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NUMERICAL SOLUTION TO A LINEARIZED TIME

FRACTIONAL KDV EQUATION ON UNBOUNDED DOMAINS

QIAN ZHANG, JIWEI ZHANG, SHIDONG JIANG, AND ZHIMIN ZHANG

Abstract. An efficient numerical scheme is developed to solve a linearized
time fractional KdV equation on unbounded spatial domains. First, the exact
absorbing boundary conditions (ABCs) are derived which reduces the pure

initial value problem into an equivalent initial boundary value problem on a
finite interval that contains the compact support of the initial data and the
inhomogeneous term. Second, the stability of the reduced initial-boundary
value problem is studied in detail. Third, an efficient unconditionally sta-
ble finite difference scheme is constructed to solve the initial-boundary value
problem where the nonlocal fractional derivative is evaluated via a sum-of-
exponentials approximation for the convolution kernel. As compared with the
direct method, the resulting algorithm reduces the storage requirement from
O(MN) to O(M logd N) and the overall computational cost from O(MN2)

to O(MN logd N) with M the total number of spatial grid points and N the
total number of time steps. Here d = 1 if the final time T is much greater
than 1 and d = 2 if T ≈ 1. Numerical examples are given to demonstrate the
performance of the proposed numerical method.

1. Introduction

The classical Korteweg-de Vries (KdV) equation is a typical dispersive nonlinear
partial differential equation (PDE). Historically, the solitary solution of the equa-
tion was first observed physically by Scott Russell in 1834 [27], and the equation
itself was later derived by Korteweg and de Vries in 1895 [19]. Since then, it has
been applied in many fields to describe a wide range of physical phenomena such
as interaction of nonlinear waves [33], collision-free hydro-magnetic waves in a cold
plasma, ion-acoustic waves, interfacial electrohydrodynamics [9], etc. As a mathe-
matical model of the water wave, when the wave height is small compared to the
water depth [32], the nonlinear equation is reduced to the linear KdV equation.

When these physical phenomena are considered nonconservative, they can be
described using fractional differential equations. Over the last two decades the
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fractional calculus has been applied to almost every field of science, engineering,
and mathematics [18,20,22,24,25]. Here we consider the pure initial value problem
(IVP) of the linearized time fractional KdV equation in one space dimension:

(1.1)

⎧⎪⎨
⎪⎩

C
0Dα

t u(x, t) + uxxx(x, t) = f(x, t), t ∈ (0, T ], x ∈ R,

u(x, 0) = u0(x), x ∈ R,

u(x, t) → 0, when |x| → ∞, t ∈ (0, T ],

where the source term f(x, t) and initial value u0(x) are assumed to be compactly
supported, and the operator C

0Dα
t (0 < α < 1) stands for the Caputo fractional

derivative and is defined by the formula

(1.2) C
0Dα

t u(x, t) =
1

Γ(1− α)

∫ t

0

u′(x, s)

(t− s)α
ds.

Although there are some methods to analytically solve the fractional KdV equa-
tion in some special cases [8, 23, 31, 35], one may have to resort to the numerical
methods to obtain its solution in general. There are two difficulties when one tries
to solve (1.1) numerically. First, the original problem is defined on the whole spatial
domain, which has to be truncated to a finite domain for the purpose of numerical
computation. For this, one needs to impose some artificial boundary conditions
at the boundary of the truncated domain. These boundary conditions have to be
carefully chosen so that there will be no reflections from the boundary and the
reduced initial-boundary value problem (IBVP) is still stable and equals to the
original problem in the truncated domain. Second, the fractional derivative is de-
fined as a convolution integral from 0 to the current time t, and a direct method of
evaluating the fractional derivative requires the storage of the solution at all times
and quadratic complexity in computational cost, which is prohibitively expensive
for large-scale long-time simulations.

Among these artificial boundary conditions, the so-called exact absorbing bound-
ary conditions (ABCs) prevent the reflections of the wave from the boundary, which
leads to an equivalent IBVP formulation for the original IVP. For the linearized KdV
equation of the integer order, Zheng, Han, and Wen [37] derived the exact ABCs
via the Laplace transform. Recently, Zhang, Li, and Wu [34] developed a series
of high-order local ABCs to approximate the exact ABCs using Padé expansion in
the Laplace domain. Besse et al. [5] constructed the discrete ABCs for the fully
discrete problem using the Z-transformation.

In this paper, we first derive exact ABCs for the linearized fractional KdV equa-
tion (1.1) with standard techniques in this field. That is, we apply the Laplace
transform in time to reduce the equation to an ODE; we then use the condition
that the solution has to decay to zero at infinity to obtain the solution of the ODE
in the left and right exterior domains, which also leads to boundary conditions at
two end points in the Laplace domain; the boundary conditions in the physical
space are obtained by inverting back. However, unlike many second-order differ-
ential equations where only one boundary condition at each end point is needed,
the KdV equation involves third order derivatives in space and one more boundary
condition is required. All three absorbing boundary conditions are carefully chosen
and we then show that the IBVP with our exact ABCs is stable in the L2-norm.

Next, we construct a delicate finite difference (FD) scheme to discretize the IBVP.
Our construction starts from the introduction of an auxillary variable which reduces
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the third-order PDE to a second-order one. We then combine the PDE and the
exact ABCs to obtain more consistent discrete equations for the boundary points.
This way, we are able to show that the resulting FD scheme is unconditionally
stable; whereas the naive FD schemes which discretize the spatial derivatives via
central difference for interior points and one-sided differences for boundary points
is only conditionally stable.

We further apply the fast algorithm in [15] to reduce the computational and
storage cost for the evaluation of the fractional derivatives in the temporal vari-
able. Here the main idea is to approximate the convolution kernel t−1−α (obtained
by integration by parts for the integral on the right-hand side of (1.2)) by a sum-
of-exponentials (SOE) approximation when t is away from the origin. For each
spatial point, the convolution with the exponential kernel can be evaluated in O(1)
time at each time step via standard recurrence relation or any A-stable ODE solver
(see, for example, [2–4,6,12–15,21,36]). This reduces the computational cost from
O(N2) for direct method to O(NNexp) and the storage cost from O(N) for direct
method to O(Nexp), where N is the total number of time steps and Nexp is the
total number of the exponentials needed in the SOE approximation. When similar
SOE approximations are used for the exact ABCs as well, the overall computa-
tional cost of our algorithm is O(MNNexp) as compared with O(MN2) for direct
method; and the storage requirement of our algorithm is O(MNexp) as compared
with O(MN) for direct method, as the direct method needs to store the solution in
the whole computational spatial domain at all times. Here M is the total number
of discretization points in space. The number of exponentials Nexp needed in the
SOE approximation depends on the prescribed precision ε, the cutoff time step size
δ, and the final time T . For a fixed absolute precision, Nexp = O(logN) when

T � 1 and Nexp = O(log2 N) when T ≈ 1 if we assume that N = T
δ , i.e., a uniform

mesh is used in the temporal variable and the time step size is chosen to be Δt = δ.
The rest of the paper is organized as follows. In section 2, we derive the exact

ABCs for the linearized fractional KdV equation. In section 3, we present the
stability analysis of the reduced IBVP. In section 4, we develop an efficient and
stable finite difference scheme for solving the IBVP. Some numerical examples are
given to demonstrate the performance of our scheme in section 5. Finally, we
conclude our paper with a short summary.

2. The derivation of exact ABCs

We use the artificial boundary methods (ABMs) [11, 30] to construct the exact
ABCs. We first introduce artificial boundaries Γl := {x|x = xl} and Γr := {x|x =
xr} to divide the original infinite domain into three parts: the computational do-
main of interest Ωc := (xl, xr), the left unbounded exterior domain Ωl := (−∞, xl),
and the right unbounded exterior domain Ωr := (xr,∞). The choices of parameters
xl and xr are determined such that the initial data u0(x) and the source term f
are compactly supported in Ωc. We consider the following two exterior problems
on Ωl := (−∞, xl) and Ωr := (xr,∞), respectively:

C
0Dα

t u(x, t) + uxxx(x, t) = 0, t ∈ (0, T ], x ∈ Ωr,(2.1)

u(x, 0) = 0, x ∈ Ωr,(2.2)

u(x, t) → 0, when x → +∞, t ∈ (0, T ],(2.3)
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and

C
0Dα

t u(x, t) + uxxx(x, t) = 0, t ∈ (0, T ], x ∈ Ωl,(2.4)

u(x, 0) = 0, x ∈ Ωl,(2.5)

u(x, t) → 0, when x → −∞, t ∈ (0, T ].(2.6)

We now derive certain conditions that must be satisfied for the solution u at the
artificial boundaries xl and xr.

Let û(x, s) be the Laplace transform of u(x, t) defined by

û(x, s) =

∫ +∞

0

e−stu(x, t)dt, �(s) > 0.

The Laplace transform of the Caputo derivatives is given by the formula

̂C
0Dα

t u(x, s) = sαû(x, s)− sα−1u(x, 0), 0 < α ≤ 1.

Applying the Laplace transform on equations (2.1) and (2.4) with zero initial values
(2.2) and (2.5), we obtain an ODE in û(x, s):

(2.7) sαû(x, s) + ûxxx(x, s) = 0, x ∈ Ωl ∪ Ωr.

The general solution of (2.7) is given by the formula

(2.8) û(x, s) = c1(s)e
λ1(s)x + c2(s)e

λ2(s)x + c3(s)e
λ3(s)x,

where λ1(s), λ2(s), λ3(s) are the roots of the cubic equation

sα + λ3 = 0.

That is,

λ1(s) = −s
α
3 , λ2(s) = −s

α
3 ω, λ3(s) = −s

α
3 ω2(2.9)

with w = e2πi/3. It is easy to see that �(λ1(s)) < 0, �(λ2(s)) > 0, �(λ3(s)) > 0.
Applying the Laplace transform on (2.3) and (2.6), we have

(2.10) û(x, s) → 0, when |x| → ∞.

Thus, on the interval Ωr,

û(x, s) = c1(s)e
λ1(s)x.

Taking derivatives of this solution with respect to x, we obtain

ûxx(x, s) = λ2
1(s)û(x, s) and ûx(x, s) = λ1(s)û(x, s)(2.11)

or, equivalently,

1

λ2
1(s)

ûxx(x, s) = û(x, s) and
1

λ1(s)
ûx(x, s) = û(x, s).(2.12)

Applying the inverse Laplace transform (see [25]) to (2.11) and (2.12) yields

uxx(x, t) =
C
0D

2α
3
t u(x, t) and ux(x, t) = −C

0D
α
3
t u(x, t),(2.13)

I
2α
3

t uxx(x, t) = u(x, t) and I
α
3
t ux(x, t) = −u(x, t),(2.14)

where Iα
t with α > 0 is the Riemann-Liouville fractional integral defined by the

formula

(2.15) Iα
t g(t) =

1

Γ(α)

∫ t

0

g(τ )

(t− τ )1−α
dτ, t > 0.
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Similarly, on the interval Ωl, we have c1 = 0 from the decay condition (2.8) as
x → −∞. Hence, the solution is

û(x, s) = c2(s)e
λ2(s)x + c3(s)e

λ3(s)x.

Taking the first and second derivatives of û and eliminating c2 and c3, we obtain

ûxx(x, s)− (λ2 + λ3)ûx(x, s) + λ2λ3û(x, s) = 0.

Using the facts that λ2 + λ3 = −λ1 and λ2λ3 = λ2
1, we have

(2.16) û(x, s) +
1

λ1(s)
ûx(x, s) +

1

λ2
1(s)

ûxx(x, s) = 0

or, equivalently,

(2.17) λ2
1(s)û(x, s) + λ1(s)ûx(x, s) + ûxx(x, s) = 0.

Applying the inverse Laplace transform to (2.16) and (2.17) leads to

u(x, t)− I
α
3
t ux(x, t) + I

2α
3

t uxx(x, t) = 0,(2.18)

uxx(x, t)− C
0D

α
3
t ux(x, t) +

C
0D

2α
3
t u(x, t) = 0.(2.19)

Using (2.14) and (2.18) as exact artificial boundary conditions, the original IVP
(1.1) is reduced to the the following IBVP on Ωc:

C
0Dα

t u(x, t) + uxxx(x, t) = f(x, t), x ∈ Ωc, t ∈ (0, T ],(2.20)

u(x, 0) = u0(x), x ∈ Ωc,(2.21)

I
2α
3

t uxx(xr, t) = u(xr, t),(2.22)

I
α
3
t ux(xr, t) = −u(xr, t),(2.23)

I
2α
3

t uxx(xl, t)− I
α
3
t ux(xl, t) + u(xl, t) = 0.(2.24)

Similarly, using (2.13) and (2.19) as exact artificial boundary conditions, the origi-
nal IVP (1.1) is reduced to the following IBVP on Ωc:

C
0Dα

t u(x, t) + uxxx(x, t) = f(x, t), x ∈ Ωc, t ∈ (0, T ],(2.25)

u(x, 0) = u0(x), x ∈ Ωc,(2.26)

uxx(xr, t) =
C
0D

2α
3
t u(xr, t),(2.27)

ux(xr, t) = −C
0D

α
3
t u(xr, t),(2.28)

uxx(xl, t)− C
0D

α
3
t ux(xl, t) +

C
0D

2α
3
t u(xl, t) = 0.(2.29)

3. Stability of the exact absorbing boundary conditions

We now show that both the IBVP (2.20)–(2.24) and the IBVP (2.25)–(2.29) are
stable in L2-norm. We begin with some useful lemmas.

Lemma 3.1 (See [1]). Suppose that v(t) is absolutely continuous on [0, T ]. Then

v(t)C0Dα
t v(t) ≥

1

2
C
0Dα

t v
2(t), 0 < α < 1.
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Lemma 3.2 (See [25]). Suppose that v(t) satisfies the inequality

v(t) ≤ a(t) + b(t)

∫ t

0

(t− s)α−1v(s)ds, α > 0,

for t ∈ [0, T ], where a(t) is not decreasing, nonnegative and locally integrable over
[0, T ], and b(t) is nonnegative and nondecreasing. Then

v(t) ≤ a(t)Eα(b(t)Γ(α)t
α), 0 ≤ t ≤ T,

where Eα(z) =
∑∞

n=0
zn

Γ(nα+1) is the Mittag-Leffler function.

Lemma 3.3. Suppose that y(t) is absolutely continuous on [0, T ]. Then

I1
t
C
0Dα

t y(t) = − t1−α

Γ(2− α)
y(0) + I1−α

t y(t).

Proof. Using the definitions for the Caputo fractional derivative (1.2) and Riemann-
Liouville integral (2.15), we obtain

I1
t
C
0Dα

t y(t) =

∫ t

0

1

Γ(1− α)

∫ τ

0

y′(η)

(τ − η)α
dηdτ.

Exchanging the order of integration and performing integration by parts, we have

I1
t
C
0Dα

t y(t) =
1

Γ(1− α)

∫ t

0

y′(η)

∫ t

η

1

(τ − η)α
dτdη

=
1

Γ(1− α)(1− α)

∫ t

0

y′(η)(t− η)1−αdη

= − t1−α

Γ(2− α)
y(0) +

1

Γ(1− α)

∫ t

0

y(η)

(t− η)α
dη

= − t1−α

Γ(2− α)
y(0) + I1−α

t y(t),

and the proof is complete. �

Lemma 3.4. For any T > 0, suppose f and g are smooth functions with f(0) =
g(0) = 0. Then

I1
t (2fI

2
3α
t f − (I

α
3
t f)2)|t=T ≥ 0,(3.1)

I1
t (2(I

α
3
t g − I

2
3α
t f)f − g2)|t=T ≤ 0.(3.2)

Proof. For any T > 0, we set F (t) = f(t)�[0,T ], G(t) = g(t)�[0,T ](t), where �[0,T ](t)

is the characteristic function of [0, T ]. We may then extend the integration domain
as follows:

I1
t (2fI

2
3α
t f − (I

α
3
t f)2)|t=T = I1

t (2FI
2
3α
t F − (I

α
3
t F )2)|t=T

=

∫ +∞

0

(2FI
2
3α
t F − (I

α
3
t F )2)dt.
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We now employ the Plancherel theorem to obtain∫ +∞

0

(2FI
2
3α
t F − (I

α
3
t F )2)dt

=
1

2π

∫ +∞

−∞
(2(iξ)−

2
3α − |ξ|−

2
3α)

∣∣∣F̂ (iξ)
∣∣∣2 dξ

=
1

2π

∫ +∞

0

[
(2(iξ)−

2
3α − |ξ|−

2
3α) + (2(−iξ)−

2
3α − |ξ|−

2
3α)

] ∣∣∣F̂ (iξ)
∣∣∣2 dξ

=
1

2π

∫ +∞

0

2(2 cos
πα

3
− 1) |ξ|−

2α
3

∣∣∣F̂ (iξ)
∣∣∣2 dξ

≥ 0,

where we have used the fact that 1 < 2 cos πα
3 < 2 for 0 < α < 1 and (3.1) is

proved. In addition, we have

I1
t (2(I

α
3
t g − I

2
3α
t f)f − g2)|t=T

=

∫ +∞

0

[
2(I

α
3
t G− I

2
3α
t F )F −G2

]
dt

≤
∫ +∞

0

[
2FI

α
3
t G− (I

α
3
t F )2 −G2

]
dt

=
1

2π

∫ +∞

−∞

(
2(iξ)−

α
3 Ĝ(iξ)

¯̂
F (iξ)− |ξ|−

2α
3

∣∣∣F̂ (iξ)
∣∣∣2 − ∣∣∣Ĝ(iξ)

∣∣∣2)dξ
≤ − 1

2π

∫ +∞

−∞

( ∣∣∣Ĝ(iξ)
∣∣∣− |ξ|−

α
3

∣∣∣F̂ (iξ)
∣∣∣ )2

dξ

≤ 0.

Here the first inequality follows from (3.1) and the second equality follows from the
Plancherel theorem again. �

Theorem 3.5. The IBVP (2.20)–(2.24) is L2-stable. More precisely, for 0 < t ≤
T , the following estimate holds:∫ t

0

‖u(·, τ )‖2 dτ ≤ Iα
t

( t1−α

Γ(2− α)
Eα(t

α)
)
‖u(·, 0)‖2(3.3)

+ Iα
t

(
Eα(t

α)

∫ t

0

‖f(·, τ )‖2dτ
)
.

Proof. Multiplying both sides of (2.20) with 2u, integrating x from xl to xr, and
applying integration by parts, we obtain

2

∫ xr

xl

u C
0Dα

t udx = −2

∫ xr

xl

(uuxx − 1

2
u2
x)xdx+

∫ xr

xl

2ufdx(3.4)

= (2uuxx − u2
x)(xl, t)− (2uuxx − u2

x)(xr, t) +

∫ xr

xl

2ufdx.

The exact ABCs (2.22)–(2.24) can be rewritten as follows:

u(xr, t) = −I
2α
3

t uxx(xr, t), ux(xr, t) = I
α
3
t uxx(xr, t),

u(xl, t) = −I
2α
3

t uxx(xl, t) + I
α
3
t ux(xl, t),
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where the second equality follows from the differentiation of (2.23). Replacing
u(xl, t), u(xr, t) and ux(xr, t) in (3.4) by the above integrals, we have

2

∫ xr

xl

u C
0Dα

t udx =
[
2(I

α
3
t ux − I

2
3α
t uxx)uxx − u2

x

]
(xl, t)

−
[
2uxxI

2
3α
t uxx − (I

α
3
t uxx)

2
]
(xr, t) + 2

∫ xr

xl

fudxdτ.

Integrating both sides of the above equation over [0, t] and then applying Lemmas
3.1 and 3.4, we obtain

I1
t
C
0Dα

t

∫ xr

xl

u2dx ≤ 2

∫ t

0

∫ xr

xl

fudxdτ.

The applications of the Lemma 3.3 and the Cauchy-Schwarz inequality yield

I1−α
t

∫ xr

xl

u2dx ≤ t1−α

Γ(2− α)

∫ xr

xl

u(x, 0)2dx(3.5)

+

∫ t

0

∫ xr

xl

u2dxdτ +

∫ t

0

∫ xr

xl

f2dxdτ.(3.6)

Let v(t) := I1−α
t

( ∫ xr

xl
u2dx

)
and a(t) := t1−α

Γ(2−α)

∫ xr

xl
u2
0(x)dx+

∫ t

0

∫ xr

xl
f2(x, t)dxdτ .

Using the property of the Riemann-Liouville integral Iα
t (I

β
t )g(t) = Iα+β

t g(t) for

α, β ∈ R+, we may rewrite
∫ t

0

∫ xr

xl
u2dxdτ as follows:

∫ t

0

∫ xr

xl

u2dxdτ = I1
t

∫ xr

xl

u2dx = Iα
t (I1−α

t

∫ xr

xl

u2dx) = Iα
t v(t).

Hence, (3.5) can be rewritten as follows:

v(t) ≤ a(t) + Iα
t v(t) = a(t) +

1

Γ(α)

∫ t

0

(t− τ )α−1v(τ )dτ.(3.7)

Obviously a(t) is nondecreasing. A direct application of Lemma 3.2 to (3.7) with
b(t) = 1

Γ(α) leads to

(3.8) v(t) ≤ a(t)Eα(t
α).

Applying the operator Iα
t on both sides of (3.8) leads to the desired result (3.3). �

Lemma 3.6. For any T > 0, suppose f and g are smooth functions with f(0) =
g(0) = 0. Then

I1
t (2f

C
0D

2
3α
t f − (C0D

α
3
t f)2)|t=T ≥ 0,

I1
t (2(

C
0D

α
3
t g − C

0D
2
3α
t f)f − g2)|t=T ≤ 0.

Proof. Let F (t) = f(t)�[0,T ], G(t) = g(t)�[0,T ](t). Then we have

I1
t (2f

C
0D

2
3α
t f − (C0D

α
3
t f)2)|t=T =

∫ +∞

0

(2FC
0D

2
3α
t F − (C0D

α
3
t F )2)dt.
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Applying the Plancherel theorem yields

∫ +∞

0

(2FC
0D

2
3α
t F − (C0D

α
3
t F )2)dt

=
1

2π

∫ +∞

−∞
(2(iξ)

2
3α − |ξ|

2
3α)

∣∣∣F̂ (iξ)
∣∣∣2 dξ

=
1

2π

∫ +∞

0

2(2 cos
πα

3
− 1) |ξ|

2α
3

∣∣∣F̂ (iξ)
∣∣∣2 dξ ≥ 0.

In addition, we have

I1
t (2(

C
0D

α
3
t g − C

0D
2
3α
t f)f − g2)|t=T

=

∫ +∞

0

[
2(C0D

α
3
t G− C

0D
2
3α
t F )F −G2

]
dt

≤
∫ +∞

0

[
2FC

0D
α
3
t G− (C0D

α
3
t F )2 −G2

]
dt

=
1

2π

∫ +∞

−∞

(
2(iξ)

α
3 Ĝ(iξ)

¯̂
F (iξ)− |ξ|

2α
3

∣∣∣F̂ (iξ)
∣∣∣2 − ∣∣∣Ĝ(iξ)

∣∣∣2)dξ
≤ − 1

2π

∫ +∞

−∞

( ∣∣∣Ĝ(iξ)
∣∣∣− |ξ|

α
3

∣∣∣F̂ (iξ)
∣∣∣)2

dξ ≤ 0,

where we have used Lemma 3.1 in the first inequality. The proof is complete. �

Analogous to the proof of Theorem 3.5 with Lemma 3.6 playing the role of
Lemma 3.4, we obtain the stability result for the IBVP (2.25)–(2.29), which is
summarized in the following theorem.

Theorem 3.7. The IBVP (2.25)–(2.29) is L2-stable in the sense of (3.3).

4. A finite difference scheme

In this section, we first construct a finite difference (FD) scheme for the IBVP
(2.25)–(2.29). We then show that the FD scheme is unconditionally stable in the
L2-norm. Finally, we apply the fast algorithm for the evaluation of the Caputo
derivative developed in [15] to reduce the computational and storage cost.

4.1. Construction of the finite difference scheme. We first observe that the
PDE and boundary conditions contain the spatial derivatives up to the third order.
If we discretize the third-order derivative in the PDE via the central difference
for the interior points and the spatial derivatives in boundary conditions via one-
sided finite differences, there is a mismatch between the interior points and the
boundary points. And our numerical experiments show that the resulting scheme
is only conditionally stable even though the scheme is implicit. Thus, one needs a
more careful and delicate analysis in order to obtain an unconditionally stable FD
scheme. For this, we introduce an auxiliary variable v(x, t) = ux(x, t) and rewrite
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the IBVP (2.25)–(2.29) as follows:

C
0Dα

t u(x, t) + vxx(x, t) = f(x, t), x ∈ Ωc, t ∈ (0, T ],(4.1)

v = ux, x ∈ Ωc, t ∈ (0, T ],(4.2)

u(x, 0) = u0(x), x ∈ Ωc,(4.3)

vx(xr, t) =
C
0D

2α
3
t u(xr, t), t ∈ (0, T ],(4.4)

v(xr, t) = −C
0D

α
3
t u(xr, t), t ∈ (0, T ],(4.5)

vx(xl, t)− C
0D

α
3
t v(xl, t) +

C
0D

2α
3
t u(xl, t) = 0, t ∈ (0, T ].(4.6)

We first discuss the discretization of the Caputo fractional derivative in time.
For a given integer N , let {tk}Nk=0 be a partition of [0, T ] with tk = kΔt and

Δtk = tk − tk−1 = T
N . For a mesh function U = {Uk = u(tk)|0 ≤ k ≤ N}, we

approximate u(t) via a piecewise linear polynomial with {tk}Nk=0 as the interpolation
nodes and obtain the following L1 discretization for approximating the Caputo
fractional derivative:

Dα
t U

k =
Δt−α

Γ(2− α)

[
a
(α)
0 Uk −

k−1∑
l=1

(a
(α)
k−l−1 − a

(α)
k−l)U

l − a
(α)
k−1U

0

]
(4.7)

for 1 ≤ k ≤ N . Here a
(α)
l = (l+1)1−α− l1−α. The accuracy of the L1 discretization

is given as follows.

Lemma 4.1 (See [28]). Suppose that u(t) ∈ C2 [0, T ]. Let

R(u(tk)) :=
C
0Dα

t u(t)|t=tk −Dα
t U

k, 1 ≤ k ≤ N.

Then ∣∣Rku
∣∣ ≤ 1

Γ(2− α)

[
1− α

12
+

22−α

2− α
− (1 + 2−α)

]
max

0≤t≤tk
|u′′(t)|Δt2−α.

Next, we discuss the discretization of spatial derivatives and boundary condi-
tions. For a given integer M , let {xi}Mi=0 be an equispaced partition of (xl, xr) with
xi = xl + ih and h = (xr − xl)/M . Denote Un

i = u(xi, tn), f
n
i = f(xi, tn), and

δxU
k
i+ 1

2
=

1

h

(
Uk
i+1 − Uk

i

)
, Uk

i+ 1
2
=

1

2

(
Uk
i + Uk

i+1

)
, 0 ≤ i ≤ M − 1,(4.8)

δ2xU
k
i =

1

h

(
δxU

k
i+ 1

2
− δxU

k
i− 1

2

)
=

1

h2

(
Uk
i+1 − 2Uk

i + Uk
i−1

)
, 1 ≤ i ≤ M − 1.(4.9)

We also denote V n
i = v(xi, tn) and define δxV

k
i+ 1

2

, V k
i+ 1

2

, and δ2xV
k
i similarly as in

(4.8) and (4.9). We apply these second-order central differences to approximate the
spatial derivatives in (4.1) and (4.2) at interior nodes. As for the boundary nodes,
we note that the Taylor theorem leads to the following lemma.

Lemma 4.2 (See [10]). Suppose that y(x) ∈ C3(Ωc). Then

y′′(x0)−
2

h

[
y(x1)− y(x0)

h
− y′(x0)

]
= −h

3
y(3)(x0 + θ1h), θ1 ∈ (0, 1),

y′′(xM )− 2

h

[
y′(xM )− y(xM )− y(xM−1)

h

]
= −h

3
y(3)(xM − θ2h), θ2 ∈ (0, 1).
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We now discuss the discretization at the right end point xM . The boundary
condition (4.5) can be discretized via the L1 discretization of the Caputo derivative
directly since it does not contain any spatial derivative. To obtain another discrete
condition at xM , we discretize the Caputo derivatives in the PDE (4.1) and the
boundary condition (4.4) to obtain

Dα
t U

k
M + vxx(xM , tk) ≈ fk

M ,

vx(xM , tk) ≈ D
2α
3

t Uk
M .

The second equation in Lemma 4.2 leads to

vxx(xM , tk) ≈
2

h

[
vx(xM , tk)− δxV

k
M− 1

2

]
.

Combining the three equations above to eliminate vx and vxx, we have

(4.10) Dα
t U

k
M +

2

h

(
D

2α
3

t Uk
M − δxV

k
M− 1

2

)
≈ fk

M .

Similarly, we can derive the discrete condition at x0. To summarize, we have the
following approximation for the IBVP (4.1)–(4.6):

Dα
t U

k
i + δ2xV

k
i = fk

i + T k
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N,(4.11)

V k
i+ 1

2
= δxU

k
i+ 1

2
+Qk

i+ 1
2
, 0 ≤ i ≤ M − 1, 1 ≤ k ≤ N,(4.12)

D
α
3
t Uk

M = −V k
M +Rk

M , 1 ≤ k ≤ N,(4.13)

Dα
t U

k
M +

2

h

(
D

2α
3

t Uk
M − δxV

k
M− 1

2

)
= fk

M + T k
M , 1 ≤ k ≤ N,(4.14)

Dα
t U

k
0 +

2

h

(
δxV

k
1
2
−D

α
3
t V k

0 +D
2α
3

t Uk
0

)
= fk

0 + T k
0 , 1 ≤ k ≤ N.(4.15)

That is, (4.11) follows from the L1 discretization of the Caputo derivative and cen-
tral difference discretization of vxx of the PDE (4.1); (4.12) is the central difference
discretization of the auxillary equation (4.2); (4.13) follows from the L1 discretiza-
tion of the Caputo derivative of the boundary condition (4.5); (4.14) follows from
(4.10); and (4.15) follows from a similar derivation for the left end point x0 which
combines the PDE (4.1), the boundary condition (4.6), and the first equation in
Lemma 4.2.

Here the truncation errors are defined by the formulas

T k
i =

[
Dα

t U
k
i − C

0Dα
t u(xi, tk)

]
+
[
δ2xV

k
i − vxx(xi, tk)

]
, 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N,

T k
0 =

[
Dα

t U
k
0 − C

0Dα
t u(x0, tk)

]
+

[
2

h

(
δxV

k
1
2
− vx(x0, tk)

)
− vxx(x0, tk)

]

+
2

h

[
C
0D

α
3
t v(x0, tk)−D

α
3
t V k

0

]
− 2

h

[
C
0D

2α
3
t u(x0, tk)−D

2α
3

t Uk
0

]
, 1 ≤ k ≤ N,

T k
M =

[
Dα

t U
k
M − C

0Dα
t u(xM , tk)

]
+

[
2

h

(
vx(xM , tk)− δxV

k
M− 1

2

)
− vxx(xM , tk)

]

− 2

h

[
C
0D

2α
3
t u(xM , tk)−D

2α
3

t Uk
M

]
, 1 ≤ k ≤ N,

Rk
M = D

α
3
t Uk

M − C
0D

α
3
t u(xM , tk), 1 ≤ k ≤ N.

Qk
i+ 1

2
= ux(xi+ 1

2
, tk)− δxU

k
i+ 1

2
+ V k

i+ 1
2
− v(xi+ 1

2
, tk), 0 ≤ i ≤ M − 1, 1 ≤ k ≤ N.
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By Lemma 4.1 and the Taylor theorem, for u ∈ C5,2
x,t (Ωc × [0, tk]) (1 ≤ k ≤ N) we

have ∣∣T k
i

∣∣ ≤ c(Δt2−α + h2), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N,(4.16) ∣∣T k
0

∣∣ ≤ c(Δt2−α + h+Δt2−
2
3α/h), 1 ≤ k ≤ N,(4.17) ∣∣T k

M

∣∣ ≤ c(Δt2−α + h+Δt2−
2
3α/h), 1 ≤ k ≤ N,(4.18) ∣∣Rk

M

∣∣ ≤ c(Δt2−
1
3α), 1 ≤ k ≤ N,(4.19) ∣∣∣Qk

i+ 1
2

∣∣∣ ≤ ch2, 0 ≤ i ≤ M − 1, 1 ≤ k ≤ N.(4.20)

Finally, omitting the truncation terms T k
i (0 ≤ i ≤ M, 1 ≤ k ≤ N), Rk

M (1 ≤ k ≤
N) and Qk

i+ 1
2

(1 ≤ i ≤ M − 1, 1 ≤ k ≤ N), we obtain the following finite difference

scheme for solving the IBVP (2.25)–(2.29):

Dα
t U

k
i + δ2xV

k
i = fk

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N,(4.21)

Dα
t U

k
0 +

2

h

(
δxV

k
1
2
−D

α
3
t V k

0 +D
2α
3

t Uk
0

)
= fk

0 , 1 ≤ k ≤ N,(4.22)

Dα
t U

k
M +

2

h

(
D

2α
3

t Uk
M − δxV

k
M− 1

2

)
= fk

M , 1 ≤ k ≤ N,(4.23)

D
α
3
t Uk

M = −V k
M , 1 ≤ k ≤ N,(4.24)

V k
i+ 1

2
= δxU

k
i+ 1

2
, 0 ≤ i ≤ M − 1, 1 ≤ k ≤ N.(4.25)

Remark 4.3. As compared with the direct FD scheme mentioned at the beginning
of this subsection, our FD scheme has second-order accuracy for v at interior points
and first-order accuracy at boundary points. Since v = ux, this implies third-order
accuracy for u at interior points and second-order accuracy at boundary points.
Thus, our FD scheme has a higher order of accuracy and better stability property.

4.2. Stability analysis of the finite difference scheme. We now show that
the FD scheme (4.21)–(4.25) is unconditionally stable. We first recall that the
Riemann-Liouville fractional derivative is defined by the formula (see, for example,
[24])

R
0Dα

t u(x, t) =
1

Γ(1− α)

d

dt

∫ t

0

u(x, s)

(t− s)α
ds, 0 < α < 1.

For any 1 ≤ n ≤ N , suppose that the piecewise constant function of a mesh vector
(0, u1, u2, . . . , un) with zero initial value is defined by the formula

u(t) :=

{
uk, t ∈ [tk−1, tk), 1 ≤ k ≤ n,

0, t /∈ [t0, tn).

The following lemma connects the Riemann-Liouville fractional derivative of a
piecewise constant function with the L1 discretization (4.7) of the corresponding
mesh vector with zero initial data.

Lemma 4.4. Let u(t) and v(t) be the piecewise constant functions of the mesh
vectors (0, u1, u2, . . . , un) and (0, v1, v2, . . . , vn) with zero initial values, respectively.
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Then u, v ∈ H
α
3 (R+). Furthermore,

I1
t

(
u(t)R0D

α
3
t v(t)

) ∣∣
t=tn

= Δt

n∑
k=1

ukD
α
3
t vk,

I1
t

(
u(t)R0D

2α
3

t u(t)
) ∣∣

t=tn
= Δt

n∑
k=1

ukD
2α
3

t uk,

(4.26)

and

(4.27) I1
t

(
R
0D

α
3
t u(t)

)2 ∣∣
t=tn

≥ Δt

n∑
k=1

(D
α
3
t uk)2.

Proof. The identities in (4.26) can be proved via straightforward calculation. The
details are presented in [29].

As for the inequality (4.27), we first apply Jensen’s inequality to obtain

I1
t

(
R
0D

α
3
t u(t)

)2 ∣∣
t=tn

=
1

Γ(1− α
3 )

2

n∑
k=1

∫ tk

tk−1

(
d

dt

∫ t

0

u(s)

(t− s)
α
3
ds

)2

dt(4.28)

≥ Δt−1

Γ(1− α
3 )

2

n∑
k=1

(∫ tk

tk−1

d

dt

∫ t

0

u(s)

(t− s)
α
3
dsdt

)2

.

We then observe that

1

Γ(1− α
3 )

∫ tk

tk−1

d

dt

∫ t

0

u(s)

(t− s)
α
3
dsdt(4.29)

= I1
t

(
R
0D

α
3
t u(t)

) ∣∣
t=tk

− I1
t

(
R
0D

α
3
t u(t)

) ∣∣
t=tk−1

= Δt

k∑
l=1

D
α
3
t ul −Δt

k−1∑
l=1

D
α
3
t ul

= ΔtD
α
3
t uk,

where the first equality follows from the fact that I1
t is simply the integration

operator from 0 to t and the second equality follows from (4.26). Combining (4.28)
and (4.29), we obtain (4.27). �

Proceeding as in the proof of Lemma 3.6, we obtain the following lemma.

Lemma 4.5. For any T > 0, suppose f, g ∈ H
α
3 (0, T ). Then

I1
t (2f

R
0D

2
3α
t f − (R0D

α
3
t f)2)|t=T ≥ 0,(4.30)

I1
t (2(

R
0D

α
3
t g − R

0D
2
3α
t f)f − g2)|t=T ≤ 0.(4.31)

The next lemma can be found in [10].

Lemma 4.6. For any mesh functions g = {gk|0 ≤ k ≤ N} defined on Ωt = {tk|0 ≤
k ≤ N}, the following inequality holds:

Δt
n∑

k=1

(Dα
t g

k)gk ≥ t−α
n

2Γ(1− α)
Δt

n∑
k=1

(gk)2 − t1−α
n

2Γ(2− α)
(g0)2, 1 ≤ n ≤ N.(4.32)
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Let V = {v|v = (v0, v1, . . . , vM )}. For any U, V ∈ V, we define the inner product
and norm as

(U, V ) = h

(
1

2
U0V0 +

M−1∑
i=1

UiVi +
1

2
UMVM

)
, ‖U‖ =

√
(U,U).

We now present the main theoretical result on the stability of the FD scheme.

Theorem 4.7. The finite difference scheme (4.21)–(4.25) is unconditionally stable
with respect to the initial data and the source term. That is,

Δt

n∑
k=1

∥∥Uk
∥∥2 ≤ 2tn

1− α

∥∥U0
∥∥2 + 4t2αn Γ(1− α)2Δt

n∑
k=1

∥∥fk
∥∥2 , 1 ≤ n ≤ N.(4.33)

Proof. We multiply both sides of (4.21) by hUk
i , and then sum up for i from 1

to M − 1; we then multiply both sides of (4.22) and (4.23) by h
2U

k
0 and h

2U
k
M ,

respectively; finally we add up these equations to obtain

(
Dα

t U
k, Uk

)
+

M−1∑
i=1

hδ2xV
k
i · Uk

i + δxV
k
1
2
· Uk

0 − δxV
k
M− 1

2
· Uk

M(4.34)

−D
α
3
t V k

0 · Uk
0 +D

2α
3

t Uk
0 · Uk

0 +D
2α
3

t Uk
M · Uk

M = (fk, Uk).

We then use (4.25) to simplify the second term to the fourth term of the left side
in (4.34),

M−1∑
i=1

hδ2xV
k
i · Uk

i + δxV 1
2
· Uk

0 − δxVM− 1
2
· Uk

M(4.35)

=

M−1∑
i=1

(δxV
k
i+ 1

2
− δxV

k
i− 1

2
) · Uk

i + δxV 1
2
Uk
0 − δxVM− 1

2
Uk
M

=
M∑
i=1

δxV
k
i− 1

2
(Uk

i−1 − Uk
i ) =

M∑
i=1

(
V k
i−1 − V k

i

)
δxU

k
i− 1

2

=

M∑
i=1

(
V k
i−1

)2 − (
V k
i

)2
2

=
1

2
(V k

0 )
2 − 1

2
(V k

M )2.

Substituting (4.35) and (4.24) into (4.34), we obtain(
Dα

t U
k, Uk

)
+

1

2
(V k

0 )
2 −D

α
3
t V k

0 · Uk
0 +D

2α
3

t Uk
0 · Uk

0(4.36)

− 1

2

(
D

α
3
t Uk

M

)2
+D

2α
3

t Uk
M · Uk

M = (fk, Uk).

Multiplying Δt on both sides of the (4.36), summing up for k from 1 to n, and
applying Lemma 4.4, we obtain

n∑
k=1

Δt
(
Dα

t U
k, Uk

)
+ I1

t

(
1

2
(V0)

2 − (R0D
α
3
t V0)U0 + (R0D

2α
3

t U0)U0

) ∣∣∣
t=tn

(4.37)

+ I1
t

(
(R0D

2α
3

t UM )UM − 1

2

(
R
0D

α
3
t UM

)2) ∣∣∣
t=tn

≤
n∑

k=1

Δt(fk, Uk).
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Here U0, V0, UM are piecewise constant functions of the mesh vectors (U0
0 , U

1
0 , . . . ,

Un
0 ), (V

0
0 , V

1
0 , . . . , V

n
0 ), and (U0

M , U1
M , . . . , Un

M ), respectively; and we have used the
fact that U0

M = U0
0 = V 0

0 = 0 by the assumption that the initial data are compactly
supported.

By the inequality (4.31), the second term on the left side of (4.37) is nonnegative;
by the inequality (4.30), the third term on the left side of (4.37) is nonnegative.
Thus,

n∑
k=1

Δt
(
Dα

t U
k, Uk

)
≤

n∑
k=1

Δt(fk, Uk).(4.38)

Applying the inequality (4.32) to estimate the left side of (4.38), we have

t−α
n

2Γ(1− α)
Δt

n∑
k=1

∥∥Uk
∥∥2 ≤ t1−α

n

2Γ(2− α)

∥∥U0
∥∥2 + n∑

k=1

Δt(fk, Uk).(4.39)

Now the Cauchy-Schwarz inequality yields

(fk, Uk) ≤
∥∥fk

∥∥ · ∥∥Uk
∥∥(4.40)

≤ tαnΓ(1− α)
∥∥fk

∥∥2 + t−α
n

4Γ(1− α)

∥∥Uk
∥∥2 .

Finally, combining (4.39) with (4.40) and simplifying the resulting expression, we
obtain (4.33). �
4.3. Acceleration of the finite difference scheme. The direct implementation
of the FD scheme (4.21)–(4.25) is very expensive in both the computational and
storage cost. This is because the Caputo derivative is a nonlocal operator and
its L1 discretization (or any consistent discretization) contains a summation that
involves all values of the solution up to the current time. Hence, one needs to store
all previous solution values and the total cost of evaluating the L1 discretization at
each spatial point is O(N2) with N the total number of time steps.

We apply the fast algorithm for the evaluation of the Caputo fractional derivative
in [15] to reduce the computational and storage cost. In order to make the paper
more or less self-contained, we present here a short summary of the algorithm in
[15]. We first split the fractional Caputo derivative into a sum of local part and
history part

C
0Dα

t u(t)|t=tk =
1

Γ(1− α)

∫ tk

tk−1

u′(s)ds

(tk − s)α
+

1

Γ(1− α)

∫ tk−1

0

u′(s)ds

(tk − s)α

:= Cl(tk) + Ch(tk).(4.41)

For the local part Cl(tk), we apply the L1 approximation in the form

Cl(tk) ≈
u(tk)− u(tk−1)

ΔtkΓ(1− α)

∫ tk

tk−1

1

(tk − s)α
ds =

u(tk)− u(tk−1)

ΔtαkΓ(2− α)
.(4.42)

For the history part Ch(tk), we first perform integration by parts to obtain

Ch(tk) =
1

Γ(1− α)

[
u(tk−1)

Δtαk
− u(t0)

tαk
− α

∫ tk−1

0

u(s)ds

(tk − s)1+α

]
.(4.43)

Obviously, the most work is on the evaluation of the convolution integral with the
kernel 1

t1+α on the right side of (4.43). It has been shown in [15] that there exists

an efficient sum-of-exponentials approximation for 1
t1+α for any given time interval
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Table 1. Number of exponentials Nexp needed to approximate
t−1−α with fixed Δt = 10−3 for α = 0.5.

ε

∖
T
Δt 103 104 105 106

10−3 28 30 35 38
10−6 42 47 47 51
10−9 49 55 64 67

[Δtk, T ] with a prescribe absolute error ε. To be more precise, there exist positive
real numbers si and wi (i = 1, . . . , Nexp) such that

(4.44)

∣∣∣∣∣∣
1

t1+α
−

Nexp∑
i=1

ωie
−sit

∣∣∣∣∣∣ ≤ ε, t ∈ [Δt, T ];

and the number of exponentials Nexp needed is of the order (see Table 1 for an
example of the actual number of exponentials needed)

O

(
log

1

ε

(
log log

1

ε
+ log

T

Δt

)
+ log

1

Δt

(
log log

1

ε
+ log

1

Δt

))
.

That is, for fixed precision ε, we have Nexp = O(logN) for T � 1 or Nexp =

O(log2 N) for T ≈ 1 assuming that N = T
Δt .

Replacing the convolution kernel 1
t1+α in (4.43) by its sum-of-exponentials ap-

proximation in (4.44), we obtain

Ch(tk) ≈
1

Γ(1− α)

⎡
⎣u(tk−1)

Δtαk
− u(t0)

tαk
− α

Nexp∑
i=1

ωiUhist,i(tk)

⎤
⎦ ,(4.45)

where Uhist,i(tk) is defined by

(4.46) Uhist,i(tk) =

∫ tk−1

0

e−(tk−τ)siu(τ )dτ.

The reduction of the computational and storage cost relies on the fact that Uhist,i(tk)
satisfies a simple recurrence relation

(4.47) Uhist,i(tk) = e−siΔtkUhist,i(tk−1) +

∫ tk−1

tk−2

e−si(tk−τ)u(τ )dτ

with Uhist,i(t0) = 0 for i = 1, . . . , Nexp. The integral on the right-hand side of
(4.47) can be calculated by a linear approximation of u followed with a product
integration. That is,∫ tk−1

tk−2

e−si(tk−τ)u(τ )dτ ≈ e−siΔtk

s2iΔtk−1

[
(e−siΔtk−1 − 1 + siΔtk−1)U

k−1(4.48)

+(1− e−siΔtk−1 − e−siΔtk−1siΔtk−1)U
k−2

]
.

Thus, one only needs O(1) cost to compute Uhist,i(tk) at each step as Uhist,i(tk−1)
is already computed and stored. As there are Nexp history modes altogether, the
cost of evaluating the Caputo derivative at each time step is O(Nexp). That is, a

reduction from O(N) to O(logN) or O(log2 N).



NUMERICAL SOLUTION TO A LTF KDV EQUATION 709

To summarize, the fast evaluation of the Caputo derivative can be implemented
by the formula

C
0Dα

t U
k ≈ Uk − Uk−1

ΔtαkΓ(2− α)
+

1

Γ(1− α)

⎡
⎣Uk−1

Δtαk
− U0

tαk
− α

Nexp∑
i=1

ωiUhist,i(tk)

⎤
⎦(4.49)

=: FDα
t U

k, for k > 0,

where Uhist,i(tk) is evaluated via (4.47) and (4.48). Finally, replacing the L1 dis-
cretization Dα

t U
k by its fast version FDα

t U
k in the FD scheme (4.21)–(4.25), we

obtain an accelerated FD scheme as follows:
FDα

t U
k
i + δ2xV

k
i = fk

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N,(4.50)

FDα
t U

k
0 +

2

h

(
δxV

k
1
2
− FD

α
3
t V k

0 + FD
2α
3

t Uk
0

)
= fk

0 , 1 ≤ k ≤ N,(4.51)

FDα
t U

k
M +

2

h

(
FD

2α
3

t Uk
M − δxV

k
M− 1

2

)
= fk

M , 1 ≤ k ≤ N,(4.52)

FD
α
3
t Uk

M = −V k
M , 1 ≤ k ≤ N,(4.53)

V k
i+ 1

2
= δxU

k
i+ 1

2
, 0 ≤ i ≤ M − 1, 1 ≤ k ≤ N.(4.54)

Remark 4.8. The fast algorithm relies on the fact that the convolution with the
exponential kernel can be evaluated in linear time since it is equivalent to solving
an ordinary differential equation (ODE). Thus it can be applied to adaptive time
marching scheme as well. The only penalty here is that the number of exponentials
will increase slightly due to the decrease of the smallest time step.

Remark 4.9. Another fast algorithm for the evaluation of the fractional derivative
has been proposed in [4], where the compression is carried out in the Laplace
domain, and the convolution with an exponential kernel is computed by solving the
equivalent ODE with some one-step A-stable scheme.

Remark 4.10. Both the L1 discretization Dα
t U

k and the fast algorithm FDα
t U

k

approximate u(t) by a piecewise polynomial and then apply the product integration.
Therefore, the difference is very minor and can in fact be made arbitrarily small if
the prescribed precision ε is set to a small number, say, close to machine precision.
In our numerical experiments, we have not observed any significant differences
between the FD scheme (4.21)–(4.25) and its fast version (4.50)–(4.54) in both
accuracy and stability.

5. Numerical examples

We now report results of numerical experiments which demonstrate the effec-
tiveness of our exact ABCs and offer quantitative features of the finite difference
schemes (4.21)–(4.25) and (4.50)–(4.54) in various aspects: convergence order, the
computational complexity, and the dependence on ε. To examine the convergence
orders, we define the error norm and convergence order by the formulas

E(h,Δt) =

√√√√ m∑
k=1

Δt ‖ek‖2, rt = log2
E(h,Δt)

E(h,Δt/2)
, rs = log2

E(h,Δt)

E(h/2,Δt)
.

In order to obtain smooth reference solutions in Example 5.1, we set the right-hand
side of the first equation in (1.1) based on the given exact smooth solutions. As we
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will see, both schemes (4.21)–(4.25) and (4.50)–(4.54) have the same convergence
order h4 +Δt2−α due to the negligible influence of the SOE approximation error ε
on the accuracy of the fast algorithm; but the fast algorithm is much faster than the
direct method even when N is of moderate size. We will illustrate the effectiveness
of ABCs. On the one hand, no reflection wave from artificial boundaries can be
seen from the evolution graph of the solutions. On the other hand, we also check
the energy defined by E(t) =

∫ xr

xl
u2(x, t)dx on the bounded domain to verify the

effectiveness of our ABCs, which can be numerically calculated via the trapezoidal
rule.

Example 5.1. We consider the exact solution of the form u(x, t) = exp(−x2)t2 for
the problem (1.1), which leads to the source function f(x, t) = 2

Γ(3−α) t
2−α exp(−x2)

+ t2 exp(−x2)(12x − 8x3). In our computation, we set the computational domain
Ωc = (−6, 6), final time T = 1 and the tolerance precision ε = 10−12 for the SOE
approximation.

Fixing h = 10−3 and varying Δt from 1
20 to 1

160 , Table 2 illustrates the errors

E(h,Δt) and the convergence order of Δt2−α for both schemes (4.21)–(4.25) and
(4.50)–(4.54) in cases of α = 0.2, 0.4, 0.6 and 0.8. Next, fixing Δt = 10−4 and
varying h from 12

27 to 12
64 , Table 3 illustrates the errors E(h,Δt) and the convergence

order of h4 in space for both methods in cases of α = 0.2, 0.4, 0.6 and 0.8.
Tables 2 and 3 show that both the fast algorithm and the direct method produce

the same overall convergence order of h4+Δt2−α. We plot the difference of solutions
of these two schemes for ε = 10−7, 10−8, 10−9, and 10−10, respectively. As we can
see in Figure 1, the difference in the solutions of the two schemes becomes smaller
and smaller when ε gets smaller and smaller.

Table 2. Example 1: The error and convergence order in time for
fast and direct schemes, the spatial mesh size is fixed at h = 10−3.

Δt
Fast scheme Direct scheme Fast scheme Direct scheme

E(h,Δt) rt E(h,Δt) rt E(h,Δt) rt E(h,Δt) rt
α = 0.2 α = 0.4

1/20 6.55385108e-04 1.71 6.55385108e-04 1.71 2.24705517e-03 1.55 2.24705517e-03 1.55
1/40 2.00843055e-04 1.72 2.00843055e-04 1.72 7.65737566e-04 1.56 7.65737566e-04 1.56
1/80 6.09797829e-05 1.73 6.09797829e-05 1.73 2.59174561e-04 1.57 2.59174561e-04 1.57
1/160 1.83606636e-05 1.83606636e-05 8.72173249e-05 8.72173249e-05

α = 0.6 α = 0.8
1/20 5.90307640e-03 1.38 5.90307640e-03 1.38 1.38884744e-02 1.20 1.38884744e-02 1.20
1/40 2.26680324e-03 1.39 2.26680324e-03 1.39 6.04731488e-03 1.20 6.04731488e-03 1.20
1/80 8.67621912e-04 1.39 8.67621912e-04 1.39 2.63569499e-03 1.20 2.63569499e-03 1.20
1/160 3.31144112e-04 3.31144112e-04 1.14869621e-03 1.14869621e-03

We now check the computational cost of both methods. For this, we calculate
the CPU time for N = 2 × 104, 4 × 104, . . . , 1.2 × 105 with α = 0.5,M = 30 fixed.
Figure 2 clearly shows the O(N2) complexity of the direct method and the O(N)
complexity of the fast method.

In summary, this example provides a detailed comparison between the fast al-
gorithm and the direct method. Specifically, we have been able to understand the
superiority of our fast algorithm when N is large enough. We can use the fast
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Table 3. Example 1: The error, convergence order in space and
CPU time for fast and direct schemes, the time step size is fixed
at Δt = 10−4 .

h
Fast scheme Direct scheme Fast scheme Direct scheme

E(h,Δt) rs E(h,Δt) rs E(h,Δt) rs E(h,Δt) rs
α = 0.2 α = 0.4

12/27 9.65355988e-04 4.24 9.65355988e-04 4.24 9.64031334e-04 4.24 9.64031334e-04 4.24
12/36 2.85181520e-04 4.13 2.85181520e-04 4.13 2.84755576e-04 4.13 2.84755576e-04 4.13
12/48 8.69658395e-05 4.07 8.69658395e-05 4.07 8.68307687e-05 4.07 8.68307687e-05 4.07
12/64 2.69650162e-05 2.69650162e-05 2.69230020e-05 2.69230020e-05
CPU(s) 34.50 3.19e+02 34.42 3.34e+02

α = 0.6 α = 0.8
12/27 9.63086232e-04 4.24 9.63086232e-04 4.24 9.63498568e-04 4.24 9.63498738e-04 4.24
12/36 2.84459020e-04 4.13 2.84459020e-04 4.13 2.84788157e-04 4.11 2.84787989e-04 4.11
12/48 8.67497706e-05 4.07 8.67497706e-05 4.07 8.72903060e-05 3.92 8.72890018e-05 3.92
12/64 2.69232642e-05 2.69232642e-05 2.82430370e-05 2.82382760e-05
CPU(s) 34.53 3.30e+02 35.06 3.30e+02

Figure 1. Example 1: The evolution of the difference (i.e.,
Error = FUn

h −DUn
h) in the solutions to the direct scheme (4.21)–

(4.24) (denote by DUn
h ) and to the fast scheme (4.50)–(4.53) (de-

note by FUn
h ) for ε = 1e-7, 1e-8, 1e-9, 1e-10, respectively. In the

calculation, we set M = 120, N = 1000, and α = 0.5.

evaluation to obtain almost the same accuracy as the direct method, and yet, the
fast algorithm is much faster and saves the computational memory for long time
simulation.
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Figure 2. Example 1: The CPU time of different N with M = 30.

Example 5.2. We now use our fast algorithm to analyze some features of the
solution to (1.1) and verify the effectiveness of our ABCs. We choose the source
term f(x, t) = 0 and initial value u0(x) = exp(−8(x − 5)2). In our computation,
we set ε = 10−10, and Ωc = (−8, 8). Note that using Fourier transform, we can
compute the exact solution uexact(x, t). In details, using Fourier transform in space
variable to the first equation in (1.1), we get

C
0Dα

t û(ξ, t)− iξ3û(ξ, t) = 0,

where ξ is the Fourier variable. Then the solution to above equation is

ûexact(ξ, t) = û0Eα(iξ
3tα),

where Eα is the Mittag-Leffler function defined in Lemma 3.2. Then we have the
exact solution of the problem using the inverse Fourier transform. We compute the
reference solution in a larger domain using 30000 points in space.

From Example 5.1, we find the convergence rate in space is O(h4). To confirm
this result, we test the spatial convergence rate in this case. From Table 4, we can
observe that the convergence rate is still O(h4).

Table 4. Example 2: The errors and convergence orders in space
with α = 0.99, T = 0.001 and Δt = h4.

h
α = 0.99

E(h,Δt) rs
1/10 3.7373804042e-05 4.0810
1/20 2.1970772051e-06 4.0800
1/30 4.0840637549e-07 4.2186
1/40 1.2188775601e-07

Figure 3 shows the evolution of the solutions by comparing with the reference
solutions for different values of α. As can be seen in Figure 3, there are no artificial
reflections from the boundaries, which demonstrates the accuracy of our ABCs.

We also plot energies in the computational domain in Figure 4 for different
values of α. We observe that the energy decays as the wave moves away from
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(a) α = 0.5

(b) α = 0.8

(c) α = 0.99

Figure 3. Example 2: The evolutions of the reference solution
(left) and numerical solution (right). In the calculation of numeri-
cal solutions, we set Δt = 10−3 and h = 10−3.

the computational domain, which indicates again the stability of our ABCs for
long-time simulations.

Example 5.3. We now check the effectiveness of our ABCs in the high-frequency
region. We consider the high-frequency wave generated by f(x, t) = 0 and u0(x) =
exp(−8(x− 5)2) sin(50xπ/4). We calculate the reference solution using finer mesh
sizes in a larger domain to minimize the influence of ABCs, and calculate the
numerical solutions via the fast algorithm. In the calculation, we set ε = 10−12 and
choose different lengths of the computational interval Ωc and different final times
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Figure 4. Example 2: The evolution of the energy of the wave
remained in the bounded computational domain for different values
of α. In this calculation, M = 2000, N = 5000, xl = −8, xr = 8,
and T = 10.

T for various values of α. Figure 5 shows the evolutions of the numerical solutions,
which move away from the center of this wave package.

To further investigate the effectiveness of our ABCs, Figure 6 shows the reference
solutions and numerical solutions as well as their errors, and Figure 7 shows the
energy remained in the computational domains for different values of α. We observe
that the errors are very small in Figure 6 and the energy decays in Figure 7. We
remark again that no instability has been observed in any of our computations.

Example 5.4. Our fast algorithm can be easily applied to the case of nonuniform
time step size. We have observed from the first example that the convergence
order in time is 2− α when the solution is sufficiently smooth; but the rate of the
convergence deteriorates significantly when an initial layer is present near t = 0,
as shown in the third column of Table 5. In this example, we will use graded time
steps to capture the singular behaviour of the solution near t = 0. We consider the

exact solution u(x, t) = Eα(−tα)e−x2

for the problem (1.1). The source function

is f(x, t) = Eα(−tα)e−x2

(−1 + 12x− 8x3) and the initial data is u0(x) = e−x2

. In
the calculation, we take the computational domain Ωc = (−5, 5), final time T = 1,
and the tolerance precision ε = 10−10 for the SOE approximation. Then the grid
in time is taken to be

tk =

(
k

N

)γ

T,

where γ is a parameter to be chosen. When γ = 1, the grid is uniform; when γ > 1,
the grid is nonuniform with finer mesh near t = 0. Table 5 shows the errors and
convergence order in time for γ = 1, γ = 2 and γ = 5/2. We observe that while the
uniform temporal grid (i.e., γ = 1) does not resolve the initial layer and thus has
poor convergence rate, the graded mesh steps with γ = 2 and γ = 5/2 capture the
initial layer very well and the convergence rate of the overall scheme is close to the
theoretical value.
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(a) α = 0.5

(b) α = 0.8

(c) α = 0.9

(d) α = 0.99

Figure 5. Example 3: The evolution of the reference solution
(left) and the numerical solution (right). In this calculation, xl =
−6, xr = 6, h = 10−3, N = 1000. T = 1 × 10−8 for α = 0.5,
T = 1× 10−5 for α = 0.8, T = 1× 10−4 for α = 0.9, T = 4× 10−4

for α = 0.99. Δt = T/N .
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(b) α = 0.5
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(c) α = 0.8
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(d) α = 0.99

Figure 6. Example 3: Reference solutions (left), numerical solu-
tions (center) and the errors between them (right) at T = 1×10−6.
In the calculation of numerical solutions, we take M = 1000, N =
1000 to ensure Δt and h are same with the ones in the calculation
of reference solutions.
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Figure 7. Example 3: The evolution of the energy of the wave
remained in the bounded computational domain for different values
of α. In this calculation, we take M = 1000, N = 1000, xl =
0, xr = 10 and T = 4× 10−4.

Table 5. Example 4: The errors and convergence orders with
α = 0.5 and M = 10000 in time for various values of γ.

N γ = 1 order γ = 2 order γ = 5/2 order

10 4.18154e-02 1.86953e-02 1.52165e-02
20 2.42127e-02 0.79 8.09866e-03 1.21 6.15820e-03 1.31
40 1.36471e-02 0.83 3.36761e-03 1.27 2.38934e-03 1.37
80 7.54121e-03 0.86 1.35930e-03 1.31 9.01284e-04 1.41
160 4.10562e-03 0.88 5.36724e-04 1.34 3.33587e-04 1.43

time(s) 8.46720e+00 9.17506e+00 1.21342e+01

6. Conclusions

In this paper, we have presented an efficient and stable numerical method for
solving the linearized time fractional KdV equation. We have derived the exact ar-
tificial boundary conditions and showed that resulting initial-boundary value prob-
lem is L2-stable. An unconditionally stable finite difference is then constructed
for the discretization of the initial-boundary value problem. Finally, the fast al-
gorithm for the evaluation of the Caputo fractional derivative is incorporated into
the stable finite difference scheme, which leads to a robust numerical algorithm
with nearly optimal complexity. To be more precise, our fast algorithm reduces
the storage requirement from O(MN) to O(MNexp) and the overall computational
cost from O(MN2) to O(MNNexp) as compared with the direct method, where

Nexp is logd N with either d = 1 or d = 2. This provides a practical way for the
long-time simulation of the linearized time-fractional KdV equation.
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789–796. MR1613273

[10] G.-h. Gao and Z.-z. Sun, The finite difference approximation for a class of fractional sub-
diffusion equations on a space unbounded domain, J. Comput. Phys. 236 (2013), 443–460,
DOI 10.1016/j.jcp.2012.11.011. MR3020065

[11] H. Han and X. Wu, Artificial Boundary Method, Springer, Heidelberg, Tsinghua University
Press, Beijing, 2013. MR3137472

[12] S. Jiang, Fast Evaluation of the Nonreflecting Boundary Conditions for the Schrödinger
Equation, Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University,
New York, 2001.

[13] S. Jiang and L. Greengard, Fast evaluation of nonreflecting boundary conditions for the
Schrödinger equation in one dimension, Comput. Math. Appl. 47 (2004), no. 6-7, 955–966,
DOI 10.1016/S0898-1221(04)90079-X. MR2060329

[14] S. Jiang and L. Greengard, Efficient representation of nonreflecting boundary conditions for
the time-dependent Schrödinger equation in two dimensions, Comm. Pure Appl. Math. 61

(2008), no. 2, 261–288, DOI 10.1002/cpa.20200. MR2368376
[15] S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional de-

rivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21
(2017), 650–678.

[16] B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and
diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput. 38 (2016), no. 1, A146–
A170, DOI 10.1137/140979563. MR3449907
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