidance.

7.1. Implementations computing |Sn(Π)|. In this section we compare our
pattern-avoidance algorithm to the naive generate-and-check algorithm and the
more sophisticated algorithm of PermLab.

We implemented our O(|S≤n−1(Π)| · k)-time and O(nk)-space algorithm for
counting |S1(Π)|, . . . , |Sn(Π)|, as well as a naive generate-and-check algorithm im-
plementation, optimizing both for performance.

The naive generate-and-check algorithm runs as follows. Let Tn be the tree of
permutations in S≤n such that the children of τ ∈ Sk are each an option for τ ↑i.
Define C(v) to be the set of children of a node v and F (v) to be the parent. The
generate-and-check algorithm performs a depth-first search on Tn∩S≤n(Π), visiting
a node’s children only if the node itself avoids Π. In order to determine whether
a permutation τ avoids Π, the algorithm applies a straightforward variant of the
technique presented in Appendix A to the subsequences of at most k letters in τ ,
only considering a given subsequence of length i if the (i−1)-upfix of that sequence
is order-isomorphic to the (i− 1)-upfix of some pattern in Π.

The best publicly available code for computing Sn(Π), however, is PermLab,
which makes several clever changes to the naive generate-and-check algorithm in
order to hide its asymptotics for small n [2]. PermLab performs a depth-first search
of Tn ∩ S≤n−1(Π), computing at a given node v whether each c ∈ C(v) avoids Π.
However, since PermLab only visits nodes avoiding Π, it only needs to check the
children of a node in Sj for Π-hits involving j+1. At the same time, when visiting
a node v ∈ Sj , PermLab remembers for each x ∈ C(F (v)) whether x avoids Π.
Using this information, PermLab can quickly determine for each c ∈ C(v) whether
c has a Π-hit not involving the letter j. Thus PermLab needs only search through
brute force for Π-hits in c involving both j + 1 and j.

We reimplemented Permlab’s algorithm, making optimizations specific to our
representation of permutations as 64-bit integers. We also eliminated some wasted
work by carefully examining only permutation subsequences which could potentially

https://github.com/williamkuszmaul/patternavoidance
https://github.com/williamkuszmaul/patternavoidance
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form the upfix of a Π-hit; in particular, we filter out subsequences which include a
letter too small to allow for the rest of the Π-hit to appear after the upfix.

To search for a Π-hit in a permutation, PermLab searches independently for
each π ∈ Π until it succeeds or concludes the permutation avoids Π. However, this
scales poorly to handling large sets of patterns, and allows for performance to be
affected by the order patterns appear in Π. Instead, just as we did for our generate-
and-check implementation, we use a straightforward variant of the technique from
Appendix A to check whether a subsequence is order-isomorphic to an upfix of any
Π-hit in amortized constant time (using information about previous subsequences).
This leads to significant speedup when there are many shared upfixes among the
permutations in Π. On the other hand, if |Π| = 1, then the overhead of using
the small hash table required for the technique from Appendix A leads to a slight
slowdown. In order to demonstrate the difference, we implement both variants,
calling the small-set-optimized version (using PermLab’s scheme) V1 and the large-
set-optimized version V2.

In Figure 3 (the final subfigure of which is discussed later), we compare the
performances of the algorithms handling single patterns,8 including V1, V2, and the
original PermLab. While V1 performs slightly faster than V2 in this experiment, it
should never perform more than a constant factor faster. Indeed, to confirm that a
permutation is an avoider, V1 must examine every permutation subsequence which
V2 does; and to discover that a permutation is not an avoider, V1 is expected
to look at at least as many sequences as V2, sometimes re-examining sequences
because patterns share an upfix. Thus the only speedup comes from not using a
small hash table to store pattern upfixes.

Whereas the naive generate-and-check algorithm’s disadvantage grows with n,
Permlab’s algorithm appears to largely hide its asymptotic disadvantage for single
patterns. Both algorithms perform many times worse than our algorithm.

In Figure 4, we show algorithm performance for large sets of patterns. Let
Xk(231) be the set of permutations in Sk containing a 123-hit. Then Sn(Xk(231))
contains the permutations in Sn with no k-letter subsequences containing any 231-
patterns; of course for n ≥ k this is simply Sn(231), which has size the n-th Catalan
number Cn. Unlike our algorithm, V2 and the naive generate-and-check algorithm
do not scale well to large sets of large patterns. By computing Sn(Xk(231)) for a
fixed k, we can see how each algorithm performs for varying n and a fixed large set
of patterns in Sk. At the same time, by computing Sn(Xk(231)) for a fixed n, we
can see how each algorithm’s performance changes when we use a larger set of larger
patterns to solve the exact same pattern-avoidance problem. For this experiment,
we use our V2-variant of PermLab, since it is far more suitable for a large set of
patterns. Indeed, while the V1 variant may compute S12(123456) more than twice
as fast as V2, it computes S12(X6(231)) more than ten times slower (11.7 seconds
for V1 versus .97 seconds for V2). In fact, while V1 is ever at most some constant
times faster than V2, V2 can be arbitrarily faster than V1 for large sets of patterns.

There are downsets of permutations where the difference in algorithm perfor-
mances might be much more extreme, even for single patterns. For an example,
one could consider permutations with inversion number bounded above by some
constant, and use a pattern with few inversions. Indeed, in any case where we

8We choose not to use identity patterns, since they are likely to yield abnormal performance
for particular algorithms.
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n\k 3 4 5 6
8 0.001 0.013 0.016 0.012
9 0.004 0.063 0.094 0.072
10 0.009 0.299 0.832 0.958
11 0.037 2.377 9.530 13.51
12 0.151 19.06 112.1 198.7
13 0.615 153.8 1348 3032

(A) Naive generate-and-check algorithm

n\k 3 4 5 6
8 0.000 0.006 0.010 0.008
9 0.001 0.030 0.059 0.051
10 0.003 0.100 0.337 0.452
11 0.009 0.654 3.388 5.559
12 0.035 4.573 35.20 72.32
13 0.131 32.53 378.4 985.5

(B) V2 algorithm

n\k 3 4 5 6
8 0.000 0.004 0.007 0.007
9 0.001 0.020 0.042 0.040
10 0.003 0.070 0.212 0.289
11 0.007 0.396 2.024 3.326
12 0.028 2.665 20.16 41.06
13 0.102 18.10 201.1 519.0

(C) V1 algorithm

n\k 3 4 5 6
8 0.018 0.019 0.029 0.034
9 0.016 0.047 0.122 0.151
10 0.024 0.147 0.581 0.757
11 0.051 0.915 3.980 6.795
12 0.123 5.020 35.13 74.39
13 0.286 30.55 333.4 911.0

(D) PermLab

n\k 3 4 5 6
8 0.000 0.000 0.001 0.001
9 0.000 0.004 0.009 0.010
10 0.001 0.019 0.045 0.050
11 0.003 0.062 0.217 0.351
12 0.008 0.339 1.779 3.590
13 0.029 2.183 16.29 39.67

(E) Our algorithm

n\k 3 4 5 6
8 0.011 0.007 0.011 0.009
9 0.016 0.013 0.028 0.009
10 0.027 0.034 0.067 0.039
11 0.046 0.099 0.239 0.151
12 0.087 0.361 0.952 0.965
13 0.149 1.640 5.310 6.423
14 0.219 6.434 24.81 34.90
15 0.561 24.34 115.1 199.9
16 1.672 91.03 567.9 1254

(F) ΠDD-based algorithm

Figure 3. Time in seconds to compute |Sn(Π)| with n ∈ [8, 16]
and for Π containing a single pattern of length k from the set
{231, 2431, 24531, 246531}.

are interested in a downset of permutations, many of which contain numerous hit-
upfixes, the contrast between the algorithmic performances would be highlighted.

7.2. In Comparison with ΠDDbased algorithms. In 2013, Inoue, Takahisa,
and Minato, introduced an algorithm for generating Sn(Π) which, although asymp-
totically mysterious, runs very fast in certain cases [17]. Their algorithm represents
sets of permutations in a data structure called a ΠDD, which in practice compresses
sets of related permutations well. They then use set operations, in addition to other
select operations easily performed on a ΠDD, in order to construct the ΠDD for
Sn(Π). If the ΠDD’s compression algorithm works sufficiently well, the algorithm
can potentially run in less than |Sn(Π)| time. On the other hand, with poor com-
pression, the algorithm could perform far worse than the naive generate-and-check
algorithm.

In Figure 3, we compare the ΠDD-based algorithm with our algorithm for com-
puting Sk(π) for π ∈ {231, 2431, 24531} and n varying. While the ΠDD-based
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n\k 3 4 5 6
10 0.009 0.026 0.049 0.062
11 0.037 0.124 0.258 0.362
12 0.151 0.572 1.345 2.120
13 0.623 2.607 6.838 11.94
14 2.490 11.80 34.31 66.62
15 10.15 53.01 169.2 359.0
16 41.29 236.7 822.0 1906

(A) Naive generate-and-check algorithm

n\k 3 4 5 6
10 0.002 0.008 0.021 0.034
11 0.009 0.035 0.102 0.181
12 0.035 0.145 0.480 0.968
13 0.131 0.598 2.237 5.043
14 0.489 2.476 10.30 25.92
15 1.825 10.19 47.31 130.3
16 6.841 42.05 212.9 643.9

(B) V2 algorithm

n\k 3 4 5 6
10 0.000 0.000 0.001 0.001
11 0.002 0.002 0.003 0.003
12 0.008 0.008 0.011 0.013
13 0.029 0.031 0.039 0.046
14 0.103 0.110 0.140 0.163
15 0.368 0.396 0.504 0.589
16 1.314 1.432 1.822 2.128

(C) Our algorithm

Figure 4. Time in seconds to compute |Sn(Xk(231))|.

Alg \ Set-Size 1 2 3 4
Our Alg. 99.765 3.731 0.197 0.049
ΠDD-Based 30.648 28.377 18.328 32.820

Figure 5. Time in seconds to generate S15(1234),
S15(1234, 2341), S15(1234, 2341, 3412), S15(1234, 2341, 3412, 4123)
respectively.

algorithm runs extremely fast for |Π| = 1, it performs far worse for sets of mul-
tiple patterns. In particular, as |Π| increases, the time to compute Sn(Π) tends
to stay roughly constant as |Π| grows, instead of rapidly shrinking with |Sn(Π)|
as is the case for our algorithm. For an example of this, see Figure 5. This is
possibly because the ΠDD-based algorithm works by generating the non-avoiders
and subtracting those from Sn, rather than directly generating the avoiders.

Observe that Proposition 3.1 can be rewritten in terms of set operations. Given
a permutation s, define S ↑ij to be the permutation obtained by inserting (j − 0.5)
in position i of s, and then standardizing the result to a permutation. For example,
12345678 ↑25= st(1(4.5)2345678) = 152346789. In turn, given a set of permutations
A, define A ↑ij to be {s ↑ij |s ∈ A}. Then Proposition 3.1 yields the following
proposition.

Proposition 7.1. Let Π be a set of permutations, the largest of which is size k.
Then for n > k,

Sn(Π) =
k+1⋂
j=1

n⋃
i=1

Sn−1(Π) ↑ij .
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n\k 3 4 5 6
8 0.021 0.020 0.013 0.007
9 0.258 0.265 0.187 0.120
10 3.361 3.763 2.791 1.940
11 46.97 57.21 44.35 32.62
12 705.0 930.5 752.4 581.0

(A) Generate-and-check algorithm

n\k 3 4 5 6
8 0.003 0.002 0.003 0.002
9 0.027 0.026 0.026 0.027
10 0.285 0.302 0.302 0.309
11 3.520 3.657 3.666 3.766
12 42.74 44.75 44.79 45.72

(B) Our algorithm

n\k 3 4 5 6
8 0.098 0.078 0.031 0.030
9 0.263 0.249 0.087 0.040
10 1.918 3.329 1.062 0.191
11 15.64 40.40 17.45 3.671
12 105.2 532.3 249.6 58.24

(C) ΠDD-based algorithm

Figure 6. Time in seconds to find each Π-hit in each permutation
in S≤n with n ∈ [8, 16] and for Π containing a single pattern of
length k from the set {231, 2431, 24531, 246531}.

n\k 3 4 5
8 0.021 0.046 0.054
9 0.258 0.650 0.911
10 3.363 9.818 16.14
11 46.96 156.4 297.6
12 704.1 2646 5746

(A) Generate-and-check algorithm

n\k 3 4 5
8 0.003 0.004 0.006
9 0.027 0.041 0.055
10 0.286 0.453 0.637
11 3.554 5.735 8.359
12 42.84 74.72 111.0

(B) Our algorithm

n\k 3 4
8 0.095 0.137
9 0.269 1.612
10 1.824 20.14
11 15.34 236.6

(C) ΠDD-based algorithm

Figure 7. Time in seconds to count for each τ ∈ S≤n the number
of k-letter sequences containing a 231 pattern.

Thus it would be an interesting direction of future work to efficiently implement
the ↑ij operation for sets represented using ΠDD. Using this, our PPA algorithm
could potentially be reimplemented using ΠDD’s with runtime in practice less than
Θ(|Sn(Π)|), even for large Π.

In 2014, Inoue, Takahisa, and Minato extended their algorithm to count Π-hits
in each τ ∈ Sn [16]. In particular, they built the ΠDD for the set of permutations
with i Π-hits for each i. In Figure 6, we compare the runtime performance of the
ΠDD-based algorithm to our own for single patterns π ∈ {231, 2431, 24531}, as well
as to an optimized generate-and-check implementation; this time, our algorithm
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tends to have the edge. Additionally, unlike our algorithm, which runs in time
O(n!k) regardless of |Π|, the ΠDD-based algorithm tends to scale approximately
linearly in terms of |Π|. This can be seen, for example, in Figure 7, in which
our PPC algorithm, the ΠDD-based PPC algorithm, and the generate-and-check
implementation are tested on the pattern set {π ∈ Sk | π contains a 231-hit}. Both
the implementation of our PPC algorithm and the generate-and-check algorithm
are available at https://github.com/williamkuszmaul/patternavoidance.

There are many interesting questions still to be asked about the ΠDD-based al-
gorithms. Can they be extended to apply to a downset of permutations rather than
Sn? Can theoretical bounds be proven for their worst-case runtime performances?

8. Conclusion

In this paper, we provided the first provably fast algorithms for constructing
Sn(Π) and for counting Π-hits in each τ ∈ Sn. Surprisingly, even though detecting
whether a permutation contains a pattern is NP-hard [6], detecting which permu-
tations contain that pattern is polynomial time per permutation.

Our investigation prompts several directions for future algorithmic work. Can
Algorithm 2’s runtime be improved to Θ(|S≤n−1(Π)| · n) using the technique from
Theorem 5.5? Can Algorithm 2 be efficiently implemented to take advantage of
ΠDD’s (Section 7.2)? Do the ΠDD-based algorithms of Inoue, Takashisa, and
Minato [16, 17] have good worst-case or expected runtimes?

Additionally, it would be interesting to extend our results to vincular patterns,
in which patterns may come with additional adjacency constraints. In the rest of
this section, we will present our progress on this so far, as well as the challenges
involved in making further progress.

Vincular patterns came into the spotlight in 2000 when Babson and Steingŕımsson
observed that essentially all Mahonian permutation statistics can be written as a
linear combination of the vincular patterns appearing in a permutation [4]. Just
as for traditional pattern-avoidance, relations to natural structures such as Dyck
paths and set partitions arise in the study of vincular-pattern avoidance [9].

Vincular patterns come with position-adjacency constraints, meaning certain
pairs of adjacent positions in the pattern are required to also be adjacent in the
hit. In the context of our algorithms, it is more convenient to discuss covincular
patterns, however, which are equivalent to vincular patterns and come with value-
adjacency constraints. A covincular patterns is a pair (π,X) where π ∈ Sk and
X ⊆ {0, . . . , k}. An element x ∈ X from 1 to k− 1 indicates that the letters x and
x + 1 must be represented by adjacently-valued letters in any pattern occurrence.
If 0 ∈ X (resp. k ∈ X), then the smallest (resp. largest) letter in any pattern-
occurrence must also be the smallest (resp. largest) letter in the entire permutation.

Example 8.1. The covincular pattern (123, {0, 2}) appears n − 2 times in the
identity permutation en ∈ Sn. In particular, any three letters a1, a2, a3 forming the
pattern must satisfy a1 = 1 and a3 = a2 + 1.

Given a covincular pattern (π,X) and a permutation τ , define Pi(τ ) to be the
number of (π,X)-hits in τ using the entire i-upfix of τ . The following proposition
extends Proposition 5.3 to the case where Π comprises a single covincular pattern.

https://github.com/williamkuszmaul/patternavoidance
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Proposition 8.2. Let τ ∈ Sn. Let (π,X) be a covincular pattern. Then

Pi(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

Pi+1 if i < n, i ≤ |π|, and i ∈ X,
Pi+1(τ ) + Pi(τ ↓i+1) if i < n, i ≤ |π|, i 	∈ X,
1 if i = n and τ ∈ Π, and
0 otherwise.

⎫⎪⎪⎬
⎪⎪⎭

Proof. Cases (2)–(4) follow just as in the proof of Proposition 5.3. Suppose i < n,
i ≤ |π|, and i ∈ X. If i = |π|, then since i < n and i ∈ X we see that Pi(τ ) = 0,
which Case (4) tells us is also the value of Pi+1(τ ), as desired. On the other hand,
if i < |π|, then since i ∈ X, any copy of π in τ−1 using the i-upfix of τ must also
use the i+ 1-upfix of τ . Thus, Pi(τ ) = Pi+1(τ ). �

Using this recurrence, analogues of Theorems 5.4 and 5.5 follow with only slightly
modified proofs.

Theorem 8.3. Let (π,X) be a covincular pattern. Given a downset D ⊆ S≤n and
d−1 for each d ∈ D, one can count (π,X)-hits in τ for each τ ∈ D in O(|D| · |π|)
time.

Proof. If one modifies Algorithm 3 to use the recurrence from Proposition 8.2 on
τ rather than the recurrence from Proposition 5.3 on τ , then the proof follows just
as for Theorem 5.4.

�

Theorem 8.4. Let (π,X) be a covincular pattern. Then the number of (π,X)-hits
in each τ ∈ Sn can be computed in Θ(n!) time, regardless of |π|.

Proof. The result follows using the same technique as in the proof of Theorem 5.5.
In particular, when applying the recursion from Proposition 8.2 to compute Pi(τ )
for some τ ∈ Sn, one checks whether the i-upfix of τ is order-isomorphic to the
i-upfix of π. If the two are not order-isomorphic, Pi(τ ) must be zero. �

Theorem 8.4 shows that we can count (π,X)-hits for each covincular permutation
in S≤n in Θ(n!) time. By considering each pattern in Π separately, this extends
to an algorithm for counting Π-hits for any set Π of covincular permutations in
O(n!|Π|) time.

It is still an open problem, however, to quickly build S≤n(Π) if Π comprises
covincular patterns. The difficulty in this comes from the fact that S≤n(Π) need
not be a downset in this case. Indeed, removing a letter from an avoider τ may
introduce a covincular pattern which was not previously present. For example, the
permutation 1342 does not contain a covincular (123, {1}) pattern, but removing 2
results in a permutation which does.

One special case of a covincular pattern is when X = {1, . . . , k − 1}, meaning
that every pair of adjacently valued letters in the pattern must also be adjacently
valued in any occurrence of the pattern. This is what’s known as a consecutive
pattern. For consecutive patterns π, Theorem 8.3 counts π-hits in a downset D in
O(|D| · |π|) time (assuming d−1 is known for each d ∈ D). Interestingly, in this case,
the PPM problem (detecting a π-pattern in a single permutation τ ∈ Sn) already
has a linear time solution due to Kubica, Kulczyński, Radoszewski, Rytter, and
Waleń [21]. A similar result was found independently by Kim et al. [18].
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9. Appendix A

Given a set of pattern Π, a permutation τ ∈ Sn, and the inverse τ−1, a common
computation is to compute for which i the i-upfix of τ is order-isomorphic to the
i-upfix of any permutation π ∈ Π. It turns out that one can run this check for all
i in the range 1, . . . , r in time O(r).

To do this, for each i ∈ [r], we compute the standardization of the i-upfix of
τ , and then check its membership in a hash table9 containing the standardized
i-upfixes of each π ∈ Π. In fact, it turns out we can compute the standardizations
of each of the successive i-upfixes in constant time. This takes advantage of the
popcount instruction, which on most modern machines obtains the number of 1s
in an integer’s binary representation through a single instruction. In particular,
we maintain a bitmap b (in the form of an integer) where b[j] = 1 if some k ∈
[n− i+ 1, . . . , n] is in position j. We can then use popcount to query how many
letters in τ ’s i-upfix appear to the right of n− i + 1; this tells us in what position
to insert 1 into the standardized (i − 1)-upfix in order to obtain the standardized
i-upfix. The insertion can then be performed using bit hacks in constant time.
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