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APPROXIMATE NORM DESCENT METHODS

FOR CONSTRAINED NONLINEAR SYSTEMS

BENEDETTA MORINI, MARGHERITA PORCELLI, AND PHILIPPE L. TOINT

Abstract. We address the solution of convex-constrained nonlinear systems

of equations where the Jacobian matrix is unavailable or its computation/
storage is burdensome. In order to efficiently solve such problems, we propose
a new class of algorithms which are “derivative-free” both in the computation
of the search direction and in the selection of the steplength. Search direc-
tions comprise the residuals and quasi-Newton directions while the steplength
is determined by using a new linesearch strategy based on a nonmonotone
approximate norm descent property of the merit function. We provide a the-
oretical analysis of the proposed algorithm and we discuss several conditions
ensuring convergence to a solution of the constrained nonlinear system. Fi-
nally, we illustrate its numerical behaviour also in comparison with existing
approaches.

1. Introduction

Solving nonlinear systems of equations is a ubiquitous task in applied mathe-
matics, and has generated considerable interest for a long time. In this paper, we
focus on an important variant of this task: that of solving a nonlinear system sub-
ject to convex constraints (such as bounds). More precisely, let F : X → R

n be
a continuous mapping and X ⊆ R

n be an open set. We address the problem of
finding a vector x ∈ R

n satisfying the nonlinear system with convex-constraints

(1) F (x) = 0, x ∈ Ω,

where Ω ⊂ X is a convex set whose relative interior is nonempty.
The solution of problem (1) has been intensively investigated in the last years.

Most of the proposed methods require the calculation of the derivatives of F and are
Newton-based methods belonging to the class of affine-scaling procedures; see e.g.,
[3,4,19,26,29,31]. However, such methods may become computationally expensive
for medium and large scale problems, due to the evaluation cost of the Jacobian
J of F , unless this matrix has structure which can be exploited. Whenever this is
not the case, spectral residual methods [21, 22] and quasi-Newton methods [6, 27]
may become competitive, and implementations which do not involve derivatives at
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all (derivative-free algorithms) are of special interest, as exemplified by the algo-
rithms proposed in [1, 17, 21, 23] for unconstrained problems and in [12, 20, 30] for
constrained problems.

Our interest in this paper is in a class of derivative-free methods covering both
spectral residual and quasi-Newton algorithms. As it turns out (and as we demon-
strate in the paper), these methods can be used for relatively large problems and
can be surprisingly efficient in terms of computing a solution of (1), as opposed to
the easier task of computing a local minimizer of the residual

(2) f(x) = ‖F (x)‖22.
However, it is also known that they may fail. Our objective is thus to propose an
efficient algorithm which avoids some of the convergence pitfalls present in similar
approaches and also to investigate conditions under which convergence to a solution
of (1) can be ensured.

The algorithm developed in this paper generates feasible iterates xk, where k is
the iteration index. If F is continuous, then the residuals ±F (xk) are used as search
directions. Alternatively, if F is differentiable, search directions can be computed
by using approximations Bk to the Jacobian matrices J of F at the iterates. In
both cases, large savings can be obtained in the computation of the search directions
compared with Newton’s method. A derivative-free linesearch strategy is proposed
so that, for any initial iterate, either ‖F (xk)‖ converges to zero or the iteration fails
to do so in a small and characterized number of ways. Since the solutions of problem
(1) are global minimizers of the function f and the search directions generated may
be uphill directions for f , we introduce a nonmonotone approximate norm descent
condition inspired by both the linesearch proposed by Li and Fukushima [23], and
the globalization schemes for inexact Newton methods due to Eisenstat and Walker
[13].

The paper is organized as follows. Section 2 introduces the context and the
Psane method [20]. Our proposal is then developed in Section 3. We next investi-
gate (in Section 4) some simple convergence properties of the sequences of residuals
and iterates. The theoretical core of the paper is Section 5 where we discuss several
conditions ensuring convergence to a solution of (1). Section 6 then illustrates the
numerical properties of the proposed method and its variants, and compares it with
Psane. Some conclusions and perspectives are finally presented in Section 7.

1.1. Notation. Throughout this paper, (x)i represents the ith component of the
vector x, and B(y, δ) represents the closed ball with center y and radius δ. The
symbol ‖·‖ denotes the Euclidean norm. The (orthogonal) projection map onto Ω is
denoted with P (·). When discussing iterative methods for (1), the term breakdown
refers to the case in which an iterate cannot be determined. Finally, given a sequence
of vectors {xk}, for any function f , we let fk = f(xk).

2. Preliminaries

In this section we review both linesearch strategies which do not require di-
rectional derivatives of f and the projected derivative-free algorithm Psane for
nonlinear equations with convex constraints given in [20].

A useful contribution in global convergence of Broyden-like methods for uncon-
strained nonlinear systems is due to Li and Fukushima [23]. Starting from an earlier
contribution by Griewank [15], they proposed a new derivative-free linesearch which
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is well-defined and easy to implement. At the kth iteration, given the iterate xk

and a search direction pk, the successive iterate takes the form xk+1 = xk + λpk,
λ > 0, and satisfies

(3) ‖F (xk + λpk)‖ ≤ (1 + ηk)‖F (xk)‖ − αλ2‖pk‖2,

for some constant α ∈ (0, 1) and some positive ηk. The sequence {ηk} is supposed
to meet the following requirement.

Assumption 2.1. The positive sequence {ηk} satisfies

(4)

∞∑
k=0

ηk ≤ η < ∞.

Due to the continuity of F , condition (3) holds for all λ sufficiently small, and
it is called an approximate norm descent linesearch since

(5) ‖F (xk + λpk)‖ ≤ (1 + ηk)‖F (xk)‖.

La Cruz, Mart́ınez and Raydan [21] then developed the derivative-free nonmono-
tone iterative method for unconstrained nonlinear systems named Derivative Free
Spectral Algorithm for Nonlinear Equations (df-sane). The linesearch strategy
proposed has the form

(6) φ(xk + λpk) ≤ max
0≤j≤min{k,M}

φ(xk−j) + ηk − αλ2φ(xk),

where φ(x) = ‖F (x)‖τ , τ ∈ {1, 2}, M is a nonnegative integer. The first term on the
right-hand side of (6) is responsible for the nonmonotone behaviour of φ, while the
second term ηk > 0 guarantees that the linesearch strategy is well-defined, and the
third term provides the arguments for proving global convergence. The sequence
{ηk} is supposed to satisfy Assumption 2.1. In [17] condition (6) is combined with
a nonmonotone watchdog rule and is used with ηk = 0 for all k.

A further proposal was made by Birgin, Krejić and Mart́ınez [5] in the context
of inexact quasi-Newton methods for unconstrained systems. Restricting to the
“exact” solution of the linear systems, the linesearch is given by

(7) ‖F (xk + λpk)‖ ≤ (1− αλ)‖F (xk)‖+ ηk,

and, again, α ∈ (0, 1) and the sequence {ηk} is supposed to satisfy Assumption 2.1.
We refer to previously mentioned papers for the analysis of the resulting procedures.

In addition, La Cruz recently proposed a projected derivative-free method for the
constrained nonlinear system (1), named Psane [20]. Since the Psane algorithm
motivated the definition of our method, we restate its details in Algorithm 2.1.

One distinguishing feature of Psane is that the computation of the search direc-
tions d− and d+ does not involve the solution of linear systems. The spectral coef-
ficient 1/bk formed in Step 6 is closely related to the Barzilai-Borwein’s steplength
[2]; it may be positive or negative, and the absolute value |1/bk| is constrained to be-
long to the given interval [βmin, βmax] [21]. The iterate xk+1 is determined through
a backtracking strategy and each repetition of Step 4 requires a number of evalua-
tions of F between 1 and 2. It is easy to observe that each iterate xk+1 is feasible
as it is the convex combination of the feasible points xk and P (xk ± βkF (xk)).
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Algorithm 2.1: The Psane algorithm

Given x0 ∈ Ω, α, σ ∈ (0, 1), λmax ∈ (0, 1], 0 < βmin < βmax < ∞, β0 ∈
[βmin, βmax], a positive sequence {ηk} that satisfies (4).
For k = 0, 1, 2, . . . do

1. If ‖F (xk)‖ = 0 stop.
2. Set d− = P (xk − βkF (xk))− xk and d+ = P (xk + βkF (xk))− xk.
3. Choose λ ∈ (0, λmax].
4. Repeat

4.1 If

(8) ‖F (xk + λd−)‖2 ≤ ‖F (xk)‖2 + ηk − αλ2β2
k‖F (xk)‖2,

set λk = λ, dk = d− and go to Step 5.
4.2 If

(9) ‖F (xk + λd+)‖2 ≤ ‖F (xk)‖2 + ηk − αλ2β2
k‖F (xk)‖2

set λk = λ, dk = d+ and go to Step 5.
4.3 Set λ = σλ.

5. Set xk+1 = xk + λkdk, sk = xk+1 − xk, yk = F (xk+1)− F (xk).
6. Update βk:

Set bk =
sTk yk

sTk sk
.

If

∣∣∣∣ 1bk
∣∣∣∣ ∈ [βmin, βmax], set βk+1 =

1

bk
,(10)

else βk+1 = min

[
βmax,max

[
βmin,

∣∣∣∣ 1bk
∣∣∣∣]] .

Convergence properties of both {‖F (xk)‖} and {xk} have been established under
Assumption 2.1. In particular, it is shown that the sequence {‖F (xk)‖} converges
[20, Proposition 2.4] and that, if an isolated solution of (1) is a limit point of {xk},
then the whole sequence converges to such a solution [20, Theorem 2.7].

As such, the Psane algorithm is not without drawbacks. We first note that the
acceptance conditions (8) and (9) depend on the spectral coefficient βk such that
|βk| ∈ [βmin, βmax] (Step 6). Since in practice 1/βmin and βmax are large values,
the term αλ2β2

k‖F (xk)‖2 may become either negligible for small values of |βk|,
or excessively large for big values of |βk|. In the latter case, a large number of
backtracks may be necessary to generate the new iterate xk+1.

Moreover, Psane may breakdown prematurely if an iterate xk lies on the bound-
ary of Ω, the step d− has zero norm and d− is accepted in Step 4.1. In this case,
xk+1 = xk and therefore bk in Step 6 is not well-defined. This can be observed
when solving the nonlinear system [20, eqn. (28)]

(11) F (x) =

⎛⎝ 54− 18x1 + 3x3

78− 26x2 + 2x3

x3(18− 3x1 − 2x2)

⎞⎠ = 0, x ∈ Ω,
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where Ω is the box {x ∈ R
n s.t. l ≤ x ≤ u}, l = (0, 0, 0)T , u = (4, 6,∞). This

system admits the unique solution x∗ = (3, 3, 0)T . Breakdown occurs at the starting
point when running a Matlab implementation of Psane with the parameters

declared in [20], and initial guesses x
(1)
0 = (0, 0, 0)T and x

(2)
0 = (4, 6, 0)T .

3. The new algorithm

Building on the concepts developed above, we now introduce our new Projected
Approximate Norm Descent algorithm (Pand), which builds a sequence of feasible
iterates {xk} satisfying the approximate norm descent property (5) for all k by
using the projection operator onto Ω and a linesearch strategy,

At the kth iteration, let xk be the current feasible iterate and let Bk be a suitable
invertible matrix. First, the linear system

(12) Bkp
qn

k = −F (xk)

is solved and two steps

(13) p+(p
qn

k , λ)
def
= P (xk + λpqnk )− xk, p−(p

qn

k , λ)
def
= P (xk − λpqnk )− xk

are formed, where λ ∈ (0, 1]; see e.g. [7]. A feasible point of the form

xk+1 = xk + pk = xk + pk(λ)

is then selected such that, for some α ∈ (0, 1), ηk > 0, and {ηk} satisfying (4),

(14) ‖F (xk + pk(λ))‖ ≤ (1− α(1 + λ))‖F (xk)‖
or

(15) ‖F (xk + pk(λ))‖ ≤ (1 + ηk − αλ)‖F (xk)‖,
where pk(λ) = p±(p

qn

k , λ).

In this procedure, pqnk is a quasi-Newton step (which explains its superscript).
The matrix Bk can be chosen as a two-point approximation to the secant equation
by letting

(16) Bk = β−1
k I, |βk| ∈ [βmin, βmax],

with βk given in (10) [2, 21]. Alternatively, Bk can be built by using Broyden’s
update or any other secant formula; see e.g., [9, 24, 27]. The use of such matrices

Bk is intended to make the computation of pqnk cheap.
The formal description of the Pand method is given in Algorithm 3.1.

Trivially, xk + p±(p
qn

k , λ) is feasible. If F is continuously differentiable, either
p+ or p− is a descent direction for f in (2), unless ∇f(xk)

T p+ = ∇f(xk)
T p− = 0.

Thus, the use of both p+ and p− promotes a decrease of ‖F‖; cf. [21, 22].
We also observe that the vector

(17) vqnk = P (xk + pqnk )− xk

is the first step tested in the Pand algorithm. From the properties of the projection
map P , we may deduce that

‖vqnk ‖ ≤ ‖pqnk ‖,(18)

‖p±‖ ≤ λ‖pqnk ‖,(19)

and, by Steps 3 and 4 of the Pand algorithm, we have that

‖pk‖ ≤ λk‖pqnk ‖.(20)
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Algorithm 3.1: The Pand algorithm

Given x0 ∈ Ω, B0 ∈ R
n×n nonsingular, α, σ ∈ (0, 1), {ηk} satisfying (4).

For k = 0, 1, 2, . . . do
1. Solve the linear system (12).
2. Set λ = 1.
3. Repeat

3.1 Set p+ = p+(p
qn

k , λ) and p− = p−(p
qn

k , λ) as in (13).
3.2 If pk(λ) = p+ satisfies (14), go to Step 4.
3.3 If pk(λ) = p− satisfies (14), go to Step 4.
3.4 If ‖p+‖ 
= 0 and pk(λ) = p+ satisfies (15), go to Step 4.
3.5 If ‖p−‖ 
= 0, and pk(λ) = p− satisfies (15), go to Step 4.
3.6 Otherwise set λ = σ λ.

4. Set pk = pk(λ), λk = λ, xk+1 = xk + pk.
5. If ‖F (xk+1)‖ = 0 stop.

Else form an invertible matrix Bk+1.

Acceptance of the trial steps is tested in Step 3, which terminates in a finite
number of steps. Indeed, from the continuity of F and the positivity of ηk, there
exists a scalar λ̄ such that

(F (xk + pk(λ))
2
i ≤ (1 + ηk − αλ̄)2(F (xk))

2
i ,

with λ ∈ (0, λ̄] and for i = 1, . . . , n. Trivially the above inequalities imply that (15)
holds for λ small enough. The number of F -evaluations performed at each loop
within Step 3 is either 1 or 2.

The linesearch conditions (14) and (15) are derivative-free. The first is related to
globally convergent inexact Newton methods [13] where a sufficient decrease in ‖F‖
is imposed at each iteration. It is tested on both p+ and p− in order to promote
a decrease in ‖F‖. The second allows for an increase in ‖F‖, possibly for λ small
enough. We exclude the use of zero-norm steps as in this case the inequality (15)
is trivially satisfied as long as (ηk − αλ) ≥ 0.

It is important to observe that inequality (14) implies (15), and the latter implies
(5). Thus, the approximate norm descent condition (5) holds for all k.

As in (3), (7) and (8), the scalar ηk in (15) allows a nonmonotone behaviour of
‖F‖. Conditions (14) and (15), however, differ from (3) and (8) in two respects.
First, they are independent from the norm of the step used, which may be conve-
nient whenever this norm is very large; see §2. Second, ηk appears as a multiplicative
term for ‖F (xk)‖ in (15), while the impact of ηk on the value ‖F (xk)‖2 + ηk in (6)
is unpredictable as ηk is not adjusted to reflect the size of ‖F (xk)‖.

Finally, the sufficient decrease condition (14) with p+ and p− is important for
establishing theoretical results on the convergence of {‖F (xk)‖} to zero (see next
section). Such results are valuable as convergence to stationary points of (2) cannot
be obtained in our framework; cf. [17, 20, 21, 23]. We are aware that (14) may
slow the convergence of the method but the numerical experience presented in §6
shows that it does not either prevent the nonmonotone behaviour of ‖F‖ or slow
convergence down compared with Psane.
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Detailed numerical experience with Pand will be presented in §6. We only
observe at this stage that the implementation of Pand (with Bk given by (16), and
the Psane parameters as used in [20]) is successful on problem (11) starting from

the initial guesses x
(1)
0 , x

(2)
0 given in §2: the algorithm converges to a solution in 8

and 10 F -evaluations, respectively.

4. Convergence analysis

This section is devoted to the theoretical study of the Pand algorithm. Summa-
rizing our main results:

• We show that the sequence {‖Fk‖} is convergent.
• We show that sequence {xk} is convergent and give an upper bound on the
distance between x0 and the limit point x∗.

• We investigate some conditions under which limk→∞ ‖Fk‖ = 0, i.e. F (x∗) =
0.

The following technical result shown in [23, Lemma 2.1] will be useful.

Lemma 4.1. Let {ηk} satisfy Assumption 2.1. Then
∏k

i=0(1+ηi) ≤ eη with k ≥ 0.

4.1. Analysis of the sequences {‖Fk‖} and {λk}. We start by analyzing the
asymptotic behaviour of the sequences {‖Fk‖} and {λk} and make a first attempt
to detect both occurrences where limk→∞ ‖Fk‖ = 0 and where the Pand method
fails to solve (1). The following theorem characterizes the behaviour of {‖Fk‖} and
is valid for any continuous function F . The proof relies on inequality (5).

Theorem 4.2. Let Assumption 2.1 hold and {xk} be generated by the Pand algo-
rithm. Then:

(i) The sequence {‖Fk‖} is bounded and

(21) ‖Fk+1‖ ≤ eη‖F0‖,
for all k ≥ 0.

(ii) The sequence {‖Fk‖} is convergent.
(iii)

(22) lim
k→∞

λk‖Fk‖ = 0.

(iv)

(23) liminf
k→∞

λk > 0 implies that lim
k→∞

‖Fk‖ = 0.

(v) If (14) is satisfied for infinitely many k, then limk→∞ ‖Fk‖ = 0.
(vi) If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many iterations, then liminfk→∞ λk = 0.
(vii) If ‖Fk‖ ≤ ‖Fk+1‖ for all k sufficiently large, then {‖Fk‖} does not converge

to 0.

Proof. (i) Applying (5) recursively, we obtain that

‖Fk+1‖ ≤
k∏

i=0

(1 + ηi)‖F0‖,

for all k ≥ 0. The proof is then completed by using Lemma 4.1.
(ii) We know that any positive sequence {ak} satisfying

ak+1 ≤ (1 + rk)ak + rk,
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with rk > 0 and
∑∞

k=0 rk < ∞, is convergent by [10, Lemma 3.3]. Hence, since
{‖Fk‖} satisfies (5) for all k, it converges.

(iii) By (15), we have that

(24) αλk‖Fk‖ ≤ (1 + ηk)‖Fk‖ − ‖Fk+1‖.

Using limk→∞ ηk = 0 and the convergence of {‖Fk‖} we obtain (22).
(iv) The implication (23) directly follows from (22).
(v) If the norm decrease (14) holds for infinitely many k, there exists a subse-

quence {‖Fkj
‖}, 1 ≤ k0 < k1 < · · · , such that

‖Fkj
‖ ≤ (1− α− αλkj

)‖Fkj−1‖ ≤ (1− α)‖Fkj−1‖,

whereas by (5)

‖Fkj−1‖ ≤ (1 + ηkj−2)‖Fkj−2‖ ≤
kj−2∏

i=kj−1

(1 + ηi)‖Fkj−1
‖.

Thus,

‖Fkj
‖ ≤ (1− α)‖Fkj−1‖

≤ (1− α)

kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1
‖

≤ (1− α)2
kj−2∏

i=kj−1

(1 + ηi)‖Fkj−1−1‖

≤ . . .

≤ (1− α)j+1

kj−2∏
i=k0

(1 + ηi)‖Fk0−1‖

≤ (1− α)j+1

kj−2∏
i=0

(1 + ηi)‖F0‖

≤ (1− α)j+1eη‖F0‖,

where the last inequality follows from Lemma 4.1. Hence, limkj→∞ ‖Fkj
‖ = 0 and

the convergence of {‖Fk‖} implies limk→∞ ‖Fk‖ = 0.
(vi) If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many steps, then there exists a subsequence

of indices {kj} such that

‖Fkj
‖ ≤ ‖Fkj+1‖ ≤ (1 + ηkj

− αλkj
)‖Fkj

‖,

and this gives

αλkj
≤ ηkj

.

Since limk→∞ ηk = 0, we get liminfk→∞ λk = 0.
(vii) In case we have that

‖Fk‖ ≤ ‖Fk+1‖ ≤ (1 + ηk − αλk)‖Fk‖,

for all k sufficiently large, we trivially conclude that {‖Fk‖} does not converge
to 0. �
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4.2. Analysis of the sequence {xk}. Now we analyze the sequence of iterates
generated by the Pand algorithm and make the following assumption.

Assumption 4.1. Matrices B−1
k are uniformly bounded for k ≥ 0, i.e. ‖B−1

k ‖ ≤ cB
for some positive scalar cB.

Assumption 4.1 immediately yields that the step pqnk in (12) satisfies

(25) ‖pqnk ‖ ≤ cB‖Fk‖.

We observe that Bk of the form (16) is guaranteed to fulfill Assumption 4.1 as
‖B−1

k ‖ = |βk| ≤ βmax. We start showing that {xk} is convergent.

Theorem 4.3. Let Assumptions 2.1 and 4.1 hold and let {xk} be the sequence
generated by the Pand algorithm. Then the sequence {xk} is convergent and, if x∗

is the limit point, then

‖x0 − x∗‖ ≤ cB

(
1

α
+

η

α
eη
)
‖F0‖.

Proof. First note that (20) and (25) yield

(26) ‖pk‖ ≤ cBλk‖Fk‖.

Consider
∑∞

k=0 λk‖Fk‖. Using (24) and (21), we obtain that

∞∑
k=0

λk‖Fk‖ ≤
∞∑
k=0

(
1 + ηk

α
‖Fk‖ −

1

α
‖Fk+1‖

)

=

∞∑
k=0

1

α
(‖Fk‖ − ‖Fk+1‖) +

∞∑
k=0

ηk
α
‖Fk‖

≤ 1

α
‖F0‖+

∞∑
k=0

ηk
α

eη‖F0‖

≤
(
1

α
+

η

α
eη
)
‖F0‖.(27)

Then
∑∞

k=0 λk‖Fk‖ is convergent since the terms λk‖Fk‖ are nonnegative. More-
over, by (26), we have that

(28)

∞∑
k=0

‖pk‖ < ∞.

In order to show that {xk} is convergent, let m ≥ 
 and consider

‖xm − x�‖ ≤
m−1∑
k=�

‖pk‖ ≤
∞∑
k=�

‖pk‖.

Now,
∞∑
k=�

‖pk‖ =

∞∑
k=0

‖pk‖ −
�−1∑
k=0

‖pk‖

tends to zero as 
 tends to infinity. Consequently, for any ε > 0, there exists 

sufficiently large such that ‖xm − x�‖ ≤ ε for m ≥ 
. This means that {xk} is a
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Cauchy sequence and hence it converges. Finally,

‖x0 − x�‖ ≤
�−1∑
k=0

‖pk‖,

and letting 
 tend to infinity, we obtain that

‖x0 − x∗‖ ≤
∞∑
k=0

‖pk‖ ≤ cB

∞∑
k=0

λk‖Fk‖.

The desired conclusion then follows from (27). �

Assumption 4.1 has an important consequence. The bound on ‖x0 − x∗‖ given
above implies that if a solution x̄ of (1) satisfies

‖x0 − x̄‖ > cB

(
1

α
+

η

α
eη
)
‖F0‖,

then {xk} cannot converge to x̄. Fortunately, α is typically chosen quite small
in practice [9], but this remains a drawback of Pand. An analogous result to
the bound (28) was established by Li and Fukushima on the steps taken in their
derivative-free Broyden-like method; see [23, Theorem 2,2]. This class of methods
is therefore best suited to cases where a solution is known to exist in a reasonable
neighbourhood of the initial point.

We conclude our analysis of the convergence of {xk} by considering the case
where the limit point of {xk} solves (1) and lies in the interior of Ω. Part of
our results is obtained under the well-known Dennis-Moré condition [9] and the
following assumption.

Assumption 4.2. F is continuously differentiable on Ω and the Jacobian J is
Lipschitz continuous on Ω and satisfies

‖J(x)− J(y)‖ ≤ 2L‖x− y‖, ∀x, y ∈ Ω.

Lemma 4.4. Let Assumptions 2.1, 4.1 hold, and let {xk} be the sequence generated
by the Pand algorithm. Suppose that the limit point x∗ of {xk} is such that x∗ ∈
int(Ω) and F (x∗) = 0. Then the following conclusions hold.

(i) For k sufficiently large it holds p+(p
qn

k , 1) = pqnk and xk + p±(p
qn

k , λ) ∈
int(Ω) for all λ ∈ (0, 1].

(ii) If Assumption 4.2 holds, J(x∗) is nonsingular, and

(29) lim
k→∞

‖Ekp
qn

k ‖
‖pqnk ‖

= 0,

with Ek = Bk − J(x∗), then {xk} converges to x∗ superlinearly.

Proof. (i) Since x∗ ∈ int(Ω), there exist ρ∗ > 0 such that B(x∗, ρ) ⊂ int(Ω) for
ρ ∈ (0, ρ∗). Since {xk} converges to x∗, we know that xk ∈ B(x∗, ρ) for all k

sufficiently large. From (25), ‖pqnk ‖ tends to 0, and for k large enough

‖x∗ − (xk + pqnk )‖ ≤ ‖x∗ − xk‖+ ‖pqnk ‖ ≤ ρ+ ‖pqnk ‖ < ρ∗.

Thus, we have that xk + pqnk ∈ int(Ω) and p+(p
qn

k , 1) = pqnk by (13). Further,
(19) yields that xk + p± ∈ int(Ω) for all λ ∈ (0, 1].

(ii) See [9, Chapter 8]. �
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5. Ensuring the convergence of {‖Fk‖} to zero

In Theorem 4.2 we pointed out one case where the Pand algorithm solves prob-
lem (1), i.e., {‖Fk‖} converges to zero. In this section we complete our theoretical
analysis of the Pand algorithm by detecting further occurrences where {‖Fk‖} con-
verges to zero. We address this issue considering the use of both spectral residual
steps and more general quasi-Newton steps. In order to interpret the results given,
it is again useful to remember that α is typically quite small [9].

We start by recalling a simple observation.

Lemma 5.1. Let f , defined in (2), be continuously differentiable. For pk =
±λkβkFk, it holds that

(30)
f(xk+1) = f(xk)± 2λkβk

∫ 1

0
FT
k J(xk + tpk)Fk dt

±2λkβk

∫ 1

0
(F (xk + tpk)− Fk)

TJ(xk + tpk)Fk dt.

Proof. Using [9, Lemma 4.1.2], we have that

f(xk+1) = f(xk) +
∫ 1

0
∇f(xk + tpk)

T pk dt

= f(xk)± 2λkβk

∫ 1

0
F (xk + tpk)

TJ(xk + tpk)Fk dt,

from which (30) follows. �

Under specific assumptions on the Jacobian J at the limit point x∗ of {xk},
the next two theorems analyze the acceptance of the spectral residual steps pk =
±λkβkFk, |βk| ∈ (βmin, βmax) for k large enough. Our first result concerns the
case when JS(x

∗), the symmetric part1 of J(x∗), is positive (negative) definite and
ensures that limk→∞ ‖Fk‖ = 0 when the 2-norm condition number of JS(x

∗) is of
order O

(
α−1

)
. The notation Gk is used for the “average Jacobian” matrix along

the step pk, defined by

(31) Gk
def
=

∫ 1

0

J(xk + tpk) dt,

while (GS)k denotes the average matrix associated to JS along the step pk, defined
by

(32) (GS)k
def
=

∫ 1

0

JS(xk + tpk) dt.

Theorem 5.2. Let Assumptions 2.1, 4.1, 4.2 hold and let {xk} be the sequence gen-
erated by the Pand algorithm with Bk given by (16). Suppose that for k sufficiently
large, the steps taken have the form pk = ±λkβkFk, |βk| ∈ (βmin, βmax). Moreover
assume that the symmetric part JS of J is positive (negative) definite at the limit
point x∗ of {xk}, and that the 2-norm condition number κ(JS(x

∗)) satisfies

(33) κ(JS(x
∗)) <

γ

α
,

for some γ ∈ (0, 1), and α ∈ (0, 1) as in (14)–(15). Then F (x∗) = 0.

1We recall here that the symmetric part AS of any matrix A is defined as AS = (A+AT )/2.
It holds that vTAv = vTASv for any vector v.



1338 BENEDETTA MORINI, MARGHERITA PORCELLI, AND PHILIPPE L. TOINT

Proof. Without loss of generality, let us assume that JS(x
∗) is positive definite.

Then J(x∗) is nonsingular and by (10) and (31) we get

βk =
‖pk−1‖2

pTk−1(Fk − Fk−1)
=

‖pk−1‖2

pTk−1

∫ 1

0
J(xk−1 + tpk−1)pk−1 dt

=
‖pk−1‖2

pTk−1

∫ 1

0
JS(xk−1 + tpk−1)pk−1 dt

,

i.e., by (32)

βk =
‖pk−1‖2

pTk−1(GS)k−1pk−1
.

Moreover, since FT
k GkFk = FT

k (GS)kFk, using Lemma 5.1, we have that

(34)

f(xk+1) = f(xk)± 2λkβk
FT
k (GS)kFk

‖Fk‖2
f(xk)

±2λkβk

∫ 1

0

(F (xk + tpk)− Fk)
TJ(xk + tpk)Fk dt.

Now, continuity implies that there exists a scalar ρ > 0 sufficiently small such that,
for all y ∈ B(x∗, ρ),

(35) σmin(JS(y)) ≥ (1− ε)σmin(JS(x
∗)) and σmax(JS(y)) ≤ (1 + ε)σmax(JS(x

∗))

and

(36) σmax(J(y)) ≤ (1 + ε)σmax(J(x
∗)),

with ε ∈ (0, 1) given by

(37) ε
def
=

1− γ

1 + γ
.

Moreover, the convergence of the sequence {xk} implies that xk−1 + tpk−1 and
xk + tpk both belong to B(x∗, ρ) for large enough k and all t ∈ [0, 1]. As a conse-
quence, we deduce that, for k sufficiently large,

(38) min [σmin((GS)k), σmin((GS)k−1)] ≥ (1− ε)σmin(JS(x
∗))

and

(39) max [σmax((GS)k), σmax((GS)k−1)] ≤ (1 + ε)σmax(JS(x
∗)).

This in turn implies that, for k sufficiently large, βk > 0 lies in the interval

(40) βk ∈
[

1

σmax((GS)k−1)
,

1

σmin((GS)k−1)

]
,

and that

βk
FT
k (GS)kFk

‖Fk‖2
∈
[

σmin((GS)k)

σmax((GS)k−1)
,
σmax((GS)k)

σmin((GS)k−1)

]
⊆

[
1− ε

1 + ε

(
σmin(JS(x

∗))

σmax(JS(x∗))

)
,
1 + ε

1− ε

(
σmax(JS(x

∗))

σmin(JS(x∗))

)]
,

which yields

(41) βk
FT
k (GS)kFk

‖Fk‖2
≥ γ

κ(JS(x∗))
.
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Consider pk = −λkβkFk. The inequality (34) implies that

(42)
f(xk+1) ≤ f(xk)− 2λkβk

FT
k (GS)kFk

‖Fk‖2
f(xk)

+2λkβk

∣∣∣∫ 1

0
(F (xk + tpk)− Fk)

TJ(xk + tpk)Fk dt
∣∣∣ ,

in which the last absolute value can be written as∣∣∣∣∫ 1

0

(F (xk + tpk)− Fk)
TJ(xk + tpk)Fk dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

(∫ 1

0

J(xk + ζ tpk)tpk dζ

)
J(xk + tpk)Fk dt

∣∣∣∣ ,
ζ ∈ [0, 1]. Again xk + ζ tpk ∈ B(x∗, ρ) for t, ζ ∈ [0, 1]. Thus, proceeding as above
and using the form pk = −λkβkFk, we deduce that∣∣∣∣∫ 1

0

(F (xk + tpk)− Fk)
TJ(xk + tpk)Fk dt

∣∣∣∣
≤

∫ 1

0

tλk|βk| max
z∈B(x∗,ρ)

‖J(z)‖2‖Fk‖2 dt

=
1

2
λk|βk| max

z∈B(x∗,ρ)
σmax(J(z))

2‖Fk‖2.

(43)

Combining this expression with (41), (42), (40), (35), (36) and (37) we obtain that,
for k sufficiently large,

f(xk+1) ≤
(
1− 2λkβk

FT
k (GS)kFk

‖Fk‖2
+ λ2

kβ
2
k max
z∈B(x∗,ρ)

σmax(J(z))
2

)
f(xk)

≤
(
1− 2

γ

κ(JS(x∗))
λk +

1

γ2

[
σmax(J(x

∗))

σmin(JS(x∗))

]2
λ2
k

)
f(xk).

Thus, for k sufficiently large, the linesearch condition (15) holds for any λ such that

1− 2γ

κ(J(x∗))
λ+

1

γ2

[
σmax(J(x

∗))

σmin(JS(x∗))

]2
λ2 ≤ (1− αλ)2,

i.e., such that

(44) κ2λ
2 + 2κ1λ

def
=

(
1

γ2

[
σmax(J(x

∗))

σmin(JS(x∗))

]2
− α2

)
λ2 + 2

(
α− γ

κ(J(x∗))

)
λ ≤ 0.

By definition of JS , ‖JS(x∗)‖ ≤ ‖J(x∗)‖. Then,
σmax(J(x

∗))

σmin(JS(x∗))
≥ κ(JS(x

∗)),

and κ2 > 0 since α and γ belong to (0, 1). This implies that (44) is satisfied for
a sufficiently small and positive λ, since (33) gives κ1 < 0 and (15) is satisfied

(for k large enough) if λ ≤ λ∗
def
= −2κ1/κ2. The mechanism of Step 3.6 of the

Pand algorithm then guarantees that, for k sufficiently large, the loop in Step 3
terminates with λk ≥ min{1, σλ∗}, and λ∗ independent of k. As a consequence,
liminfk→∞ λk > 0 and (23) allows us to conclude the proof. �
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Convergence of {‖Fk‖} to zero was also obtained in [22] by assuming the positive
(negative) definiteness of JS for all x in the lower level set {x : 0 ≤ f(x) ≤ f(x0)}.

In the next theorem, we analyze the acceptance of the spectral residual step
under the assumption that J is strongly diagonally dominant and the diagonal
entries have constant sign. We use the following notation:

ζi(x)
def
=

1

|(J(x))ii|

n∑
j=1
j �=i

|(J(x))ij|, i = 1, . . . , n,(45)

m(x)
def
= min

1≤i≤n
(J(x))ii, M(x)

def
= max

1≤i≤n
(J(x))ii,(46)

m̃(x)
def
= min

1≤i≤n
|(J(x))ii|, M̃(x)

def
= max

1≤i≤n
|(J(x))ii|.(47)

Observe that all of these quantities only depend on the Jacobian matrix at x. The
value of ζi(x) measures the degree of diagonal dominance of the ith row of J(x),
m(x) and M(x) measure the signed range of its diagonal elements while m̃(x) and

M̃(x) measure the diagonals’ absolute values’ range. If J(x) has positive diagonal

entries, then m̃(x) = m(x) = |m(x)| and M̃(x) = M(x) = |M(x)|. If the diagonal

elements are negative, then m̃(x) = −M(x) = |M(x)| and M̃(x) = −m(x) =
|m(x)|. The conditions used are

(48) max

[
M̃(x∗)

|m(x∗)| ,
M̃(x∗)

|M(x∗)|

]
n∑

i=1

ζi(x
∗) ≤ 1− ν

1 + ν

and

(49)
M̃(x∗)

m̃(x∗)
<

(
ν

2− ν

)(
1− ν

1 + ν

)
1

α
,

where ν ∈ (0, 1) and α ∈ (0, 1) is the constant in (14)–(15). Such conditions
are satisfied by matrices which are close to being diagonal and have a condition

number of order α−1. In fact, for decreasing values of max1≤i≤n ζi, the ratio M̃/m̃
approaches κ(J(x∗)) and (49) implies a bound on such a condition number in terms
of α−1. For example, if ν = 1/2, the right-hand side of (48) is 1/3 and that of (49)
is 1/(9α).

Theorem 5.3. Let Assumptions 2.1, 4.1, 4.2 hold and let {xk} be the sequence
generated by the Pand algorithm with Bk given by (16). Suppose that for k suffi-
ciently large, the steps taken have the form pk = ±λkβkFk, |βk| ∈ (βmin, βmax), and
that J(x∗) is nonsingular, where x∗ is the limit point of {xk}. Suppose in addition
that J(x∗) has diagonal entries of constant sign and satisfies (48) and (49), for
some ν ∈ (0, 1) and α ∈ (0, 1) being the constant in (14)–(15). Then F (x∗) = 0.

Proof. Because J(x) is continuous, there exists a ρ > 0 such that

(50) max

[
M̃(x)

|m(x)| ,
M̃(x)

|M(x)|

]
n∑

i=1

ζi(x) < 1− ν

and
M̃(x) ≤ (1 + ν)M̃(x∗) and m̃(x) ≥ (1− ν)m̃(x∗),

for all x ∈ B(x∗, ρ). Moreover, for k sufficiently large xk−1 and xk belong to
B(x∗, ρ) and the same holds for xk + tpk, xk−1 + tpk−1, t ∈ [0, 1]. Hence (50)
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holds for J(xk) and J(xk + tpk) for all k sufficiently large and all t ∈ [0, 1]. As a
consequence, we obtain that, for sufficiently large k,

(51) max

[
M̃k

|mk|
,
M̃k

|Mk|

]
n∑

i=1

ζi,k ≤ 1− ν

and

M̃k ≤ (1 + ν)M̃(x∗) and m̃k ≥ (1− ν)m̃(x∗),

where ζi,k, Mk, mk, m̃k and M̃k are defined as in (45)–(47) using the average
Jacobian Gk instead of J(x).

As in the previous theorem, the steps used have the form pk = ±λkβkFk and we
analyze (30). As for FT

k GkFk, t ∈ [0, 1], with Gk as in (31), we have that

FT
k GkFk =

n∑
i=1

(Fk)i

⎡⎢⎢⎣(Gk)ii(Fk)i +

n∑
j=1
j �=i

(Gk)ij(Fk)j

⎤⎥⎥⎦ .

Then, for i fixed,

(Gk)ii(Fk)
2
i +

n∑
j=1
j �=i

(Gk)ij(Fk)i(Fk)j ≥ (Gk)ii(Fk)
2
i −

n∑
j=1
j �=i

|(Gk)ij | |(Fk)i| |(Fk)j |

≥ (Gk)ii(Fk)
2
i −

n∑
j=1
j �=i

|(Gk)ij | ‖Fk‖2∞

≥ (Gk)ii(Fk)
2
i − ζi,k|(Gk)ii| ‖Fk‖2.

The entries of (Gk)ii are of constant sign. If they are positive, by using (51) we
obtain that, for k large enough,

FT
k GkFk ≥ mk

(
1−

n∑
i=1

ζi,k
M̃k

|mk|

)
‖Fk‖2 ≥ mkν‖Fk‖2.

Similarly, for k large enough, we have

(Gk)ii(Fk)
2
i +

n∑
j=1
j �=i

(Gk)ij(Fk)i(Fk)j ≤ (Gk)ii(Fk)
2
i +

n∑
j=1
j �=i

|(Gk)ij | |(Fk)i| |(Fk)j |

≤ (Gk)ii(Fk)
2
i + ζi,k|(Gk)ii| ‖Fk‖2

and

FT
k GkFk ≤ Mk

(
1 +

n∑
i=1

ζi,k
M̃k

|Mk|

)
≤ Mk(2− ν)‖Fk‖2,

where the last inequality again follows from (51). Proceeding analogously when the
entries of (Gk)ii are negative, we have

mk(2− ν)‖Fk‖2 ≤ FT
k GkFk ≤ Mkν‖Fk‖2.

Hence, for sufficiently large k the scalars FT
k GkFk have constant sign and

(52) |FT
k GkFk| ≥ ν m̃k‖Fk‖2 ≥ (1− ν)ν m̃(x∗)‖Fk‖2.



1342 BENEDETTA MORINI, MARGHERITA PORCELLI, AND PHILIPPE L. TOINT

Moreover,

βk =
‖pk−1‖2

pTk−1(Fk − Fk−1)
=

‖pk−1‖2

pTk−1

∫ 1

0
J(xk−1 + tpk−1)pk−1 dt

=
‖pk−1‖2

pTk−1Gk−1pk−1
.

Thus, using similar arguments, for k large enough the scalars βk have the same sign
as FT

k GkFk, and

(53) |βk| ∈
[

1

(2− ν)M̃k−1

,
1

νm̃k−1

]
⊆

[
1

(1 + ν)(2− ν)M̃(x∗)
,

1

(1− ν)νm̃(x∗)

]
.

Consequently,

(54) βkF
T
k GkFk = |βkF

T
k GkFk| ≥

(
ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
‖Fk‖2,

for k large enough. Now, without loss of generality, consider pk = −λkβkFk.
Lemma 5.1 then gives that
(55)

f(xk+1) ≤ fk−2λkβkF
T
k GkFk+2λk|βk|

∣∣∣∣∫ 1

0

(F (xk + tpk)− Fk)
TJ(xk + tpk)Fk dt

∣∣∣∣ ,
and the last absolute value above satisfies (43). Denoting the diagonal and off
diagonal part of a matrix as diag(·) and off(·), respectively, and using ‖J(z)‖ ≤
‖diag(J(z))‖+ ‖off(J(z))‖ we obtain that

‖J(z)‖ ≤ M̃(z) +
√
n‖off(J(z))‖∞ ≤ M̃(z)

(
1 +

√
n max

1≤i≤n
ζi(z)

)
.

Using this bound, (43), (53) and the fact that (50) implies that ζi(z) ≤ 1 in B(x∗, ρ),
we deduce that, for k large enough,∣∣∣∣∫ 1

0

(F (xk + tpk)− Fk)
TJ(xk + tpk)Fk dt

∣∣∣∣
≤ 1

2
λk|βk| max

z∈B(x∗,ρ)
‖J(z)‖2‖Fk‖2

≤ 1

2
λk|βk|‖Fk‖2 max

z∈B(x∗,ρ)

[
M̃(z)

(
1 +

√
n max

1≤i≤n
ζi(z)

)]2
≤ (1 +

√
n)2

2ν

((1 + ν)M̃(x∗))2

(1− ν)m̃(x∗)
λk‖Fk‖2.

This bound, (55) and (53) then imply that

f(xk+1) ≤
[
1−

(
2ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
λk

+
(1 +

√
n)2

ν2
((1 + ν)M̃(x∗))2

(1− ν)2m̃(x∗)2
λ2
k

]
f(xk).

The linesearch condition (15) thus holds for k large enough and for any λ such that

1−
(

2ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
λ+

(1 +
√
n)2

ν2
(1 + ν)2M̃(x∗)2

(1− ν)2m̃(x∗)2
λ2 ≤ (1− αλ)2,
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that is, such that

(56)

(
(1+

√
n)2

ν2
(1+ν)2M̃(x∗)2

(1− ν)2m̃(x∗)2
−α2

)
λ2+2

(
α−

(
ν

2−ν

)
(1−ν)m̃(x∗)

(1+ν)M̃(x∗)

)
λ ≤ 0.

Again,

κ2
def
=

(1 +
√
n)2

ν2
(1 + ν)2M̃(x∗)2

(1− ν)2m̃(x∗)2
− α2 > 0,

by (47) and the fact that α and ν belong to (0, 1), and

κ1
def
= α−

(
ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
< 0

by (49). Thus (15) holds for λ ≤ λ∗
def
= −2κ1/κ2 and all k sufficiently large,

liminfk→∞ λk ≥ min[1, σλ∗] > 0 and (23) finally allows us to deduce that F (x∗) =
0. �

We conclude our investigation of some cases where the Pand algorithm can be
proved to converge to a solution by showing that {‖Fk‖} converges to zero if the

limit point x∗ lies in the interior of Ω and the step pqnk in (12) is, eventually, an
inexact Newton step.

Theorem 5.4. Let Assumptions 2.1, 4.1 and 4.2 hold and {xk} be generated by
the Pand algorithm. If the limit point x∗ of {xk} is such that x∗ ∈ int(Ω) and the

step pqnk in (12) satisfies

(57) ‖Jkpqnk + Fk‖ = τk‖Fk‖, τk ≤ τmax < 1− α,

for all k sufficiently large, then limk→∞ ‖Fk‖ = 0.

Proof. Let ρ∗ > 0 and ρ ∈ (0, ρ∗) such that B(x∗, ρ) ⊂ int(Ω). Since {xk} converges
to x∗, we have xk ∈ B

(
x∗, ρ

2

)
for all k sufficiently large. Suppose k is large enough

so that xk ∈ B
(
x∗, ρ2

)
. Then, possibly for λ small enough, P (xk + λpqnk ) − xk =

λpqnk , i.e., xk + λpqnk belongs to the interior of Ω. In particular, if ‖λpqnk ‖ = ρ
2 ,

then xk + λpqnk ∈ B(x∗, ρ). By using (21) and (25), and setting λ = ρ
2cBeη‖F0‖ ,

independent of k, we get that equation ‖λpqnk ‖ = ρ
2 is satisfied for some λ ≥ λ;

namely, xk+λpqnk belongs to the interior of Ω for some λ uniformly bounded away
from zero.

Now we show that λpqnk satisfies (15) for some λ uniformly bounded away from
zero , which implies our claim. Since Assumption 4.2 holds, we know that

F (xk + λpqnk ) = F (xk) +

∫ 1

0

J(xk + tλpqnk )λpqnk dt

= (1− λ)F (xk) + λ(J(xk)p
qn

k + F (xk))

+

∫ 1

0

(J(xk + tλpqnk )− J(xk))λp
qn

k dt;
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see [9, Lemma 4.1.9]. Hence, using (57) and the bounds (25) and (21) we obtain

‖F (xk + λpqnk )‖ ≤ (1− λ)‖Fk‖+ λτk‖Fk‖+ Lλ2‖pqnk ‖2

≤ (1− λ+ λτmax)‖Fk‖+ Lλ2c2B‖Fk‖2

≤ (1− λ+ λτmax + Lλ2 c2B eη‖F0‖)‖Fk‖.

Now observe that if

1− λ+ λτmax + Lλ2 c2B eη‖F0‖ ≤ 1− αλ,

then (15) is satisfied and the step is accepted. In particular, if

λ ≤ λ∗
def
=

1− α− τmax

L c2B eη‖F0‖
,

then (15) is fulfilled for all k sufficiently large. Now, considering Step 3.6 of
Pand algorithm, we conclude that the repeat-loop at Step 3 terminates with
λ ≥ min{1, σλ∗}, λ∗ independent of k. Combining this bound with λ ≥ λ, we
get liminfk→∞ λk > 0 and (23) implies limk→∞ ‖Fk‖ = 0. �

6. Numerical experiments

In this section we present the results of some numerical experiments conducted
with different implementations of the Pand algorithm. Our goal is to test its
behaviour in terms of robustness and computational cost and to compare it with
Psane [20].

6.1. The problem sets. We considered two sets of problems: the first comprises
small and medium-size smooth nonlinear systems with box constraints from a va-
riety of applications; the second is made of semismooth systems with nonnega-
tive constraints which reformulate well-known nonlinear complementarity problems
from the literature.

6.1.1. Bound-constrained nonlinear systems. We selected 14 constrained nonlinear
systems listed in Table 1 along with their description and dimension. The convex set
Ω in (1) is the n-dimensional box {x ∈ R

n s.t. l ≤ x ≤ u}, where l ∈ (R∪−∞)n,
u ∈ (R ∪ ∞)n, and the inequalities are meant componentwise. Therefore, the
projection map is given by P (x) = max[l,min[x, u]].

The first 8 problems have been frequently used as a test set and are fully de-
scribed in [14]; their dimension is small. The remaining problems have variable
dimension and their Jacobian matrices cannot be formed at a low computational
cost by finite difference procedures for sparse matrices such as [8]. Hence, comput-
ing Bk = J(xk) by finite differences is expensive and solving (12) with such Bk’s
cannot take advantage of sparse/structured linear algebra solvers. As for the defini-
tion of Ω, it is the positive orthant for problem 9; l = (0, . . . , 0)T , u = (10, . . . , 10)T

in problems 10, 11 and 14; l = (5, . . . , 5)T , u = (15, . . . , 15)T in problem 12,
l = (−10, . . . ,−10)T , u = (0, . . . , 0)T in problem 13.

All problems were run starting from three different initial guesses x0 given by

(x0)i =

{
li + γ(ui − li)/2 if li > −∞ and ui < ∞, γ = 1, 2, 3,
li + γ 10γ if li > −∞ and ui = ∞, γ = 0, 1, 2.
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Table 1. Bound-constrained nonlinear system.

Pb# Name and Source n

1 Himmelblau function [14, 14.1.1] 2
2 Equilibrium Combustion [14, 14.1.2] 5
3 Bullard-Biegler system [14, 14.1.3] 2
4 Ferraris-Tronconi system [14, 14.1.4] 2
5 Brown’s almost linear system [14, 14.1.5] 5
6 Robot kinematics problem [14, 14.1.6] 8
7 Series of CSTRs, R = .945 [14, 14.1.8] 2
8 Series of CSTRs, R = .990 [14, 14.1.8] 2
9 Chandrasekar’s H-equation, c = 0.9999 [23, Problem 6] 1000
10 Problem 74 [25] 1000
11 Problem 77 [25] 2000
12 Trigonometric function [22, Test 8] 2000
13 Function 15 [22, Problem 15] 2000
14 Zero Jacobian function [22, Problem 19] 2000

Table 2. Nonlinear complementarity problems.

Pb# Name and Source n

15 Kojima-Shindo’s problem [11] 3
16 Josephy’s problem [11] 4
17 Mathiensen’s problem[11] 4
18 Harker’s Nash-Cournot-5 problem [18] 5
19 Harker’s Nash-Cournot-10 problem [18] 10
20 Pang and Murphy’s Nash-Cournot-5 problem [28] 5
21 Pang and Murphy’s Nash-Cournot-10 problem [28] 10

6.1.2. Nonlinear complementarity problems. We consider the nonlinear complemen-
tarity problems listed in Table 4 and defined as

G(x)Tx = 0, x ≥ 0, G(x) ≥ 0,

where G : R
n → R

n is continuous differentiable. Following [20], we solved the
following nonlinear systems with nonnegative constraints

F (x) = min[x,G(x)] = 0, x ∈ Ω,

where Ω is the positive orthant and the function F is continuous but not everywhere
differentiable. All runs were started using x0 = 10γ with γ = 0, 1, 2.

6.2. Implementation issues and numerical results. All the tested algorithms
have been implemented in Matlab and run using Matlab R2015a version on an
Intel(R) Core(TM) i5-6600K CPU @3.50 GHz x 4, 16.0 GB RAM.

The main implementation issues are as follows. Two rules for choosing matrices
Bk were implemented. The former corresponds to the choice made in Psane, i.e.
Bk = β−1

k I with βk given in (10), and the resulting implementation is named Pand-

SR (Pand algorithm with Spectral Residual step). The latter consists in starting
from a given B0 and generating matrices Bk by using the Broyden’s formula

(58) Bk+1 = Bk +
(yk −Bkpk)p

T
k

pTk pk
,
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where yk = F (xk+1) − F (xk); see [6]. The resulting implementation is named
Pand-BR (Pand algorithm with BRoyden step).

In order to perform a fully derivative-free implementation of Pand-BR, our
default choice for B0 was the identity matrix. The current matrix Bk was refreshed

and set equal to the identity matrix every 30 iterations and whenever ‖vqnk ‖ = 0,

with vQN
k defined in (17).

The linear systems (12) arising in Pand-BR were solved via QR factorizations.
Specifically, given the QR factorization of Bk, the QR factorization of Bk+1 was
formed by the rank one update (58) using the Matlab function qrupdate.

The parameters used in Pand-SR and Pand-BR were set equal to those declared
in Psane, i.e. βmin = 10−30, βmax = 1030, β0 = 1, α = 10−4, σ = 0.5, ηk =
0.99k(100 + ‖F (x0)‖2), k ≥ 0. This allows comparing Pand-SR, Pand-BR and
Psane in terms of their distinctive features, i.e. definition of the search directions
and linesearch strategy. Following [20], Psane was tested using λmax = 1, and
λ = λmax in Step 3 of Algorithm 2.1.

Tables 3 and 4 collect the results obtained with Psane, Pand-SR and Pand-

BR. The problem number refers to Tables 1 and 2 and the scalar γ is associated to
the starting point.We report the number of iterations (It) and F -evaluations (Fe)
performed on successful runs, i.e., runs where the criterion

(59) ‖Fk‖ ≤ 10−6,

was met within a maximum number of iterations (maxIt) and function evaluation
(maxFe) both equal to 105 as in [20]. For the remaining runs, we eventually stopped
the iterations on the base of the behaviour of λk and ‖Fk‖: the symbol Fλ indicates
that λ has been reduced 40 times by a factor σ in the linesearch strategy; the symbol
Fi indicates that

‖Fk+1‖ > (1− α)‖Fk‖,

occurred for 50 iterations consecutively, i.e., repeatedly ‖Fk‖ either increased or
slightly decreased. We remark that the occurrences Fλ and Fi are suggested by
the convergence properties of the Pand algorithm presented in Theorem 4.2. For
large values of k, the first occurrence may indicate that {λk} is converging to zero
while the second occurrence may indicate that {‖Fk‖} does not converge to zero.
Breakdowns in Psane, described in §2, are denoted as Fb.

The reported results show that on a total of 63 tests, Psane and Pand-SR

fail 22 and 9 times, respectively, while Pand-BR solves all the tests. Most of the
failures in Psane are due to a breakdown (Fb); on successful runs the performance
of Psane is quite similar to that of Pand-SR algorithm. In several runs where
Pand-SR is successful, its computational cost is comparable to that of Pand-BR

procedure in terms of F -evaluations, but the former is more efficient as it does not
require forming and solving linear systems. This fact is shown in Table 5 where we
report the CPU times of the methods under analysis on problems with dimension
larger than or equal to 1000. On the other hand, the version of Pand based on
Broyden matrices is more robust as it allows us to avoid failures of the spectral
residual procedures on problems 2, 6 and 17.

Finally, Figure 1 shows the nonmonotone behaviour of ‖Fk‖ observed in two
runs performed and is representative of the tests presented.
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Table 3. Computational results obtained with Psane, Pand-SR
and Pand-BR algorithms on bound-constrained nonlinear systems

.

Psane Pand-SR Pand-BR

Pb# γ It Fe It Fe It Fe

1 1 11 14 12 15 14 18
2 11 18 12 16 11 14
3 14 25 17 23 14 20

2 1 Fλ Fλ 284 433
2 Fλ Fλ 54 80
3 Fλ Fλ 119 180

3 1 Fb 26 41 14 19
2 Fb 192 319 58 88
3 Fb 1090 1817 1581 2568

4 1 25 26 27 46 10 12
2 31 32 24 42 106 164
3 Fb 23 39 28 39

5 1 26 27 26 34 13 15
2 26 27 26 35 12 15
2.5 19 22 26 35 11 13

6 1 Fi Fi 144 234
2 Fλ Fi 46 69
3 Fb Fi 44 62

7 1 Fb 642 2427 51 79
2 Fλ 430 849 546 1316
3 Fb 825 1426 659 1098

8 1 13 14 9 13 6 9
2 12 14 12 16 7 10
3 11 13 11 14 8 11

9 0 30 31 30 41 13 14
1 60 61 122 192 15 16
2 37 38 37 50 15 16

10 1 14 15 14 16 13 14
2 20 25 18 24 43 50
3 29 31 15 19 16 19

11 1 Fb 8 11 34 61
2 Fb 7 10 15 19
3 Fb 6 9 16 20

12 1 92 99 21 24 2937 6911
2 56 59 24 27 2736 6506
3 372 645 29 35 1728 4858

13 1 115 116 243 375 418 596
2 511 521 447 745 497 711
3 71 72 221 356 412 586

14 1 Fb 19 22 2 4
2 Fb 20 23 2 4
3 Fb 20 23 2 4
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Table 4. Computational results obtained with Psane, Pand-SR
and Pand-BR algorithms on nonlinear complementarity problems.

Psane Pand-SR Pand-BR

Pb# γ It Fe It Fe It Fe

15 0 181 371 75 108 15 20
1 110 111 110 167 22 32
2 29 30 29 39 30 40

16 0 24 25 24 33 14 18
1 22 23 22 28 19 24
2 21 22 21 26 15 18

17 0 Fλ Fλ 9 15
1 Fi Fλ 45 63
2 Fi Fλ 41 60

18 0 6 11 1 3 1 3
1 20 30 24 39 26 35
2 1 2 1 2 1 2

19 0 3 4 3 4 6 8
1 63 72 97 132 260 375
2 2 5 4 6 4 6

20 0 21 22 21 23 22 23
1 16 17 16 17 15 16
2 17 18 17 19 15 16

21 0 24 25 24 27 46 52
1 27 28 27 34 40 43
2 22 23 22 26 49 57

Table 5. CPU time (in seconds) obtained with Psane, Pand-SR
and Pand-BR algorithms on bound-constrained nonlinear sys-
tems.

Execution time

Pb# γ Psane Pand-SR Pand-BR

9 0 0.20 0.26 0.27
1 0.38 1.23 0.36
2 0.24 0.32 0.32

10 1 0.09 0.09 0.31
2 0.15 0.14 1.00
3 0.18 0.11 0.42

11 1 Fb 0.01 2.24
2 Fb 0.01 1.04
3 Fb 0.01 0.96

12 1 0.08 0.02 182.80
2 0.04 0.02 170.73
3 0.50 0.02 108.98

13 1 0.06 0.20 25.73
2 0.28 0.40 30.26
3 0.04 0.16 25.23

14 1 Fb 0.01 0.08
2 Fb 0.01 0.08
3 Fb 0.01 0.08
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Figure 1. Norm of F on a log scale against the number of iter-
ations. Top: problem 13 solved by Pand-SR, γ = 1. Bottom:
problem 2 solved by Pand-BR, γ = 3

7. Conclusion

We have proposed a new class of derivative-free methods for the solution of constrained
nonlinear systems which combines the use of simple search directions with a new suitable
approximate norm linesearch. The methods are suitable for both continuous and/or dif-
ferentiable nonlinear systems and their convergence properties have been studied in both
cases. In particular, we have focused on methods based on spectral residual steps (Pand-
SR) and quasi-Newton directions (Pand-BR). These methods exhibit good numerical
performance on relatively large problems. Pand-SR has turned out to be very efficient
and competitive with Pand-BR; on the other hand Pand-BR has solved a larger set of
problems than Pand-SR.

References

[1] M. Ahookhosh, K. Amini, and S. Bahrami, Two derivative-free projection approaches for
systems of large-scale nonlinear monotone equations, Numer. Algorithms 64 (2013), no. 1,
21–42, DOI 10.1007/s11075-012-9653-z. MR3090835

http://www.ams.org/mathscinet-getitem?mr=3090835


1350 BENEDETTA MORINI, MARGHERITA PORCELLI, AND PHILIPPE L. TOINT

[2] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal.
8 (1988), no. 1, 141–148, DOI 10.1093/imanum/8.1.141. MR967848

[3] S. Bellavia, M. Macconi, and B. Morini, An affine scaling trust-region approach to bound-
constrained nonlinear systems, Appl. Numer. Math. 44 (2003), no. 3, 257–280, DOI
10.1016/S0168-9274(02)00170-8. MR1954953

[4] S. Bellavia and S. Pieraccini, On affine-scaling inexact dogleg methods for bound-
constrained nonlinear systems, Optim. Methods Softw. 30 (2015), no. 2, 276–300, DOI

10.1080/10556788.2014.955496. MR3298091
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