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ERROR ESTIMATES FOR THE AEDG METHOD

TO ONE-DIMENSIONAL LINEAR

CONVECTION-DIFFUSION EQUATIONS

HAILIANG LIU AND HAIRUI WEN

Abstract. We study the error estimates for the alternating evolution dis-
continuous Galerkin (AEDG) method to one-dimensional linear convection-
diffusion equations. The AEDG method for general convection-diffusion equa-
tions was introduced by H. Liu and M. Pollack [J. Comp. Phys. 307 (2016),
574–592], where stability of the semi-discrete scheme was rigorously proved

for linear problems under a CFL-like stability condition ε < Qh2. Here ε
is the method parameter, and h is the maximum spatial grid size. In this
work, we establish optimal L2 error estimates of order O(hk+1) for k-th de-
gree polynomials, under the same stability condition with ε ∼ h2. For a fully
discrete scheme with the forward Euler temporal discretization, we further ob-
tain the L2 error estimate of order O(τ + hk+1), under the stability condition
c0τ ≤ ε < Qh2 for time step τ ; and an error of order O(τ2 + hk+1) for the
Crank-Nicolson time discretization with any time step τ . Key tools include
two approximation spaces to distinguish overlapping polynomials, two bi-linear
operators, coupled global projections, and a duality argument adapted to the
situation with overlapping polynomials.

1. Introduction

In this paper, we present a priori error estimates for the alternating evolution
discontinuous Galerkin (AEDG) method to the linear convection-diffusion equations

∂tφ+ α∂xφ = β∂2
xφ, (x, t) ∈ [a, b]× (0, T ),(1.1a)

φ(x, 0) = φ0(x), x ∈ [a, b];(1.1b)

here α ∈ R, β ∈ R
+ are given constants. We do not pay attention to boundary

conditions in this paper, hence the solution is considered to be periodic.
The idea using the alternating evolution (AE) system as a numerical device

began in [16] and has been elaborated further in [18,29] using high resolution finite
volume and finite difference approximations, respectively. The AEDG method is a
grid-based discontinuous Galerkin (DG) method, which was introduced by Liu and
Pollack first in [19] for Hamilton-Jacobi equations, and further developed in [20] for
nonlinear convection-diffusion equations,

(1.2) ∂tφ+∇x · f(φ) = Δxa(φ),

in one- and multi-dimensional settings, where f(φ) is a given flux function and a(φ)
is a nondecreasing function.

Received by the editor April 5, 2016 and, in revised form, August 30, 2016.
2010 Mathematics Subject Classification. Primary 65M15, 65M60, 35K20.
Key words and phrases. Alternating evolution, convection-diffusion equations, discontinuous

Galerkin, error estimates.

c©2017 American Mathematical Society

123

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3226


124 HAILIANG LIU AND HAIRUI WEN

A distinct advantage of AE schemes is that no numerical fluxes are needed in
the scheme formulation, instead, the communication with neighboring solution rep-
resentatives φSN is achieved through an AE formulation

∂tφ+∇x · f(φSN ) = Δa(φSN ) +
1

ε
(φSN − φ)

for the convection-diffusion equation (1.2). Here the abbreviation “SN” stands
for “sampling from neighbors” in the sense that ψ = φSN will be sampled from
neighboring polynomials during the spatial discretization (see [20]). The scheme
construction is based on sampling this AE formulation by a polynomial repre-
sentative near each grid point, and it is carried out by allowing the neighboring
polynomials to overlap. It is similar to the central DG methods [23,24] in the sense
that whenever a spatial derivative is evaluated, the neighboring polynomials (or the
other representatives in the central DG schemes) are used as in [22]. However, the
AEDG method involves only one approximating polynomial near each grid point,
independent of the spatial dimension, hence providing high order approximations
near each grid point.

The semi-discrete scheme ([20]) in the one-dimensional case thus has the follow-
ing form: ∫

Ij

(∂tΦj + ∂xf(Φ
SN
j )− ∂2

xa(Φ
SN
j ))ηdx

=
(
−[f(ΦSN

j )]η + [∂xa(Φ
SN
j )]η − [a(ΦSN

j )]∂xη
) ∣∣∣

x=xj

+
1

ε

(∫
Ij

ΦSN
j ηdx−

∫
Ij

Φjηdx

)
,

where xj is the grid point in cell Ij , in which numerical solution is denoted by Φj ;
ΦSN

j are sampled from neighboring polynomials Φj±1, with [g(ΦSN
j )]|xj

standing

for the difference of two neighboring functions at xj in the sense that [g(ΦSN
j )]|xj

=

g(Φj+1(x
+
j ))− g(Φj−1(x

−
j )). The initial condition is taken as the L2 projection of

the initial condition into the relevant finite element space.
The AEDG scheme is shown to be consistent and conservative. Yet the stabil-

ity analysis is subtle since the stability property is not obvious from the scheme
formulation. For linear convection-diffusion equations (1.1), the L2 stability of the
semi-discrete AEDG method has been proven if ε ≤ Qh2, for some Q and mesh
size h, while the technical difficulty was resolved in [20] by a special regrouping of
mixed terms combined with the use of some inverse inequalities.

The main objective of this work is to obtain the optimal error estimates in
L2 norm based on the stability results established in [20] for the semi-discrete
AEDG scheme (2.2). The main result states as follows: for piecewise k-th degree
polynomials, if ε = cQh2 with c ∈ (0, 1), then a priori estimate for the error between
the exact smooth solution φ and the numerical solution Φj(x) is obtained as

N−1∑
j=1

∫ xj+1

xj

|Φj+1(x, t)− φ(x, t)|2 + |Φj(x, t)− φ(x, t)|2
2

dx ≤ Ch2k+2,

where C is linear in the final time T . This differs from the usual L2 error since
the AEDG method uses overlapping polynomials. These features require new tech-
niques in the error estimate.



ERROR ESTIMATES FOR THE AEDG METHOD 125

In order to distinguish the overlapping polynomials we introduce two approxi-
mation spaces Vh×Uh associated with odd and even grids, respectively, with which
the AE scheme is reformulated using two bi-linear operators. The essential novel
tool is the two global projections on Vh and Uh, coupled through the ε-dependent
term dictated by the AEDG formulation. The two coupled projections are shown
to be well defined for ε ≤ Qh2, which is the sufficient condition for the L2 stability
of the semi-discrete AEDG scheme (see [20]). The optimal L2 error estimate follows
from both the stability estimate and the projection error.

The main task goes to the estimate of the projection error, which is carried out
in two steps: First we introduce a novel energy norm of (v, u) ∈ Vh×Uh, involving a
special term of the form h−1‖u−v‖, with which we are able to obtain the projection
error of order O(hk) in this energy norm. This estimate already implies the optimal
L2 error of order O(hk+1) for the difference of two projection errors. For the sum
of two projection errors, we obtain the optimal L2 error estimate using a duality
argument carefully adapted to the case with overlapping polynomials, these together
lead to the desired optimal projections errors.

We further investigate the fully discrete scheme with the forward Euler dis-
cretization. The stability condition relating ε to the time step τ is of the form
c0τ ≤ ε < Qh2 for some c0 > 1, under which and with an additional constraint on
τ the optimal error estimate is established as

N−1∑
j=1

∫ xj+1

xj

|Φn
j+1(x)− φ(x, tn)|2 + |Φn

j (x)− φ(x, tn)|2

2
dx ≤ C(τ + hk+1)2,

where C is linear in the final time T ; again the two global projections and the upper
bounds of the corresponding bilinear operators are essentially used. These are the
first error estimate results obtained for the AEDG schemes. The main techniques
introduced herein may be applied to AEDG schemes in other applications.

We now mention some related results on the a priori error estimates for several
DG methods when applied to convection-diffusion equations. For smooth solutions
of scalar conservation laws, the L2 error estimate of O(hk+1/2) can be obtained for
the most general situation [14, 26]. However in many cases the optimal O(hk+1)
error bound can be proved [11,15,27]. For linear convection-diffusion problems, the
LDG method introduced in [12], motivated by the work of Bassi and Rebay [4] for
the compressible Navier-Stokes equations, when taking the alternating numerical
fluxes is shown to be stable and convergent, with the optimal O(hk+1) error order
in the L2 norm as proved in [7,8], further proved in [34] for equations with nonlinear
convection; a recent advance in the error analysis of the LDG method for linear
convection-diffusion equations is found in [9]. For the symmetric interior penalty
(SIPG) method, it can be proved that for large enough penalty parameter, the
method is stable and has optimal O(hk+1) order convergence in L2 [2, 31]. For
the nonsymmetric interior penalty (NIPG) method of Baumann and Oden [5, 25],
it is stable and convergent, with a suboptimal O(hk) order of L2 errors for even
k; however, the optimal error estimate for quadratic polynomials was obtained by
Riviere and Wheeler [28] when applied to nonlinear convection-diffusion equations.
Suboptimal L2 error estimates are given in [10] for the so-called ultra weak DG
method introduced therein. For the direct DG method introduced in [21], the
optimal O(hk+1) error bound in L2 was recently obtained in [17] using a special
global projection, dictated by the form of the DDG numerical fluxes. For a unified
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error analysis of a class of DG methods when applied to the elliptic problem, we refer
to [3]. For error estimates of fully discrete DG schemes to hyperbolic conservation
laws with third order Runge-Kutta time discretization we refer to [35,36]. The error
estimate for the fully discrete DG algorithm to solve convection-diffusion equations
is more recent; see, e.g., [32, 33] for the LDG method coupled with a third order
Runge-Kutta time discretization. We would like to mention that the AEDGmethod
is more complicated to analyze than other DG methods in this context, because
the coupling between overlapping polynomials must be carefully handled.

The article is organized as follows: In section 2 we present both the semi-
discrete and fully discrete AEDG schemes for the one-dimensional linear convection-
diffusion equations, and the main results of error estimates. In section 3 we refor-
mulate the semi-discrete AEDG scheme as a coupled system and define the two
global projections. We further derive the error equations of the coupled system
and prove the main convergence result. In section 4, we derive the projection error
in energy norm, and lift it to L2 norm by a duality argument. Stability and error
analysis of the fully discrete AEDG method will be presented in section 5.

Throughout this paper, we adopt standard notation for Sobolev spaces such as
Wm,p(D) on subdomain D ⊂ [a, b] equipped with the norm ‖ · ‖m,p,D and semi-
norm | · |m,p,D. When D = [a, b], we omit the index D; and if p = 2, we set
Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D. We use either
‖·‖0,D or ‖·‖ whenD = [a, b] denote the usual L2 norm. We use the notation A � B
to indicate that A can be bounded by B multiplied by a constant independent of
the mesh size h. A ∼ B stands for A � B and B � A. We will also use C to denote
a positive constant independent of h, which may depend on solutions of (1.1).

2. Alternating evolution DG methods and main results

We recall the AEDG method for the one-dimensional convection diffusion equa-
tion

(2.1) ∂tφ+ α∂xφ = β∂2
xφ,

subject to initial data φ0(x) and periodic boundary conditions.
Let the spatial domain [a, b] be partitioned into a grid with grid points {xj} such

that x1 = a, xN = b. We set Ij = (xj−1, xj+1) for j = 1, 2, . . . , N − 1, while I1 =

(x0, x2) in which (x0, x1) is the periodic shift of (xN−1, xN ) and hj =
xj+1−xj−1

2 ,
and we define the quantities

h = max
1≤j≤N−1

hj and ρ = min
1≤j≤N−1

hj .

For simplicity of presentation we would like to assume that the ratio of h and ρ
is upper bounded by a fixed positive constant ν−1 when h goes to zero so that
νh ≤ ρ ≤ h. We shall analyze the uniform grid case ν = 1, knowing that the
techniques can be easily carried over to the case ν �= 1.

Centered at each grid {xj}, the numerical approximation is a polynomial Φ|Ij =

Φj(x)∈P k, where P k denotes a linear space of all polynomials of degree at most k:

P k := {p | p(x)|Ij =
∑

0≤i≤k

ai(x− xj)
i, ai ∈ R}.

We denote v(x±) = limε→0± v(x+ ε), and v±j = v(x±
j ). The jump at xj is [v]|xj

=

v(x+
j ) − v(x−

j ). Note that the solution space here differs from the usual finite
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element space since it allows the overlapping of two neighboring polynomials of Φj

and Φj+1 over Ij ∩ Ij+1 = [xj , xj+1] �= ∅.
The semi-discrete AEDG scheme introduced in [20] is to find Φ|Ij ∈ P k such

that for all η ∈ P k(Ij),∫
Ij

(∂tΦj + ∂x(αΦ
SN
j − β∂xΦ

SN
j )ηdx

=
(
−[αΦSN

j − β∂xΦ
SN
j ]η − β[ΦSN

j ]∂xη
) ∣∣∣

x=xj

+
1

ε

∫
Ij

(
ΦSN

j − Φj

)
ηdx,

(2.2)

where ΦSN
j is defined as

ΦSN
j =

{
Φj−1(x), xj−1 < x < xj ,
Φj+1(x), xj < x < xj+1.

With periodic boundary conditions, ΦN (x) is regarded to be identical to Φ1(x),
which is computed over I1 = [x0, x2] = [a − h, a + h]. The numerical solution on
[xN−1, xN ] is simply taken from Φ1 over [x0, x1]. Note that Φ1(x, 0) = ΦN (x, 0) for
initial data.

The initial data for Φj(x, 0) is taken as the L2 projection of φ0 on Ij for j =
1, · · · , N − 1:

(2.3)

∫
Ij

Φj(x, 0)ηdx =

∫
Ij

φ0(x)ηdx, ∀η ∈ P k(Ij), j = 1, · · · , N − 1.

The semi-discrete AEDG scheme is also shown to be conservative and stable in [20].

Theorem 2.1 ([20, Theorem 3.1, Theorem 3.2]). Let Φ be computed from the
AEDG scheme (2.2) for the linear convection-diffusion equation

∂tφ+ α∂xφ = β∂2
xφ,

with periodic boundary conditions. We have
(i) The scheme is conservative in the sense that

d

dt

⎛⎝N−1∑
j=1

∫ xj+1

xj

Φj+1 +Φj

2
dx

⎞⎠ = 0.

(ii) The scheme using polynomials of degree k ≥ 1 is L2 stable if ε ≤ Qh2.
Moreover,

d

dt

⎛⎝N−1∑
j=1

∫ xj+1

xj

Φ2
j+1 +Φ2

j

2
dx

⎞⎠ ≤ −β

N−1∑
j=1

∫ xj+1

xj

(∂xΦj+1)
2 + (∂xΦj)

2

2
dx

(2.4)

+

(
1

Qh2
− 1

ε

)N−1∑
j=1

∫ xj+1

xj

(Φj+1 − Φj)
2dx
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with

Q =
1

β(k + 1)2(17(k + 1)2 − 1)
.(2.5)

Remark 2.2. The dependence of the quantity Q on k stems from the use of inverse
inequalities in the stability analysis in [20]. Q is only a bound on the ratio ε/h2

sufficient for justifying (2.4), not necessarily sharp. In fact, in the case k = 0, as
shown in (2.13) below, ε = Qh2 with Q = 1

2β is also necessary for stability of the

numerical scheme.

Based on these results, we are able to obtain the optimal L2 error estimates for
(2.2), as summarized in the following.

Theorem 2.3. Let φ be a smooth solution to (2.1) subject to initial data φ0(x) and
periodic boundary conditions, and let Φj(·, t) ∈ P k(Ij) (k ≥ 1) be the numerical
solution to (2.2) with ε = cQh2 (0 < c < 1), then the following error estimate
holds:

N−1∑
j=1

∫ xj+1

xj

|Φj+1(x, t)− φ(x, t)|2 + |Φj(x, t)− φ(x, t)|2
2

dx ≤ Ch2k+2, t ≤ T,

(2.6)

where C is linear in T supt∈[0,T ] ‖φ(·, t)‖k+1, but is independent of h.

One advantage of the AE framework is to choose time step relating to ε properly
so that the fully discrete scheme may be made stable. We illustrate this point by
considering a class of simple methods in time discretization. Assume that the time
interval [0, T ] has a uniform partition with time step τ = Δt (which could actually
change from step to step but for simplicity is taken as a constant with respect to
the time level n), Nτ = 
T/τ�, the fully discrete scheme is to find Φn|Ij ∈ P k(Ij)

such that for all η ∈ P k(Ij) and j = 1, · · · , N ,∫
Ij

(
Φn+1

j − Φn
j

Δt
+ ∂x(αΦ

n+θ,SN
j − β∂xΦ

n+θ,SN
j )

)
ηdx

=
(
−[αΦn+θ,SN

j − β∂xΦ
n+θ,SN
j ]η − β[Φn+θ,SN

j ]∂xη
) ∣∣∣

x=xj

+
1

ε

∫
Ij

(
Φn+θ,SN

j − Φn+θ
j

)
ηdx,

(2.7)

where

Φn+θ(x) = θΦn+1(x) + (1− θ)Φn(x),(2.8)

with Φn denoting the numerical solution at tn = nτ . Note that Φ0 is obtained from
the projection of φ0(x) as defined in (2.3).

For θ = 0, this is the Euler forward discretization; for θ = 1, it is Euler backward,
and for θ = 1/2, Crank-Nicolson. The convergence rate result for the fully discrete
scheme (2.7) is presented below.

Theorem 2.4. Let φ(x, t) be the smooth solution to (2.1) subject to initial data
φ0(x) and periodic boundary conditions, and let Φn

j (x) ∈ P k(Ij) (k ≥ 1) be the



ERROR ESTIMATES FOR THE AEDG METHOD 129

numerical solution to (2.7) with ε = 1
2Qh2. If either θ ≥ 1/2 or θ < 1/2 with τ

satisfying

(2.9) (2 +QΓ)2τ ≤ ε, τ ≤ βh2

2Γ2
,

where Γ is a constant defined in (5.4) of section 5, then scheme (2.7) is stable in
the sense that

N−1∑
j=1

∫ xj+1

xj

(|Φn+1
j+1 (x)|2 + |Φn+1

j (x)|2)dx ≤
N−1∑
j=1

∫ xj+1

xj

(|Φn
j+1(x)|2 + |Φn

j (x)|2)dx.

Moreover,

N−1∑
j=1

∫ xj+1

xj

|Φn
j+1(x)− φ(x, tn)|2 + |Φn

j (x)− φ(x, tn)|2

2
dx

≤ C(|1− 2θ|τ + τ2 + hk+1)2, n ≤ Nτ ,

(2.10)

where C is linear in T supt∈[0,T ] ‖φ(·, t)‖k+7, but independent of τ, h.

The proof of Theorem 2.3 is given in section 3, and section 5 is devoted to the
proof of Theorem 2.4.

Remark 2.5. In this class of time stepping methods, the scheme is unconditionally
stable for θ ≥ 1/2, and second order in time accuracy is obtained only when θ = 1/2,
i.e., by the Crank-Nicolson time discretization.

Finally, we comment on the case for k = 0, for which the AEDG scheme is not
consistent in the presence of diffusion. For linear diffusion, the scheme, as pointed

out in [20], can be made consistent by choosing ε = h2

2β . In such case, the AEDG

scheme reduces to

d

dt
Φj = − α

2h

(
Φn

j+1 − Φn
j−1

)
+

1

ε

(
Φn

j−1 +Φn
j+1

2
− Φn

j

)
.(2.11)

Furthermore, for the forward Euler time discretization of (2.11), we have

Φn+1
j − Φn

j

τ
= − α

2h

(
Φn

j+1 − Φn
j−1

)
+

1

ε

(
Φn

j−1 +Φn
j+1

2
− Φn

j

)
.(2.12)

Under the condition |α|τ/h ≤ τ/ε ≤ 1, this scheme is monotone, hence satisfying
the discrete maximum principle as noted in [20]. On the other hand, a direct
calculation using (2.12) with summary by parts leads to the identity

∑
j |Φ

n+1
j |2 =∑

j |Φn
j |2 − Fn, where

Fn =
τ

ε

(
1− τ

ε

)∑
j

|Φn
j+1 − Φn

j |2 +
1

4

((τ
ε

)2

−
(
|α|τ
Δx

)2
)∑

j

|Φn
j+1 − Φn

j−1|2.

From this one can verify that the l2 stability, i.e. Fn ≥ 0, holds true if and only if(
|α|τ
h

)2

≤ τ

ε
≤ 1.

This condition with ε = h2

2β is equivalent to

(2.13) τ ≤ ε =
h2

2β
, τ ≤ 2β

|α|2 ,
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which is well known from the von Neumann analysis (see e.g. [13, p. 71]). Therefore,
the stability condition (2.9) may be seen as a natural extension of (2.13) when noting
that Γ is linear in |α|h.

3. Error estimates

3.1. Scheme reformulation. In order to distinguish the overlapping polynomials,
we introduce two solution spaces of piecewise polynomials as
(3.1)
Vh = {η ∈ L2, η ∈ P k(Ij), j = odd}, Uh = {η ∈ L2, η ∈ P k(Ij), j = even}.

Note that for N odd, the set {j = even} = {2, 4, · · · , N − 1}, and {j = odd} =
{1, 3, · · · , N − 2}; for N even, the set {j = even} = {2, 4, · · · , N − 2} and {j =
odd} = {1, 3, · · · , N − 1}. This way the periodic boundary condition is always
satisfied through Φ1 = ΦN , with Φ1 ∈ Vh, no matter if N is odd or even.

Hence the AEDG scheme (2.2), when added over j = odd and j = even, respec-
tively, leads to a coupled system

〈∂tv, ξ〉+A21(u, ξ) =
1

ε
〈u− v, ξ〉, ξ ∈ Vh,(3.2)

〈∂tu, η〉+A12(v, η) =
1

ε
〈v − u, η〉, η ∈ Uh,(3.3)

where the two bilinear operators are defined by

A21(u, ξ) =

N−1∑
j=1

∫ xj+1

xj

∂xJ(u)ξdx+
∑

j=odd

([J(u)]ξ + β[u]∂xξ)|xj
, (u, ξ) ∈ Uh × Vh,

A12(v, η) =
N−1∑
j=1

∫ xj+1

xj

∂xJ(v)ηdx+
∑

j=even

([J(v)]η + β[v]∂xη)|xj
, (v, η) ∈ Vh × Uh

with J(w) = αw−β∂xw, and inner product is defined as 〈w, ξ〉 =
∑N−1

j=1

∫ xj+1

xj
wξdx.

Note that for N odd,
∫ xN

xN−1
∂xJ(v)ηdx is defined by

∫ x1

x0
∂xJ(v)ηdx and for N even,∫ xN

xN−1
∂xJ(u)ξdx is defined by

∫ x1

x0
∂xJ(v)ξdx, using the periodicity of the numerical

solution. We remark that the subscripts in the operator A12 or A21 indicate the odd
and even (or even and odd) spaces to which the corresponding arguments belong.
In what follows this notation will be used; also, the two operators are reformulated
in section 4 for the convenience of analysis therein.

The stability analysis in [20] ensures that the following inequality holds.

Lemma 3.1. For any (v, u) ∈ Vh × Uh, we have

A21(u, v) +A12(v, u) ≥
β

2

∫ b

a

((∂xu)
2 + (∂xv)

2)dx− 1

Qh2

∫ b

a

(u− v)2dx,

where Q is defined in (2.5).

Here and in what follows we use the notation ‖∂xv‖2 :=
∫ b

a
(∂xv)

2dx and ‖∂xu‖2

:=
∫ b

a
(∂xu)

2dx to denote∑
j=odd

∫ xj+1

xj−1

|∂xv|2dx,
∑

j=even

∫ xj+1

xj−1

|∂xu|2dx,

respectively, if (v, u) ∈ Vh × Uh, unless otherwise stated.
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3.2. Projection and projection errors. Let w be a smooth periodic function.
We define two projections (Πvw,Πuw) ∈ Vh × Uh as follows:

〈Πvw − w, ξ〉+A21(Πuw − w, ξ) =
1

ε
(Πuw −Πvw, ξ), ξ ∈ Vh,(3.4)

〈Πuw − w, η〉+A12(Πvw − w, η) =
1

ε
(Πvw −Πuw, η), η ∈ Uh.(3.5)

Here, we again construct Πvw over the extended cell I1 = [x0, x2] and set

Πvw|[xN−1,xN ] = Πvw|[x0,x1], N = odd,

Πuw|[xN−1,xN ] = Πvw|[x0,x1], N = even.

Upon periodic extension for both Πuw and Πuw, so that they become periodic.

Lemma 3.2. For ε ≤ Qh2, the above two projections (3.4) and (3.5) are uniquely
defined.

Proof. For a finite dimensional problem, existence is implied by uniqueness. Projec-
tions listed in (3.4) and (3.5) are well defined if w = 0 implies (Πvw,Πuw) ≡ (0, 0).
To this aim, let ξ = Πvw, η = Πuw, and so we have

〈ξ, ξ〉+A21(η, ξ) =
1

ε
(η − ξ, ξ), ξ ∈ Vh,

〈η, η〉+A12(ξ, η) =
1

ε
(ξ − η, η), η ∈ Uh.

Summing these two relations together we have

‖ξ‖2 + ‖η‖2 +A21(η, ξ) +A12(ξ, η) = −1

ε

∫ b

a

(ξ − η)2dx.

This with the inequality in Lemma 3.1 yields

‖ξ‖2 + ‖η‖2 + β

2

∫ b

a

((∂xξ)
2 + (∂xη)

2)dx ≤
(

1

Qh2
− 1

ε

)∫ b

a

(ξ − η)2dx.

If ε ≤ Qh2, then ‖ξ‖2 + ‖η‖2 ≤ 0, and so we must have (ξ, η) ≡ 0. �

Theorem 3.3. Let w be a smooth periodic function that belongs to Hm, and Πv,
Πu are two projection operators defined in (3.4), (3.5). If ε = cQh2 for 0 < c < 1,
then we have

(3.6) ‖Πvw − w‖+ ‖Πuw − w‖ ≤ Chmin{k+1,m}|w|m,

where C is a constant independent of h. Here ‖ · ‖ denotes the L2 norm in [a, b].

We defer the proof of Theorem 3.3 to section 4.

3.3. Optimal error estimates. With the above projections and the projection
error estimates, we proceed to carry out the main error estimate, between the exact
solution and the numerical solution. The main result is stated as follows.

Theorem 3.4. Let φ be a smooth solution to (2.1) subject to initial data φ0(x) and
periodic boundary conditions, and let (v, u) ∈ Vh × Uh be the numerical solution to
(3.2), (3.3) with ε = cQh2 (0 < c < 1), then the following error estimate holds:

(3.7) ‖φ(·, t)− v(·, t)‖+ ‖φ(·, t)− u(·, t)‖ ≤ Chk+1, t ≤ T,

where C depends on T , φ and its derivatives, but is independent of h.
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Proof. It is shown in [20] that the AEDG scheme is consistent in the sense that the
exact solution φ also satisfies (3.2), (3.3), i.e.,

(3.8)

⎧⎪⎨⎪⎩
〈∂tφ, ξ〉+A21(φ, ξ) =

1

ε
〈φ− φ, ξ〉,

〈∂tφ, η〉+A12(φ, η) =
1

ε
〈φ− φ, η〉.

Upon subtraction from the global formulation (3.2), (3.3), we obtain

(3.9)

⎧⎪⎨⎪⎩
〈∂t(φ− v), ξ〉+A21(φ− u, ξ) =

1

ε
〈v − u, ξ〉,

〈∂t(φ− u), η〉+A12(φ− v, η) =
1

ε
〈u− v, η〉.

Set

e1 = Πvφ− v, ε1 = Πvφ− φ,

e2 = Πuφ− u, ε2 = Πuφ− φ,

so that

(3.10) φ− v = e1 − ε1, φ− u = e2 − ε2.

Taking ξ = e1, η = e2 in (3.9) and substituting (3.10) into (3.9) gives

〈∂te1, e1〉+A21(e2, e1) = 〈∂tε1, e1〉+A21(ε2, e1) +
1

ε
〈v − u, e1〉,(3.11)

〈∂te2, e2〉+A12(e1, e2) = 〈∂tε2, e2〉+A12(ε1, e2) +
1

ε
〈u− v, e2〉.(3.12)

Also taking ξ = e1, η = e2 in (3.4), (3.5), we have

〈ε1, e1〉+A21(ε2, e1) =
1

ε
〈ε2 − ε1, e1〉,

〈ε2, e2〉+A12(ε1, e2) =
1

ε
〈ε1 − ε2, e2〉.

This together with v − u = e2 − e1 − (ε2 − ε1) gives

A21(ε2, e1) +A12(ε1, e2) =
1

ε
〈ε2 − ε1, e1 − e2〉 − 〈ε1, e1〉 − 〈ε2, e2〉

= −1

ε

∫ b

a

(e1 − e2)
2dx− 1

ε
〈v − u, e1 − e2〉 − 〈ε1, e1〉 − 〈ε2, e2〉,

which is equivalent to

A21(ε2, e1) +A12(ε1, e2) +
1

ε
〈v − u, e1 − e2〉

= −1

ε

∫ b

a

(e1 − e2)
2dx− 〈ε1, e1〉 − 〈ε2, e2〉.

(3.13)

By Lemma 3.1,

(3.14) A21(e2, e1)+A12(e1, e2) ≥
β

2

∫ b

a

(|∂xe1|2+|∂xe2|2)dx−
1

Qh2

∫ b

a

(e1−e2)
2dx.
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Summing (3.11) and (3.12), and using (3.13), (3.14), we obtain

d

dt

∫ b

a

e21 + e22
2

dx ≤ 〈∂tε1, e1〉+ 〈∂tε2, e2〉 − 〈ε1, e1〉 − 〈ε2, e2〉

−
(
1

ε
− 1

Qh2

)∫ b

a

(e1 − e2)
2dx

≤ (‖∂tε1‖+ ‖ε1‖)‖e1‖+ (‖∂tε2‖+ ‖ε2‖)‖e2‖,

≤ (‖∂tε1‖+ ‖ε1‖+ ‖∂tε2‖+ ‖ε2‖)
(∫ b

a

(e21 + e22)dx

) 1
2

,

where we have used ε ≤ Qh2.
Using the approximation result in Theorem 3.3, we have

(3.15)
d

dt

(∫ b

a

(e21 + e22)dx

) 1
2

≤ 2Chk+1.

Integration gives(∫ b

a

(e21 + e22)dx

) 1
2

≤
(∫ b

a

(e21(x, 0) + e22(x, 0))dx

) 1
2

+ 2CThk+1.

From the choice of the initial data in (2.3), we have

‖e1(·, 0)‖ = ‖Πvφ0 − v(·, 0)‖ ≤ ‖Πvφ0 − φ0‖+ ‖φ0 − v(·, 0)‖ ≤ C0h
k+1;(3.16)

similarly also ‖e2(·, 0)‖ ≤ C0h
k+1. Hence

‖ei(·, t)‖ ≤
(∫ b

a

(e21 + e22)dx

) 1
2

≤ 2(C0 + CT )hk+1, i = 1, 2,

for all t ≤ T . Thus estimate (3.7) follows from using the triangle inequality as

‖φ(·, t)− v(·, t)‖+ ‖φ(·, t)− u(·, t)‖ ≤
2∑

i=1

(‖ei(·, t)‖+ ‖εi(·, t)‖) . �

4. Projection error analysis

In this section, we estimate the projection error in two steps: We first obtain the
error of order hk in some energy norm, and then we lift to achieve the optimal L2

error, as claimed in Theorem 3.3.
We first present some local approximation results (see, e.g.,[6, Lemma 4.3.8]),

which will be used for the energy estimates.

Lemma 4.1. If w ∈ Hm(Ω) is a periodic function, then there exists polynomials
(vI , uI) ∈ Vh × Uh that satisfy optimal approximation properties, i.e., vI ∈ Vh,
uI ∈ Uh are polynomials in Ij, for j = odd and j = even, respectively,

|w − vI |s,Ij ≤ Chmin{m,k+1}−s|w|m,Ij , j = odd,(4.1a)

|w − uI |s,Ij ≤ C ′hmin{m,k+1}−s|w|m,Ij , j = even,(4.1b)

for 0 ≤ s ≤ min{m, k + 1}, where C,C ′ are two constants independent of mesh
size h.
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Lemma 4.2. Let I = [c, d] ⊂ [a, b] be an interval of length |I|, and v ∈ Pm(I),
then

max{|v(c)|, |v(d)|} ≤ (m+ 1)|I|−1/2‖v‖0,I ,(4.2a)

‖∂xv‖0,I ≤ (m+ 1)
√
m(m+ 2)|I|−1‖v‖0,I ,(4.2b)

‖v(·)‖2∞,I ≤
√
5 + 1

2
(|I|−1‖v‖20,I + |I|‖∂xv‖20,I), if v ∈ H1(I).(4.2c)

Proof. The first bound is well known; see e.g. [30]. The second inequality may be
found in [20, Lemma 3.1]. The third one follows from the inequality of the form∗

‖v(·)‖2∞,I ≤ (1 + δ)|I|−1‖v‖20,I + δ−1|I|‖∂xv‖20,I , ∀δ > 0,

by taking δ =
√
5−1
2 such that 1 + δ = δ−1 =

√
5+1
2 . �

In the sequel, we shall use the following mesh-dependent norm

(4.3) ‖w‖2E,h = h−2‖w‖2 + ‖∂xw‖2 + h2‖∂2
xw‖2

and

‖(v, u)‖2E,h = ‖v‖2E,h + ‖u‖2E,h.

For piecewise smooth functions in

(V (h), U(h)) = (Vh, Uh) +H2
p (Ω),

where H2
p is the space of periodic H2-functions, the bilinear operators A12 and A21

may be reformulated, as summarized below.

Lemma 4.3. For (ṽ, ũ)∈V (h)×U(h), the bilinear operators A12(ṽ, ũ) and A21(ũ, ṽ)
can be rewritten as

A12(ṽ, ũ) = −
N−1∑
j=1

∫ xj+1

xj

J(ṽ)∂xũdx−
∑

j=odd

[ũ]J(ṽ)|xj
+ β

∑
j=even

∂xũ[ṽ]|xj
,(4.4)

A21(ũ, ṽ) = −
N−1∑
j=1

∫ xj+1

xj

J(ũ)∂xṽdx−
∑

j=even

[ṽ]J(ũ)|xj
+ β

∑
j=odd

∂xṽ[ũ]|xj
.(4.5)

Proof. The reformulation follows from a straightforward calculation using integra-
tion by parts once. Recall J(ṽ) = αṽ − β∂xṽ, we illustrate the reformulation of

∗This one-dimensional inequality may be derived by simply integrating over I twice: For
x, y ∈ I one has

v2(x) = v2(y) + 2

∫ x

y
v(z)∂xv(z)dzdz ≤ v2(y) + 2‖v‖0,I‖∂xv‖0,I (by Cauchy-Schwarz),

which upon integration over y ∈ I gives

|I|v2(x) ≤ ‖v‖20,I + 2|I|‖v‖0,I‖∂xv‖0,I ≤ (1 + δ)‖v‖20,I +
|I|2
δ

‖∂xv‖20,I (by Young’s inequality).

In the multi-dimensional case, it is valid only in the form of trace inequalities; see e.g. [1, Theorem
3.10].
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A12(ṽ, ũ) as follows:

A12(ṽ, ũ) =

N−1∑
j=1

∫ xj+1

xj

∂xJ(ṽ)ũdx+
∑

j=even

([J(ṽ)]ũ+ β[ṽ]∂xũ)|xj

= −
N−1∑
j=1

∫ xj+1

xj

J(ṽ)∂xũdx+ β
∑

j=even

∂xũ[ṽ]|xj
−

∑
j=odd

[ũ]J(ṽ)|xj
.

The reformulation of A21(ũ, ṽ) is entirely similar. �
4.1. Projection error in energy norm. For convenience, we define the energy
norm of (v, u) ∈ Vh × Uh as

(4.6) ‖(v, u)‖2E � ‖v‖2 + ‖u‖2 +
∫ b

a

((∂xu)
2 + (∂xv)

2)dx+
1

h2

∫ b

a

(v − u)2dx.

Using this energy norm we have the following estimate.

Theorem 4.4. For projections Πv,Πu defined in (3.4), (3.5) with ε = cQh2 for
c ∈ (0, 1), the following estimate holds:

(4.7) ‖(Πvw − w,Πuw − w)‖E ≤ Chmin{k,m}|w|m,

where C is a constant independent of h.

Proof. Without loss of generality, we prove only the case m = k. Fix ε = 1
2Qh2 in

the proof to follow. Recall the definition of projections Πv,Πu. We have

〈Πvw − w, ξ〉+A21(Πuw − w, ξ) =
1

ε
(Πuw −Πvw, ξ), ξ ∈ Vh,(4.8)

〈Πuw − w, η〉+A12(Πvw − w, η) =
1

ε
(Πvw −Πuw, η), η ∈ Uh.(4.9)

Set
(ξ, η) = (Πvw − vI ,Πuw − uI) ∈ Vh × Uh,

where (vI , uI) is the polynomial pair of (w,w) in Vh × Uh, satisfying (4.1). Hence,

Πvw = ξ + vI , Πuw = η + uI .

This when inserted in (4.8), (4.9) gives

〈ξ, ξ〉+A21(η, ξ)−
1

ε
〈η − ξ, ξ〉 = 〈w − vI , ξ〉+A21(w − uI , ξ)−

1

ε
〈vI − uI , ξ〉,

(4.10a)

〈η, η〉+A12(ξ, η)−
1

ε
〈ξ − η, η〉 = 〈w − uI , η〉+A12(w − vI , η)−

1

ε
〈uI − vI , η〉.

(4.10b)

The sum of the left-hand sides of (4.10) is

‖ξ‖2 + ‖η‖2 +A21(η, ξ) +A12(ξ, η) +
1

ε

∫ b

a

(ξ − η)2dx ≥ min(1,
β

2
,
1

Q
)‖(ξ, η)‖2E,

provided ε = 1
2Qh2, due to Lemma 3.1.

Denote w − vI = ṽ, w − uI = ũ, from (4.1) it follows that

‖(ṽ, ũ)‖E,h ≤ Chk|w|k+1.(4.11)

Note that the upper bound will become Chmin{k+1,m}|w|m for w ∈ Hm
p . The

constant C may vary from line to line.



136 HAILIANG LIU AND HAIRUI WEN

It is left to estimate each term on the right side of (4.10). First, we have

〈ṽ, ξ〉+ 〈ũ, η〉 ≤ ‖ṽ‖‖ξ‖+ ‖ũ‖‖η‖ ≤ ‖(ξ, η)‖E(‖ṽ‖+ ‖ũ‖).(4.12)

For terms involving ε, since −(vI − uI) = ṽ − ũ, we have

1

ε
〈ṽ − ũ, ξ − η〉 ≤ 2

Qh2
‖ξ − η‖(‖ṽ‖+ ‖ũ‖) ≤ 2

Q
h−1‖(ξ, η)‖E(‖ṽ‖+ ‖ũ‖).(4.13)

From (4.5), we have

A21(ũ, ξ) =

N−1∑
j=1

∫ xj+1

xj

(−αũ+ β∂xũ) ∂xξdx

+
∑

j=even

(−αũ+ β∂xũ)[ξ]|xj
+ β

∑
j=odd

∂xξ[ũ]|xj
.

The integral terms are bounded as

N−1∑
j=1

∫ xj+1

xj

(−αũ+ β∂xũ) ∂xξdx ≤ (|α|‖ũ‖+ β‖∂xũ‖)‖∂xξ‖

≤ (|α|h+ β)‖∂xξ‖‖ũ‖E,h.

(4.14)

For terms evaluated at even grid points xj , we need to use (4.2a) so that

|[η − ξ]2|xj
≤ 2h−1(k + 1)2

(
‖η − ξ‖20,τj−1

+ ‖η − ξ‖20,τj
)

= 2h−1(k + 1)2‖η − ξ‖20,Ij , τj = (xj , xj+1),

and (4.2c), so that∣∣∣∣∣∣
∑

j=even

J(ũ)[ξ]|xj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

j=even

J(ũ)[ξ − η]|xj

∣∣∣∣∣∣
≤

⎛⎝ ∑
j=even

J2(ũ)|xj

⎞⎠1/2 ⎛⎝ ∑
j=even

[ξ − η]2|xj

⎞⎠1/2

≤

⎛⎝ ∑
j=even

√
5 + 1

2
(h−1‖J(ũ)‖20,Ij + h‖∂xJ(ũ)‖20,Ij )

⎞⎠1/2

×

⎛⎝ ∑
j=even

2(k + 1)2h−1‖ξ − η‖20,Ij

⎞⎠1/2

≤ 2(k + 1)h−1‖ξ − η‖(‖J(ũ)‖2 + h2‖∂xJ(ũ)‖2)1/2.(4.15)

Note that J(ũ) = αũ− βũx, hence∣∣∣∣∣∣
∑

j=even

J(ũ)[ξ]|xj

∣∣∣∣∣∣ ≤ 2(k + 1)
√
2(α2h2 + β2)h−1‖ξ − η‖ · ‖ũ‖E,h.

For terms evaluated at odd grid points xj , from (4.2a) we have

|ξx|xj
≤ (k + 1)h−1/2 min{‖∂xξ‖0,τj−1

, ‖∂xξ‖0,τj}.
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This together with the use of (4.2c) yields

∑
j=odd

∂xξ[ũ]|xj
≤

⎛⎝ ∑
j=odd

(∂xξ)
2|xj

⎞⎠1/2 ⎛⎝ ∑
j=odd

[ũ]2|xj

⎞⎠1/2

≤

⎛⎝ ∑
j=odd

h−1(k + 1)2‖∂xξ‖20,τj

⎞⎠1/2

×

⎛⎝2
∑

j=odd

√
5 + 1

2
(h−1‖ũ‖20,τj−1∪τj + h‖∂xũ‖20,τj−1∪τj )

⎞⎠1/2

≤ 2(k + 1)‖∂xξ‖ · ‖ũ‖E,h.(4.16)

Collecting the above estimates for three terms in A21(ũ, ξ), we obtain

A21(ũ, ξ) ≤ C(‖∂xξ‖+ h−1‖ξ − η‖)‖ũ‖E,h ≤
√
2C‖(ξ, η)‖E‖ũ‖E,h,(4.17)

where C = |α|h+ β + 2(k + 1)
√
2(α2h2 + β2) + 2(k + 1).

In an entirely similar manner, A12(ṽ, η) can be estimated so that

A12(ṽ, η) ≤ C(‖∂xη‖+ h−1‖ξ − η‖)‖ũ‖E,h ≤
√
2C‖(ξ, η)‖E‖ṽ‖E,h.(4.18)

Adding (4.12), (4.13), (4.17) and (4.18) gives an upper bound of the sum of the
right-hand side of (4.10) as

(2h+
2

Q
+ 2

√
2C)‖(ξ, η)‖E‖(ṽ, ũ)‖E,h.

Therefore,

‖(ξ, η)‖2E � ‖(ξ, η)‖E‖(ṽ, ũ)‖E,h.

This when combined with (4.11) gives

‖(ξ, η)‖E ≤ ‖(ṽ, ũ)‖E,h ≤ Chk|w|k+1.

That is,

‖(Πvw − vI ,Πuw − uI)‖E ≤ Chk|w|k+1.

This and (4.11) combined with the triangle inequality give (4.7). The proof is
complete. �

Remark 4.5. One main difference in the analysis of the AEDG method and other
DG methods lies in the use of an additional term ‖ξ − η‖ in the energy norm.

4.2. Projection error in L2 norm. Now we turn to recover the L2 error from
the error in energy norm, by using a duality argument.

Proof of Theorem 3.3. Set θv = Πvw−w, θu = Πuw−w. From (4.7) we see that

‖θv − θu‖ ≤ h‖(θv, θu)‖E.

We only need to prove that

‖θv + θu‖ ≤ Ch‖(θv, θu)‖E .(4.19)
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These together with

‖Πvw − w‖+ ‖Πuw − w‖ ≤ ‖θv − θu‖+ ‖θv + θu‖,
and (4.7) conclude the claimed error in (3.6).

The rest is devoted to the proof of (4.19).

Step 1 (Auxiliary problem). We define the auxiliary function ψ as the solution of
the following problem:

(4.20)

{
ψ − α∂xψ − β∂2

xψ = θv + θu, in (a, b),
ψ(a) = ψ(b), ∂xψ(a) = ∂xψ(b).

For piecewise continuous function θv + θu in a ≤ x ≤ b, the unique solution to
problem (4.20) is ensured since the corresponding homogeneous problem admits
only the trivial solution.

Multiplying (4.20) by ∂2
xψ and integrating over [a, b] we obtain

β‖∂2
xψ‖2 = −‖∂xψ‖2 −

∫ b

a

∂2
xψ(θv + θu)dx ≤ ‖∂2

xψ‖‖θv + θu‖,

which gives

‖∂2
xψ‖ ≤ 1

β
‖θv + θu‖.(4.21)

Step 2 (L2 norm reformulation). We now evaluate the L2 norm of θv + θu by

(4.22) ‖θv + θu‖2 =

∫ b

a

(ψ − α∂xψ − β∂2
xψ)(θv + θu)dx.

Rewriting those terms including derivatives of ψ on the right-hand side, we have

∫ b

a

(−α∂xψ − β∂2
xψ)θvdx

=
N−1∑
j=1

∫ xj+1

xj

(−αθv + β∂xθv)∂xψdx− β
N−1∑
j=1

(∂xψθv) |
x−
j+1

x+
j

=
N−1∑
j=1

∫ xj+1

xj

(−αθv + β∂xθv)∂xψdx+ β
∑

j=even

(∂xψ[θv]) |xj

= −
N−1∑
j=1

∫ xj+1

xj

J(θv)∂xψdx−
∑

j=odd

([ψ]J(θv))|xj
+ β

∑
j=even

(∂xψ[θv]) |xj

= A12(θv, ψ),

(4.23)

where we have used the fact that [ψ] = 0 at x = xj , ∂xψ(a) = ∂xψ(b) and periodicity
of θv as so constructed in (3.4), (3.5).

In an entirely similar manner, we have∫ b

a

(−α∂xψ − β∂2
xψ)θudx = A21(θu, ψ).

Thus (4.22) can be rewritten as

‖θv + θu‖2 = 〈ψ, θv + θu〉+A21(θu, ψ) +A12(θv, ψ).(4.24)
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Recall the projection defined in (3.4), (3.5),

0 = 〈θv, ξ〉+A21(θu, ξ)−
1

ε
〈θu − θv, ξ〉,(4.25a)

0 = 〈θu, η〉+A12(θv, η)−
1

ε
〈θv − θu, η〉.(4.25b)

Therefore, (4.24) subtracting (4.25a) and (4.25b) gives

‖θv + θu‖2 = 〈θv, ψ − ξ〉+ 〈θu, ψ − η〉(4.26)

+A21(θu, ψ − ξ) +A12(θv, ψ − η) +
1

ε
〈θv − θu, η − ξ〉.

To simplify notation, we denote ψ− ξ = w1 ∈ V (h) and ψ−η = w2 ∈ U(h), so that

‖θv + θu‖2 = 〈θv, w1〉+ 〈θu, w2〉+A21(θu, w1) +A12(θv, w2)

+
1

ε
〈θv − θu, w1 − w2〉.

(4.27)

Step 3 (Approximation and estimates). In order to bound w1, w2, we choose ξ (or
η) a piecewise linear polynomial interpolating the smooth function ψ at odd (or
even) grid points, then the standard approximation results imply

(4.28) ‖∂q
xwi‖ ≤ C1h

2−q‖∂2
xψ‖, i = 1, 2, q = 0, 1, 2,

where C1 is a positive constant independent of h. Also, both ξ and η are continuous
functions so that for i = 1, 2, we have

[wi]|xj
= 0, j = 1, · · · , N − 1.(4.29)

Using the energy norm definition in (4.6), we proceed to estimate terms on the
right-hand side of (4.27). The first two terms are bounded by

(4.30) 〈θv, w1〉+ 〈θu, w2〉 ≤ ‖θv‖‖w1‖+ ‖θu‖‖w2‖ ≤ ‖(θv, θu)‖E(‖w1‖+ ‖w2‖).
For the last term we have

1

ε
〈θv − θu, w1 − w2〉 ≤

2

Qh2
‖θu − θv‖(‖w1‖+ ‖w2‖)(4.31)

≤ 2

Q
h−1‖(θv, θu)‖E(‖w1‖+ ‖w2‖).

In virtue of (4.29), terms involving [w1] at xj in A21(θu, w1) vanish. For the integral
term in A21(θu, w1), we have

N−1∑
j=1

∫ xj+1

xj

J(θu)∂xw1dx ≤ (α‖θu‖+ β‖∂xθu‖)‖∂xw1‖.

For the jump terms at odd grid points in A21(θu, w1) of (4.27), using (4.2c) we have∑
j=odd

∂xw1[θu]|xj
=

∑
j=odd

∂xw1[θu − θv]|xj

≤
∑

j=odd

h− 1
2 (k + 1)‖θu − θv‖L2(τj−1∪τj)

(√
5 + 1

2

) 1
2

·
(
h−1‖∂xw1‖2L2(Ij)

+ h‖∂2
xw1‖2L2(Ij)

) 1
2

≤ 2(k + 1)h−1‖θu − θv‖ · ‖w1‖E,h.
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Collecting these two terms, we obtain

A21(θu, w1) ≤ C2‖(θv, θu)‖E‖w1‖E,h,(4.32)

where C2 = (max{|α|, β}+ 2(k + 1)Q). Similarly,

A12(θv, w2) ≤ C2‖(θv, θu)‖E‖w2‖E,h.(4.33)

Step 4 (Final substitution). Insertion of (4.30), (4.33), (4.32) and (4.31) into (4.27),
using (4.28) and (4.21), yields

‖θv + θu‖2 ≤ ‖(θv, θu)‖E
((

1 +
2

Q
h−1

)
‖w1‖+ ‖w2‖+ C2(‖w1‖E,h + ‖w2‖E,h)

)
≤ Ch‖(θv, θu)‖E‖∂2

xψ‖

≤ Ch

β
‖(θv, θu)‖E‖θv + θu‖.

Hence

‖θv + θu‖ � h‖(θv, θu)‖E.

This ends the proof of (4.19). �

Remark 4.6. From the above analysis we see that the regularity of problem (1.1)
requires β > 0 as indicated in (4.21). When β = 0, the convection diffusion equation
degenerates to a hyperbolic equation, we then have

A21(u, v) +A12(v, u) = 0 ∀(u, v) ∈ Uh × Vh,

with which the projection error of order O(hk) in energy norm can still be obtained.
Unfortunately the above analysis for recovery of the optimal L2 error does not seem
to work in this case. Yet, the AEDG method still works for the β = 0 case as well
numerically; see [20] for related numerical tests.

5. Time discretization

For time dependent problems, it is generally of interest to know how the solution
errors grow with time. To this end, stability estimates are used. Rewriting the fully
discrete scheme (2.7) we have
(5.1)⎧⎪⎨⎪⎩

〈v
n+1 − vn

τ
, ξ〉+A21(u

n+θ, ξ) =
1

ε
〈un+θ − vn+θ, ξ〉, (ξ, η) ∈ Vh × Uh,

〈u
n+1 − un

τ
, η〉+A12(v

n+θ, η) =
1

ε
〈vn+θ − un+θ, η〉, (vn, un) ∈ Vh × Uh,

where wn+θ = θwn+1 + (1− θ)wn for w = u or w = v, and 0 ≤ θ ≤ 1. Here vn, un

denote the numerical solution at tn = nτ for n ≤ Nτ , and the initial data (v0, u0)
is taken as (2.3).

5.1. Stability analysis. We seek a sufficient condition in relating time step τ to
ε so that the fully discrete scheme is stable.

We begin to prepare the following bound of two bilinear operators A21 and A12.
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Lemma 5.1. For any (ξ, η), (v, u) ∈ Vh × Uh, it holds that

A21(u, ξ) ≤ h−1Γ(‖ux‖+ h−1‖v − u‖)‖ξ‖,(5.2)

A12(v, η) ≤ h−1Γ(‖vx‖+ h−1‖v − u‖)‖η‖,(5.3)

where for γk = (k + 1)
√
k(k + 2), we have

(5.4) Γ := max{|α|h+βγk +2(k+1)(1+ γ2
k)

1/2, 2(k+1)(1+ γ2
k)

1/2(|α|h+βγk)}.

Proof. From (4.4), we do integration by parts in terms containing α so that

A12(v, η) = −
N−1∑
j=1

∫ xj+1

xj

(αv − β∂xv)∂xηdx

−
∑

j=odd

(αv − β∂xv)[η]|xj
+ β

∑
j=even

∂xη[v]|xj

=

N−1∑
j=1

∫ xj+1

xj

(αη + β∂xη)∂xvdx

+
∑

j=odd

β∂xv[η]|xj
+

∑
j=even

(αη + β∂xη)[v]|xj

=:Ã21(η, v).

(5.5)

Note that the estimate of Ã21(η, v) is the same as that of A21(η, v), for which we
recall the estimates performed in (4.14), (4.15) and (4.16) to obtain

Ã21(η, v) ≤ ‖∂xv‖(|α|‖η‖+ β‖∂xη‖)
+ 2(k + 1)h−1‖v − u‖(‖J(η)‖2 + h2‖∂xJ(η)‖2)1/2

+ 2(k + 1)‖∂xv‖(h−2‖η‖2 + ‖∂xη‖2)1/2.
(5.6)

Using (4.2b) with m = k, we have

‖∂xη‖ ≤ γkh
−1‖η‖.

This leads to the following estimates:

‖J(η)‖ ≤ |α|‖η‖+ β‖∂xη‖ ≤ (|α|h+ βγk)h
−1‖η‖,

‖∂xJ(η)‖ ≤ γkh
−1‖J(η)‖ ≤ γk(|α|h+ βγk)h

−2‖η‖.
Substitution of these into (5.6) yields

A12(v, η) ≤ (|α|h+ βγk)h
−1‖∂xv‖‖η‖

+ 2(k + 1)h−1‖v − u‖(1 + γ2
k)

1/2(|α|h+ βγk)h
−1‖η‖

+ 2(k + 1)(1 + γ2
k)

1/2h−1‖∂xv‖‖η‖
≤ h−1Γ(‖∂xv‖+ h−1‖v − u‖)‖η‖,

where we have used (5.4). Similarly, we have

A21(u, ξ) ≤ h−1Γ(‖∂xu‖+ h−1‖v − u‖)‖ξ‖.
This ends the proof. �

We now present the stability result for the fully discrete scheme (5.1) as follows.
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Theorem 5.2. Let vn and un be the numerical solution computed from (5.1) with
ε = cQh2, c ∈ (0, 1).

(i) For θ ≥ 1/2, scheme (5.1) is unconditionally stable.
(ii) For θ < 1/2, if

2(1− 2θ)(1 + cQΓ)2

1− c
τ ≤ ε = cQh2 and τ ≤ βh2

2(1− 2θ)Γ2
,

then there exists C1 ≥ 0 and C2 ≥ 0 such that

‖vn+1‖2 + ‖un+1‖2 + C1τ‖(∂xvn+θ, ∂xu
n+θ)‖2 + C2τ

ε
‖vn+θ − un+θ‖2

≤ ‖vn‖2 + ‖un‖2.
(5.7)

Proof. We divide the proof into two steps.

Step 1. The summation of two equations in (5.1), with (ξ, η) = (vn+θ, un+θ) ∈
Vh × Uh, when using the fact that

〈vn+1 − vn, vn+θ〉 = 1

2
(‖vn+1‖2 − ‖vn‖2) + (θ − 1

2
)(‖vn+1 − vn‖2),

gives

‖vn+1‖2 + ‖un+1‖2 + 2τ
(
A21(u

n+θ, vn+θ) + A12(v
n+θ, un+θ)

)
= ‖vn‖2 + ‖un‖2 + (1− 2θ)‖vn+1 − vn‖2 + (1− 2θ)‖un+1 − un‖2

− 2τ

ε
‖vn+θ − un+θ‖2.

By Lemma 3.1, we have

‖vn+1‖2 + ‖un+1‖2 + βτ‖(∂xvn+θ, ∂xu
n+θ)‖2 + 2τ

(
1

ε
− 1

Qh2

)
‖vn+θ − un+θ‖2

(5.8)

≤ ‖vn‖2 + ‖un‖2 + (1− 2θ)‖vn+1 − vn‖2 + (1− 2θ)‖un+1 − un‖2.

Step 2. (i) If θ ≥ 1/2, stability estimate (5.7) follows from (5.8) in a straightforward
manner by taking (C1, C2) = (β, 2(1− c)).

(ii) If θ < 1/2, we need to bound ‖vn+1−vn‖2+‖un+1−un‖2 using (5.1) again.
Taking ξ = (vn+1 − vn)/τ and η = (un+1 − un)/τ in (5.1), we have

‖ξ‖2 +A21(u
n+θ, ξ) =

1

ε
(un+θ − vn+θ, ξ),(5.9a)

‖η‖2 +A12(v
n+θ, η) =

1

ε
(vn+θ − un+θ, η).(5.9b)

From (5.9a), using Lemma 5.1, it follows that

‖ξ‖2 = −A21(u
n+θ, ξ) +

1

ε
(un+θ − vn+θ, ξ)

≤ h−1Γ(‖∂xun+θ‖+ h−1‖vn+θ − un+θ‖)‖ξ‖+ 1

ε
‖vn+θ − un+θ‖‖ξ‖.

That is, with ε = cQh2,

‖ξ‖ ≤ h−1Γ‖∂xun+θ‖+ 1

ε
(1 + cQΓ)‖vn+θ − un+θ‖.
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Similarly we have

‖η‖ ≤ h−1Γ‖∂xvn+θ‖+ 1

ε
(1 + cQΓ)‖vn+θ − un+θ‖.

Thus

‖vn+1 − vn‖2 + ‖un+1 − un‖2 = τ2(‖ξ‖2 + ‖η‖2)

≤ 2Γ2τ2

h2
(‖∂xvn+θ‖2 + ‖∂xun+θ‖2) + 4τ2

ε2
(1 + cQΓ)2‖vn+θ − un+θ‖2.

This when inserted into (5.8) gives

‖vn+1‖2 + ‖un+1‖2 + C1τ‖(∂xvn+θ, ∂xu
n+θ)‖2 + C2τ

ε
‖vn+θ − un+θ‖2

≤ ‖vn‖2 + ‖un‖2,

where

C1 = β − (1− 2θ)
2Γ2τ

h2
, C2 = 2

(
1− c− (1− 2θ)

2τ

ε
(1 + cQΓ)2

)
.

It is left to specify the mesh size h relating to ε so that C1 ≥ 0 and C2 ≥ 0. Clearly,
C1 ≥ 0 if

τ ≤ βh2

2(1− 2θ)Γ2
,

and C2 ≥ 0 if

ε ≥ 2(1− 2θ)(1 + cQΓ)2

1− c
τ.

This ends the proof. �

Remark 5.3. The choice of c will affect the computational cost. From

2(1− 2θ)(1 + cQΓ)2

1− c
τ ≤ ε = cQh2,

we see that

τ ≤ c(1− c)Q

2(1− 2θ)(1 + cQΓ)2
h2,

for which the optimal choice should be c = 1/2. For such choice, the stability
condition becomes

(1− 2θ)(2 +QΓ)2τ ≤ ε =
1

2
Qh2.

5.2. Error estimates. Based on the stability result, we set out to derive the error
estimates of scheme (5.1). The result is summarized as follows.

Theorem 5.4. Let φ be the smooth solution of (2.1) subject to initial data φ0(x)
and periodic boundary conditions, (vn, un) ∈ Vh × Uh be the numerical solution
computed through the fully discrete scheme (5.1), then we have the error estimate

(5.10) ‖φ(·, tn)− vn(·)‖+ ‖φ(·, tn)− un(·)‖ ≤ C(hk+1 + τ |1− 2θ|+ τ2),

where C in linear in T supt∈[0,T ] ‖φ(·, t)‖k+7 (k ≥ 1), but independent of τ, h.
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Proof. To simplify notation, let φn = φ(x, tn) and vn = vn(x). The consistency of
the AEDG scheme, as given in (3.8), when evaluated at tn and tn+1, respectively,
upon further linear combination gives

(5.11)

⎧⎪⎨⎪⎩
〈∂tφn+θ, ξ〉+A21(φ

n+θ, ξ) =
1

ε
〈φn+θ − φn+θ, ξ〉,

〈∂tφn+θ, η〉+A12(φ
n+θ, η) =

1

ε
〈φn+θ − φn+θ, η〉.

Here we use the notation gn+θ := θgn+1 + (1− θ)gn with 0 ≤ θ ≤ 1, for g = φ, and
also for g = ei later in (5.18).

To proceed, we first replace ∂tφ
n+θ by the following finite difference approxima-

tion, so that

∂tφ
n+θ =

φn+1 − φn

τ
− F (n;x),(5.12)

where F (n : x) is a remainder from using Taylor’s expansion at tn and tn+1, re-
spectively,

φn+1 = φn + τ∂tφ
n +

τ2

2
∂2
t φ

n +
1

2

∫ tn+1

tn
(tn+1 − s)2∂3

t φ(x, s)ds,

φn = φn+1 − τ∂tφ
n+1 +

τ2

2
∂2
t φ

n+1 +
1

2

∫ tn+1

tn
(tn − s)2∂3

t φ(x, s)ds,

and upon an additional linear combination, we have

F (n;x) = τ
(
(1− θ)∂2

t φ
n − θ∂2

t φ
n+1

)
+

1

2τ

∫ tn+1

tn

∂3
t φ(x, s)

(
(1− θ)(tn+1 − s)2 − θ(s− tn)

2
)
ds.

(5.13)

Hence

|F (n;x)| ≤ τ |1− 2θ||∂2
t φ(x, t

n)|+
(
θ

2
+

1

6

)
τ2 sup

s∈[0,T ]

|∂3
t φ(x, s)|.

Using equation (1.1) we see that

∂3
t φ = ∂2

t (β∂
2
xφ− α∂xφ) = ∂t(β

2∂4
xφ− 2αβ∂3

xφ+ α2∂2
xφ)

= β3∂6
xφ+ 3α2β∂4

xφ− 3αβ2∂5
xφ− α3∂3

xφ.

Hence we have

(5.14) ‖F (n, ·)‖ ≤ τ |1− 2θ|‖∂2
t φ(·, tn)‖+ Cτ2 sup

t∈[0,T ]

‖φ(·, t)‖6,

where C depends on α, β, θ, but independent of τ and h.
Substitution of (5.13) into (5.11) gives

(5.15)

⎧⎪⎨⎪⎩
〈φ

n+1 − φn

τ
, ξ〉+A21(φ

n+θ, ξ) =
1

ε
〈φn+θ − φn+θ, ξ〉+ 〈F (n;x), ξ〉,

〈φ
n+1 − φn

τ
, η〉+A12(φ

n+θ, η) =
1

ε
〈φn+θ − φn+θ, η〉+ 〈F (n;x), η〉.



ERROR ESTIMATES FOR THE AEDG METHOD 145

Each equation in scheme (5.1) subtracted from the corresponding one in (5.15)
leads to

(5.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈φ
n+1 − vn+1 − (φn − vn)

τ
, ξ〉+A21(φ

n+θ − un+θ, ξ)

=
1

ε
〈vn+θ − un+θ, ξ〉+ 〈F (n;x), ξ〉,

〈φ
n+1 − un+1 − (φn − un)

τ
, η〉+A12(φ

n+θ − vn+θ, η)

=
1

ε
〈un+θ − vn+θ, η〉+ 〈F (n;x), η〉.

Next we represent the error by

φn − vn = en1 − εn1 , φn − un = en2 − εn2 ,(5.17)

where

en1 = Πvφ
n − vn, εn1 = Πvφ

n − φn,

en2 = Πuφ
n − un, εn2 = Πuφ

n − φn.

Substituting (5.17) into (5.16), and then taking ξ = en+θ
1 , η = en+θ

2 in (5.16), we
have

〈e
n+1
1 − en1

τ
, en+θ

1 〉+A21(e
n+θ
2 , en+θ

1 )(5.18a)

= 〈 ε
n+1
1 − εn1

τ
, en+θ

1 〉+A21(ε
n+θ
2 , en+θ

1 )

+
1

ε
〈vn+θ − un+θ, en+θ

1 〉+ 〈F (n;x), en+θ
1 〉,

〈e
n+1
2 − en2

τ
, en+θ

2 〉+A12(e
n+θ
1 , en+θ

2 )(5.18b)

= 〈 ε
n+1
2 − εn2

τ
, en+θ

2 〉+A12(ε
n+θ
1 , en+θ

2 )

+
1

ε
〈un+θ − vn+θ, en+θ

2 〉+ 〈F (n;x), en+θ
2 〉.

From (3.13) we have

A21(ε
n+θ
2 , en+θ

1 ) +A12(ε
n+θ
1 , en+θ

2 ) +
1

ε
〈vn+θ − un+θ, en+θ

1 − en+θ
2 〉

= −1

ε
‖en+θ

1 − en+θ
2 ‖2 − 〈εn+θ

1 , en+θ
1 〉 − 〈εn+θ

2 , en+θ
2 〉.

From the stability analysis in leading to (5.7) it follows that

‖(en+1
1 , en+1

2 )‖2 + C1τ‖(∂xen+θ
1 , ∂xe

n+θ
2 )‖2(5.19)

+ C2
τ

ε
‖en+θ

1 − en+θ
2 ‖2 ≤ ‖(en1 , en2 )‖2 + 2τG,

where

G = 〈 ε
n+1
1 − εn1

τ
, en+θ

1 〉+ 〈 ε
n+1
2 − εn2

τ
, en+θ

2 〉 − 〈εn+θ
1 , en+θ

1 〉 − 〈εn+θ
2 , en+θ

2 〉

+ 〈F (n;x), en+θ
1 + en+θ

2 〉.
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We now estimate each term in G as follows:

εn+1
1 − εn1

τ
= Πv

(
φn+1 − φn

τ

)
− φn+1 − φn

τ
= Πv(∂tφ(·, t∗))− ∂tφ(·, t∗),

where t∗ is an intermediate value between tn and tn+1. Using the projection error
estimate (3.6) we have∥∥∥∥εn+1

1 − εn1
τ

∥∥∥∥ ≤ Chmin{k+1,m} |∂tφ(·, t∗)|m(5.20)

≤ Chmin{k+1,m}‖φ(·, t)‖m+2,

where we have used equation (1.1). The same estimate holds true for εn+1
2 − εn2 .

For w ∈ L2, we have

〈w, en+θ
i 〉 = θ〈w, en+1

i 〉+ (1− θ)〈w, eni 〉(5.21)

≤ δ(‖en+1
i ‖2 + ‖eni ‖2) +

1

4δ
‖w‖2.

This when applied to each term in G gives

|G| ≤ 3δ(‖(en+1
1 , en+1

2 )‖2 + ‖(en1 , en2 )‖2)(5.22)

+
1

4δ

2∑
i=1

(∥∥∥∥εn+1
1 − εn1

τ

∥∥∥∥2 + 2‖εn+1
i ‖2 + 2‖εni ‖2 + ‖F (n; ·)‖2

)
.

Hence together with (5.20), (3.6), and (5.14) when taking m = k + 1, we obtain

|G| ≤ 3δ(‖(en+1
1 , en+1

2 )‖2 + ‖(en1 , en2 )‖2)+
C

δ
(h2(k+1) + τ4 + τ2(1− 2θ)2),(5.23)

where supt∈[0,T ] ‖φ(·, t)‖k+3, ‖∂2
t φ

n‖, and supt∈[0,T ] ‖φ(·, t)‖6 have been absorbed
into the constant C for easy presentation below.

We choose δ to minimize the right side of G2 so that

|G| ≤ 2
√
3C(‖(en+1

1 , en+1
2 )‖+ ‖(en1 , en2 )‖)(h2(k+1) + τ4 + τ2(1− 2θ)2)1/2.(5.24)

Plugging (5.24) into (5.19) and dividing by the common factor (‖(en+1
1 , en+1

2 )‖+
‖(en1 , en2 )‖) yields

‖(en+1
1 , en+1

2 )‖ ≤‖(en1 , en2 )‖+ 4τ
√
3C(h2(k+1) + τ4 + τ2(1− 2θ)2)1/2.

This gives

‖(en1 , en2 )‖ ≤ ‖(e01, e02)‖+ 4T
√
3C(h2(k+1) + τ4 + τ2(1− 2θ)2)1/2,

since nτ ≤ T . Further we use the initial error as given in (3.16), so that

‖(en1 , en2 )‖ ≤ C(hk+1 + τ |1− 2θ|+ τ2),

where C is linear in T . This together with the projection error for εni when inserted
into (5.17) yields the desired estimate (5.10). �
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[14] C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar

hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1–26, DOI 10.2307/2008211. MR815828
[15] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport

equation, Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc.
Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center,
Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No.
33. MR0658142

[16] H. Liu, An alternating evolution approximation to systems of hyperbolic conservation laws,
J. Hyperbolic Differ. Equ. 5 (2008), no. 2, 421–447, DOI 10.1142/S0219891608001568.
MR2420005

[17] H. Liu, Optimal error estimates of the direct discontinuous Galerkin method for convection-
diffusion equations, Math. Comp. 84 (2015), no. 295, 2263–2295, DOI 10.1090/S0025-5718-
2015-02923-8. MR3356026

[18] H. Liu, M. Pollack, and H. Saran, Alternating evolution schemes for Hamilton-Jacobi
equations, SIAM J. Sci. Comput. 35 (2013), no. 1, A122–A149, DOI 10.1137/120862806.
MR3033040

[19] H. Liu and M. Pollack, Alternating evolution discontinuous Galerkin methods for Hamilton-
Jacobi equations, J. Comput. Phys. 258 (2014), 31–46, DOI 10.1016/j.jcp.2013.09.038.
MR3145268

http://www.ams.org/mathscinet-getitem?mr=0178246
http://www.ams.org/mathscinet-getitem?mr=664882
http://www.ams.org/mathscinet-getitem?mr=1885715
http://www.ams.org/mathscinet-getitem?mr=1433934
http://www.ams.org/mathscinet-getitem?mr=1702201
http://www.ams.org/mathscinet-getitem?mr=2373954
http://www.ams.org/mathscinet-getitem?mr=1842183
http://www.ams.org/mathscinet-getitem?mr=1885610
http://www.ams.org/mathscinet-getitem?mr=3614017
http://www.ams.org/mathscinet-getitem?mr=2373176
http://www.ams.org/mathscinet-getitem?mr=2390992
http://www.ams.org/mathscinet-getitem?mr=1655854
http://www.ams.org/mathscinet-getitem?mr=1377057
http://www.ams.org/mathscinet-getitem?mr=815828
http://www.ams.org/mathscinet-getitem?mr=0658142
http://www.ams.org/mathscinet-getitem?mr=2420005
http://www.ams.org/mathscinet-getitem?mr=3356026
http://www.ams.org/mathscinet-getitem?mr=3033040
http://www.ams.org/mathscinet-getitem?mr=3145268


148 HAILIANG LIU AND HAIRUI WEN

[20] H. Liu and M. Pollack, Alternating evolution discontinuous Galerkin methods for convection–
diffusion equations, J. Comput. Phys. 307 (2016), 574–592, DOI 10.1016/j.jcp.2015.12.017.
MR3448225

[21] H. Liu and J. Yan, The direct discontinuous Galerkin (DDG) method for diffusion
with interface corrections, Commun. Comput. Phys. 8 (2010), no. 3, 541–564, DOI
10.4208/cicp.010909.011209a. MR2673775

[22] Y. Liu, Central schemes on overlapping cells, J. Comput. Phys. 209 (2005), no. 1, 82–104,

DOI 10.1016/j.jcp.2005.03.014. MR2145783
[23] Y. Liu, C.-W. Shu, E. Tadmor, and M. Zhang, L2 stability analysis of the central dis-

continuous Galerkin method and a comparison between the central and regular discontin-
uous Galerkin methods, M2AN Math. Model. Numer. Anal. 42 (2008), no. 4, 593–607, DOI
10.1051/m2an:2008018. MR2437775

[24] Y. Liu, C.-W. Shu, E. Tadmor, and M. Zhang, Central local discontinuous Galerkin methods
on overlapping cells for diffusion equations, ESAIM Math. Model. Numer. Anal. 45 (2011),
no. 6, 1009–1032, DOI 10.1051/m2an/2011007. MR2833171
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