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CONVERGENCE OF THE MAC SCHEME
FOR THE COMPRESSIBLE STATIONARY
NAVIER-STOKES EQUATIONS

T. GALLOUET, R. HERBIN, J.-C. LATCHE, AND D. MALTESE

ABSTRACT. We prove in this paper the convergence of the marker and cell
(MAC) scheme for the discretization of the steady state compressible and isen-
tropic Navier-Stokes equations on two- or three-dimensional Cartesian grids.
Existence of a solution to the scheme is proven, followed by estimates on ap-
proximate solutions, which yield the convergence of the approximate solutions,
up to a subsequence, and in an appropriate sense. We then prove that the limit
of the approximate solutions satisfies the mass and momentum balance equa-
tions, as well as the equation of state, which is the main difficulty of this
study.

1. INTRODUCTION

The aim of this paper is to prove the convergence of the marker and cell (MAC)
scheme for the discretization of the stationary and isentropic compressible Navier-
Stokes system. These equations are posed on a bounded domain € of R¢, compatible
with a MAC grid (see section B]), d = 2,3, and read:

(1.1a) div(pu) =0 in 9,
(1.1b) diviou @ u) — pAu — (u+ A)Vdivu + Vp = f in Q,
(1.1c) ng'yinQ,QZOinQ,/de:M,

Q

supplemented by the boundary condition
(1.2) Uujgq = 0.

In the above equations, the unknown functions are the scalar density and pressure
fields, denoted by o(x) > 0 and p(x), respectively, and the vector velocity field u =
(u1,...,uq)(x), where & € Q denotes the space variable. The viscosity coefficients
w and X are such that (see [10])

2
(1.3) p>0, A Zu=0.

The function f € L2(Q)? represents the resultant of the exterior forces acting on
the fluid while the constant M > 0 stands for the total mass of the fluid. In the
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compressible barotropic Navier-Stokes equations, the pressure is a given function
of the density. Here we assume that the fluid is a perfect gas obeying Boyle’s law:

(1.4) p=ap’ in Q,

where a > 0 and where v > 1 is termed the adiabatic constant. Typical values of ~y
range from a maximum 5/3 for monoatomic gases, through 7/5 for diatomic gases
incuding air, to lower values close to 1 for polyatomic gases at high temperature.
For the sake of simplicity, the constant a will be taken equal to 1. Unfortunately,
for purely technical reasons, we will be forced to require that v > 3 if d = 3 to
prove the convergence of the MAC scheme. There is no restriction if d = 2 in the
sense that we can choose v > 1.

Remark 1 (Forcing term involving the density). Instead of taking a given function
f in (LI1), it is possible, in order to take the gravity effects into account, to take
f = og with g € L>=(Q)%.

The mathematical analysis of numerical schemes for the discretization of the
steady and/or time-dependent compressible Navier-Stokes and/or compressible
Stokes equations has been the object of some recent works. The convergence of
the discrete solutions to the weak solutions of the compressible stationary Stokes
problem was shown for a finite volume nonconforming P1 finite element [9]12]14]
and for the well-known MAC scheme (see [§]) which was introduced in [20] and is
widely used in computational fluid dynamics. The unsteady Stokes problem was
also discretized using a FV-FE scheme (Finite Volumes and Finite Elements) on a
reformulation of the problem, which were proven to be convergent [26]. The un-
steady barotropic Navier-Stokes equations was also recently tackled in [27], with
a FV-FE scheme, albeit only in the case v > 3 (there is a real difficulty in the
realistic case v < 3 arising from the treatment of the nonlinear convection term).
Some error estimates have been derived for this FV-FE scheme in [17].

Since the very beginning of the introduction of the marker and cell (MAC) scheme
[20], it is claimed that this discretization is suitable for both incompressible and
compressible flow problems (see [I8|[19] for the seminal papers, [1H3}23H25]32H306]
for subsequent developments and [37] for a review). The use of the MAC scheme in
the incompressible case is now standard, and the convergence in this case has been
recently tackled in [16].

The paper is organized as follows. After recalling the fundamental setting of
the problem in the continuous case in section 2 we present a simple way (which
adapts to the discrete setting) to prove a known preliminary result, namely the
convergence (up to a subsequence) of the weak solution of problem (LI)-(T4) with
fn and M, (instead of f and M) towards a weak solution of problem (TI)—(T4)
(with M,, — M and f, — f weakly in L?(Q)% as n — +00). Then we proceed in
section Bl to the discretization: we introduce the discrete functional spaces and the
definition of the numerical scheme, and state an existence result for this numerical
scheme, the proof of which is given in Appendix [Al The main result of this paper,
that is the convergence theorem, is stated in Theorem @l The remaining sections
are devoted to the proof of Theorem [l In section[6 we derive estimates satisfied by
the solutions of the scheme. In section[7, we prove the convergence of the numerical
scheme in the sense of Theorem Ml toward a weak solution of problem (LI)—(T4l).
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2. THE CONTINUOUS PROBLEM

2.1. Definition of weak solution. In the sequel we explain what we mean by
weak solution of problem (LI)-(T4). Briefly, if d = 2 and v > 1, it is possible to
obtain a weak solution (u, p, ) of (LI)—(T4) in the space (H§(2))?x L2 (2) x L*(Q)
and to prove the convergence of a sequence of approximate solutions (up to a
subsequence) towards a weak solution in the sense of Definition [Il If d = 3, the
problem is much more difficult. For any v > 3/2, a weak solution (u,p, o) may be
defined (with the extra hypothesis that f satisfies curl f = 0 in the case v € (%, %])
However, this weak solution belongs to a functional space which depends on +.
Indeed, the function w always belongs to Hg(2)3, but the function p belongs to
L?(Q) only if v > 3 (and the function g belongs to L?*(Q) only if v > 5/3). More
precisely, for d = 3 and v < 3, we only get an estimate on p in L°(Q), and
an estimate on o in LY%(Q), with § = 3(%71) Note that for v = %, one has
0= @ =1, and v0 = 3(y — 1) = £, so that the natural spaces are p € L*(12)
and g € L3 (€2). Note that in the case of the compressible Stokes equations, an L?
estimate on the pressure and an L?7 estimate on the density are obtained for d = 2
or 3 and there is no restriction on « in the sense that we can take v > 1 (see for
instance [9] and [§]).

To be in accordance with the main theorem of this article (see Theorem M), we
then define the notion of weak solution only for the case v > 3 if d =3 and v > 1 if
d = 2. We refer the reader to [29] and [30] for further information about the notion
of weak solutions and their existence. We recall that a bounded Lipschitz domain
of R? is a bounded connected open subset of R with a Lipschitz boundary.

In the whole paper, we define the L” vector norm by || - [|zsye = [I| - [llzr ()

where | - | denotes the Euclidean norm in R.

Definition 1. Let d = 2 or 3, let Q be a bounded Lipschitz domain of R? and let
fel?Q4 M >0 Lety>3ifd=3ory>1ifd=2 A weak solution of
problem (LI)—(L4) is a function (u,p, o) € (HZ(2))4 x L2(Q) x L*(Q) satisfying
the equations of ([LI)—(T4) in the following weak sense:

(2.1a) /gu-wdmzo Y € Whoe(Q),
Q
(2.1b) —/gu@u:Vvdw—f—u/Vu:Vvdw—i—(,u—i—)\)/divudivvdw
Q Q Q
—/pdivvdm:/_f'vdw Yo € C(Q)4,
Q Q

(2.1c) 0>0a.e. in €, / ode = M and p = o7 a.e. in Q.

Q

Remark 2. Let (u,p, 0) be a weak solution in the sense of Definition [Il Then:
(1) (u,p, o) satisfies the following inequality (see Step 1 of the proof of Theorem

(2.2) / (,u|Vu|2 + (u+ )| divu|2) dedt < / f-udx.
Q Q

(2) By a density argument, using v > 3, one can take v € H}(Q)? in (2.I0).
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2.2. Passage to the limit with approximate data. In order to understand our
strategy in the discrete case, we first prove here the following result (which states
the continuity, up to a subsequence, of the weak solution of (ILT)—(T4l) with respect
to the data). In the following, we set

| +ooifd=2,
q(d)_{ 6if d = 3.

Theorem 1. Let Q be a bounded Lipschitz domain of R4, d =2 or 3. Let v > 1
ifd=2and~y >3 ifd=3. Let f € L* (% M > 0 and (fn)nen C L?(Q)4,
(My)nen C RY be some sequences satisfying fr, — f weakly in (L*())* and
M, — M. For neN, let (uy,pn, on) be a weak solution of (LI)—(L4), in the
sense of Definition [, with f,, and M, instead of f and M.

Then, there exists (u,p,0) € (HF(Q))? x L3(Q) x L*(Q) such that, up to a
subsequence, as n — +00:

e u, —uin (LYN))? for 1 < q < q(d) and weakly in H}(Q)?,
e p, — pin LY(Q) for 1 < q <2 and weakly in L?(2),
e 0, — 0in LYQ) for 1 < q < 2y and weakly in L*Y(Q),

and (u,p, 0) is a weak solution of (LI)—(T4).

Proof. For the sake of simplicity, we will perform the proof for v > 3 and d = 3. The
case d = 2 and v > 1 is simpler, and the modifications to be done to adapt the proof
to the two-dimensional case are mostly due to the fact that Sobolev embeddings
differ.

Let (wn, pn, 0n) be a weak solution of problem (I)-(T4)) with f,, and M,, instead
of fand M.

The proof consists of four steps. In Step 1, we obtain some estimates on
(Wn, P, 0n). These estimates imply the convergence, in an appropriate sense, of
(Uny Dny On) tO some (w,p, 0), up to a subsequence. Then, it is quite easy to prove
that (u,p, o) satisfies (ZIa), (2ID) and a part of ([2Id) (this is Step 2) but it is
not easy to prove that p = ¢” since, using the estimates of Step 1, the convergence
of p,, and p,, is only weak (and v # 1). In Step 3, we prove the convergence of the
integral of p, 0, to the integral of po. This allows in Step 4 to obtain the “strong”
convergence of g,, (or p,) and to conclude the proof.

We recall Lemma 2.1 of [9], which is crucial for Steps 1 and 3 of the proof. This
lemma states that if o € L?7(Q), v > 1, 0 > 0 a.e. in Q, u € (H}(Q))? and (o, u)
satisfies (2.1a]), then we have

(2.3) / odivudx =0
Q

and

(2.4) / o divudx = 0.
Q

This result is in fact also true for v = 1 [12] Lemma B1]. In Step 1 below, we use
4) (in fact, we only need [, 0" divade < 0 and it is this weaker result which
will be adapted and used for the approximate solution obtained by a numerical
scheme). In Step 3, we use (2Z3)).
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Step 1 (Estimates). We recall that (wy, pn, 0n) satisfies 2.1)) with f,, and M,,.
l.a. Estimate on the velocity. Taking w, as a test function in (2.1L), we get:

,u/ Vun:Vunda:—i—(u—i—)\)/(divun)zd:c—/ Only @ Uy - Vu, dz
Q Q Q

—/pndivund:cz/fn-undw.
Q Q

Note that, since v > 3, we have g,u, ®u,, € L*(Q)%>*3, and, by density of C>°(Q)¢
in L?(Q)¢, u,, is indeed an admissible test function. But p, = o) a.e. in  and
div(onu,) = 0 (in the sense of (2.1al)), then using [2.4) (with o, and u,)

/pn divu,, de = 0.
Q

Again thanks to the mass equation (Z.Ial), and to the fact that g, € L?7(Q2) € L5(£2)
a straightforward computation gives

Q

Hence, there exists Oy, depending only on the L? bound of (f,)nen, on £ and on
1, such that

(25) ”un”(Hé(Q))?’ S Cl.

1.b. Estimate on the pressure. In order to obtain an estimate on p, in L?(),
we now use the two following lemmas. The first one is due to Bogovski; see e.g.
[30, Section 3.3] or [II, Theorem 10.1] for a proof.

Lemma 1. Let Q be a bounded Lipschitz domain of R? (d > 1). Let r € (1,+00).
Let g € L"(Q) such that [, qdx = 0. Then, there exists v € (Wy" () such that
divv = q a.e. inQ and Hv||(W01,r(Q))d < Ca gl (o) with Cy depending only on Q
and r.

The following lemma is a straightforward consequence of [I3] Lemma 5.4].

Lemma 2. Let Q be a bounded Lipschitz domain of R (d > 1) and p € L?(£2)
such that p > 0 a.e. in Q. We assume that there exist a > 0, b,c € R and r € (0,1)
such that

Ip —m(p)llr20) < alpliz) +9

p"dx < c,
Q
where m(p) = ﬁ prdm 1s the mean value of p. Then, there exists C only depend-

ing on Q,a,b,c and r such that ||p||r2q) < C.

Let m,, = ﬁ Jo P de; thanks to Lemmal[ll with r = 2, there exists v, € Hj(€2)*
such that divwv,, = p, — m, and

(2.6) [vnll(az @)z < C2llpn — mallrz) -
Taking v, as a test function in (211 yields:

(2.7) u/ Vu,, : Vv, dz + (u + )\)/ divu, divwv, dz — / Ony @ Uy Vo, de
Q Q Q

—/pndivvndw:/fn~vndw.
Q Q
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Since [, divu, dx = [, divv, dz = 0, we get:

/ (Pn — mn)Q dx
Q
= / (—fn “Un + VU, Vo, + (4 AN)py diva, — onuy, @ uy, - V'un) dex.
Q

Since [[wnll(zi()ys < C1 and H () is continuously embedded in L5(2), we get
that:

(2.8) /Q OnUp @ Uy 2 Vo, de < ”Qn”LG(Q) ||un||%6(ﬂ)3 anH(Hl(Q))3 .

From (Z7), [28) and (Z6), since 2y > 6 and p, = o), we get:
||pn_mnHL2(Q) <Cz(1+ ”Qn”LG(Q) ) < Cy(1+ ”Qn”Lz”f(Q) ) < Cy(1+ ”anlL/szQ) )-

Since fﬂp}/ﬁy de = [,ondx < sup{M,k € N}, we get from Lemma [2 that
[pnllz2(@) < Cs, where Cs depends only on the L? bound on (f,)nen, the bound
on (My)nen, v, t, A and Q. Thanks to the equation of state, we have p,, = g a.e.
in Q, and therefore |0y |z2v0) < Cs = 051/7.

Step 2 (Passing to the limit on the equations (2.Ial), (2.10) and a part of (2Id)).
The estimates obtained in Step 1 yield that, up to a subsequence, as n — +o0:

w, — u in L9(Q)? for any 1 < ¢ < 6 and weakly in Hy(Q),
pn — p weakly in L?(Q),

on — 0 weakly in L?7(Q).

Since 0, — ¢ weakly in L?7(Q), with 2y > 6 > 2, and w, — w in L9(Q) for all

q <6 (and 2 + L+ 1 =1), we have that g,u, ® u, — ou ® u weakly in L*(Q).
Moreover, Vu,, — Vu weakly in L?(Q)3, p, — p weakly in L?(Q) and f, — f
weakly in L2(Q)3. Therefore, passing to the limit in (2.ID) (the weak momentum
equation) for (un, pn, 0n), we obtain (ZI0) for (u,p, o).

Since 0, — o weakly in L?Y(Q), with 2y > g and u,, — u in L1(Q) for all ¢ < 6,
we get that g,u, — ou weakly in L'(). Then passing to the limit on (ZIal) (the
weak mass balance) for (u,, ¢,,), we obtain (ZTIal) for (u, o).

The weak convergence of g,, to ¢ and the fact that g, > 0 a.e. in  gives that
0 > 0 ae. in Q (indeed, taking ¢ = l,o as a test function gives fQ opdx =
lim, 400 fQ on% da > 0, which proves that gi) = 0 a.e.). The weak convergence of
0n to g also gives (taking ¢ = 1 as a test function) that [, odax = M. Therefore,
(u,p, 0) is a weak solution of the momentum equation and of the mass balance
equation satisfying o > 0 a.e in 2 and fQ odx = M. Hence Theorem [I] is proved
except for the fact that p = ¢” a.e. in 2. This is the objective of the last two
steps, where we also prove a “strong” convergence of g,, and p,,. We need to prove
that p = ¢ in 2, even though we only have a weak convergence of p,, and o,, and
~v > 1. The idea (for d =2 or d = 3, v > 3) is to prove fQ PrOn — fﬂ po and deduce
the a.e. convergence (of p,, and p,) and p = ¢7.

Step 3 (Proving the convergence of the effective viscous flux and fQ Onpndxr —
Joopdx). Since the sequence (0n)nen is bounded in L?*(£2), The result of [9,
Lemma B.8] gives the existence of a bounded sequence (v, )nen in H(2)3 such
that div v, = g, and curlv, = 0. It is possible to assume (up to a subsequence)
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that v, — v in L?(Q)? and weakly in H*(Q)3. Passing to the limit in the preceding
equations gives divw = p and curlv = 0.

Let ¢ € C°(Q) (so that v, € H}(Q)?). Taking v = pv,, in the weak momen-
tum equation (2.ID) written for (w,, pn, 0n)) leads to

(2.9)
,u/ Vu, : V(pv,) de + (p + )\)/ div u,, div(pv,) de — / pn div(pv,) de
Q Q Q

= / Only @ Uy, = V(pvy,) do —|—/ fn - (pvy,) de.
Q Q

The choice of v,, gives div(ypv,) = @, + v, - Vo and curl pv,, = L(p)v,, where
L(p) is a matrix with entries involving the first order derivatives of . Noting that
(2.10)

Vu:Vode = [ divadivode +/ curl@ - curl o dee, for all (w,v) € H} (),
Q Q Q

the equality (29) leads to
/ ((2;1 + A divu, — pn> onpdx + / ((2u + A) divu, — pn)vn -Vedx
Q Q

—|—u/cur1un - L(p)v, dx :/

OnUp @ Uy : V(‘)Ovn) dz + fn ' (QO'Un) dz.
Q Q

Thanks to the weak convergence of u,, in H}(Q)? to u, the weak convergence of

pn in L2(Q) to p, the weak convergence of f,, in L?(2) to f and the convergence
of v,, in L?(Q)? to v, we obtain:

(2.11) lim (((QM + A divu, — pn) OnY — Opty Q Uy : V((pvn)) dx

n—+4o0 Q

—/Qf-(gpv)dchr/Q(p—(Zu—l—/\)divu)v~Vgpdm—u/mcurlu~L(gp)vdm.

But, thanks to the weak momentum equation (210 for (u,p, ), we have
u/ Vu : V(pv) de + (1 + )\)/ divu div(pv) de — / pdiv(pv) do
Q Q Q

:/gu®u:V(ga'u)d:c+ I (pv) de
Q Q

or, equivalently, thanks to (2I0):
/ ((2u +A)divu — p) div(pv) de + u/ curlu - curl(pv) de
Q Q

:/qu®u:V(ga'u) da:—&—/gf-(ga’u) dx.

Since divw = p and curlv = 0, we obtain:
/ ((Zu—l— A)divu —p)gcpdw - / ou®u: V(pv) de
Q Q

:/Qf~(<pv)dw+/g(p— (2u+)\)divu)v~Vgadw—u/ﬂcurlu~L(go)vdw.
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Let us assume momentarily that:

(2.12) /anun ® Uy, : V(pv,) de — /Q ou®u: V(pv) de as n — +oo.
We then obtain, thanks to (ZI1]),

(2.13) gr}rl (pn — (2u+ A)div un) onpder = / (p — (2 + ) div u) opdx.
The quantity p — (A + 2u) divw is usually called the effective viscous flux. This
quantity enjoys many remarkable properties for which we refer to Hoff [22], Lions
[28], or Serre [31]. Note that this quantity is the amplitude of the normal viscous
stress augmented by the hydrostatic pressure p, that is, the “real” pressure acting
on a volume element of the fluid. In ([Z.I3]), the function ¢ is an arbitrary element of
C2°(92). Then as in [9], we remark that it is possible to take ¢ = 1 in (ZI3]), thanks
to the fact that (p, — (2u 4+ A\) divu,)o, € L"(Q2) for some r > 1 (see [0, Lemma
B.2]).

Using (2.3]), which holds by [9, Lemma 2.1] thanks to the fact that div(g,u,) =
div(ou) = 0 (in the sense of ([2.Ial)), we have [, op divu, dz = [, ¢ divudz = 0.
Therefore, (Z13)) yields

(2.14) lim Pnop dx = / podx.

n—-+oo Q Q
Remark 3. The equality in (2I4) is not necessary in Step 4; in fact, it is sufficient
to have liminf,, o [, Pnon de < [, pode. Then, instead of [, o divu, dx =0,
it is sufficient to have liminf,,_, fQ 0 div u,, dx < 0. This will be the case in the
framework of an approximation by a numerical scheme.

In order to conclude Step 3, it remains to show (2I2)).
We remark that, since div(g,u,) = 0 and (o, u,) € L8(Q) x H ()3,

(2.15) / OnUn @ Uy, 2 V(pv,) de = — / (0nty - V)uy, - (0v,) de.
Q Q

The sequence ((ontn - V)Uy )nen is bounded in L™(Q)3, with £ = £ + ¢ + % Since

v > 3, we have r > g. Then, up to a subsequence, (g,u, - V)u, tends to some
function G weakly in L"(Q)3. Since v,, — v in L*(Q)3 for all s < 6 and therefore

for s = .15, we deduce that

/Q(Qnun V), - (pv,) dz — /QG- (¢v) da.
Moreover, for a fixed w € Hg(2)3,
/Q(Qnun Vu, -wde = —/anun@)un :Vwdx — —/qu@)u : Vw dex.
But, since div(ou) = 0 and (g, u) € L5(Q) x H}(Q)3, we have
—/qu®u:dezc:/(gu-V)u-wdm.

Q
We thus get that G = (pu - V)u, which concludes the proof of (212).
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Step 4 (Passing to the limit on the EOS and “strong” convergence of g,, and p,).
The end of the proof is exactly the same as Step 4 of [0l Proof of Theorem 2.2]; it is
reproduced here for the sake of completeness. For n € N, let G,, = (¢} —0")(0n—0)-
For all n € N, the function G,, belongs to L'(Q) and G,, > 0 a.e. in Q. Futhermore
Gn = (pn — 0")(0n — 0) = PnOn — Pno — 0" 0n + 070 and fQ Gpde = fgann de —
Joprnodx — [ 0"ondx + [, 070 da.

Using the weak convergence in L?(Q) of p, to p and of g, to o, the fact that
0,07 € L*(Q) and @I4) gives lim, 4o [, Gnda = 0, that is, G, — 0 in L' ().
Then, up to a subsequence, we have G, — 0 a.e. in €. Since y — y” is an
increasing function on Ry, we deduce that o, — ¢ a.e., as n — +o0o. Then, we
also have p,, = 0} — 07 a.e.. Since (9,)nen is bounded in L?Y(Q2) and (py,)nen is
bounded in L?(2), we obtain, as n — +oc:

On — 01in Lq(Q) forall 1 < g < 27,
pn — 07 in LY(Q) forall 1 < g < 2.

Since we already know that p, — p weakly in L?(Q), we necessarily have (by
uniqueness of the weak limit in L?(Q2)) that p = o7 a.e. in Q. The proof of
Theorem [I] is now complete. |

3. THE NUMERICAL SCHEME

3.1. Mesh and discrete spaces. We will now assume that the bounded domain
Q) is MAC compatible in the sense that  is a finite union of (closed) rectangles (d =
2) or (closed) orthogonal parallelepipeds (d = 3) and, without loss of generality,
we assume that the edges (or faces) of these rectangles (or parallelepipeds) are
orthogonal to the canonical basis vectors, denoted by (eq, ..., eq).

Definition 2 (MAC grid). A discretization of a MAC compatible bounded domain
Q with a MAC grid is defined by D = (M, &), where:

- M stands for the primal grid, and consists in a regular structured partition of
Q in possibly nonuniform rectangles (d = 2) or rectangular parallelepipeds
(d = 3). A generic cell of this grid is denoted by K, and its mass center
by xx. The scalar unknowns, namely the density and the pressure, are
associated to this mesh, and M is also sometimes referred as “the pressure
mesh”.

- The set of all faces of the mesh is denoted by &£; we have £ = &y U Eext,
where &yt (resp. Eext) are the edges of £ that lie in the interior (resp. on
the boundary) of the domain. The set of faces that are orthogonal to the ith

unit vector e; of the canonical basis of Rdlis denoted by EW fori=1,...,d.
We then have £() = Si(Zt) U Sc(f()t, where Si(Zt) (resp. Ec(f()t) are the edges of £

that lie in the interior (resp. on the boundary) of the domain.
For each o € &, we write that 0 = K|L if 0 = 0K N9L. A dual cell D,
associated to a face o € £ is defined as follows:

« if 0 = K|L € &y, then D, = Dk - U Dy, », where Dg , (resp. Dy )
is the half-part of K (resp. L) adjacent to o (see Figure [I] for the
two-dimensional case);

* if 0 € Eqxt is adjacent to the cell K, then D, = Dk ;.
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de,
—>
7
K Ty ag
€ =olo’
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o0

FIGURE 1. Notation for control volumes and dual cells (for the
second component of the velocity).

We obtain d partitions of the computational domain 2 as follows:

0= U D,, 1<i<d,
A

and the ith of these partitions is called ith dual mesh, and is associated to
the ith velocity component, in a sense which is precised below. The set of
the faces of the ith dual mesh is denoted by D and is decomposed into the
internal and boundary edges: EW = g’l(;z U géi)t
two dual cells D, and D, is denoted by ¢ = olo’.

The dual face separating

To define the scheme, we need some additional notations. The set of faces of a
primal cell K and a dual cell D, are denoted by £(K) and £(D, ), respectively. For
o € &£, we denote by x, the mass center of o.

In some cases, we need to specify the orientation of a geometrical quantity with
respect to the axis:

—
- a primal cell K will be denoted K = [00'] if there exists ¢ € [1,d] and

0,0’ € £ NE(K) such that (x, — x,) - e; > 0;

we write 0 = K|L if o € £ and Zxa] - e; > 0 for some i € [1, d];

the dual face € separating D, and D, is written € = olo” if m -e; >0
for some i € [1,d].
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For the definition of the discrete momentum diffusion operator, we associate to any
dual face € a distance d, as sketched in Figure[ll For a dual face e € £(D,), o € £,
i € [1,d], the distance d. is defined by

d(zy,xs) ife=oo’ € Ei(;t),

d(xs,€) if e € £ N&(D,),

ext

(3.1) de =

where d(-,-) denotes the Euclidean distance in R9.
We also define the size of the mesh by hxq = max{diam(K), K € M}. The
regularity of naq of the mesh is defined by

_ L - 1 e o)
(32) nm = h,/\/l I?él,}’\l/l 1211‘1£d {d(waawa’)v 0,0 € £ (K)}

In other words, 14 is such that
nimha < d(@g, o) < hpy Vo,0' € EV(K),Vi=1,...,d, VK € M.

The discrete velocity unknowns are associated to the velocity cells and are de-
noted by (us)scg for each component u; of the discrete velocity, 1 < ¢ < d, while
the discrete density and pressure unknowns are associated to the primal cells and
are, respectively, denoted by (0x)xem and (Px)rKem-

Definition 3 (Discrete spaces). Let D = (M, ) be a MAC grid in the sense of
Definition The discrete density and pressure space L4 is the set of piecewise
constant functions over the grid cells K of M, and the discrete ith velocity space
H S) is the set of piecewise constant functions over the grid cells D, ,0 € £, The
Dirichlet boundary conditions (2] are partly incorporated in the definition of the
velocity spaces by introducing:

ng) - {u e HY u(@)=0Va e D,, ¢ é‘e(;)t} cHY, i=1,...d

We then set He g = H?:l H gZ) Since we are dealing with piecewise constant func-

tions, it is useful to introduce the characteristic functions 1, for K € M, and
Ip,, for o € &, defined by

1 fxek, 1 ifxeD,,
Ix(x) = . Ip,(x) = .
0 ifxdgK, 0 ifxdgD,.

We can then write the functions u € Hg o and p,p € Laq as

u = (ug,...,uq) with u; = Z uelp, for i €[1,d|,

sceel)

int

p=> pxlx, o= Y oxlk.

KeM KeM
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3.2. The numerical scheme. Let D = (M, &) be a MAC grid of the computa-
tional domain Q C R Let hq be the size of the mesh. Let o > 1 and Cs > 0 be
given. Let f € L2(Q)% and M > 0, and let o* = M/|)|. We consider the following
numerical scheme:

Find (u,p, 0) € Hg o X Ly X Lag such that, a.e. in Q,

(3.3a) div'{y (ou) + Cshi (0 — 0*) =0,
(3.3b) divg(ou ® u) + Vep — pAegu — (n+ A)Ve divaru = Pe f,
(3-3¢) p=20", 020,

where the discrete operators are defined hereafter for each equation.

3.2.1. The mass balance equation. Equation (8:3a)) is a finite volume discretization

of the mass balance (ITal) over the primal mesh. The discrete function div'{y(ou) €

L pq is defined by

. 1
divii (ou)(x) = & Z Fg, VxeK,

ce&(K)

where F , stands for the upwind mass flux across o outward K, which reads
0K if ug,, >0,

(3.4) Vo e&(K), Fr o =|o| 03 uk,, with gp? = :
oL otherwise,

and where ug , is an approximation of the normal velocity to the face o outward
K, defined by

(3.5) UKo = Uy € MK, for o € EWN E(K),

where nx , denotes the unit normal vector to o outward K. Thanks to the bound-
ary conditions, ug , vanishes for any external face o, and so does Fg ,. Any
solution (o, u) € Ly x He o to (33al) satisfies o > 0 for all K € M so that in
particular (333d) makes sense: the positivity of the density ¢ in ([8:3a)) is not enforced
in the scheme but results from the above upwind choice. Indeed, for any velocity
field, the upwinding ensures that the discrete mass balance ([3.3al) is a linear system
for o whose matrix is invertible and has a nonnegative inverse [12] Lemma C.3]
and this gives ox > 0 for all K € M (thanks to ¢* > 0).

Note also that we have the usual finite volume property of local conservativity
of the mass flux through a primal face 0 = K|L (ie., Fx,, = —Fr,). For o =

—
K|L € Eint, we also define

(3.6) l0lo = o1 — oK.

The artificial term Csh§, (0 — 0*) guarantees that the integral of the density over
the computational domain is always M. Indeed, summing (33a) over K € M, and
using the conservativity of the flux through a primal face, immediately yields the
total conservation of mass, which reads:

(3.7) /diaz = M.

The constant Cy is chosen so that a uniform (with respect to the mesh) bound
holds on the solutions to ([B.3)); these bounds are stated in Proposition[Il The proof
of this proposition shows that Cs can be chosen sufficiently small with respect to
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the data (see (611])). However, in practice, Cs may be set to 1, in which case, the
uniform bounds stated in Proposition [l hold for h, sufficiently small.

3.2.2. The momentum balance equation. We now turn to the discrete momentum
balances (3.30)), which are obtained by discretizing the momentum balance equation
(LID) on the dual cells associated to the faces of the mesh. In the right-hand side
of B.3h), Pe denotes the cell mean-value operator defined for v = (vq,...,v4) €
L ()7 by

Pev = (’Pél)vh,,,, éd)q;d) € Hél()) X oo X Hg%, where, for i =1,...d,

P L2(Q) — HY)
. Z ‘Da| D, ( ) D

scegl®

int

The discrete convective operator. The discrete divergence of pu ® u is defined
by

(3.9) divg(ou ® u) = (div(gl)(guul), ...,div(gd)(guud)) € He,

where the ith component of the above operator reads:

i 1 i
div(g)(guul)(w) = m Z Fo’,e Ue vw € D(T? OIS gl(nl :
ec&E(Dy)

The expression Fy . stands for the mass flux through the dual face €, and u. is an
approximation of ith component of the velocity over e.

Let us consider the momentum balance equation for the ¢th component of the
l(l?l)t7
- First case: The vector e; is normal to €, in which case € is included in a primal

cell K; we then denote by o’ the second face of K which is also normal to

e;. We thus have ¢ = D,|D,/. Then the mass flux through € is given by

velocity, and o € &1, 0 = K|L. We have to distinguish two cases (see Figure [2):

1
(310) Fa,e = 5 [ K,0 MK,o +FK,o-’ nK,o"] *MD, e

where np_ . stands for the unit normal vector to € outward D,.

- Second case: The vector e; is tangent to €, and € is the union of the halves
of two primal faces 7 and 7’ such that 7 € £(K) and 7/ € £(L). The mass
flux through € is then given by

1
(311) Fo,e = 5 [FK,T +FL,T’]'
T e 1
s =
K U X L
v Il
ol D,

FIGURE 2. Notation for the dual fluxes of the first component of
the velocity.
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Note that we have the usual finite volume property of local conservativity of the
mass flux through a dual face D, |D,- (i.e., Fy . = —F,/ ), and that the flux through
a dual face included in the boundary still vanishes.

The density on a dual cell is given by:

(3 12) for o € gintv g = K‘Lv |DU| Op, = |DK,0" OK + |DL,0'| oL,
' for 0 € Eexs, 0 € E(K), 0p, = OK-

These definitions of the dual mass fluxes and the dual densities ensure that a finite
volume discretization of the mass balance equation over the diamond cells holds:

(3.13) for1<i<d, Vo€ Emt, Z F, .+ CshS4(op, —0*) = 0.
ec&(Do)
This condition is essential to derive a discrete kinetic energy balance in Proposition
[ below.
Since the flux across a dual face lying on the boundary is zero, the values u, are
only needed at the internal dual faces; they are chosen centered, i.e.,

Uy + Uy

for e = Dy | D, Gc‘fmt, Ue )

Discrete divergence and gradient. The discrete divergence operator diva, is
defined by
diVM : He — Ly
(3.14) u+— divygu = Z Z lojuk o Lk,
Ke/v( aes (K)

where ug , is defined in [B.3]). Once again, we have the usual finite volume property
of local conservativity of the flux through an interface o = K|L between the cells
K,L e M, ie., ugx, = —ur, for all 0 = K|L € &y. The discrete divergence of
u = (uy,...,uq) € Heg g may also be written as

d
(315) diVMu = Z Z (5iui)KIlK,

i=1 KEM
where the discrete derivative (0;u;)x of u; on K is defined by
_ ol
K]

The pressure gradient in the discrete momentum balance is defined as

— .
(3.16) (Oiu;) K (Ugr — Ug) with K = [00'],0,0" € ED

Vg : LM —>H570

(3.17) ¢
pr— V.Sp: (61p>"‘76dp) )

where 0;p € H g%} is the discrete derivative of p in the ith direction, defined by

(3.18) O;p(x) = ||D | (pL —pr) Vx € D,, for o= K|L € 5mt,

Note that, in fact, the discrete gradient of a function of L 4 should only be defined
on the internal faces, and does not need to be defined on the external faces; we
set it here in Hg o (that is zero on the external faces) in order to be coherent with
(33L). This gradient is built as the dual operator of the discrete divergence, which
means the following.

=1,...,d.
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Lemma 3 (Discrete div —V duality). Let Q be a MAC-compatible bounded domain
of R, d=2 ord=3. Let € Ly andv € He . Then we have

(3.19) / q divpqvde + [ Veg-vde =0.
Q Q
Discrete Laplace operator. For i = 1,...,d, we classically define the discrete

Laplace operator on the ¢th velocity grid by

i) . (i i
—AW HYY — Hgg
Uy —> —A(gl)ui,
. 1 ;
(3.20) _ A(SZ)U'L(:B) = Dyl Z o VxeD,, foroe 5};2,
7 eef:'(Da)
where
|di|(u0—ugl) ife:da’egi(ﬁt),
(321) ¢a,e = |€E ) O] ~
7 o ifee &t NED,)

with d. given by [B1). The fluxes ¢, . satisfy the local conservativity property:

(3.22) boc = —¢grc Ve=olo' € EL)

int*

Then the discrete Laplace operator of the full velocity vector is defined by

(323) —Ag : Hgv() — Hgyo )
u— —Agu = (—ADuy, . =AWy,

Let us now recall the definition of the discrete H} inner product [6]; it is obtained

by taking the inner product of the discrete Laplace operator and a test function

v € Hg ¢ and integrating over the computational domain. A simple reordering of

the sums (which may be seen as a discrete integration by parts) yields, thanks to

the conservativity of the diffusion flux (3:22):

d
V(u,v) € He o°, —Asu-vde = [u,v]1e0 =Y _[Ui,vi]1e0 05
Q i=1
324 . € €
( ) with [us, vily g o = Z(.) |d_5| (Ug — Ugr) (Vo — Vs ) + Z(.) % Uy Vg
eeght Egge;t
e=oﬁ e€&(Dy)

The bilinear forms

H&O X H&O — R

ng) X Hgg SR
(uv ’U) = [ua v]l,S,O

and
(U, ’U) — [ui7 Ui}lf,'(i) ,0



1142 T. GALLOUET, R. HERBIN, J.-C. LATCHE, AND D. MALTESE

M N
0_/
D,
€ =dalo’
=
K = L
Il
o D,

F1Gurg 3. Full grid for the definition of the derivative of the velocity.

are inner products on Hé%, fori=1,...,d, and on Hg g, respectively, which induce
the following discrete Hg norms:
2 le| 2 le| 2
(3.25&) ||ui||1,g(i)7o = [ui, ui]l,.S(i),O = E 4 (ua - ua’) + E 4 Ug
~ € o~ €
665;(;;) ccE®)

e=alo’ Eeg(Da)

d
(3:25b)  Julfeo = [wulieo =D lullf g o
i=1

Since we are working on Cartesian grids, this inner product may be formulated as
the L? inner product of discrete gradients. Indeed, we define the following discrete
gradient of each velocity component u;

(3.26)
Vg(i)ui = (61’(14, . ,5dui) with 5jui = Z (5jui)D€ HDE + Z (@ui)pe HDE,
ce€ly) ccEln,
ele;
w —u . _—_z .
where (0ju;)p, = ~“7—= with € = olo’, and D, = € X x,, (see Figure B} note

also that u, = 0if 0 € é’e(f()t) This definition is compatible with the definition of

the discrete derivative (0;u;)x given by (B.I0), since, if ¢ C K, then D, = K. If
€€ (§/C(;L()t N g(Da’), we set (5]uZ)D‘ = _d_ucr

€
Lo p = 0 N O With this definition, it is easily seen that

np, .- €; with D, = € X ,x,, where

(3.27) /Qvgmu Vewvde = [u,v] g0 Vu,ve HY), fori=1,....d.

where [u, v]; g0 ¢ is the discrete H} inner product defined by (3.24). We may then
define Vzu = (Vg ui,. .., Vgaua), so that / Vzu : Vgvde = [u,v]1 0. An
equivalent formulation of the discrete momentum balance (3.3D) reads:
(3.28)

/Qdng(gu(X)u) ~vdx +u/QVgu :Vavde + (u+ )\)/QdiVM wdiv g vde

—/pdivadac:/ngmdac7 Vv € He .
Q Q
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4. SOME ANALYSIS RESULTS FOR DISCRETE FUNCTIONS

In the theory developed in this paper, we will need discrete Sobolev inequalites
for the discrete approximations. The following result is proved in [6l, Lemma 9.5].

Theorem 2 (Discrete Sobolev inequalities). Let 2 be a MAC compatible bounded
domain of R, d =2 ord =3. Let ¢ < +o0 ifd =2 and q = 6 if d = 3. Then
there exists C = C(q,Q,mr), nonincreasing with respect to naq, such that, for all
u < HE,O;

ullLao) < Cllull1e.0-

The following compactness theorem is a consequence of [6, Theorem 9.1 and
Lemma 9.5] and [7, Lemma 5.7].

Theorem 3. Let Q be a MAC compatible bounded domain of R%, d =2 or d = 3.
Consider a sequence of MAC grids (M, En)nen, with step size hpq, tending to
zero as n — +00. Let (un)nen be a sequence of discrete functions such that each
element of the sequence belongs to He, o and such that the sequence (||un||1,¢, 0)nen
is bounded. Then, up to the extraction of a subsequence, the sequence (Up)neN
converges in L?()? to a limit w and this limit satisfies uw € (Hy(2))?. Furthermore,
one has Vg un, — Vu weakly in L2(Q)™4 gs n — +oo. If nap, > n > 0, one has
also wy, — w in L1(Q) for all ¢ < q(d).

We now recall a discrete analogue of the identity (2I0) linking the gradient,
divergence and curl operators, which is proved in [8]. First of all, we modify the
definition of the discrete gradient (V¢) of an element of Lag in some dual cells
near the boundary, in order to take into account a null boundary condition at the
external faces. It reads:

vg : LM — Hg

(4.1) _ _ _
w— Vew = (01w, ...,0qw)",

where 9;w € H éi) is the discrete derivative of w in the ith direction, defined, for
i=1,...,d, by

H .
Biw(x) = ol (wp — wg) Va € Dy, for o = K|L € &Y.
= _ | Do |
(4.2) dw(x) = o] ‘
~ID,] WKNg K * € Ve € Dy, foraeE(K)ﬁﬁéi)t.
In order to define the discrete curl operator of a function v = (vy,...,v4) € Hg,

we use the functions (9;u;)1<; j<q defined in (3:20]). This definition is the same for
v € Hg o and v € Hg, the only difference is that we may have u, # 0 if o € v

ext
and v € He. Then, the discrete curl operator of a function v = (vy,...,v4) € He

is defined by

511)2 — 521)1 ifd= 2,
(4.3) curl, v =
(621}3 - 53’02, 63’01 — 51’()3, 51’02 — 62’()1) ifd= 37

The following algebraic identity is a discrete version of (2.I0), which is exact in
the case of the MAC scheme, contrary to the case of the nonconforming P1 finite
element scheme; see [9].
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Lemma 4. Let Q be a MAC compatible bounded domain of R?, d = 2 ord = 3, and
let M be a MAC grid and (v,w) € (Hg9)?. Then the following discrete identity
holds:

(4.4) /QVE’U :Vzwde = /QdiyM v div,wdx —i—/chrlMU -curl, wde.

We finish this section by introducing a discrete construction of the test function
used in Step 3 of the proof of Theorem [I] to obtain the convergence of the so-called
effective viscous flux. We recall that this test function is the product of a scalar
regular function with a velocity field whose divergence is the density; here we need
to show the existence, at the discrete level, of such a velocity field, and then some
regularity estimates for the resulting test function. To this goal, we first introduce
the discrete Laplace operator on the primal mesh. For o € &, 0 = K|L, let d, be
defined as the distance between the mass center of K and L, i.e., d, = d(xk,xL);
for an external face o € Eex adjacent to the primal cell K, let d, = d(xk,0).
Then, with this notation, we obtain a discretization of the Laplace operator with
homogeneous Dirichet boundary conditions on the primal mesh by

—AM : LM — LM
w — —Apw,
1
(4.5) — A () = ] Y éko Yz EK, for K€M,
oc€e&(K)

where

L;-—‘(wK—wL) ifUZMLESint,
(46) ¢K,a’ - |OL:7‘

Zwl{ if 0 €&t NE(K).

The following lemma [8] clarifies the relations between this Laplace operator and
the already defined gradient divergence and curl operators.

Lemma 5. Let Q be a MAC compatible bounded domain of RY, d = 2 or d = 3.
Let w € Laq. Let v = —Vew € He be defined by [@I). Then, with the discrete
curl operator defined by [@3), we have curl,, v = 0. Furthermore, for any ¢ € L,
there exists one and only one w in Laq such that —Ayw = o, and, in this case,
div,,v = o.

Now, to any regular function ¢ € C°(2), we associate an interpolant g aq € Ly
defined by

(4.7 om(x) = p(xk) for all x € K, VK € M.

We are now in position to state the following discrete regularity result (see [§] for
a proof).

Lemma 6. Let Q be a MAC compatible bounded domain of R, d = 2 or d = 3.
Let D= (M,E) be a MAC grid. Let o € Layq and w € Ly be defined by

(4.8) —Apw = p.

Let o € C2(Q) and V(wppq) be the gradient of the function wpp as defined in
@I). Then there exists Cy, only depending on ¢, Q and on naq in a nonincreasing

way such that ||Ve(wom))|l1,e,0 < Cyp lloll 2y » where||-|1.¢,0 s defined in ([B.250).
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5. MAIN THEOREM

Now, we are ready to state the main result of this paper. We recall the notation:

| 4ooifd =2,
‘J(d)_{ 6if d = 3.

Theorem 4. Let Q be a MAC compatible bounded domain of R%, d =2 or d = 3.
Let f € (L2(Q)4,M >0, and o > 1. Let v >3 ifd =3 and vy > 1 ifd = 2.
Consider a sequence of MAC grids (D,, = (M, E,))nen, with step size hag, going
to zero as n — +o0o. Assume that there exists n > 0 such that n < naq,, for all
n € N, where naq,, is defined by B2). For a value of the constant Cs independent
of n € N and sufficiently small with respect to the data, there exists a solution
(WnyDny0n) € He, 0 X Laq, (Q) X L, () to the scheme B3) with any of the
MAC discretizations D,,; in addition, the obtained density and pressure are positive
a.e. in . Furthermore, up to a subsequence:

e the sequence (u,)nen converges in (L1(Q))¢ for any q € [1,q(d)) to a func-
tion w € H§(Q)?, and (Ve up)nen converges weakly to Vu in L2(Q)?<9,

o the sequence (0n)nen converges in LP(Y) for any p such that 1 < p < 2y
and weakly in L*Y(Q) to a function o of L*Y(£2),

e the sequence (pn)nen converges in LP(Q) for any p such that 1 < p < 2 and
weakly in L*() to a function p of L*(Q),

o (u,p,0) is a weak solution of problem (LI)-(A) in the sense of Defini-
tion [

The convergence part of Theorem M remains true with a fixed value of Cy (for
instance, Cs = 1). The only difference is that the estimates on the approximated
solutions are valid only for has small enough with respect to the data.

The following sections are devoted to the proof of Theorem [dl For the sake of
clarity, we shall perform the proofs only in the three-dimensional case (and then
~v > 3). The modifications to be done for the two-dimensional case, which is in
fact simpler, are mostly due to the different Sobolev embeddings and are left to the
interested reader. Throughout the proof of this theorem, we adapt to the discrete
case the strategy followed to prove Theorem [Il

6. MESH INDEPENDENT ESTIMATES

6.1. Notations. From now on, we assume that € is a MAC compatible bounded
domain of R%, d = 2 or d = 3, and that all the considered meshes satisfy 17 < 74,
for a given n > 0 and with 7 defined by [B32)). The letter C' denotes positive
real numbers that may tacitly depend on |Q|, diam(Q2), v, A\, u, M, f, o, n and
on other parameters; the dependency on these other parameters (if any) is always
explicitly indicated. These numbers can take different values, even in the same
formula. They are always independent of the size of the discretisation h .

6.2. Existence. Let us now state that the discrete problem ([B.3]) admits at least
one solution. This existence result follows from a the topological degree argument
(see [M] for the theory, [5] for the first application to a nonlinear numerical scheme
and Appendix [Al for the proof).
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Theorem 5. There exists a solution (u,p, 0) € Hg g X Ly X Lag to problem [B.3]).
Moreover any solution is such that o > 0 a.e. in Q (in the sense that ox > 0 for
all K € M).

6.3. Energy inequality. Let us now turn to stability issues: in order to prove the
convergence of the scheme, we wish to obtain some uniform (with respect to the
mesh) bounds on the solutions to ([B3)); see Proposition [Il below. We begin by a
technical lemma [8, Lemma 5.4] which is useful not only for stability issues, but
also for the three following reasons. First, it allows an estimate on u in a dicrete H}
norm (Proposition [l), as in [8, Proposition 5.5]. Second, it yields a so-called weak
BV estimate, which depend on the mesh and does not give a direct compactness
result on the sequence of approximate solutions; however, it is useful in the passage
to the limit in the mass equation, in the discrete convective term and in the equation
of state. Third, Lemma [7 gives (with § = 1) a crucial inequality which is also used
in order to pass to the limit in the equation of state.

Lemma 7. Let 9 € Ly and u € Hg o satisfy B3a). Then, for any 8 > 1:

. 1 .
[ Pdivudet 5 Y Blol ons lual lo2 < CC. I,
Q 2 g€Eint

where C depends only on M, 3, u, a, Q and n, and, for any o € Eny, 0 = K|L,

- —2
8 B )

(6.1) 00,5 = min(oy >, 0

In order to obtain an estimate on the pressure, we need to introduce a so-called
Fortin interpolation operator, i.e., an operator which maps velocity functions to
discrete functions and preserves the divergence. The following lemma is given in
[I5, Theorem 1], and we repeat it here with our notations for the sake of clarity.
We will use this lemma later on with p = 2.

Lemma 8 (Fortin interpolation operator). Let D = (M, E) be a MAC grid of .
Let 1 <p < oo. Forv=(vy,...,04) € (WP (Q))% we define Pev by
ﬁg’U = (”ﬁémvl, - ,,}Sél)’l]d) € HE,Oy where fOT’i =1,..., d7
(6.2)
P W P(Q) — HOY
v; — Pev; defined by

~(i ~(i 1 ;
Pé)vi(w) = (’Pé)vi)g = ?| / vi(x) dy(x) Ve € D,, o€ e,

Then 735 satisfies
(6.3) 1P — @llre(ay < Coha Ve € C2(Q)°

For g € LY(Q), we define Papq € Lag by

(6.4) Pra(e) = ﬁ /K a() da.
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Let nag > 0 be defined by B2). Then, for @ € (WP (Q))%,

(6.5a) divar(Peep) = Pua(div ),
(6.5b) IVaPellzr@ixay < Con IVl (Lo
where C,,, . depends only on Q, p and on naq in a decreasing way.

We can now state and prove the estimates on a discrete solution that we are
seeking. These estimates may be seen as an equivalent for the discrete case of Step
1 of the proof of Theorem [

Proposition 1. Let (u,p, ) € He o X Lag X Lag be a solution to the scheme, i.e.,
system B3). Taking Cs small enough with respect to the data (namely p, M, Q,
a, n) there exists Cy depending only on f, u, M, Q, v, a and on n such that

(6.6) llull1e0+ lPlzz@) + llollrer@) < Ci.

Moreover, for any B € [1,7], there exists Cy depending only on f, M, Q, v, 4,
a, B and n such that

(6.7) Z o] 00,8 |Us| [Q]i < Oy,
o€Eint

where 9o is defined in [€1). In particular, since v > 3, we get by taking S =2 in

(6.8) S Jol us| [o2 < Ca.

0€E&int

Proof. In order to prove Proposition [Il we proceed in several steps. We follow the
proof established in the continuous case to obtain uniform bounds of the approxi-
mate solutions.

Step 1 (Estimates on |lu||1,¢,0 and inequality (6.7). Taking u as a test function in
([3:28), using the Holdér’s inequality and thanks to the fact that the discrete H!
norm controls the L? norm (see Theorem [2]), we have

m . .
(6.9) 5”“”%,5,0 + (4 Nldiv, w72 ) — / pdiv,udx

+Z Z %Fa,e(u(r"—uo”)(uo’ _ua’) S 07

=1 ceEl),
€= D ‘D 7

where C depends only on f and 2. Moreover, by virtue of (B13)),

3
1 1

Z Z §Fa76(uo + o ) - uU Z Z §Fa,e((uo)2 - (Uo’)Q)
=oeerl), =1 el

¢=Do|Dos e=D,|D,,

3
(uo)? 1 o .
:Z Z 2 Z Fo,e:—gcshM( Q||u||2dw—g ||'u,H2dm)
i=1loeel® c€&(D,) Q@ Q
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Since p = o7, Lemma [7] with 8 = v yields
. 1
[ pdivade 5 3 1ol gr usllo < €,
Q o€Eint
where C' depends only on M, v, a, p, 2 and 7.
Consequently
" 1 1
Pl cot g 3 710l 00 uollol? < 5OMA® ey + O
o€Eint

By virtue of Theorem [2] we have h?\AHquw(Qp < C(77)||u||6L6(Q)3 < C(n)|lw
and therefore

E
1,€,0

1
|w|| Lo ()3 < C(n) —==|lull1,£0-
) Vi

Summing these two relations, we thus obtain

I 1 1 a
610) Doty 3 710l o buol [o2 < O+ LOMOCMAL fulf g

o€Eint
and consequently, since o > 1,
1 . _ 1
5 (n = C(n)CsM diam(Q2)* Dllull eo + 3 > vl eon luol 02 < C.
0€Ent
Let us choose C such that 0 < Cy < W; a possible choice is

pn®

(611) 0<Cs < W(Q)a_l.

Then

1
lullieo+ 5 D Alol ooy luol ol < C.
0€Eint

Step 2 (Estimate on ||p||r2(q)). Let m(p) stand for the mean value of p. By Lemma
[0 there exists v = (v1, v2,v3) € HE ()3 such that

{ divo = p— m(p),
[l 3 s < CQllp — m(p) |l 2(c0-

Multiplying (B3B) by Psv (where Ps is defined in Lemma B) and integrating over
Q we have

lp = m(p)|720) < Cllp = m(p) 2@

3
1 ~(i ~(i
3 Y Fagle + o) (P 0)s = (P 0)00),
i=1 6655;27
E=D(,-|DO./
where C' depends on f,Q,n, u,,v, M. Now keeping in mind the definition of the
dual fluxes (see (BI0) and ([BII)) and the definition of | - ||1,¢,0, a technical but
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straightforward computation gives

3
Y Y Fhe 1B, - B

=1 gD

int?

e=D,|D,/

< CHQHLG(Q)HUHQLG(Q)HPEU| 1,E,0

1
< Clpl 20y Ip = M) 220,

where C' depends on f,Q, 7, u, a,y, M. The last inequality is obtained thanks to
the the energy inequality (6.G) to get a bound on |lu||zs(q) (thanks to Theorem [2)
and Holder’s inequality since 2v > 6 and p = ¢”. Consequently

1
I = mP)lz2e) < CUPI Ty + 1

where C' depends on f, p, M, Q, 7, a and on 7. Since [, pi de = Jqodx =M,
Lemma, P gives an L? bound for p depending only on the data. To conclude, we
obtain a L?” bound for the density since p = .

In order to prove (61) for 1 < 8 < ~, let us use Lemma [7] once again to obtain

1 .
3 > Blol 00 luol [0]2 < —/Qgﬁdlkudcc+c,

S

where C' depends on M, 3, u,a,, and 7. Since o is bounded in L**(Q) and
| divag ul[z2(q) is controlled by [|ul|1,¢ 0, this concludes the proof. O

Note that if, in Proposition [I we choose a fixed value of Cj, for instance Cy = 1,
There exists h > 0, depending of the data, such that the conclusions of Proposition
[ are true for haq < h. This is easy to see with (GI0).

7. CONVERGENCE ANALYSIS

The aim of this section is to pass to the limit in the discrete equations (B3al)—
B3d). Asin the continuous case, thanks to the estimates established in the previous
section, taking a sequence of meshes, we can assume the convergence, up to a
subsequence, of the discrete solution to some (u,p, 9), in a convenient sense. We
will first prove that (u, p, o) satisfies the weak form of problem (I)-(T2). We then
prove that p = p7. The first difficulty is the convergence of the discrete convective
term (the second consists in passing to the limit in the equation of state). Indeed
it is not easy to manipulate the discrete convective operator defined with the dual
fluxes. We then introduce velocity interpolators in order to transform the discrete
convective operator. It relies on the reconstruction of each velocity component on
all faces (or edges in 2D) of the mesh. Similar results are used in [16] for the
incompressible case.

7.1. Passing to the limit in the mass and momentum balance equations.

Lemma 9 (Velocity interpolators). For a given MAC grid D = (M, ), we define,
fori,j =1,2,3, the full grid velocity reconstruction operator with respect to (i,j)
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by
(i,3) . gy(@) (4)
R ng,o —>H5’70
(7.1) v REDv= 3" (RVv),1p,,
U'ES-(jt)
where

(7.2) (R(;’i)v)g =, foro € 5.(52,

and, foro = K|L € Si(njt), j#1,
o 1 ,
(7.3) (RUA ), = 1 " wer, No ={0" €D, 0 € E(K)UE(L)}.
o' eNy
For any i = 1,2,3, we also define a projector from Héi) into Laq by

R : HY = L

(7.4) v ROv= 3" (RUv)k 1k,
KeM
where
@y 1
(7.5) (Ryv)x = 5 Z Vg
seEM (K)

Then there exists C > 0, depending only on the regqularity of the mesh (defined by
B2)) in a decreasing way, such that, for any 1 < q¢ < oo and for any i,j =1,2,3,

||Rg’j)v\|Lq(Q) < Clvl|pagy for any v € Hg}),

IRNwl o) < Cllvllzagay for any v € Hy).

Proof. Let us prove the bound on ||Rg’j)v||Lq(Q) ford =2,7i=1and j = 2.
The other cases are similar. In this case, for a given ¢ = K|L € Ei(rft), the edge
o belongs to N, for o’ € {0k, 0%, 0t o4} where ol (resp. o%) denotes the top
(resp. bottom) edge of K, as depicted in Figure @ Let v € H é«%, by definition of
Rg’j)v, noting that [+ (a +b+c+ d)}q < a?+4b?+ ¥+ d?, we have

IRED 010y < D 0ol 1Dy |+ Dyt [+ Doy [+ Dpr ) <4072 >~ Jug|*| Dy,

ocgl) ot
oc=K|L o=K|L
which concludes the proof. O

Lemma 10 (Convergence of the full grid velocity interpolate). Let (M, En)nen
be a sequence of MAC meshes such that haq, — 0 as n — 400, and, for all n,
m, >n>0. Let 1 < g < oo.

Let i,j € {1,2,3}, v € LY(Q) and (vn)nen be such that v, € HS)O and v, con-
verges to v as n — +oo in LI(S2). Let jo) be the full grid velocity reconstruction
operator defined by (CI). Then jo)vn — v in LI(Q) as n — +o0.
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o=K|L

F1GURE 4. Full grid velocity interpolate.

Similarly, if (vn)nen is such that v, € Hg? and v, converges to v asn — 400 in
Li(QY), then, R%nvn — v in LI(Q) as n — oo, where Rsanv is defined by (4.

Proof. We give the proof for R&j ) (the proof is similar for Rg\i/)ln).

Let ¢ € C°(Q). Denoting jo ) by R,, and Péi) (defined by B3)) by P, for
short, we have

Rnvn = v|lLa@) < [IRnvn — Rn © Puvllnaq) + [IRn © Pav = Ry © Prl|La(a)

+Rn 0 Pre = ¢llLa) + I = vllLa(e).-
Since R,vn, = Ry © Prvp, and thanks to the fact that [|R,wl|req) < Cllw|peq)
(for some C' > 0; see Lemma [@) and that ||P,wl|zaq) < [|[w||Leq), we get
Ryvn —vllLa) < Cllon —vllLa) + Cllv — ¢llLaa)
+Rn 0 Pap — @llza) + I — vllLa)-

Let € > 0. Let us choose ¢ € C2°(f2) such that [|¢ — v La9) < 57 There exists
ny such that Cllv, — v|za) < € for all n > ny, and there exists ny such that

[Rn o Pup — ey < &, for all n > ny. Therefore ||R v, — v||paq) < 3¢ for
n > max(ni,ng), which concludes the proof. O

With the above definitions the following algebraic identity holds (a similar iden-
tity is in [21]).
Lemma 11. Let ¢ € Ly and u = (ug,uz,u3) € Heo. Let i € {1,2,3} and let
Y= (Lpg)aeg_u) S HS)O be a discrete scalar function. Let the primal flures Fi , be
giwen by BA) and let the dual fluzes F, . be given by BI0) or BII). Then we

have
3
Z Z Fyeueps = Z Sja
aEEi(rft) EGg(DU) Jj=1
where
Po — Po’

B . w @,
S’L - Z (QUPUU‘DK7‘7| +‘QU' u0/|DK’U/|)(RM UZ)Kd(maaxO")

—
K=[o0o’]
a,o’€€(i)
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and, for j #1i,

QngT Poz — Poq Poy — Poy
S; E D- or T Ug, ) = + (Uy, + Uy )
! (j)| ‘ 4 [(u s 1) d(ma’lﬂwﬂg) (u s 2) d(w@,wm)
TEE,;

int

where (ok)k=1,....a are the four faces (or edges) belonging to EW | neighbors of T,
With Ty Ty, = To, T, = Pe;, B> 0 (see Figure [).

Proof. We write Zaeg_(ig Zeeg(Da) F, cucp, = Z?:l S; with, using (B.10), BI1)

and the centered choice for wu.,

Uy + Uy

1
Si = Z Z 5 [FK,U NKg. o + FK,U’ nK,o’] *Np, e 9 Lo,

(765552 e=o|o’ Egi(jg

ele;,eCK

1 Uy + Uy’ . .
Sj: Z Z~. 5 [FK,T_‘_FL,T/:I%@U) for]#lv
oeel) e:o’\U'EE(”

int int

elej,eCTur’

where 7 and 7' are the faces of £U) such that e C TU 7', 7 € £(K), 7' € (L) and
o =K|L.
For S;, a reordering of the summation and the fact that (u, +uy/)/2 = (RN), Ui ) K

yield
1 (i)
S'L' - ; 5 [FK,O'/ _FK,O'] (RM ui)K(@U_@a’)~
K=[o0o']
U,UIEE(i)

Since Fg , = o]0t u,, this gives

; Po — Po'
s, = Pty | Dico| + 0%t | D or|) (RS 1) s 22—
i Z (QU Jl K70| (e J| Ko D( M ’L)Kd(md;wa/)
K=[o0o']
R TAR

For S, j # i, we have

02 ur
Sj = Z |T| 4 [_(udz—i_udl)(pffl _(u04+u02)(p02
reeld)

int

+ (U’Ul + uds) 9003 + (u02 + u04) 9004}3

where (0%)k=1,...4 are the four neighboring faces (or edges) of 7 belonging to FAON
i.e., such that 7 N &y # 0; see Figure

g1 02

FIGURE 5. Neighboring faces of 7
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Thus,
o7 ur
Sj = Z ‘T| 4 [(U‘Gs +u01)(9003 _@01)+(u04+u02)(¢)04 _9002)]
7'65-(jt)
o ur Yoz = Po, Yoy = Pos
= DT g o > N o o 5 N
> D45 s+ ) 2 (g ) 2

int

]

With the uniform estimates stated in Proposition [Iland the material introduced
above we are able to pass to the limit in the discrete equations (3.3a])—(3.30).

Proposition 2. Let n > 0 and let (D, = (M, En))nen be a sequence of MAC
grids with step size haq, tending to zero as n — +o0o0. Assume that n < naq, for
all n € N, where naq, is defined by B2). Let (tn)nen, (Pn)nen and (0n)nen be
the corresponding sequence of solutions to B3). Then, up to the extraction of a
subsequence:

(1) The sequence (w,)nen converges in (L9(Q))3 where q € [1,6) to a function
u € (H}(Q))? and (Ve, un)nen converges weakly in L?(2)3*3 to V.

The sequence (0n)nen weakly converges to a function o in L*Y(£2),

The sequence (pn)nen weakly converges to a function p in L?(Q),

u and o satisfy the continuous mass balance equation (2.1al).

u, p and o satisfy the continuous momentum balance equation (2.ID)).
0>0 ae and [,odx =M.

Proof. The stated convergences (i.e., points (1) to (3)) are straightforward con-
sequences of the uniform bounds for the sequence of solutions, together, for the
velocity, with the compactness Theorem [B] and the Sobolev inequalities stated in
Theorem[2l Point (6) is an easy consequence of point (2). We refer the reader to [§]
for the proof of point (4). Let us then prove point (5), i.e., that u, p and p satisfy
(D). Let ¢ = (1,92, 3) be a function of C°(Q)3. Taking P, ¢ € He, o as a
test function in (B28]), we infer:

/QdiVEH(Qnun ® Up) -ﬁgncpdw + u/QVgnun : Vgnﬁgngodw

+(u+A)/

div pq, wp divag, (P, o da — / pn divag, Pe, ) da
Q Q

= / Pe, f - ﬁgnwdm.
Q

The convergence of the diffusive term may be proven by slight modifications of
a classical result [6, Chapter III]:

lim Ve, : Ve, (Pe, ) de = / Vu : Vede.
Q

n——+oo Q

By definition of Pg, ¢ and thanks to Lemma B we have

/ pn divag, (Pe, @) dae = / pn divede,
Q )
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and therefore, thanks to the L? weak convergence of the pressure,

lim pn divag, (Pe, @) da = / p divpde.
Q

n—-+oo Q

By virtue of the L? weak convergence of div g, u,, we also have

lim divpg, Uy divag, (Pe, @) da = / divu divede.
Q

n—-+oo Q

From (63) and the strong convergence of Pg, f towards f, we infer that

lim ?gnf-ﬁgngoda::/f-cpdw.
2 Q

n—-+o0o ¢

Now it remains to treat the convective term. Here again the dependency of the
mesh on n will be omitted for short. First of all we have

/dlvg (OnUn @ Uy) - Pg wdw—z Z Z F, eue(Pg ©i)o-

oceld) ec€(Dy)

int

Let 1 <4 < 3. Using Lemma [II, we can write, setting (75&)%-)0 = 1), and using
the notations of Lemma [IT]

3

Z Z Fa,eue(ﬁéi)(pi)a = Z Sj7

oeell) ce€(D,) Jj=1
where
Si= 3 (0l Dicol + 0 ttor | Dic.or ) (R ) 2= L
— d(wa'y 330-/)
K=[o0o']
U,U'EE(i)

and, for j # i (see Figure [l for the definition of oy, k =1,...,4),

Q‘r Ur Poz — Poy Pos — Poy
S; = D, o o1) S o o2) g
e 0 25 ) 2

int

Replacing, in S;, 0*P by ok, the term S; can be written as S; = S; + R, with

_ 7 '(/)0' wa
Si = (0Kto|Dic.o| + 0tor| Dic.or [ (RS i) e~ T
2 MUK G
K=[o0o']
o',a'/eg(i)

Thanks to the weak convergence of ¢ in L?(f2), the convergence of u in L*(Q)3,

Lemma [I0] and the uniform convergence of the term (1(4%) to —0;p;, we obtain

lim S; = —/ ou;u;0;p; de.
Q

n—-+oo

Furthermore, using Holder’s inequality and inequality (€8], one has |R;| < C\/hnm,
and then

lim Si = —/ Quiuiaigoi dex.
Q

n——+00
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For j # ¢ we can write S; = Sj + R; with

S o ur
Sj=— Z |D-| 4 [(Uoy + g, ) Ojpi(T7) + (Uoy + Usy) Ojpi(T7)]
regld)

int

== Y D0 ur (RED wi) - 0501 (s,
TEE(])

int

and |R;| < Chp, thanks to the L? bound for g, the L* bound for u, Lemma [0 and
the regularity of ¢;.

Now, as for Sl, we replace 0" by ok or g, (for 7 = K|L), the term S; can be
written as S; = S + R with

Si== > (

regly)

int

Yur (RED )0 0i( 7).

As for S; (weak convergence ¢ in L?(f), convergence of u in L*(Q)3, Lemma [I0
and regularity of ¢;), we obtain

lim S / ou;u;0;p; doe.
Q

n——+oo

Furthermore, using Holder’s inequality and inequality (8], one has |R;| < C+/ha,
and then

lim §; = —/ ouu;0;p; de.
Q

Summing the limit of S; for j =1,2,3, we obtain

li Fae EP i)o = Q -V zd
Jm Y Y FenPEleg, == [ mow-Voda
065()668(D)

int

Now, summing for ¢ € {1,2,3} we obtain
/ divg (0ntn @ up) - pdx — —/ ou®@u: Vedr as n = +oo.
Q " Q

Finally w, p, ¢ satisfy point (5) and the proof of Proposition 2is complete. O

7.2. Passing to the limit in the equation of the state. The goal of this part is
to pass to the limit in the nonlinear equation (33d). As in the continuous case, the
main idea is to prove the a.e. convergence of g, towards g (up to a subsequence).

7.2.1. The effective viscous fluxz. To overtake this difficulty in the continuous case
we have proved that the sequence of approximate solution satisfy (ZI3). The
following proposition is nothing else than the discrete version of this identity.

Proposition 3 (Convergence of the effective viscous flux). Under the assumptions

of Proposition 2] we have for all p € C2°(Q2),

(7.6)  lm [ (pn = (A+2p)div,, wn)onp da = / (P = (A +2p) div w)op de,
nmTeeJa Q

passing to subsequences if necessary.
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Proof. The following proof can be seen as a discrete version of Step 3 of the proof
of Theorem [l _ _
Let ¢ € C°(Q). For a MAC grid M, we define s € L, go(gz) € Hé% by:

om(x) =p(xk) Ve € K, VK € M,

ap(gi)(:c) = p(x,) YV € D,, Yo e £V

We define w,, with [@8) (with M,, and g, instead of M and p) and v,, with
v, = —Ve w,. WesetV, = Vi1, V2, V) = (vn,lcpgj,vn,gwg,vnﬁggp‘(ggg).

Thanks to Lemma[6] since ,, is bounded in L?(2), the compactness Theorem []
gives that, up to a subsequence, as n — 0o, v,, converges to some v = (v1, Vg, v3) in
L% ()% and that v € Hj, (). As a consequence, using Theorem 2] the sequence
(Vo)nen converges to @v in L9(Q)3 for any ¢ € [1,6). As a consequence of the
compactness Theorem [3 we also have that div,, w,, and curl, u,, converge weakly in
L?(2) towards divu and curl u.

Since V,, € Hg,, o, it is possible to take V,, in (8:28) and write, using Lemma [4]
(7.7) /Q divg (0ntn ®@un) - Vade + (A +2p) /Q divag, ty divag, Vi, de

—i—u/curanun-curanVnda:—/pndian Vnde/Pgnf-Vndw,
Q Q Q

where we have used formula (£4]). We now mimick the proof given in the continuous
case for the proof of ([2I4)). Since divag, v, = o, we first remark that

/ divag, ty divag, Vi dae = /(dian Uy ) onp dx

(7.8) @ @

+ / (divpm,, upn)vy - Voda + Ry p,
Q

where lim,, {00 R1, = 0, thanks to the discrete H!(Q)-estimate (6.6) on wu,, and
the L? () estimate of Lemma [ on v,. Replacing diva, u, by p,, the same
computation gives:

(7.9) / Pn divpy, Vi de = / Pnone da + / Py - Voda + Rs p,
Q Q Q

where lim,,_, o Ra,, = 0. In accordance with [§], the second term of (77 can be
transformed as follows:

/ curlag, wy, - curlpyg, V,, de = / curlpg, wy, - curlpyg,, vy, @de
Q Q

(7.10)
—l—/ curlp, - L()0, de + R3
Q

where lim,,_, o R3, = 0 (for the same reasons as Rj ), the matrix L(yp) is the
same as in the proof of (2I4) and involves the first order derivatives of ¢, and o,
satisfies

(7.11) T, — v in L (Q)% as n — 4o0.

We refer the interested reader to [§] for an explicit expression of U,, and for a proof

of (Z11)).
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Since curlpg, vy, = 0, ([ZI0) leads to:

(7.12) / curlpg, uy, - curlpyg, Vy, de = / curlpg, wy - L(9)0, dz + R3 .
Q Q

Let us turn our attention to the convective term. For the readability, the depen-
dency of some terms with respect to n will be omitted when there are indices related
to the mesh (such as o, €, 7).

One has

dlvg (Qnun®un -V, dac—z Z Z F, cueVs,

=1 5egll) ec€(Dy)

where V, is the value of V,, ; in D,,. Let i € {1,2,3}. Setting Q,, = Zaes.”) Qslp,
with Q, = (1/|Ds|) ZeEE ) Fo.cuc, one has

(7.13) >y Fmeuevg:/@nvn,idm.
Q

oeell) ce€(D,)

We recall that V,,; — ¢v; in L1(Q) for ¢ < 6 (as n — +00). In a first step, we
prove that the sequence (Qp)nen is bounded in LP () for some p > 6/5 (indeed
we will have p such that 1/p =1/(2y) +1/2+1/6 and then p > 6/5 since v > 3).
Then, up to subsequence, @, — @ weakly in LP(Q). In a second step we identify
@, proving that @ = 923:1 u;0jU;.

- Estimate on ,,. For o € é’i(rft), we use [BI3). It gives

(7.14) Y Focte —ug) = Cshiylon, — 0")us

‘ o] ec&(D,)

Let € € £(D,) such that e = olo’ € 51(;t
o Ifel e;, e C K, then

(lol0g” luq| + lo’leg" [ue)-

N =

1
|F0€|< (|FKJ|+|FKU|)S

o Ifelej, j#14, e CTUT, where T and 7’ are the faces of £U) such that
eCtUT, T€&(K), 7 €&(L), 0 = K|L, then

|Fa,e

(Il [ur] + 7|77 [ur]).

N | —

1
< §(|FK,T| +|Frq) <

Using the estimates on ¢ in L*7(2), w in L%(Q), Vzu,; in L?(Q) and the fact that
Ny, > n for all n, the part of Q given by the first term of (TI4) is bounded in LP(2)
with p such that 1/p = 1/(2y)+1/2+1/6. The part of @ given by the second term
of (TI4) tends to 0 in L3/%(Q) for instance (since g is bounded in L?(Q) and u in
L5(Q)) and then also in LP(Q2). Thus, up to a subsequence, we can assume that
Qn — Q weakly in LP(2) and this gives

(7.15) lim /Qan dw:/Qcpvi dx.
Q

n—-+oo Q
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- Identification of Q. Let ¢ € C(Q). For o € El(nt, let g5 = (73295)0
Then, for h,, small enough,

/ Qn@dm = Z Z Fo,eue@o-
@ G’Egi(;t) eeg(Da)
We already passed to the limit on this term in Proposition
Jm 30> FeaudPE)e)o = /Quigu Ve da.
ocell) ce€(D,)

Then [, Qpde = — [, ujou - Vpde. Since we already know that div(ou) = 0 we
obtain (using u; € H'(Q2) and pu € L*(Q)?)

3
Q= Z ou;05u;.
j=1
Finally, we have the limit of the convection term:
3

(7.16) lim dlvg (Ontn @ up) - Vydae = / ZZQUJ Oju;)pv; de.

n—-+oo
=1 j=1

We recall now that (V;,),en converges to pv in L4(Q)3 for any ¢ € [1,6) and that
divaq, Un, pn and curlpyg, u, weakly converge, respectively, in L2(2) and L?(2)?
to divu, p and curlw. Then, using (C8)-(C12), we deduce from (1) and (Z10):

lim (()\ + 2p)div, u, — pn) onpdr = / (p — (A +2u) div u) v-Vode
Q

n—-+oo Q

— it [ ewlu- (Lppw)de = [ ol V) pode+ [ f-vpde

Finally, since p,, and u,, are solution of the discrete momentum balance equations,
we already know, thanks to the estimates on p, and g,, that the limits p and u
are solution of the momentum balance equation; hence, since v € Hj,(2)? and in
accordance with the continuous case:

/Q ((2u+)\)divu—p) (divv)godw—/ggu@u : V(pv)de

= / ((p —2u+ N divu)v - Vo — peurlu - (L(p)v)
Q
— peurlu - curlvp + f - wp) dx.

Moreover we know that div(pu) = 0 and (o, u) € L5(Q2) x H (2)? and consequently
Joou®u : V(pv)de = — [, o(u - Vu) - pvde. Since divpy, v, and curly, v,
converge weakly in L? (£2) towards div v and curl v, one has divv = p and curlv =
0 and therefore

/Q ((2u +A)divu — p) opdx
= /Q ((p —2u+ N divu)v- Vo — p(curlu) - L(go)v) dex

—/g(u~Vu)~<pvda:+/f~v<pdw.
Q Q
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Then, we obtain the desired result, that is,

(7.17) Er}rl (P — (A4 2u) divag, wy) onpde = / (p— (A +2u)divu) gp de.
n—+oo Jo Q

]

7.2.2. A.e. and strong convergence of o, and p,. Let us now prove the a.e. con-
vergence of g, and p,. Using [9 Lemma 2.1], one can take ¢ = 1 in (Z.8), which
gives

lim (pn — 2u+ A) divag, up)o, de = / (p— 2u+ N)diva u)ode.

n—-+oo Q Q
Now using Lemma [7 and (Z3]) we obtain the discrete version of ([2I4)), that is,
(7.18) lim Sup/ D On dx < / podzx.
n—+o0o JQ Q

Let G, = (0] — 0")(on — 0)- One has G, € L'(Q2) and G,, > 0 ae. in Q.
Furthermore,

/Gndw=/pngndw—/pn9dw—/ Q”Qnder/ o’ od.
Q Q Q Q Q

Using the weak convergence in L%(Q) of p,, and g, and ([TI8]), we obtain

lim sup/ G,dx <0.
n—+oo JO

Then (up to a subsequence), G, — 0 a.e. and then g, — p a.e. (since y — y?

is an increasing function on Ry). Finally, o, — o in LI(Q) for all 1 < ¢ < 27,

Pn = 0) — 0¥ in L1(Q) forall 1 < ¢ < 2, and p = 7. We have thus proved

the convergence of the approximate pressure and density, which, together with

Proposition 2, concludes the proof of Theorem [l

8. CONCLUSION

In this paper, we considered the MAC scheme for the stationary barotropic
compressible Navier-Stokes equations and proved its convergence in the case v > 3.
This latter restriction on v is used when writing the nonlinear convection term as
in (2I3) in order to prove its convergence in the continuous case, in a manner that
adapts to the discrete case, which is the case here with the convergence of @,, in
[C13). So far, it is an open question to find a technique of convergence of the
nonlinear convection term that would adapt to the discrete case without requiring
this condition.

APPENDIX A. EXISTENCE OF A DISCRETE SOLUTION

This section is devoted to the proof of Theorem [l We now state the abstract
theorem which will be used hereafter.

Theorem 6. Let N and M be two positive integers and V be defined as follows:
V= {(z,y) e RN xRM, y >0},

where, for any real number c, the notation y > ¢ is meant componentwise. Let F
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be a continuous function from V x [0,1] to RN x RM satisfying:

(1) for all ¢ € [0,1], if v € V s such that F(v,{) = 0, then v € W where
W = {(z,y) e RN x RM |jz]| < C1, and e <y < Ca}, with C; , Ca, and
e >0 and || -|| a norm defined over RY;

(2) the topological degree of F(-,0) with respect to 0 and W is equal to dy # 0.

Then the topological degree of F(-, 1) with respect to 0 and W is also equal to dy # 0;
consequently, there exists at least a solution v € W such that F(v,1) = 0.

Let us now prove the existence of a solution to ([B.3]). Let us define
V = {(’U,,Q) S H570 X LM, 0K > OVKEM}
and consider the continuous mapping

F: Hg,o X L X [0,1] —>H£70 X L
(w, 0,¢) = F(u, 0,¢) = (u,0),

where (@, ) is the unique element of Hg ¢ x Ly such that

/ﬂ-vdm:p[u,v]l,gvo—l—(u—l—)\)/divMudivadm
Q Q

(A1) —|—C/dng(gu®u)~vda:—C/ o diva—/’ng-vdzc Vv € Hg o,
Q Q Q

(A.2) /@qdmz(/divﬂ(gu)qda:—i—/CSh%l(g—g*)qdw Vg € L.
Q Q Q

Note that the values of u;, i = 1,...,d, and ¢ are readily obtained by setting in
this system v; = 1p,, v; = 0,7 # i in (AJ) and ¢ = 1x in (A2).

Any solution of F(u,0,1) = 0 is a solution of problem (B3] where p = o7.
The mapping F' is continuous. Let (u,0) € Hgg x Ly and ¢ € [0, 1] such that
F(u,0,¢) = (0,0) (in particular ¢ > 0). Then for any (v,q) € Hg g X L,

C/ divz(ou ® w) dz + plu, v]1 g0 + (L + ) / div g udivay vde
Q Q
(A.3a) —C/g"* divada::/ng"-vdac7
Q Q
(A.3b) (/Qdivﬁ(gu) gdx + /Q CshS(0 — 0")gdx = 0.

Taking ¢ = 1 as a test function in (A3h]), and using the conservativity of the fluxes
we obtain

(A.4) / odx = ||QHL1(Q) =M > 0.
Q

This relation provides a bound for ¢ in the L' norm, and therefore in all norms
since the problem is of finite dimension.

Taking u as a test function in (A3al) and following Step 1 of the proof of Propo-
sition [ gives

(A.5) lull1,e,0 < Ch,
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where the constant C; depends only on the data of the problem and not on . Now
a straightforward computation gives

CS minLeM |L|h%g*
0K 2 =
CohfalU + > pee
Consequently by virtue of (A5 there exists € > 0 such that
(A.6) ok >¢ VK eM,

where the constant & depends only on the data of the problem. Clearly, from (A.4),
one has also

(A7) oK <

o=k|r 1ollurq|

int

M

— =0y —-1 VK )
ming e | K| C VEeM

Moreover the system F(u, 0,0) = 0 reads

(A.8a) plu,v]i g0+ (n+ )\)/ divy udivy vde = / Pef -vdx VveHgy,
Q Q
(A.8b) ox =0 VK e M.
which has clearly one and only one solution. Let W be defined by
W ={(u,0) € Hg o x L such that ||ul| < C1, € < pg < Ca}.

Since F'(u, 0,0) = 0 is a linear system which has one and only one solution belonging
to W, the topological degree dg of F(-,-,0) with respect to 0 and W is not zero.
Then, using the inequalities (AH), (A6), (AT), Theorem Blapplies, which concludes
the proof.
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