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ON RELATIVE ERRORS OF FLOATING-POINT OPERATIONS:
OPTIMAL BOUNDS AND APPLICATIONS

CLAUDE-PIERRE JEANNEROD AND SIEGFRIED M. RUMP

ABSTRACT. Rounding error analyses of numerical algorithms are most of-
ten carried out via repeated applications of the so-called standard models
of floating-point arithmetic. Given a round-to-nearest function fl and bar-
ring underflow and overflow, such models bound the relative errors F1(t) =
[t —fi(t)|/|t| and E2(t) = |t — fi(¢)|/|fl(¢)] by the unit roundoff uw. This paper
investigates the possibility and the usefulness of refining these bounds, both in
the case of an arbitrary real ¢ and in the case where t is the exact result of an
arithmetic operation on some floating-point numbers. We show that E (¢) and
E5(t) are optimally bounded by u/(1 4+ u) and wu, respectively, when ¢t is real
or, under mild assumptions on the base and the precision, when ¢t = z + y or
t = zy with z, y two floating-point numbers. We prove that while this remains
true for division in base 8 > 2, smaller, attainable bounds can be derived for
both division in base 8 = 2 and square root. This set of optimal bounds is
then applied to the rounding error analysis of various numerical algorithms: in
all cases, we obtain significantly shorter proofs of the best-known error bounds
for such algorithms, and/or improvements on these bounds themselves.

1. INTRODUCTION

Given two integers 3,p > 2, let F be the associated set of floating-point numbers
having base (3, precision p, and no restriction on the exponent range:
F={0}U{M-B°: M,ecZ, B! <|M|< BP}.
Also, let fl : R — F denote any round-to-nearest function, such that
(1) t—f(®)| =minft—fl, tek.
In particular, no specific tie-breaking strategy is assumed for the function fl. Two

relative errors can then be defined, depending on whether the exact value or the
rounded value is used to divide the absolute error in (dl): the error relative to ¢ is

El(t)_w if ¢ 40,
while the error relative to fl(¢) is
-840
BEsy(t) = ——+ if fi(¢t) # 0.
i LIO]

(In each case the relative error may be defined to be zero if the denominator is zero:
the exponent range being unbounded, fl(t) = 0 implies ¢ = 0, so in both cases a
zero denominator means that no error occurs when rounding ¢.)
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For rounding error analysis purposes, the most commonly used bounds are
Eq(t) < wand Es(t) < u, where

fl 1-p
u—2ﬂ

is the unit roundoff associated with fl and F, and such bounds are typically handled
via the so-called standard models fi(t) = t(1 + §1) = t/(1 + &2), |01],]92] < u;
see [Bl, pp. 38-39]. It is also known that the bound on the first relative error can be
refined slightly [12], p. 232] so that

(2) Eq(t) € and Es(t) < u.

14w
These worst-case bounds hold for any real number ¢ and any round-to-nearest
function fl. Furthermore, they can be regarded as optimal in the sense that each
of them is attained for some pair (¢,fl) with ¢ expressed in terms of 3 and p: since
1 + u is exactly halfway between the two consecutive elements 1 and 1 + 2u of F,
we have F1(1+u) = u/(1+wu) and, assuming further that fl rounds ties “to nearest
even”, Ea(l+u) = u.

In this paper, we investigate the possibility and the usefulness of refining the
bounds in (@) when ¢ is not just an arbitrary real number but the exact result of
an operation on some floating-point number(s), that is, when

t=xzopy, z,y €T, ope{+,—,%x,/} :FxF—-R

as well as t = /.
Our first contribution is to establish optimal bounds on both Fy and FEs for each
of these five basic operations, as shown in Table [

TABLE 1. Optimal relative error bounds for various inputs ¢.

t bound on Fj (t) bound on Fs(t)
real number THa u
Tty Tta U
xy Tre u
ol {u—2u2 it =2, {1152312 if =2,
THa if >2 Uu if 5>2

Nz 1—@ VI+2u-—1

As we shall see later in the paper, each of these bounds is attained for some
explicit input values in F and rounding functions fl, possibly under some mild (nec-
essary and sufficient) conditions on 8 and p. Specifically, for addition, subtraction,
and multiplication the condition for optimality is that [ is even, and in the case of
multiplication in base 2 it is that 2P + 1 is not a Fermat prime. In most practical
situations such conditions are satisfied and thus the general bounds in (2)) remain

IThe refined bound E1(t) < u/(1+wu) already appears in [18] p. 74] and, in some special cases,
in [2] for 8 =2 and [6] for 8 even.
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the best ones for floating-point addition, subtraction, and multiplication; as Table[T]
shows, this is also the case of division in any base larger than 2. In contrast, for divi-
sion in base 2 and for square root, the general bound u/(1+u) ~ u—u? on E; can be
decreased further to u—2u? and to 1— (1+2u)*1/2 ~u— %uQ, respectively; likewise,
the general bound u on F5 can be decreased to (u — 2u?)/(1+ u — 2u?) ~ u — 3u?
and (14 2u)'/2 — 1~ u— 3u?

Our second contribution is to show that in the context of rounding error analysis
of numerical algorithms, applying these optimal bounds in a systematic way leads
to simpler and sharper bounds, and/or to more direct proofs of existing ones.

In particular, this allows us to establish the following three new error bounds:

e For the summation of n floating-point numbers z1,...,z, (using n — 1
floating-point additions and any ordering), we show that the resulting
floating-point approximation 3 satisfies

n n—1

(3) ‘g— ZUCZ < Z lei| < %ZVCZL
3 =1 =1

i=1 1=

where |e;| denotes the absolute error of the ith floating-point addition.

e For the summation of n real numbers x1,...,x,, we show that by first
rounding each z; into fl(z;) and then summing the fl(z;) in any order, the
resulting approximation s satisfies

n n—1 n
Li <Z|dz|+2|€z|<<n2|$z|, Cn < nu,
=1 1=1 =1

1 1=

5 —

n
1=

where the d; are given by d; = x; — fl(z;) and the e; are as before.

e For the Euclidean norm of a vector of n floating-point numbers z1,...,x,
we show that summing the squares in any order and then taking the square
root of the result yields a floating-point number 7 such that

(5) F= (X)) e, < m2+ D

i=1

Note that each of these bounds holds without any restriction on n. The bounds
in @) and (@) improve upon the best previous ones, from [I0], in two ways: they
are sharper and apply not only to the absolute error of 5 but also to the sum of the
absolute local errors. Furthermore, we will see that the new bound in (B]) implies
the one in (@) almost immediately; in other words, using ([3)) allows us to recover
the constant nu established in [I0, Proposition 4.1] for sums of n reals (and thus
n-dimensional inner products as well), but in a much more direct way. Finally, the
bound in (@) nicely replaces the expression (n/2 + 1)u + O(u?) that would result
from using the suboptimal bound E;(y/z) < u.

Besides the evaluation of sums and norms, and to illustrate further the benefits
of applying the refined bounds in Table [Tl we provide four other typical examples
of rounding error analysis. These examples deal with small arithmetic expressions,
minors of tridiagonal matrices, Cholesky factorization, and complex floating-point
multiplication. We shall see that in each case the existing error bound can be either
replaced by a simpler and sharper one, or recovered via a significantly shorter proof.
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Notation and assumptions. All our results hold under the customary assumption
that 3,p > 2. Furthermore, following [5] (and unless stated otherwise) we shall
ignore underflow and overflow by assuming that the exponent range of F is un-
bounded. Finally, the common tool used to establish all the error bounds in Ta-
ble [l is the function ufp : R — Fxq from [I6], called unit in the first place (ufp)
and defined as follows: ufp(0) = 0 and, if ¢ € R\{0}, ufp(¢) is the largest integer
power of 8 such that ufp(¢) < |t|. Hence, in particular, for ¢ nonzero,

(6a) ufp(t) < [t] < Bufp(t),
and for any ¢,
(6b) ufp(t) < A(1)] < Aufp(t).

Outline. This paper is organized as follows. We begin in section 2] by recalling
how to derive the bounds in ([2]) and by completely characterizing their attainability.
Section B then gives proofs for all the bounds announced in Table [l together with
explicit expressions of input values at which these bounds are attained. A first
application of these results is described in section [ where we establish the new
bounds for summation shown in (3) and (). We conclude in section [l with the
derivation of the bound (&) together with the analysis of four other examples.

2. OPTIMAL ERROR BOUNDS WHEN ROUNDING A REAL NUMBER

Using the function ufp, the bounds FE;(t) < u for i = 1,2 are easily derived
as follows. First, recall from (@) that |¢| # 0 belongs to the right-open interval
[ufp(t), Bufp(t)), which contains (3 — 1)BP~! equally-spaced elements of F. The
distance between two such consecutive elements is thus % = 2uufp(t),
and rounding to nearest implies that the absolute error is bounded as

(7) |t — (t)] < wufp(t).

This bound is sharp and the values at which it is attained are the midpoints of I,
that is, the rational numbers lying exactly halfway between two consecutive ele-
ments of F.

Dividing both sides of ([Tl by either |¢| or |f1(¢)| gives

ufp(t)
It]

ufp(t)

(8) Ei(t) <u u|ﬂ(t)|’

and Es(t) <

and by using the lower bounds in (@) we arrive at the classical bounds F(t) < u
and F(t) < u. As noted in [5, Theorem 2.2], we have in fact the strict inequality
E1(t) < u, since t cannot be at the same time a midpoint and equal to its ufp; on
the other hand, the derivation above shows that the bound on E(t) is attained if
and only if ¢ is a midpoint such that |fi(¢)| = ufp(t).

Let us now refine the bound F4(t) < u. As shown in [12] p. 232], all we need
for this is a lower bound on [t| slightly sharper than the one in (@]): by definition
of rounding to nearest, |t — fl(¢)| < |t — f] for all f € F, so taking in particular
f =sign(t)ufp(t) gives |t — fl(¢)| < |[t| — ufp(¢); in other words,

(9) ufp(t) + [t — fi(8)] < [¢]
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and, because of (), equality occurs if and only if |¢| < (1 + w)ufp(t). Thus, by
applying (@) and then ([7) to the definition of E;, we find that

Bt < [t — f(¢)] < u_

ufp(¢) + |t — @) " 1+u
Furthermore, due to the conditions of attainability of () and (@) given above, this
bound on E)(t) is attained if and only if ¢ is a midpoint such that |t| < (1+u)ufp(?),
that is, if and only if [¢| = (1 4+ u)ufp(t).

We summarize our discussion in the theorem below. Although the bounds given
there already appear in [I8], p. 74] and [12] p. 232] for E;, and in [5, Theorem 2.3]
for Fs, the characterization of their attainability does not seem to have been re-
ported elsewhere.

Theorem 2.1. Ift € R\{0}, then

Eq(t) <

Tt and Es(t) < u.
Furthermore, the bound on E is attained if and only if |t| = (1 +uw)ufp(¢), and the
bound on Es is attained if and only if |t| = (1 + w)ufp(t) and |fi(t)| = ufp(t).

3. OPTIMAL ERROR BOUNDS FOR FLOATING-POINT OPERATIONS

We establish here optimal bounds on both E; and FE5 for the operations of
addition, subtraction, multiplication, fused multiply-add, division, and square root.

3.1. Addition, subtraction, and fused multiply-add. When ¢ has the form
t =+ y with x,y in F, we show in the theorem below that the general bounds
Er(t) < 15 and Ex(t) < u given in (2) remain optimal unless the basis 3 is odd.
This extends the analysis done by Holm [6], who considers only the first relative
error and assumes implicitly that the basis is even.

Theorem 3.1. Let 8,p > 2 and t = z +y with x,y € F. The bounds in (@) are
optimal if and only if B is even. Furthermore, when [ is even, they are attained
for (z,y) = (1,u) and rounding “to nearest even”.
Proof. If 3 is odd, then u = £8P =Y %B*i*’) with % e{l,...,5 -1},
so u and 1 + u have infinite expansions in base 5. Hence x + y cannot have the
form +(14u)B° with e € Z and thus, by Theorem 2] equality never occurs in the
bounds Fy(z 4+ y) < u/(1+u) and Ey(z +y) < u.

If 3 is even, then u is in F. Consequently, we can take (z,y) = (1, u), which gives
Ei(z+y) =u/(1+u) and, for ties rounded “to nearest even”, Es(x +y) =u. O

Since 1 + 2u belongs to F for any 8 and since 1 + u=(14+2u) —u=1x 1+,
the theorem above extends immediately to subtraction as well as to higher-level
operations encompassing addition, like the fused multiply-add (x,y, z) — fl(zy+2).

3.2. Multiplication. When t = zy with z,y € F, the theorem below shows that
the situation is more subtle than for addition: although the condition that 3 is
even remains necessary for the optimality of the bounds Ej(t) < u/(1 + u) and
E5(t) < u, it is sufficient only when § # 2; when 8 = 2, optimality turns out to be
equivalent to 2P + 1 being composite.
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Theorem 3.2. Let 5,p > 2 and t = xy with x,y € F. We then have the following,
depending on the value of the base (:

o If B = 2, then the bounds in @) are optimal if and only if 2P + 1 is not
prime; furthermore, if D is a nontrivial divisor of 2P + 1, then these bounds
are attained for

2 + 2u)ufp(D D
oy ((2520000(D)
D ufp(D)
and rounding “to nearest even”.
o If B > 2, then the bounds in (@) are optimal if and only if B is even, and
when the latter is true these bounds are attained for
(@,y) = (2+2u,277)

and rounding “to nearest even”.

Before proving this result, note that the attainability of the bound FEj(xy) <
u/(1 + u) has been observed in [0 p. 10] in the particular case (3,p) = (2,5), by
taking = and y in the form shown above with D = 11.

Proof. By Theorem [Z1] the optimality of the bounds in [2)) when ¢t = xy is equiv-
alent to the existence of a pair (z,y) € F x F such that |zy| = (1 + u)ufp(zy).

Assume first that 8 > 2. Similarly to Theorem Bl a necessary condition for
optimality is that 3 be even. Furthermore, if 3 is even, then both 2 4+ 2u and 27!
are in I, and since their product equals 1+, it suffices to take (x,y) = (2+2u,27!)
to show that the bounds in (@) are optimal.

Let us now consider the case § = 2. Since ufp(t - 2°) = ufp(t) - 2¢ for all
(t,e) € R x Z, we can assume with no loss of generality that 1 < x,y < 2. This
implies that ufp(zy) € {1,2} and, since z,y € {1,1+ 2u,1+ 4u,...} and u > 0,
that the product zy cannot be equal to 1 + u. Hence, optimality is equivalent to
the existence of x,y € FN[1,2) such that zy = 2 4 2u, that is, equivalent to the
existence of integers X, Y such that

(10) XY =(2F+1)-27"1  and 271XV < 2P,

If 2P 4+ 1 is prime, then either X or Y must be larger than 2P, so (I0) has no
solution.
If 2P 41 is composite, one can construct a solution (Xg, Yp) to (I0) as follows. Let

D denote a nontrivial divisor of 2P +1, and let Xy = 2pg'lufp(D) and Yy = D%&;).
Clearly, Xy is an integer and the product XYy has the desired shape. Thus, it
remains to check that Y € Z and that both X and Yy are in the range [2P~1, 2P).

Since 2P 4 1 is odd, D must be odd too, which implies that
(11) ufp(D) +1 < D < 2ufp(D) and D < 2P

Consequently, ufp(D) < 2P~1, so that ufp(D) divides 2°~! and Yj is an integer.
Furthermore, ([[I]) leads to 2P~% < 2L < X, < (2P +1)(1 — &) < 2P and 2771 <
Yy < 2P, so that Xy and Yj satisfy the range constraint in ([I0J]).

Finally, multiplying Xy and Yy by 2u = 2177 gives 2 = (2 + 2u)ufp(D)/D and
yo = D/ufp(D) in FN [1,2) and such that oy = 2 + 2u = (1 + w)ufp(zoyy). O

In the rest of this section, we show that the optimality condition “2P + 1 is not
prime” arising in Theorem for radix two is in fact satisfied in most practical
situations.
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First of all, if p is not a power of two, this condition is well known to hold [3]
Exercise 18, §4], since p can be factored as p = mq with ¢ odd and then

(12) 24 1= (2" 1)(2P" =207 4 2™ 4],

The binary basic formats specified by the IEEE 754-2008 standard being such that
p € {24,53,113}, they fall into this category. More precisely, since here p is either
odd or a multiple of three, we deduce from ([I2]) explicit divisors of 2P 4+ 1 and thus
explicit pairs (z,y) € F? for which the bounds in Theorem are attained:

e If p is odd, then 3 divides 2P + 1 and we can take
_ (444w 3).
(x,y) - (+T7 5)7

e If p=0mod 3, then 27 4 1 can be factored as (2P/3 + 1)(22P/3 — 2P/3 4-1),
so we can take

(z,y) = (2 — 2u3 + 20273 1 + u!/3).

In fact, the sufficient condition “p is not a power of two” is satisfied not only by
those basic formats but also by all the binary interchange formats of IEEE 754-2008,
for which either p € {11,24,53,113} or

(13) p=k—d+13 with d=|4log,k], k=32j, j€Nss,

and where |-] denotes rounding to a nearest integer. (A proof of the fact that (I3)
implies that p is not a power of two is deferred to Appendix [A])

Assume now that p is a power of two. In this case 2P + 1 is not prime if and
only if it is not a prime number of the form F, = 22 4 1, called a Fermat prime.
Currently, the only known Fermat primes are Fy, F1, Fs, F3, Fy and, on the other
hand, Fy is known to be composite for all 5 < ¢ < 32; see for example [TT17].

To summarize, the only values of p for which the optimality condition “2P + 1 is
not prime” can fail to be satisfied are 2,4,8,16 and p = 2¢ > 233 ~ 8.6 x 10°, and
none of these values corresponds to an IEEE format.

3.3. Division. This section focuses on the largest possible relative errors commit-
ted when rounding x/y with x,y nonzero elements of F. As the theorem below
shows, the general bounds Ei(t) < 13 and Ex(t) < u given in () can be refined
further for base 2, but remain optimal for all other bases. Note that unlike for
addition or multiplication, optimality is achieved without any extra assumption on
the parity of 8 or the number theoretic properties of p.

Theorem 3.3. Let B,p > 2 and let x,y € F be nonzero. Then

u—2u? if =2,
Ei(z/y) < {HLU i8>,

and

u72u22 - —9
met < {75 107

The bounds for § = 2 are attained at (x,y) = (1,1 — u) and, assuming ties are
rounded “to even”, the bounds for B > 2 are attained at (z,y) = (2 + 2u, 2).
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Proof. When 8 > 2 the bounds are the general ones given in (2)), and the fact they
are attained for division follows immediately from 2+ 2u € F. The rest of the proof
is thus devoted to the case 8 = 2.

Let t = z/y. Since t cannot be a midpoint [9[I3], we have fi(—t) = —fi(t) and
fi(t-2°) = fi(t) - 2°, e € Z, regardless of the tie-breaking rule of fl. Consequently,
we can assume 1 <t < 2and x,y > 0. When ¢t = 1 both E; and Es are zero, so we
are left with handling ¢ such that 1 <t < 2.

The lower bound on t implies > y, which for z and y in F is equivalent to
x 2y + 2uufp(y). Hence, using y < (2 — 2u)ufp(y),

f 1
(14) 13142000 5 v :
Y l—-u 1—-u

Since 1/(1 — w) is strictly larger than the midpoint 1 4 w, it follows that
(15) fi(t) € {1+ 2u,1+4u,...}.

B Assume for now that p > 3. (For simplicity, the case § = p = 2 is handled
separately at the end of the proof.)

If fi(¢) > 1+4u, then t > 1+3u, so that E1(t) < uufp(t)/t < u/(1+3u) < u—2u>
for p > 3. Similarly, Es(t) < u/(1+ 4u) < (u—2u?)/(1 +u — 2u?) for p > 3.

If fi(t) = 1 4 2u, then, recalling (I4) and the fact that ¢ is not a midpoint,

1
1 — <<t<1 .
(16) Ty <1+3u

We now distinguish between the following two subcases, depending on how ¢ com-
pares to fl(t) = 1 + 2u:

o Ift < 1+42u, then E4(t) = (1+2u)/t—1and E5(t) = 1—1t/(1+2u), so that
the first inequality in (@) gives immediately the desired bounds, which are
attained only when ¢ = 1/(1 — u); since both 1 and 1 — u are in F when
B = 2, this value of ¢ is obtained for (z,y) = (1,1 — u).

o If t > 1+ 2u, then Fy(t) =1— (1 +2u)/t and Ea(t) =¢/(1 4 2u) — 1. The
bound ¢ < 1+ 3u from (I6) then gives immediately E;(t) < u/(1 + 3u),
which is less than v — 2u? for p > 3.

For Es(t), however, using ¢t < 1 + 3u is not enough and we show first
how to replace this bound by the slightly sharper one

< 24 Tu
24+u
The range of ¢ implies y+2u ufp(y) < x < y+6uufp(y). Note that y cannot

be equal to (2 —2u)ufp(y), for otherwise 2ufp(y) < = < (24+4u)ufp(y), thus
contradicting the fact that 2 € F. Therefore, y < (2 — 4u)ufp(y) and

(17) =1+3u—3u"+O0(u?).

x =y + duulp(y).

Writing y = (1 + 2ku)ufp(y) with k& a nonnegative integer, we deduce that
4u
1+ 2ku’
so t < 1+ 3u is equivalent to k > 2P~1/3 that is, k > (2P~ +1)/3 for k is
an integer. Hence 2ku > (1 + 2u)/3 and (7)) follows.
Recalling that E2(t) = t/(1 + 2u) — 1 and applying (I7), we arrive at

Es(t) < %, which is less than 11;73222 for p > 3.

t=1+



OPTIMAL BOUNDS ON RELATIVE ERRORS, WITH APPLICATIONS 811

B Assume now that p = 2. We have u = 1/4 and, assuming with no loss of generality
that ufp(z) = 1, we see that z € {1,3/2} and that y is either ufp(y) or 3/2- ufp(y).
This yields four possibilities for ¢ = z/y, all leading to F;(t) = E»(t) = 0 except
forx =1 and y = 3/2-ufp(y). In this case, the constraint 1 < ¢ < 2 implies further
y=3/4=1—u. It follows that t = 1/(1 —u), from which we deduce fi(t) = 1+ 2u.

The announced bounds thus hold also in the case § = p = 2, and since 1 and
1 — w are in F, they are attained for (z,y) = (1,1 — u). O

3.4. Square root. Finally, we show how to refine further the bounds FE;(t) <
u/(1 4+ u) and Es(t) < w in the special case where ¢ = /z for some positive
floating-point number x, thereby establishing the optimal bounds in the last row
of Table Il This result is independent of any specific property of the base and the
precision, and holds for any tie-breaking strategy.

Theorem 3.4. Let B,p > 2 and let © € F be positive. Then

El(ﬁ)él—ﬁ and EQ(\/E)g \/1+2U—1,

and these bounds are attained only for x = (1 + 2u)B%¢ with e € Z.

Proof. Let t = \/z. Writing x = p32¢ with e € Z and p € FN[1, 3?), we see that
t=/mB° with p € {1,142u,1+4u,...}. If =1, then E\(t) = Es(t) =0, so we
are left with the following two cases.

If 4 =1+ 2u, then we deduce from 1 < /14 2u < 14 u that fi(t) = 8¢ and,
consequently, that E1(t) =1 —1/y/1+ 2u and Es(t) = /1 4+ 2u — 1.

If 1 > 1+ 4u, then, recalling that u < 82, we have /1 +4u 3¢ <t < 8¢t and
ufp(t) = B¢. This implies that F1(t) < wufp(t)/t < u/+/1+ 4u =: ¢ and it can be
checked that ¢ < 1—1/4/1+ 2u for u < 1/2. Furthermore, using v/1 +4u > 1+ u
gives fl(t) > (1 + 2u)B° and then Es(t) < u/(1 4+ 2u) < v/1+42u — 1. O

4. APPLICATION TO SUMMATION

4.1. Sums of floating-point numbers. Consider first the evaluation of the sum
of n floating-point numbers. Here z1,...,z, € F are given and we assume that an
approximation s € F to the exact sum

s=x1+- -+,

is produced after n — 1 floating-point additions, using any evaluation orderd Each
of these additions takes a pair of floating-point numbers, say (a, b) € F2, and returns
fi(a+b), thus committing the local error e := a+b—fl(a+b). When evaluating the

sum as above, n — 1 such errors can occur and, denoting their set as {e1,...,e,_1},
it is easy to see that
(18) s=e1+ - +en1+5;

see for example [ p. 81].

The theorem below shows how to bound the sum of the |e;| and, therefore, |§—s|
as well. This bound is slightly sharper than the one given in [I0, Proposition 3.1] and
can be established in the same way, using u/(14u) instead of u to bound the relative
rounding error committed by each floating-point addition. (For completeness a

2For example, for n = 4 possible evaluation orders include ((z1 + x2) + x3) + x4 and
((za +x3) + @2) + 71 and (z1 + 22) + (T3 + 24).
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detailed proof is presented in Appendix [B} note that as in [I0] this bound holds
even if underflow occurs.)

Theorem 4.1. For zi,...,x, € F, any order of evaluation of the sum s =y | x;
produces an approzimation § such that the rounding errors ey, ..., e,_1 satisfy
n—1 n nu
—s Sg\eiKan-l;lxil, =T

A direct consequence of this result is a sharper and simpler bound for the fol-
lowing compensated summation scheme (see [I4] and the references therein):

Scomp = fl(5+€), ¢ := a floating-point evaluation of ey + -+ e,_1.

Since each e; belongs to F and can be computed exactly—using for example Knuth’s

TwoSum algorithm [12] p. 236], we can apply Theorem [AJ] twice and, writing
n—1

e=),_, e, we deduce that

(19) le—el <op10n- 2Z|$z

Since s = 5+ e, we have also

[Scomp — | <[fi(5+€) — (5+€)[+[e—e|

(20) <

Then, combining ([I9) and 20) and using the fact that (1 + 1_|r—u)(1_|%u)2 < 1_’;% we
arrive at

2 n
~ u U
(21) [Scomp — | < Tra® (”—1)(”—2)1_’_—u2;m\-
The bound in (Z1]) holds without any restriction on n and regardless of the orderings
used for adding the z; and adding the e;. Furthermore, it is slightly sharper than
the bound u|s| + (n — 1)? T >y |z given in [14], Proposition 4.5] in the

special case of recursive compensated summation.

4.2. Sums of real numbers. We now turn to the case where z1,...,x, are in R
instead of F. An approximation s € F to s = x1 + -+ - + z, € R is obtained in two
steps, by first rounding each z; into fl(z;) and then evaluating fl(z1) + - - - + fl(z,,)
as above. A typical example is the computation of inner products, where each z;
is the exact product of two given floating-point numbers.

Writing d; = x; — fl(x;) for the errors due to rounding the data and, as before, e;
for the errors due to the n — 1 additions, we deduce that the exact and computed
sums are now related as

(22) s=di+-+d,+er+--Fep_1+5

By combining (2] and Theorem ] we obtain almost immediately the following
bound on the sum of the |d;| and the |e;].
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Theorem 4.2. For z1,...,z, € R, any order of evaluation of the sum > ., fi(z;)
produces an approximation S to the sum s = Z?:l x; such that the rounding errors
di,...,d, and ey, ..., en_1 Satisfy

n

n—1 n
=R 14 2u)nu — u?
Fosl <D ldil+ D led <G Y Jwl, o= % < nu.
i=1 i=1 i=1

Proof. The lower bound follows from (22]). To establish the upper bound, let v =
u/(1 +u). Theorem ATl gives >, le;| < (n—1)v3 ., [fl(z;)] and, on the other
hand, (@) implies that |d;| < vl|z;| and [fi(z;)| < (1 + v)|z;[. Hence >, [di] +
Yicnlel < (v + (n—1v(l +0)) >, |2, and it is easily checked that v +
(n — 1)v(1 + v) simplifies to ((1 + 2u)nu — u?)/(1 + u)?, which is less than nu. O

Thus, the theorem above gives in particular the bound

5 —

vi| <Cn > lal.

1 =1

n n

K3
This bound has a slightly smaller constant than the one given in [I0, Proposition 4.1]
and, perhaps more importantly, its proof is significantly shorter and avoids a tedious
induction and ufp-based case distinctions.

Furthermore, the applications mentioned in [I0] obviously benefit directly from
this new bound: for inner products, matrix-vector products, and matrix-matrix
products, the constants nu obtained in [I0, Theorem 4.2 and p. 343] can all be
replaced by (.

5. OTHER APPLICATION EXAMPLES

5.1. Example 1: Small arithmetic expressions. Rounding error analyses as
those done in [5] typically involve bounds on |6,,|, where 6,, is an expression of the
form 6, = [[\,(1+ ;) — 1 with d; a relative error term associated with a single
floating-point operation. Using the classical bound |d;| < w it is easily checked that
for all n,

(23) —nu <0, <(1+u)" -1

Note that only the upper bound has the form nu + O(u?), that is, contains terms
nonlinear in u. From (23)) it follows that

0. < (1+uw)" -1

and, assuming nu < 1, this bound itself is usually bounded above by the classical
fraction v, = nu/(1 — nu).

Using the refined bound F(t) < u/(1 + u) from (@), we can replace |0;| < u by
10;] < u/(1+ u), which immediately leads to the refined enclosure
_

1+u
Although the upper bound in (24)) still has O(u?) terms in general, it is bounded by
nu as long as n < 3. Consequently, by just systematically using F1(¢) < u/(1 4 u)

instead of E;(t) < u, we can replace 7, = nu+ O(u?) by nu in every error analysis
where 6,, appears with n < 3.

(24) <9n<(1+ U )"—1.
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For example, when evaluating ab + cd in the usual way as ¥ = fi(fl(ad) + fl(cd)),
we have 7= (ab(1 + 61) + cd(1 + 2))(1 + d3) with |6;] < u/(1+ u). Hence

7 =ab(1+60) + cd(1 + 6;), 62|, 1605| < 2u,

so the usual s is indeed replaced by 2u. Note that once we have replaced E1(t) < u
by E1(t) < u/(14u), we obtain that term 2u immediately, without having to resort
to a sophisticated ufp-based argument as the one introduced in [I, pp. 1470-1471].

Similar examples include the evaluation of small arithmetic expressions like the
product z1zex324 (using any parenthesization) or the sums ((z14z2)+z3)+x4 and
((z1+22)+(x3+24))+ (w5 +26)+ (27 +25)) (using these specific parenthesizations);
in each case the forward error bound classically involves «y3, which we now replace
by 3u.

5.2. Example 2: Leading principal minors of a tridiagonal matrix. Con-
sider the tridiagonal matrix

d1 €1
C2 d2 €2
A: EIFan
€n—1
Cn dy,
and let wq, po, - .., 1, be the sequence of its n leading principal minors. Writing

-1 =0 and pg = 1, those minors are thus defined by the linear recurrence
Pi = dpfl—1 — Crep_1[tk—2, 1<k<n.

Using the usual bound E;(t) < w and barring underflow and overflow, Wilkinson
shows in [I9, §3] that the evaluation of this recurrence produces floating-point
numbers [i1, ..., i, such that

A = di (1 + €p) k-1 — cu(1 4 €}, )en—1(1 + € ) Ar—2,

where (1 —u)? —1< e < (14+u)? —Land (1-u)¥?2—1< ¢, ef < (1+u)??-1.
In other words, the computed iy are the leading principal minors of a nearby
tridiagonal matrix A + AA = [a;;(1 + 0;;)] that satisfies

(25) —2u <0 <2u+w® and  —3u < < 2u4+0OW?) ifi# ]

Notice that the terms u? and O(u?) come exclusively from the upper bounds on
€k, €, €. By using the refined bound E(t) < u/(1+ u) from (2)) instead of just
E1(t) < u, these upper bounds are straightforwardly improved to

e <(1+1%)?—1<2u  and e, el < (14 1%)%2-1< 3u.

Consequently, Wilkinson’s bounds in (28) can be replaced by the following more
concise and slightly sharper ones:

|(5““<2u and |(5ij|<%u lfl#]
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5.3. Equation 3: Euclidean norm of an n-dimensional vector. Given a vec-
tor [z1,...,2,]T € F", let its norm

T:«/x%—i—w'—l—x%

be evaluated in floating point in the usual way: form the squares fl(z?), sum them
up in any order into 5, and return 7 = ﬂ(\/?)

By applying the usual bound E; (t) < u, all we can say is 5= (Y., #2)(1+6,)
with 6, as in 23), and 7 = V3 (1 + §) with |6| < u. Consequently,

r=r(1+e),

where € = /T + 0, - (1 +6) — 1 satisfies (1 —u)"/?t1 — 1 < e < (1 +u)V/?+ 1.
Although the lower bound has absolute value at most (n/241)u (see for example [4]
p. 42]), the upper bound is strictly larger than this, so that

(26) —(n/2+Du<e< (n/2+ Du+ O(u?).

To avoid the O(u?) term above, we can use the refined bound Fy(t) < u/(1+u),
which says [0] < u/(1 + u), together with the improved bound for inner products
from [10], which says |6, < nu. Indeed, from these two bounds we deduce that
e is upper bounded by /14 nu - (1 + u/(1 + u)) — 1, and the latter quantity is
easily checked to be at most (n/2 4+ 1)u. Thus, recalling the lower bound in (26)),
we conclude that

(27) le] < (n/2+ 1)u.

In particular, evaluating the hypotenuse /2% + x3 in floating-point produces a
relative error of at most 2u; this improves over the classical bound 2u + O(u?),
stated for example in [7, p. 225].

Of course, the bound in (27) also applies when scaling by integer powers of the
base is introduced to avoid underflow and overflow.

5.4. Example 4: Cholesky factorization. We consider A € F"*" symmetric
and its triangularization in floating-point arithmetic using the classical Cholesky
algorithm. If the algorithm runs to completion, then by using the bounds F;(t) < u,
1 = 1,2, the traditional rounding error analysis concludes that the computed factor
R satisfies RTR = A+ AA with
|AA| < yoia [RT|R];
see for example [5, Theorem 10.3]. Here 7,11 = % has the form (n+ 1)u +
O(u?) and requires n+1 < u~1. Tt was shown in [I5] that both the quadratic term
in u and the restriction on n can be removed, resulting in the improved backward
error bound o
|AA| < (n+ D)ulRT||R|.

In the proof of [I5, Theorem 4.4], one of the ingredients used to suppress the

O(u?) term is the following property:

(28) (aeF;o and b:ﬂ(\/a)) = |b? —a| < 2ub®

In [I5] it is shown that this property may not hold if only the bound Es(t) < u
is assumed, and that in this case all we can say is —(2u + u?)b? < b? — a < 2ub?.
Furthermore, a proof of (28) is given, which is about 10 lines long and based on a
ufp-based case analysis; see [I5 p. 692].
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Instead, our optimal bound on F5 for square root provides a direct proof: The-
orem 3.4 gives b(1 + &) = \/a with |6| < /1 +2u — 1; hence [b? — a| = b2|26 + §?|
and |26 + 62| < (2 +16))]0] < (VI +2u+ 1)(v/1+2u — 1) = 2u, from which (E8)

follows immediately.

5.5. Example 5: Complex multiplication with an FMA. Given a,b,c,d € F,
consider the complex product

z = (a+1ib)(c+ id).

Various approximations z = R+i1 to z can be obtained, depending on how R =
ac—bd and I = ad+ be are evaluated in floating-point. It was shown in [I] that the
conventional way, which uses 4 multiplications and 2 additions, gives zZ = z(1 + ¢)
with € € C such that |e] < v/5u, and that the constant v/5 is, at least in base 2,
best possible. Assume now that an FMA is available, so that we compute, say,

R="fl(ac—fi(bd)) and T =f(ad+ fi(bc)).

For this algorithm and its variant$ it was shown in [8] that the bound v/5u can be
reduced further to 2u, and that the latter is essentially optimal. The fact that 2u
is an upper bound is established in [8, Theorem 3.1] with a rather long proof. As
we shall see in the paragraph below, a much more direct proof follows from simply
applying the refined bound F;(¢) < u/(1 4 u) in a systematic way.
Denoting by d1,...,d4 the four rounding errors involved, we have
R = (ac—bd(1+ 61))(1 + &)

and, similarly, T = I + 184 + beds(1 + 04). Now let A, 1 € Rsq be such that
02, [0a] <A and  [d1(1 + da)], [03(1 + da)| < g

This implies that |R — R| < A|R| + p|bd| and [T — I| < A|I| + p|be], from which we
deduce

2 =27 = (R— R’ + (I - I)*

(29) <A%z22 4+ 20pA + 1° B,
where A = |R||bd| + |I||bc| and B = (bd)? + (bc)?. Tt turns out that
(30) A, B < 2%

For B, this bound simply follows from the equality |z|? = (ac)?+(bd)?+(ad)?+(bc)?.
For A, define 7 = abed and notice that A = |7 — (bd)?| + | + (bc)?| is equal to
either B or +(27 + (bc)? — (bd)?); furthermore, in the latter case we have

A L 2r| + |(be)? — (bd)?|
min {(ac)? + (bd)?, (ad)? + (bc)?} + max { (bc)?, (bd)? }
e

Thus, combining ([29) and @), |z — 2] < (A + u)|z|. Since the refined bound
Ei(t) < u/(1 + u) implies |6;] < u/(1 + u) for all i, we can take A = u/(1 + u)

/

NN

3There are three other ways to insert the innermost rounding fl, all giving the same error as
the one developed here.
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and p = u/(1+u) - (1 +u/(1+ u)), which are both less than u. Hence, barring
underflow and overflow and since z = 0 implies z = 0, we conclude that

z=2z(1+e¢), le] < 2(“1‘1'3“ < 2u.

Note that 2(’{131; has the form 2u — u? + O(u*) as u — 0. Thus, our approach

not only yields a shorter and more direct proof of the bound 2u of [8], but it also
improves on that bound.

APPENDIX A. PROOF THAT p AS IN ([[3]) 1s NOT A POWER OF TWO

If j € {5,6, 7}, then p € {144,175,206} and is not a power of two. Assume now
that j > 8. Writing d = 4m + ¢ for integers m, i with 0 < i < 3, we have

1 1
4m+'——<410g2k<4m+i+§.

2
If i # 0, this implies 2™+1/8 < k < 2m+7/8 and then
2mH/8 _ 4m 4+ 10 < p < 2™F7/8 — 4m 4 12.

Since the assumption j > 8 implies & > 2% and thus m > 8, it follows that 2™ <

p < 2™+l Consequently, p cannot be a power of two when i # 0. On the other
hand, when ¢ = 0, we see that p = 325 — 4m + 13 must be odd, and thus cannot be
a power of two.

APPENDIX B. PROOF OF THEOREM [4.]]

The lower bound follows from ([I8) and the triangle inequality. For the upper
bound, the proof is by induction on n, the case n = 1 being trivial (since then there
is no rounding error at all). For n > 2, we assume that the result is true up to n—1,
and we fix one evaluation order in dimension n. The approximation s obtained with
this order has the form § = fi(51 + 52), where 5 is the result of a floating-point
evaluation of s; = Zz‘elj x; for j = 1,2 and with {I, o} a partition of the set
I={1,2,...,n}. For j =1,2]let n; be the cardinality of I; and let egl), cee ;nj_l)
be the rounding errors committed when evaluating s;, so that s; = ZKn g Y +5;.

Consequently,
Se=0+ Y "+ Y e, =5 +5 -5 +5).
i<n i<ni i<ng
Since 1 < n; < n, the inductive assumption leads to
D leal <181+ 1 (= D3+ (n2 — 132,
<n
where 55 = 3, 2] for j =1,2. Since n = ny + ny and Sl =81+ 59, it
remains to check that

(31) 0] <

© (nos1 + i)
NnoS ni18S9 ).
1_|_u21 192

To do so, we note that ) and [10, Lemma 2.2] imply that

6 < min { ], [l 5181 + %l },
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and we consider the following three cases. Assume first that $o < w/(1 + u) - 57.
Then 53 < $7 and, using |§] < |S3|, we obtain

6] < [S2—sal +52 < D el |+ 52 < (n2 — 1)

u 5+ u U
s
1—|—u2 1+u 1+u

1<mo

and (BI)) thus follows. Second, when 57 < u/(1+wu)- S we proceed similarly, simply
swapping the indices 1 and 2. Third, when u/(1+u)-51 < 52 and u/(1+u) 53 < 51,
we have |§] < u/(14 u) - |51 + 82| with

|§1 +§2| < |§1 —51‘+§1+‘§2—82|+§2

and [5;—s;| < (nj—1)u/(1+u)-5; < (n;j—1)s; for (5, k) € {(1,2),(2,1)}. Hence (Z)
follows in this third case as well, thus completing the proof of Theorem E.1]
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