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RUNGE-KUTTA METHODS FOR LINEAR SEMI-EXPLICIT

OPERATOR DIFFERENTIAL-ALGEBRAIC EQUATIONS

R. ALTMANN AND C. ZIMMER

Abstract. As a first step towards time-stepping schemes for constrained PDE
systems, this paper presents convergence results for the temporal discretization
of operator DAEs. We consider linear, semi-explicit systems which include
e.g. the Stokes equations or applications with boundary control. To guarantee
unique approximations, we restrict the analysis to algebraically stable Runge-
Kutta methods for which the stability functions satisfy R(∞) = 0. As expected
from the theory of DAEs, the convergence properties of the single variables

differ and depend strongly on the assumed smoothness of the data.

1. Introduction

The mixture of partial-differential equations (PDEs) and differential-algebraic
equations (DAEs) provides a promising modeling approach for the simulation of
(coupled) physical systems. These so-called PDAEs or operator DAEs follow the
paradigm of including all available information to the system rather than implicitly
eliminating variables. Typical applications are given by the Navier-Stokes equations
with the incompressibility as constraint [Tem77,EM13], flexible multibody systems
[Sim00, Sim13], circuit networks constrained by Kirchhoff’s laws [Tis96,Tis03], or
the gas transfer in pipeline networks [GJH+14,JT14].

Simultaneously, these simplifications in the modeling lead to difficulties in the
mathematical treatment, i.e., in the analysis and numerical simulation of such sys-
tems. It is well known that DAEs suffer from instabilities, drift-off phenomena, and
ill-posedness [GM86,KM06,LMT13], which carries over to the infinite-dimensional
PDAE case [Alt15]. Thus, regularization techniques are needed which are called
index reduction in the DAE case [HW96]. A corresponding procedure for operator
equations was introduced in [Alt13,AH15].

In this paper, we consider linear operator DAEs of semi-explicit structure, i.e.,
systems of the form

u̇(t) +Ku(t)−B∗p(t) = F(t),(1.1a)

+ Bu(t) = G(t)(1.1b)
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with linear, continuous operators K, B and abstract functions F , G with values
in duals of some Hilbert spaces V and Q, respectively. The solution consists of
the abstract functions u : [0, T ] → V and p : [0, T ] → Q. This includes the linear
Stokes equations in which the Lagrange multiplier p equals the pressure as well as
parabolic PDEs with boundary control.

The aim of this paper is to provide convergence results for a specific class of
Runge-Kutta schemes applied to operator DAEs of the form (1.1). In contrast to
ODEs, the application of Runge-Kutta schemes to DAEs may lead to a reduction of
the convergence order or even a loss of convergence; cf. [Pet86,HLR89] or [KM06,
Ch. 5.2]. For DAEs of index 2 the convergence of implicit Runge-Kutta schemes is
often preserved. However, the order of convergence may be limited by two [Arn98].

The convergence of Runge-Kutta methods applied to parabolic PDEs was already
discussed in [LO93, LO95]. However, these papers mainly work in the framework
of semigroups and not in the setting presented here with Gelfand triples and weak
regularity assumptions on the data. The analysis presented here is mainly based
on [ET10], where stiffly accurate Runge-Kutta methods were applied to nonlinear
evolution equations with an hemicontinuous, monotone, and coercive operator.

First results on the convergence of the implicit Euler scheme for semi-explicit
operator DAEs were presented in [Alt15, Ch. 10]. For the special case of the Navier-
Stokes equations, the implicit Euler scheme and a two-step BDF method were
analyzed in [Emm01]. Of special interest for the constrained operator case (1.1) is
the convergence of the Lagrange multiplier p. To show the convergence towards p
we need to assume more regularity than for the convergence of u.

The paper is structured as follows. In section 2 we introduce the problem class
and the used notation within the paper. Since the considered operator DAEs are
unstable in terms of perturbations, we consider a regularization of the system equa-
tions in section 3. We use the resulting system to prove the convergence of the im-
plicit Euler scheme in section 4 and consider general implicit Runge-Kutta schemes
in section 5. Finally, we conclude and give an outlook in section 6.

2. Preliminaries

For a better understanding of the convergence analysis in sections 4 and 5, we
summarize some properties of Runge-Kutta methods applied to DAEs. Then, we
provide the functional analytical framework for the formulation and analysis of
semi-explicit operator DAEs of the form (1.1). For this, we define suitable Sobolev-
Bochner spaces for the solution and discuss necessary properties of the involved
operators and right-hand sides.

2.1. Runge-Kutta methods for DAEs. A Runge Kutta method is defined by
the Butcher tableau

(2.1)
c A

bT

with b, c ∈ R
s and A ∈ R

s×s; see also [HW96, Ch. IV.3]. Therein, s denotes the
number of stages. It is well known that for the numerical treatment of DAEs it
is necessary that A is invertible, i.e., that the method is implicit [KM06, Ch. 5.2].
This remains true when the methods are applied to infinite-dimensional operator
equations with constraints.
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Consider an initial value problem of a regular, linear, and time-invariant DAE

Eẏ = Ky + f(t), y(0) = y0

with a sufficiently smooth right-hand side f : [0, T ] → R
n and a unique solution

y ∈ C1([0, T ];Rn). Note that, considering the DAE case, we do not assume the
matrix E to be invertible.

With the Kronecker product [HJ91, Def. 4.2.1] given by ⊗, one step of an implicit
Runge-Kutta method with constant step size τ leads to the iteration scheme

yj = (1− bTA−1
�s)yj−1 + (bTA−1 ⊗ In)yj ,(2.2a)

1

τ
(A−1 ⊗ E)(yj − �s ⊗ yj−1) = (Is ⊗K)yj + Fj .(2.2b)

Therein, yj ∈ R
n is an approximation of y(tj) with tj = jτ , and yj ∈ R

s·n are the
so-called internal stages. Furthermore, Fj ∈ R

s·n is defined by

Fj =
[
f(tj−1+ τc1)

T , . . . , f(tj−1+ τcs)
T
]T ∈ R

s·n and �s =
[
1, . . . , 1

]T ∈ R
s.

In the following, we consider Runge-Kutta schemes that satisfy

R(∞) := 1− bTA−1
�s = 0.

In this way, the stability function R vanishes in the limit which controls the damping
of the stiff components in the system [HW96, Ch. IV.3]. This assumption guarantees
that (1 − bTA−1

�s)yj−1 vanishes in equation (2.2a) such that the values of the
previous step are not needed for variables which are in the kernel of E. Thus,
algebraic variables are not treated as differential variables.

An important class of Runge-Kutta schemes in the numerical treatment of DAEs
are so-called stiffly accurate methods [KM06, Ch. 5.2].

Definition 2.1 (Stiffly accurate). A Runge-Kutta scheme with s stages and Butcher
tableau A, b, c is called stiffly accurate if b satisfies bT = eTs A with es =
[0, . . . , 0, 1]T ∈ R

s.

Note that stiffly accurate schemes automatically satisfy the above-mentioned
assumption, since

R(∞) = 1− bTA−1
�s = 1− eTs �s = 0.

In particular, the approximation yj is given by the last n components of yj .

Example 2.2. A stiffly accurate Runge-Kutta method of second order with two
stages is defined by the Butcher tableau

A =

[
−3.25 6.25
−0.25 1.25

]
, b =

[
−0.25
1.25

]
, c =

[
3
1

]
.

Definition 2.3 (Algebraically stable [BB79]). A Runge-Kutta scheme with Butcher
tableau A, b, c is called algebraically stable if b has only nonnegative entries and
BA+ATB−bbT is positive semidefinite with the diagonal matrix B ∈ R

s×s given
by Bjj = bj .

Within this paper, we will assume that the operator K is elliptic on a subspace.
The property of being algebraically stable then ensures that this remains true for
the time discretized problem. This characteristic has proven to be crucial for the
time discretization of parabolic equations [LO95].
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2.2. Spaces and embeddings. The spaces V , H, and Q appearing in the analysis
of the operator DAE (1.1) are Hilbert spaces. The Hilbert space V is continuously
and densely embedded in the pivot space H such that we have a Gelfand triple
[Zei90, Ch. 23.4] given by

V ↪→ H ∼= H∗ ↪→ V∗,

where V∗ and H∗ denote the dual spaces of V and H, respectively. Note that ↪→
denotes a continuous embedding throughout the paper. The space V serves as
ansatz space for the variable u, whereas Q is the ansatz space for p. The dual space
of Q is denoted by Q∗.

As a solution of the operator DAE (1.1) we search for abstract functions u : [0, T ]
→ V , p : [0, T ] → Q. For this, we introduce L2(0, T ;X ) as the space of quadratic
Bochner integrable functions with values taken in the Hilbert space X ; see, e.g.,
[Zei90, Ch. 23.2] or [Rou05, Ch. 1.7] for an introduction. Furthermore, we con-
sider the space of Bochner integrable functions which have a time derivative in the
distributional sense, i.e.,

W 1,2(0, T ;X ,Y) :=
{
x ∈ L2(0, T ;X )

∣∣ ẋ exists in L2(0, T ;Y)
}

for Hilbert spaces X , Y with X ↪→ Y . In the case X = Y , we also write H1(0, T ;X )
:= W 1,2(0, T ;X ,X ). Of great importance for the convergence analysis are the
subspaces of V and H including the kernel of the linear constraint operator B : V →
Q∗. For this, we define

VB := {v ∈ V | Bv = 0} = kerB
and introduce its annihilator by

V0
B :=

{
f ∈ V∗ | 〈f, vB〉 = 0 for all v ∈ VB

}
⊆ V∗.

Since we assume the operator B to be linear and continuous, VB is a closed subspace
of V . The closure of VB in H is denoted by HB. We emphasize that the spaces
VB, HB, V∗

B form again a Gelfand triple. Under the assumptions on the operator
K : V → V∗, which we discuss in section 2.3, we note that the space

Vc := {v ∈ V | Kv ∈ V0
B}

is a closed subspace of V and forms a complement to VB.
For the application of Runge-Kutta methods to operator equations, we need the

above spaces in s components. This is necessary in order to define generalized state
vectors. For this, we introduce

Vs := Vs, Hs := Hs, Qs := Qs, VB,s := (VB)
s, Vc,s := (Vc)

s.

Accordingly, we define the dual spaces V∗
s , V∗

B,s, and Q∗
s.

2.3. Norms and operators. For the norms and inner products of the Hilbert
spaces V and H we use the abbreviations

‖ · ‖ := ‖ · ‖V , | · | := ‖ · ‖H, (·, ·) := (·, ·)H.

All dual spaces are equipped with the standard operator norm. The operators
K : V → V∗ and B : V → Q∗ in the operator DAE (1.1) are assumed to be linear,
continuous, and time-independent. Furthermore, K is elliptic on VB, i.e., there
exists a constant α > 0 with

α ‖v‖2 ≤ 〈Kv, v〉
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for all v ∈ VB. With these assumptions on the operators, we obtain a decomposition
of the space V .

Lemma 2.4. Let VB and Vc be defined as in section 2.2. Furthermore, let B be
linear and continuous and K linear, continuous, and elliptic on VB. Then, VB and
Vc are closed subspaces of V and we have the splitting V = VB ⊕ Vc.

Proof. By the linearity and continuity of B and K it follows that VB and Vc are
closed subspaces of V . The ellipticity of K shows that v ∈ VB ∩ Vc implies v = 0.
It remains to show that V ⊆ VB ⊕ Vc. Let u ∈ V be given. By the Lax-Milgram
theorem there exists a unique uB ∈ VB with 〈KuB, vB〉 = 〈Ku, vB〉 for all vB ∈ VB
[Bre10, Cor. 5.8]. We define uc := u− uB and observe

〈Kuc, vB〉 = 〈Ku, vB〉 − 〈KuB, vB〉 = 0

for all vB ∈ VB such that Kuc ∈ V0
B and, thus, uc ∈ Vc and V ⊆ VB ⊕ Vc. �

In addition to the linearity and continuity, the operator B : V → Q∗ is required
to fulfill an inf-sup condition, i.e., there exists a positive constant β ∈ R such that

(2.3) inf
q∈Q\{0}

sup
v∈V\{0}

〈Bv, q〉
‖v‖‖q‖Q

≥ β > 0.

This condition implies that B is surjective and, thus, its adjoint operator B∗ is
injective. Therefore, we get isomorphisms if we restrict the domain of definition
of B and the range of B∗.

Lemma 2.5. Let Vc and V0
B be defined as in section 2.2 and let B satisfy the inf-

sup condition (2.3). Then, the restriction B : Vc → Q∗ is an isomorphism as well
as B∗ : Q → V0

B.

Proof. The second statement can be found in [Bra07, Lem. III.4.2]. The quoted
lemma also proves the existence of a right inverse B−

⊥ : Q∗ → V⊥
B ⊆ V from B,

where V⊥
B denotes the orthogonal complement of VB in V . Since VB and Vc are

closed subspaces of V = VB ⊕ Vc, there exists a projector PB : V → VB ⊆ V
with kernel Vc; cf. [BK14, Th. 4.42]. The definition of B− : Q∗ → Vc ⊆ V by
B− := (idV −PB)B−

⊥ then implies

BB− = B idV B−
⊥ − BPBB−

⊥ = BB−
⊥ = idQ∗ .

Thus, B− is a right inverse of B. As a result, there exists a bounded inverse of the
restriction B : Vc → Q∗. �

Remark 2.6. Since VB is densely embedded in HB, we may define Bh := 0 for
h ∈ HB. For this, consider a sequence vn ∈ VB such that vn → h in HB. This
sequence then satisfies 0 = Bvn.

Remark 2.7. Consider u ∈ W 1,2(0, T ;V ,V∗) with the unique decomposition u =
uB + uc and u̇B ∈ HB and u̇c ∈ Vc. Then, we write u ∈ W 1,2(0, T ;V ,HB + Vc) and
define Bu̇ by

Bu̇ = Bu̇B + Bu̇c = Bu̇c,

which is then well-defined by Remark 2.6 above.
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3. Regularization

The spatial discretization of the linear semi-explicit operator DAE (1.1) leads to
a DAE of differentiation index 2. Recall that the index measures, loosely speaking,
the distance of a DAE from an ODE and, thus, provides a measure of difficulty
[Meh13].

Motivated by the GGL formulation for multibody systems [GGL85], we include
the hidden constraint by the introduction of an additional Lagrange multiplier.
Such a regularization is necessary, since operator DAEs are highly sensitive to
perturbations [Alt15]. The proposed regularization makes the system more robust
and achieves that a spatial discretization leads to a DAE of index 1 rather than
index 2.

3.1. Formulation as operator DAE. With the introduction of suitable ansatz
spaces for the solution in Section 2.2, we formulate once more problem (1.1):
For given right-hand sides F ∈ L2(0, T ;V∗) and G ∈ H1(0, T ;Q∗) find u ∈
W 1,2(0, T ;V ,V∗) and p ∈ L2(0, T ;Q) such that for a.e. t ∈ [0, T ] it holds that

u̇(t) +Ku(t)−B∗p(t) = F(t) in V∗,(3.1a)

+ Bu(t) = G(t) in Q∗.(3.1b)

In addition, u should satisfy an initial condition of the form u(0) = a ∈ H. Note that
the embedding W 1,2(0, T ;V ,V∗) ↪→ C([0, T ];H) implies that u(0) is well-defined
in H; see [Zei90, Ch. 23.6]. We assume the initial data to be consistent, i.e, a should
be compatible with the constraint (3.1b); see the discussion in [Alt15, Rem. 6.9].
This means that a has the form a = aB + B−G(0) with aB ∈ HB. As introduced in
section 2.3, the operator B is linear, bounded, and fulfills an inf-sup condition such
that there exists a right inverse B− : Q∗ → Vc by Lemma 2.5. The operator K is
linear, bounded, and elliptic on VB. For a discussion on the existence of a unique
solution (u, p), we refer to [Tar06,EM13].

Example 3.1 (Unsteady Stokes equations). The weak formulation of the linear un-
steady Stokes equations with homogeneous Dirichlet boundary conditions, which
characterize the evolution of a Newtonian fluid [Tem77], can be written as an op-
erator DAE of the form (3.1). The variable u then describes the velocity of the
fluid whereas p denotes the pressure which is assumed to have zero mean. For this,
we consider the weak formulation, i.e., the operator K : V → V∗ corresponds to the
Laplace operator and is defined by

〈Ku, v〉 := ν

∫
Ω

∇u · ∇v dx.

The operators B : V → Q∗ and its dual B∗ : Q → V∗ correspond to the divergence
and (minus) the gradient operator, respectively. For the application of the Stokes
equation, we consider the Hilbert spaces

V := [H1
0 (Ω)]

d, H := [L2(Ω)]d, Q := L2(Ω)/R.

Therein, Ω ⊆ R
d denotes the bounded computational domain with Lipschitz bound-

ary. The space VB are the divergence-free functions of [H1
0 (Ω)]

d. Its closure HB is
the subset of functions in [L2(Ω)]d with a vanishing divergence in the distributional
sense and vanishing trace in normal direction [Tem77, Ch. 1.4].
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Example 3.2 (Heat equation with boundary control). The constraint may also be
used for boundary control [HPUU09]. For this, B equals the trace operator, i.e.,
B : V := H1(Ω) → Q∗ := H1/2(Ω); cf. [Tar07, Ch. 13]. The operator K would
again correspond to the Laplace operator as in Example 3.1. Since the closure of
VB = H1

0 (Ω) in H := L2(Ω) equals H itself, the initial data only has to satisfy
a ∈ H, i.e., there is no consistency condition.

For the regularization of system (3.1) we extend the system by a Lagrange mul-
tiplier λ : [0, T ] → Q. With this, we enforce the system to satisfy additionally the
hidden constraint, i.e., the derivative of constraint (3.1b).

3.2. Finite-dimensional case. Consider the DAE which results from a spatial
discretization of system (3.1) by finite elements. With the positive definite mass
matrix M ∈ R

nq,nq as discretized version of (·, ·), the matrix K ∈ R
nq,nq as discrete

version of K, and the constraint matrix B ∈ R
nr,nq , which we assume to be of full

rank, the DAE has the form

Mq̇(t) + Kq(t)−BT r(t) = f(t),(3.2a)

Bq(t) = g(t).(3.2b)

Therein, q = [qi] ∈ R
nq denotes the coefficient vector to a given basis of the finite

element space which approximates the solution u ∈ V . The vector r = [ri] ∈ R
nr

corresponds to the variable p ∈ Q in the continuous setting. The initial condition
is given by q(0) = q0 and is consistent if Bq0 = g(0). It is well known that the
DAE (3.2) is of index 2 [HW96, Ch. VII.1].

As mentioned above, we reduce the index, and thus regularize the system equa-
tions, by adding the hidden constraint and an additional Lagrange multiplier μ ∈
R

nr . With some regular matrix C ∈ R
nr,nr , the extended DAE reads

Mq̇(t)+Kq(t)−BT r(t)−BTμ(t) = f(t),(3.3a)

Bq(t) − Cμ(t) = g(t),(3.3b)

Bq̇(t) = ġ(t).(3.3c)

In the following lemma we show that this system is equivalent to the DAE (3.2)
but lowers the index.

Lemma 3.3. The DAE (3.3) has index 1. For consistent initial data q0 ∈ R
nq ,

i.e., Bq0 = g(0), the DAEs (3.2) and (3.3) are equivalent in the following sense.
A solution pair (q, r) of system (3.2) implies the solution (q, r, 0) of (3.3). On the
other hand, a solution (q, r, μ) of system (3.3) satisfies μ = 0 and (q, r) solves the
original DAE (3.2).

Proof. To show the index-1 property, we write system (3.3) in block structure,⎡⎣ M BT BT

B 0 0
0 0 C

⎤⎦⎡⎣ q̇
−r
−μ

⎤⎦ =

⎡⎣f −Kq
ġ

g −Bq

⎤⎦ .

Since M is positive definite and B is of full rank, the left upper 2-by-2 block in the
matrix on the left-hand side is regular. The invertibility of C then implies that the
whole matrix on the left-hand side is invertible. Thus, we obtain an ODE for q and
algebraic equations for r and μ without any differentiations. As a consequence, a
single differentiation leads to an ODE for q, r, and μ which means that (3.3) is of
index 1 [HW96, Ch. VII.1].
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For the stated equivalence let (q, r) be a solution of the DAE (3.2). Obvi-
ously, (q, r, 0) solves the DAE (3.3) since (q, r) also has to satisfy the hidden con-
straint (3.3c). For the reverse direction let (q, r, μ) be a solution of system (3.3).
Since C is invertible, we obtain the explicit formula

μ = C−1
(
Bq − g

)
.

Equation (3.3c) then implies μ̇ = 0 such that μ has to be constant. Because of the
consistency of the initial data, we have

μ ≡ μ(0) = C−1
(
Bq(0)− g(0)

)
= 0. �

Remark 3.4. An alternative strategy to reduce the index of system (3.2) is given
by the introduction of a small term εr in the constraint equation (3.2b). Note that
this is known as the penalty method in the field of fluid dynamics [HV95, She95].
However, this kind of method strongly depends on a wise choice of the parameter ε,
particularly if iterative solvers are used [BH15].

3.3. Infinite-dimensional case. The index reduction procedure from the previ-
ous subsection motivates to apply the same ideas also to the operator DAE (3.2).
This then leads to an extended system of the form: find u ∈ W 1,2(0, T ;V ,HB+Vc),
p ∈ L2(0, T ;Q), and λ ∈ L2(0, T ;Q) such that for a.e. t ∈ [0, T ] it holds that

u̇(t) +Ku(t) −B∗p(t)− B∗λ(t) = F(t) in V∗,(3.4a)

+ Bu(t) − ∗Cλ(t) = G(t) in Q∗,(3.4b)

Bu̇(t) = Ġ(t) in Q∗(3.4c)

with consistent initial value u(0) = a. The right-hand sides are still assumed
to satisfy F ∈ L2(0, T ;V∗) and G ∈ H1(0, T ;Q∗) whereas the linear operator
C : Q → Q∗ is assumed to be elliptic and bounded. Recall that equation (3.4c) is
well-defined by Remark 2.7.

Remark 3.5. Compared to the extended system proposed in [AH15] we need here
additional regularity of the velocity u, namely, u̇ ∈ L2(0, T ;HB + Vc). The formu-
lation in [AH15] gets away with u̇ ∈ L2(0, T ;V∗) where only the derivative of the
component in Vc has to take values in V . Note that this means no restriction, since
this follows directly from the regularity of G. However, the resulting DAE in the
present approach is better structured in the sense that the linear systems one has
to solve in every time step are better suited for iterative solvers. This is caused
by the preservation of the saddle point structure which allows us to apply effective
solution algorithms; cf. [BWY90,BGL05] and the references therein.

From the construction of the operator DAE (3.4) and the results of the previous
subsection, we already know that a spatial discretization leads to a DAE of the
form (3.3) and, thus, is of index 1. It remains to show the equivalence of the
original and extended operator DAE. This goes hand-in-hand with Lemma 3.3 for
the finite-dimensional case.

Lemma 3.6. Consider right-hand sides F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗) and
consistent initial data a ∈ H, i.e., a = aB + B−G(0) with aB ∈ HB. Then, the
operator DAEs (3.1) and (3.4) are equivalent in the following sense. Every solution
(u, p) of (3.1) with u̇ ∈ L2(0, T ;HB+Vc) implies a solution (u, p, 0) of the operator
DAE (3.4). On the other hand, if (u, p, λ) solves the extended system, then λ ≡ 0
and (u, p) is a solution of system (3.1).
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Proof. Let (u, p) be a solution of the operator DAE (3.1). Since (3.4c) is just the
time derivative of Bu = G, the triple (u, p, 0) solves system (3.4) if Bu̇ is well-defined.
This is the case if we assume the additional regularity u̇ ∈ L2(0, T ;HB + Vc). For
the reverse direction let (u, p, λ) denote a solution of the extended system (3.4). As
in the proof of Lemma 3.3, the consistency condition and equations (3.4b)-(3.4c)
imply that Cλ = 0. Since the operator C is injective by its ellipticity, we obtain
λ ≡ 0 and thus, (u, p) solves the operator DAE (3.1). �

Remark 3.7. Within this paper we always assume to have a consistent initial con-
dition, i.e., u(0) = a = aB + B−G(0) with aB ∈ HB. Lemma 3.6 then implies
λ0 := λ(0) = 0.

4. Convergence of the implicit Euler scheme

As the first step towards the convergence for Runge-Kutta schemes, we prove
in this section the convergence of the implicit Euler method. For this, we show
first that the semidiscrete system has a unique solution for every time step. With
these approximations, we construct global approximations on [0, T ] of the solution
of system (3.4) and investigate the convergence behavior.

4.1. Temporal discretization. We formally apply the implicit Euler scheme to
the operator DAE (3.4). For this, consider a uniform partition of the interval [0, T ]
with step size τ = T/n. The time-discrete system which has to be solved for each
time step tj = τj, j = 1, . . . , n, is given by the stationary system

Duj +Kuj −B∗pj − B∗λj = Fj in V∗,(4.1a)

+ Buj − ∗Cλj = Gj in Q∗,(4.1b)

BDuj = Ġj in Q∗.(4.1c)

Therein, D denotes the discrete derivative, defined by Duj := (uj − uj−1)/τ . For
j = 1, equation (4.1c) includes the term Bu0. Assuming u0 = a to be consistent, we
understand Bu0 as G(0) by Remark 2.6. Note that system (4.1) gives an implicit
formula for uj , pj , and λj in terms of a given approximation uj−1. There is no
dependence on previous approximations of p and λ.

Since the right-hand sides are assumed to be Sobolev-Bochner functions of the
form F ∈ L2(0, T ;V∗) and G ∈ H1(0, T ;Q∗) ↪→ C([0, T ];Q∗), function evaluations
are typically not defined. Thus, only for G we may define Gj := G(tj). For Fj and

Ġj , however, we define

(4.2) Fj :=
1

τ

∫ tj

tj−1

F(s) ds ∈ V∗ and Ġj :=
1

τ

∫ tj

tj−1

Ġ(s) ds ∈ Q∗.

We emphasize that Ġj is not the derivative of Gj , but it holds that DGj = Ġj . The

introduced approximations Fj , Gj , and Ġj are of first order but may be replaced by
any other approximation, especially for more regular data F and G. Nevertheless,
we require certain convergence properties which we summarize in the following
assumption.
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Assumption 4.1. Let Fτ : [0, T ] → V∗ denote the piecewise constant function with
Fτ (t) := Fj for t ∈ (tj−1, tj ] and F(0) := F1. Analogously, we define the piecewise

constant functions Gτ and Ġτ via Gj and Ġj, respectively. We assume that Fτ , Gτ ,

and Ġτ converge for τ → 0 in the strong sense, i.e.,

Fτ →F in L2(0, T,V∗), Gτ →G in L∞(0, T,Q∗), Ġτ →Ġ in L2(0, T,Q∗).

Note that Assumption 4.1 is fulfilled for the discretization given in (4.2) as shown
in [Emm01, Th. 4.2.5]. With the proposed discretization of the right-hand sides,
system (4.1) is well-defined. It remains to check the solvability of this system.

Lemma 4.2 (Solvability of the time-discrete system). Let uj−1 be an element of
HB+Vc such that the operator B is applicable, j ∈ {1, . . . , n}. The right-hand sides

satisfy Fj ∈ V∗, Gj ∈ Q∗, and Ġj ∈ Q∗. Then, system (4.1) has a unique solution
(uj , pj , λj) ∈ V ×Q×Q.

Proof. Consider the sum of equation (4.1b), tested by q ∈ Q, and equation (4.1c),
tested by −τq ∈ Q, i.e.,

(4.3) −〈Cλj , q〉 = 〈Gj − τ Ġj , q〉 − 〈Buj−1,q〉,

By the Lax-Milgram theorem [Bre10, Cor. 5.8] there exits a unique solution λj of
(4.3). Thus, it remains to show that the system given by the equations (4.1a) and
(4.1c) has a unique solution. Since id+τK is bounded and elliptic on VB and B
satisfies an inf-sup condition, the reduced problem and thus also system (4.1) have
a unique solution [BF91, Ch. II.1]. �

4.2. Convergence results. Due to Lemma 4.2, for a given consistent initial value
u0 := a system (4.1) provides discrete approximations at time points tj , namely uj ,
pj , and λj . With these, we define global approximations of the weak solution u on

the interval [0, T ]. More precisely, we define Uτ , Ûτ : [0, T ] → HB + Vc by
(4.4)

Uτ (t) :=

{
a, if t = 0,

uj , if t ∈ (tj−1, tj ],
Ûτ (t) :=

{
a, if t = 0,

uj +Duj(t− tj), if t ∈ (tj−1, tj ].

Analogously, we define piecewise constant approximations of the Lagrange multipli-
ers λ and p which we denote by Λτ and Pτ , respectively. As a starting value we set

Λτ (0) := λ0 and Pτ (0) arbitrarily. By
d
dt Ûτ we denote the generalized time deriva-

tive of Ûτ which is piecewise constant with values Duj . With this, the stationary
system (4.1) may be reformulated as

d
dt Ûτ +KUτ −B∗Pτ − B∗Λτ = Fτ in V∗,(4.5a)

+ BUτ − ∗CΛτ = Gτ in Q∗,(4.5b)

B
(

d
dt Ûτ

)
= Ġτ in Q∗.(4.5c)

Here, we assume that the discrete right-hand sides Fτ , Gτ , and Ġτ satisfy As-
sumption 4.1. The following result presents the convergence of the introduced
approximations.
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Theorem 4.3 (Convergence of the implicit Euler scheme). Suppose right-hand
sides F ∈ L2(0, T,V∗), G ∈ H1(0, T,Q∗) and initial data a ∈ HB + B−G(0) are
given. Let (u, p, 0) be the solution of the operator DAE (3.4). If the approximations

of the right-hand sides Fτ , Gτ , and Ġτ fulfill Assumption 4.1, then

Uτ→u in L2(0, T,V),
d
dt Ûτ→ u̇ in L2(0, T,V∗

B),
Ûτ→u in L2(0, T,H),
Λτ→ 0 in L∞(0, T,Q)

as τ → 0. Furthermore, the primitive of Pτ , namely P̃τ :=
∫ t

0
Pτ (s) ds, converges

to a function p̃ in L2(0, T ;Q) whose distributional derivative is p.

Proof. In the first step we show the convergence of the Lagrange multiplier Λτ .
With this, we are able to show the weak and afterwards even the strong convergence

of Uτ and the derivative of Ûτ . Finally, we prove the assertions for Ûτ and Pτ .

Step 1 (Convergence of Λτ ). With the initial value a, equation (4.1b), and a suc-
cessive application of equation (4.1c), we obtain

Cλj = −Gj +

j∑
k=1

τ Ġk + G(0) =
j∑

k=1

τ Ġk −
∫ tj

0

Ġ(s) ds+ G(tj)− Gj

=

∫ tj

0

[
Ġτ (s)− Ġ(s)

]
ds+ G(tj)− Gj .(4.6)

Since C is elliptic and bounded, using the Cauchy-Schwarz inequality, we obtain

‖Λτ‖L∞(0,T ;Q) = max
j=1,...,n

‖λj‖Q
(4.6)

� max
j=1,...,n

∥∥∥ ∫ tj

0

[
Ġτ (s)− Ġ(s)

]
ds+ G(tj)− Gj

∥∥∥
Q∗

(4.7)

≤
√
T‖Ġτ − Ġ‖L2(0,T ;Q∗) + ‖G − Gτ‖L∞(0,T ;Q∗).

Thus, by Assumption 4.1 it follows that ‖Λτ‖L∞(0,T ;Q) → 0.

Step 2 (Weak convergence of Uτ and d
dt Ûτ ). We use the splitting V = VB ⊕ Vc as

discussed in section 2.2 and decompose uj and Duj for j = 1, . . . , n as well as the
initial value a = aB + ac with aB ∈ HB and ac = B−G(0) ∈ Vc. We also split the
global approximations of u into

(4.8) Uτ = Uτ,B + Uτ,c, Ûτ = Ûτ,B + Ûτ,c,
d
dt Ûτ = d

dt Ûτ,B + d
dt Û τ,c.

The exact solution u is decomposed into uB ∈ VB and uc ∈ Vc. Equation (4.5),
Assumption 4.1, and the convergence of Λτ imply

Uτ,c = B−BUτ = B−(Gτ + CΛτ ) → B−G = uc in L2(0, T ;Vc),(4.9a)

d
dt Û τ,c = B−B

(
d
dt Ûτ

)
= B−Ġτ → B−Ġ = u̇c in L2(0, T ;Vc).(4.9b)

Furthermore, the linearity of the discrete derivative yields (Duj)B = Duj,B. Thus,
we can rewrite equation (4.1a) as

(4.10) Duj,B +Kuj,B − B∗pj − B∗λj = Fj −Duj,c −Kuj,c in V∗.

Since Duj,B ∈ VB = kerB for j > 1 and Du1,B ∈ HB, we conclude with uj,c ∈ Vc

that uj,B is already fully determined by

(4.11) Duj,B +Kuj,B = Fj −Duj,c in V∗
B,
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where Kuj,c vanishes by the definition of Vc. By the convergence result in (4.9)
d
dt Ûτ,c can be seen as approximation of u̇c. Therefore, equation (4.11) is the implicit
Euler discretization of the unconstrained equation

(4.12) u̇B +KuB = F − u̇c in V∗
B.

As the initial value we use aB ∈ HB. It is well-known [ET10, Th. 5.1 and Rem.
5.3] that for the exact solution and its approximation it holds that

Uτ,B ⇀ uB in L2(0, T,VB) ↪→ L2(0, T ;V), d
dt Ûτ,B

∗
⇀ u̇B in L2(0, T ;V∗

B).

(4.13)

The combination of (4.9) and (4.13) shows the weak (respectively weak-∗) conver-
gence of Uτ in L2(0, T ;V) and d

dt Ûτ in L2(0, T ;V∗
B).

Step 3 (Strong convergence of Uτ and d
dt Ûτ ). It remains to prove that the sequences

Uτ,B and d
dt Û τ,B converge strongly. For this, we note that equation (4.11) may be

written in the continuous form

d
dt Ûτ,B +KUτ,B = Fτ − B−Ġτ in V∗

B.

This equation leads to the estimate∥∥Uτ,B−uB
∥∥2
L2(0,T ;V)

�
∫ T

0

〈
KUτ,B(s)−KuB(s), Uτ,B(s)− uB(s)

〉
ds

= −
∫ T

0

〈
d
dt Ûτ,B(s), Uτ,B(s)− uB(s)

〉
ds(4.14)

+

∫ T

0

〈
u̇B(s), Uτ,B(s)− uB(s)

〉
ds

+

∫ T

0

〈
Fτ (s)−F(s) + B−(Ġτ (s)− Ġ(s)

)
, Uτ,B(s)− uB(s)

〉
ds.

The second integral convergences to zero because of the weak convergence Uτ,B ⇀
uB and the third integral because of the assumption on the right-hand sides and
the boundedness of Uτ,B − uB. For the first integral we use

(4.15) lim inf
n→∞

∫ T

0

〈
d
dt Û τ,B(s), Uτ,B(s)

〉
ds ≥

∫ T

0

〈
u̇B(s), uB(s)

〉
ds

which follows from uB,n ⇀ uB(T ) in HB, shown in [ET10, Th. 5.1], and the identity

(4.16) 2〈Duj , uj〉 = D〈uj , uj〉+ τ 〈Duj , Duj〉.
For more details on the proof of (4.15), we refer to [Alt15, Lem. 11.5]. With this

and the weak-∗ convergence of d
dt Ûτ,B, estimate (4.14) implies

0 ≤ lim sup
τ→0

‖Uτ,B − uB‖2L2(0,T ;V)

(4.14)

� lim sup
τ→0

∫ T

0

〈
d
dt Ûτ,B(s), uB(s)

〉
ds− lim inf

τ→0

∫ T

0

〈
d
dt Ûτ,B(s), Uτ,B(s)

〉
ds

≤
∫ T

0

〈
u̇B(s), uB(s)

〉
ds−

∫ T

0

〈
u̇B(s), uB(s)

〉
ds = 0.
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This shows the strong convergence Uτ,B → uB as well as

d
dt Û τ,B = Fτ − B−Ġτ −KUτ,B → F − B−Ġ − KuB = u̇B in L2(0, T ;V∗

B).

By the triangle inequality we obtain the claimed convergence of Uτ = Uτ,B + Uτ,c

and d
dt Ûτ = d

dt Ûτ,B + d
dt Ûτ,c.

Step 4 (Convergence of Ûτ ). We observe that

Ûτ,c(t) = ac +

∫ t

0

d
dt Ûτ,c(s) ds

for all t ∈ [0, T ]. With this, Ûτ,c(0) = uc(0), and a Poincaré-Friedrichs inequality
[Rou05, Ch. 1.4] we get∥∥Ûτ,c − uc

∥∥2
L2(0,T ;V)

≤ T
∥∥ d
dt Ûτ,c − u̇c

∥∥2
L2(0,T ;V)

.

Now with the strong convergence of d
dt Û τ,c, we get Ûτ,c → uc in L2(0, T ;V) ↪→

L2(0, T ;H). For the convergence of Ûτ,B we obtain by Young’s inequality

1

2τ

(
|uj,B|2 − |uj−1,B|2 + |uj,B − uj−1,B|2

)
(4.16)
= 〈Duj,B, uj,B〉

(4.11)
= 〈Fj , uj,B〉 − 〈Duj,c, uj,B〉 − 〈Kuj,B, uj,B〉

� ‖Fj‖2V∗ + |Duj,c|2 + ‖uj,B‖2.
With the telescope sum

∑n
j=1

(
|uj,B|2−|uj−1,B|2

)
= |un,B|2−|u0,B|2, this estimate

yields

‖Ûτ,B − Uτ,B‖2L2(0,T ;H) =
τ

3

n∑
j=1

∣∣uj,B − uj−1,B
∣∣2

� τ

(
|aB|2+τ

n∑
j=1

‖Fj‖2V∗+τ
n∑

j=1

|Duj,c|2+τ
n∑

j=1

‖uj,B‖2
)
.

Note that the terms in brackets are bounded independently of τ , since the right-
hand sides are bounded by Assumption 4.1 and Uτ,B is a convergent sequence.

Thus, Ûτ,B and Uτ,B have the same limit uB in L2(0, T ;H) which implies the strong

convergence Ûτ → u in L2(0, T ;H).

Step 5 (Convergence of Pτ ). Let P̃τ , Ũτ , Λ̃τ , and F̃τ denote the primitives of Pτ ,
Uτ , Λτ , and Fτ , respectively, with zero initial condition at t = 0. An integration of
equation (4.5a) then leads to

(4.17) B∗P̃τ = Ûτ +KŨτ − B∗Λ̃τ − F̃τ − a in AC([0, T ],V∗),

where AC([0, T ],V∗) ↪→ L2(0, T ;V∗) denotes the space of absolutely continuous
functions with values in V∗. The inf-sup condition of B implies

β‖P̃τ (t)‖Q ≤ sup
v∈V

〈Bv, P̃τ (t)〉
‖v‖ � |a|+ |Ûτ (t)|+ ‖Ũτ (t)‖+ ‖Λ̃τ (t)‖Q + ‖F̃τ (t)‖V∗

and, thus,

β2‖P̃τ‖2L2(0,T ;Q)

� ‖Ûτ‖2L2(0,T ;H) + T
(
|a|2 + ‖Uτ‖2L2(0,T ;V) + ‖Λτ‖2L2(0,T ;Q) + ‖Fτ‖2L2(0,T ;V∗)

)
.
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Inserting P̃τ1 − P̃τ2 instead of P̃τ for two different time step sizes τ1, τ2, we obtain

that P̃τ is a Cauchy sequence in L2(0, T ;Q). Thus, there exists a unique limit
p̃ ∈ L2(0, T ;Q). Finally, a comparison of (4.5a) and the limit of (4.17) shows that
the solution p is the distributional derivative of p̃. �
4.3. Convergence results for more regular data. In Theorem 4.3 we could
only prove the convergence of p in the distributional sense. In this subsection,
we consider additional assumptions on the right-hand sides and the initial data
which yield an improved convergence result. We distinguish the two cases of the
right-hand sides having more regularity in space or in time.

Theorem 4.4 (Convergence for more regular data). In addition to the assumptions
of Theorem 4.3 suppose that a ∈ V with Ba = G(0) and one of the following
conditions holds:

(i) The right-hand side F is element of L2(0, T ;H∗) and its approximation Fτ

satisfies Assumption 4.1 in L2(0, T ;H∗). Furthermore, K is symmetric.
(ii) The right-hand sides satisfy F ∈ H1(0, T ;V∗) and G ∈ H2(0, T ;Q∗) and

the compatibility condition F(0)− B−Ġ(0)−KaB ∈ H∗
B is fulfilled.

Then, the piecewise constant approximations d
dt Ûτ and Pτ satisfy

d
dt Ûτ ⇀ u̇ in L2(0, T ;H), Pτ ⇀ p in L2(0, T ;Q).

Proof. For the proof of the convergence of d
dt Ûτ we split uj and Duj into their

components in VB and Vc. We show that u̇B ∈ L2(0, T ;HB) and that d
dt Ûτ,B

converges weakly to u̇B in L2(0, T ;H). The weak convergence of Pτ is then a direct
implication.

Proof of condition (i). Since Duj,B is an element of VB, it follows by (4.11) that

(4.18) 〈Duj,B, Duj,B〉+ 〈Kuj,B, Duj,B〉 = 〈Fj , Duj,B〉 − 〈Duj,c, Duj,B〉.
The symmetry of K implies similarly to (4.16) that

2〈Kuj,B, Duj,B〉 = D〈Kuj,B, uj,B〉+ τ 〈KDuj,B, Duj,B〉.
With this, a multiplication of equation (4.18) by τ and the summation over all
discrete time points leads to

n∑
j=1

τ |Duj,B|2 +
1

2
〈Kuj,B, uj,B〉+

τ

2

n∑
j=1

τ 〈KDuj,B, Duj,B〉

=
1

2
〈KaB, aB〉+ τ

n∑
j=1

(
〈Fj , Duj,B〉 − 〈Duj,c, Duj,B〉

)
.

With the assumed properties on K we get 〈KaB, aB〉 � ‖aB‖2 � ‖a‖2. As in the

proof of Theorem 4.3, the sum
∑n

j=1 τ |Duj,c|2 is bounded in terms of ‖Ġτ‖2L2(0,T ;Q∗).

In conclusion, we obtain with the triangle inequality and Young’s inequality that
there exists a constant c > 0 such that

2

∫ T

0

∣∣ d
dt Û τ,B(s)

∣∣2 ds = 2τ

n∑
j=1

|Duj,B|2

≤ c
(
‖a‖2+‖Fτ‖2L2(0,T ;H∗)+‖Ġτ‖2L2(0,T ;Q∗)

)
+τ

n∑
j=1

|Duj,B|2.
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This shows that d
dt Ûτ,B is bounded in L2(0, T ;HB) ⊆ L2(0, T ;H) independently

of τ such that there exists a weakly converging subsequence with weak limit VB.

Together with the convergence of Ûτ,B, for arbitrary h ∈ H and φ ∈ C∞
0 (0, T ) it

holds that

0 =

∫ T

0

(
d
dt ÛB,τ (t), h

)
φ(t) +

(
ÛB,τ (t), h

)
φ̇(t) dt

→
∫ T

0

(
VB(t), h

)
φ(t) +

(
uB(t), h

)
φ̇(t) dt

if τ (or rather a subsequence) tends to zero. This means that VB is the generalized
time derivative of uB in L2(0, T ;HB). Note that since the derivative is unique and

every subsequence has a converging subsubsequence, the entire sequence d
dt Ûτ,B

converges weakly to u̇B = VB in L2(0, T ;HB). For the proof of the convergence
of Pτ , we obtain

(4.19) B∗Pτ = −Fτ + d
dt Ûτ +KUτ − B∗Λτ

∗
⇀ −F + u̇+Ku in L2(0, T ;V∗).

Since B∗Pτ vanishes if tested by elements of VB, the right-hand side satisfies −F +
u̇ + Ku ∈ L2(0, T ;V0

B). By Lemma 2.5, there exists a unique p ∈ L2(0, T ;Q) with
B∗p = −F + u̇ + Ku, namely the solution component of system (3.4). By the
continuity of the left inverse of B∗, which we denote by B−∗, it follows that

Pτ = B−∗B∗Pτ ⇀ B−∗B∗p = p in L2(0, T ;Q).

Proof of condition (ii). With the given assumptions, the result in [Emm04, Th. 8.5.1]
implies the existence of a generalized time derivative of uB in L2(0, T ;HB). Fur-

ther, the weak convergence d
dt Ûτ,B ⇀ u̇B can be concluded from the convergence

of Ûτ,B, since for every h ∈ H and φ ∈ C∞
0 (0, T ) it holds that∫ T

0

(
d
dt Û τ,B(t)− u̇B(t), h

)
φ(t) dt = −

∫ T

0

(
Ûτ,B(t)− uB(t), h

)
φ̇(t) dt → 0.

The convergence of Pτ follows by the same arguments as in the first part of the
proof. �
Remark 4.5. Given the assumptions of Theorem 4.4(i), we can even show the strong

convergence of d
dt Ûτ and Pτ . For this, one shows that for every vB ∈ L2(0, T ;VB)

with KvB ∈ L2(0, T ;H∗
B) and generalized derivative v̇B ∈ L2(0, T ;HB) it holds that

d
dt 〈KvB, vB〉 = 2〈KvB, v̇B〉.

For the strong convergence of d
dt Ûτ one argues similarly as for the convergence of Uτ

in Theorem 4.3. Equation (4.5a) then implies the strong convergence of Pτ .

5. Convergence of implicit Runge-Kutta schemes

In this section, we analyse the convergence of a special class of Runge-Kutta
schemes applied to operator DAEs. Note that, in general, an implicit Runge-
Kutta scheme may not even provide a unique approximation, which then leads
to unbounded solutions and thus, to divergence. Thus, we first give sufficient
conditions on the approximation scheme which guarantee a unique solution in every
time step.

We consider an s-stage Runge-Kutta scheme as presented in section 2.1, given
by the Butcher tableau A, b, c. As mentioned before, we assume A to be regular
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and R(∞) = 1 − bTA−1
�s = 0. In this case, the approximations of p and λ are

independent of the approximations from the previous time step.

5.1. Temporal discretization. Similar to the finite-dimensional case uj , pj , and
λj are approximations of u, p, and λ at time tj = jτ , respectively. We introduce
the internal stages

uj =

⎡⎢⎣uj,1

...
uj,s

⎤⎥⎦ ∈ Vs, pj =

⎡⎢⎣pj,1

...
pj,s

⎤⎥⎦ ∈ Qs, λj =

⎡⎢⎣λj,1

...
λj,s

⎤⎥⎦ ∈ Qs.

These stage vectors call for corresponding operators such as Ks : Vs → V∗
s which is

induced by K : V → V∗ by a componentwise application. In the sequel, we do not
distinguish between these two operators such that for u,v ∈ Vs we write

〈Ku,v〉 := 〈Ksu,v〉 :=
s∑

j=1

〈Kuj ,vj〉.

In a corresponding manner, the operators B and C can be applied componentwise
to elements with s components.

Finally, we denote for an arbitrary matrix M ∈ R
r×s and an element u ∈ Vs by

Mu ∈ Vr the formal matrix-vector multiplication (Mu)k :=
∑s

j=1Mkjuj ∈ V for
k = 1, . . . , r.

Lemma 5.1. Let X and Y be Hilbert spaces. Consider a matrix M ∈ R
s×s and a

linear operator A : X → Y∗ which induces a linear operator A : X s → (Ys)∗ by a
componentwise application. Then, for all x ∈ X s and y ∈ Ys it holds that

(5.1)
〈
AMx,y

〉
=
〈
MAx,y

〉
=
〈
Ax,MTy

〉
.

Proof. The result follows by a simple calculation,

〈AMx,y〉 =
s∑

k=1

〈
A

s∑

j=1

Mkjxj ,yk

〉
=

s∑
k,j=1

Mkj〈Axj ,yk〉

=
s∑

j=1

〈
Axj ,

s∑

k=1

Mkjyk

〉
= 〈Ax,MTy〉. �

Also the approximation of the right-hand sides F ∈ L2(0, T ;V∗) and G ∈
H1(0, T ;Q∗) need to be extended for elements with s components. For this, we

introduce F j ∈ V∗
s and Gj , Ġj ∈ Q∗

s, j = 1, . . . , n. As in section 4.1, the specific

definition of F j , Gj , and Ġj is not of importance as long as it satisfies the following
assumption.

Assumption 5.2. Let Fτ , Gτ , and Ġτ denote the piecewise constant functions
defined on [0, T ] with

Fτ (t)|(tj−1,tj ] ≡ F j , Gτ (t)|(tj−1,tj ] ≡ Gj , Ġτ (t)|(tj−1,tj ] ≡ Ġj

for j = 1, . . . , n and a continuous extension at time point t = 0. We assume that
for τ → 0 it holds that

Fτ → F�s in L2(0, T,V∗
s ), Gτ → G�s in L∞(0, T,Q∗

s),

Ġτ → Ġ�s in L2(0, T,Q∗
s).
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An example which satisfies Assumption 5.2 is given by F j := Fj�s, Gj := Gj�s,

and Ġj := Ġj�s, j = 1, . . . , n, if Fj , Gj , and Ġj fulfill Assumption 4.1. Recall
that for continuous G we could define Gj by the function evaluation Gj := G(tj).
However, given the Butcher tableau, we may also define Gj componentwise by
Gj,� := G(tj−1 + c�τ ). Also this approach satisfies Assumption 5.2, since G is
absolutely continuous on [0, T ]. In any case, we are able to prove the convergence
to the solution of the operator DAE (3.4). Recall that we do not aim for convergence
orders.

Now with the notation introduced, the temporal discretization of system (3.4)
yields the time-discrete problem

(5.2) uj = bTA−1uj , pj = bTA−1pj , λj = bTA−1λj ,

where uj , pj , and λj satisfy the operator equation

A−1Duj +Kuj −B∗pj − B∗λj = F j in V∗
s ,(5.3a)

+ Buj − ∗Cλj = Gj in Q∗
s,(5.3b)

BA−1Duj = Ġj in Q∗
s.(5.3c)

Therein, the discrete derivative Duj is given by (uj − uj−1�s)/τ .
Unfortunately, uj , pj , and λj are not bounded in terms of the right-hand sides

for all Runge-Kutta schemes, even for an arbitrarily small step size τ as we show
by means of the following example.

Example 5.3. Consider the discretization (5.3) with vanishing right-hand sides
and a = 0. Furthermore, we assume that V is compactly embedded in H and that
the operator K is symmetric. We show that the discrete solution given by the 2-
stage stiffly accurate Runge-Kutta scheme from Example 2.2 may be nonzero no
matter how small τ is chosen and thus, not stable. For this, we note that A−1 has
a negative eigenvalue α ∈ R with eigenvector w ∈ R

2 which satisfies bTw �= 0.
Since 〈K·, ·〉 defines an elliptic, bounded, and symmetric bilinear form on VB,

there exist countable many eigenpairs (γk, vk) ∈ R×VB of the infinite-dimensional
eigenvalue problem γv = Kv in V∗

B. More precisely, all γk are positive and tend to
infinity as k → ∞ and vk are normalized for all k ∈ N [Mic62, Ch. 4.34]. Let ε > 0
be arbitrarily small and choose k large enough such that τ := −α/γk < ε and set
u := vkw ∈ VB,s. The given eigenvalue problem implies (A−1 + τK)u ∈ V0

B,s such
that there exists a unique p with

B∗p =
(
τ−1A−1 +K

)
u in V∗

s .

Thus, the tuple (u,p, 0) satisfies system (5.3) and we obtain as approximation in
the first time step

u1 = bTA−1u = αbTwvk �= 0.

In summary, one step of the given Runge-Kutta scheme with step size τ yields an
approximation which is unbounded.

Example 5.3 shows that it is not sufficient to require the discretization scheme
to satisfy R(∞) = 0. We introduce a class of Runge-Kutta methods which provide
a unique and bounded solution for every discrete time point. For this, we state
further assumptions on the Runge-Kutta scheme.

Assumption 5.4. The Runge-Kutta method (2.1) is algebraically stable, i.e., the
matrix BA+ATB−bbT is positive semidefinite with the diagonal matrix Bii = bi
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and R(∞) = 0. Furthermore, all weights bi are assumed to be positive and its order
is at least one, i.e.,

∑s
i=1 bi = �

T
s b = 1.

Example 5.5. Radau IA, Radau IIA, and Lobatto IIIC methods satisfy Assump-
tion 5.4; cf. [HW96, Th. IV.12.9 and Pro. IV.3.8].

With the given assumptions on the discretization scheme, we are able to show
the unique solvability for every time step.

Lemma 5.6 (Solvability of the time-discrete system). Consider uj−1 ∈ HB + Vc,

j ∈ {1, . . . , n}, and right-hand sides F j ∈ V∗
s and Gj , Ġj ∈ Q∗

s. If the Runge-Kutta
method satisfies Assumption 5.4, then system (5.3) has a unique solution of internal
stages (uj ,pj ,λj) ∈ Vs × Qs × Qs and, thus, there exists a unique approximation
(uj , pj , λj) ∈ V ×Q×Q.

Proof. Since M := BA+ATB − bbT is positive semidefinite by Assumption 5.4,
it follows for arbitrary x ∈ R

s that

xTBA−1x =
1

2
(A−1x)T [BA+ATB](A−1x) ≥ 1

2
(A−1x)TM(A−1x) ≥ 0

and consequentlyBA−1 is also positive semidefinite. If we multiply equations (5.3a)
and (5.3b) by B from the left and equation (5.3c) by BA, then it results in the
system

BA−1Duj +KBuj −B∗Bpj − B∗Bλj = BF j in V∗
s ,(5.4a)

+ BBuj − ∗CBλj = BGj in Q∗
s,(5.4b)

BBDuj = BAĠj in Q∗
s.(5.4c)

Note that we have used BK = KB as well as similar results for the other operators.

Let B1/2 be the diagonal matrix with B
1/2
ii =

√
bi. Since〈

BA−1u+ τKBu,u
〉
≥
〈
τKB1/2u,B1/2u

〉
≥ τα

∥∥B1/2u
∥∥2
Vs

≥ τα min
i=1,...,s

bi‖u‖2Vs

for all u ∈ Vs, the operator BA−1 + τKB is elliptic. The solvability then follows
by the invertibility of B and a similar argumentation as in the implicit Euler case
in Lemma 4.2. �

Before we investigate the convergence of implicit Runge-Kutta schemes applied
to operator DAEs, we summarize results on the convergence for unconstrained
operator equations.

5.2. Convergence results for linear operator equations. We consider a linear
parabolic PDE in the weak form which corresponds to an (unconstrained) operator
equation. More precisely, we consider an operator equation of the form

(5.5) v̇(t) +Av(t) = F(t) in V∗

with initial condition v(0) = v0 ∈ H and right-hand side F ∈ L2(0, T ;V∗). The lin-
ear operator A : V → V∗ is assumed to be elliptic and bounded and the Hilbert
spaces V and H form a Gelfand triple. These assumptions then guarantee a
unique solution v ∈ L2(0, T ;V) ∩ C([0, T ],H) with derivative v̇ ∈ L2(0, T ;V∗)
[Wlo87, Ch. IV]. The following convergence analysis is based on the paper [ET10]
which investigates the behavior of stiffly accurate and algebraically stable Runge-
Kutta schemes of first order applied to the evolution problem (5.5). Note that such
methods fulfill Assumption 5.4.
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Lemma 5.7 (Generalization of [ET10, Lem. 3.4]). Let the Runge-Kutta method
with Butcher tableau A, b, c satisfy Assumption 5.4. Then, it holds that

2xTBA−1(x− x0�s) ≥ (bTA−1x)2 − x2
0(5.6)

for all x0 ∈ R and x ∈ R
s.

Proof. Consider the matrices M, M′ ∈ R
s×s given by M := BA + ATB − bbT

and M′ := A−TMA−1 −BA−1
�s�

T
s A

−TB. Then, it holds that

2xTBA−1(x−x0�s)+x2
0− (bTA−1x)2 = xTM′x+(x0−�

T
s A

−TBx)2 ≥ xTM′x.

Thus, it remains to show that M′ is positive semidefinite. For this, we use the
splitting R

s = ker(�T
s A

−TB)⊕ span{�s}. This is well-defined, since the kernel of
�
T
s A

−TB is an (s− 1)-dimensional subspace of Rs and �
T
s A

−TB�s = �
T
s A

−Tb =
1 �= 0 by Assumption 5.4. A simple calculation shows

�
T
s M

′
�s = �

T
s A

−TB�s + �
T
s BA−1

�s − �
T
s A

−TbbTA−1
�s

− �
T
s BA−1

�s�
T
s BA−1

�s

= 2
[
bTA−1

�s − (bTA−1
�s)

2
]
= 2

[
1− 1

]
= 0.

For an arbitrary element x ∈ ker(�T
s A

−TB), we obtain
(5.7)
�
T
s M

′x = �
T
s A

−TBx+�
T
s BA−1x−�

T
s A

−TbbTA−1x = bTA−1x−bTA−1x = 0

as well as xTM′x ≥ 0 by the positive semidefiniteness of M. This shows that M′ is
semidefinte on R

s by the symmetry of M′, equation (5.7), and the semidefiniteness
of M′ for every element of the complements ker(�T

s A
−TB) and span{�s}. �

Remark 5.8. The lines of the proof of Lemma 5.7 can be carried over to the Hilbert
space V and a positive semidefinite, symmetric operator A. Thus, for every v0 ∈ V
and v ∈ Vs it holds that

2
〈
Av,BA−1(v − v0�s)

〉
≥
〈
AbTA−1v,bTA−1v

〉
−
〈
Av0, v0

〉
.

With this remark, we get the following result.

Theorem 5.9. Consider equation (5.5) with F ∈ L2(0, T ;V∗), initial data v0 ∈ H,
and a linear, bounded, and elliptic operator A : V → V∗. The corresponding exact
solution is denoted by v. The temporal discretization of (5.5) on [0, T ] with constant
step size τ and a Runge-Kutta method which satisfies Assumption 5.4 is given by

vj = bTA−1vj ,(5.8a)

A−1Dvj +Avj = F j .(5.8b)

Suppose that the piecewise constant function Fτ ∈ L2(0, T ;V∗
s ) defined by Fτ (t) =

F j for t ∈ (tj−1, tj ] satisfies Fτ → F�s in L2(0, T ;V∗
s ). Then, there exists a

unique solution vj ∈ V and vj ∈ Vs of system (5.8) for every time step j = 1, . . . , n.

Furthermore, the functions Vτ and d
dt V̂τ as defined in section 4.2 and Vτ defined

by Vτ (0) = v0�s and

Vτ (t) = vj , for t ∈ (tj−1, tj ]

are weakly convergent,
(5.9)

Vτ ⇀ v�s in L2(0, T ;Vs), Vτ (T ) ⇀ v(T ) in H, d
dt V̂ ⇀ v̇ in L2(0, T ;V∗).
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Proof. By the same arguments as in the proof of Lemma 5.6 one shows thatBA−1+
τAB is elliptic and bounded. The existence of a unique solution of (5.8) then
follows by the Lax-Milgram theorem. With bTA−1vj = vj and estimate (5.6)
one proves the stated convergence behavior by a reconstruction of the proof of
[ET10, Th. 5.1]. �

5.3. Convergence results for linear operator DAEs. In this section, we in-
vestigate the convergence behavior of the semidiscretized system (5.3). For this,

we recall the piecewise constant and piecewise linear approximations Uτ , Ûτ ,
d
dt Ûτ ,

Pτ , and Λτ from section 4.2. For the internal stages we introduce accordingly
(5.10)

Uτ (t) :=

{
a�s, if t = 0,

uj , if t ∈ (tj−1, tj ],
d
dtÛτ (t) :=

{
0, if t = 0,

Duj , if t ∈ (tj−1, tj ],

Pτ (t) := pj , if t ∈ (tj−1, tj ], Λτ (t) := λj , if t ∈ (tj−1, tj ].

The values for Pτ and Λτ at time t = 0 can be chosen arbitrarily. We state the
first main result of this paper.

Theorem 5.10 (Convergence of Runge-Kutta schemes). Consider right-hand sides

F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗) with approximations Fτ , Gτ , and Ġτ satisfying
Assumption 5.2 and an initial value a ∈ HB +B−G(0). The corresponding solution
of the operator DAE (3.4) is denoted by (u, p, 0). Then, every Runge-Kutta scheme
which satisfies Assumption 5.4 yields for τ → 0 the convergence results

Uτ → u in L2(0, T ;V),
d
dt Ûτ → u̇ in L2(0, T ;V∗

B),
Ûτ → u in L2(0, T ;H),
Λτ → 0 in L∞(0, T ;Q).

Furthermore,
∫ t

0
bTPτ (s) ds converges to a function p̃ in L2(0, T ;Q), where p is the

distributional derivative of p̃.

Proof. We follow the steps of the proof of Theorem 4.3 where we have shown the
convergence for the implicit Euler scheme.

Step 1 (Convergence of Λτ ). With equation (5.3b), a successive application of equa-
tion (5.3c), and bTA−1uj = uj we obtain

(5.11) Cλj = τ
(
AĠj − bT Ġj�s

)
+
(∫ tj

0

bT Ġτ (s)− Ġ(s) ds
)
�s + G(tj)�s − Gj .

Furthermore, with bTA−1
�s = 1 it holds that

Cλj = CbTA−1λj =

∫ tj

0

bT Ġτ (s)− Ġ(s) ds+ bTA−1
(
G(tj)�s − Gj

)
.

Similarly as in the proof of Theorem 4.3, Assumption 5.2 and bT
�s = 1 imply

‖Λτ‖L∞(0,T ;Q) �
√
T‖Ġτ − Ġ�s‖L2(0,T ;Q∗

s)
+ ‖Gτ − G�s‖L∞(0,T ;Q∗

s)
→ 0.

Given equation (5.11), Assumption 5.2 also implies Λτ → 0 in L2(0, T ;Qs) by the
estimate

‖Λτ‖2L2(0,T ;Qs)
� τ ‖AĠτ‖2L2(0,T ;Q∗

s)
+ τ ‖bT Ġτ�s‖2L2(0,T ;Q∗

s)

+ T 2 ‖Ġτ − Ġ�s‖2L2(0,T ;Q∗
s)

+ T ‖G�s − Gτ‖2L∞(0,T ;Q∗
s)
.
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Step 2 (Weak convergence of Uτ and d
dt Ûτ ). Note that the splitting V = VB ⊕ Vc

from Section 2.2 implies the splitting Vs = VB,s ⊕ Vc,s. With this, we obtain

uj = uj,B + uj,c, Duj = Duj,B +Duj,c, uj = uj,B + uj,c.

Analogously, we split the global approximations into

Uτ = Uτ,B +Uτ,c,
d
dtÛτ = d

dtÛ τ,B + d
dtÛ τ,c.

Thus, formula (5.3b) yields

Uτ,c = B−Gτ + B−CΛτ → B−G�s in L2(0, T ;Vs)

which implies Uτ,c → B−G and, respectively, by equation (5.3c) and bT
�s = 1,

d
dt Ûτ,c = bTA−1

(
d
dtÛ τ,c

)
= B−bT Ġτ → B−bT Ġ�s = B−Ġ in L2(0, T ;V).

By a combination of equations (5.3a), (5.3c) and a restriction of the test functions
to VB,s, we obtain

(5.12) A−1Duj,B +Kuj,B = F j −A−1Duj,c = F j − B−Ġj in V∗
B,s.

Note that (5.12) equals the Runge-Kutta approximation of an unconstrained prob-
lem such as (5.5). With the initial value aB ∈ HB, the conditions of Theo-
rem 5.9 are satisfied. Thus, Uτ,B converges weakly towards uB�s in L2(0, T ;VB,s) ⊆
L2(0, T ;Vs) and

d
dt Û τ,B converges weakly towards u̇B in L2(0, T ;V∗

B) as τ → 0.

Step 3 (Strong convergence of Uτ and d
dt Ûτ ). For the strong convergence we note

that by equation (5.12) it holds that

‖Uτ,B − uB�s‖2L2(0,T ;V)

� min
i=1,...,s

bi

∫ T

0

〈
K
(
Uτ,B(s)− uB(s)�s

)
, Uτ,B(s)− uB(s)�s

〉
ds

≤
∫ T

0

〈
KB

(
Uτ,B(s)− uB(s)�s

)
, Uτ,B(s)− uB(s)�s

〉
ds

= −
∫ T

0

〈
BA−1 d

dtÛ τ,B(s),Uτ,B(s)− uB(s)�s

〉
ds

+

∫ T

0

〈
Bu̇B(s)�s, Uτ,B(s)− uB(s)�s

〉
ds

+

∫ T

0

〈
B
(
Fτ (s)−F(s)�s

)
− B−B

(
Ġτ (s)− Ġ(s)�s

)
, Uτ,B(s)− uB(s)�s

〉
ds,

(5.13)

since K is elliptic and all bi are positive. As for the implicit Euler method, we only
need to analyze the first integral, since the remaining terms vanish as τ → 0 by the
weak convergence of Uτ,B and Assumption 5.2. By Remark 5.8 we obtain

2τ
〈
BA−1Duj,B, uj,B

〉
≥ |uj,B|2 − |uj−1,B|2

and, thus,∫ T

0

〈
BA−1 d

dtÛ τ,B(s),Uτ,B(s)
〉
ds ≥ 1

2

n∑
j=1

|uj,B|2 − |uj−1,B|2 =
1

2
|uB,n|2 −

1

2
|aB|2.
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From Theorem 5.9 we know that un,B ⇀ uB(T ) which implies that

lim inf
n→∞

1

2
|uB,n|2 −

1

2
|aB|2 ≥ 1

2
|uB(T )|2 −

1

2
|uB(0)|2 =

∫ T

0

〈
u̇B(s), uB(s)

〉
ds.

On the other hand, with the convergence results for Uτ , Fτ , and Ġτ as well as
�
T
s B�s = 1 we get∫ T

0

〈
BA−1 d

dtÛ τ,B(s), uB�s(s)
〉
ds

=

∫ T

0

〈
B(Fτ − B−Ġτ −KUτ,B)(s), uB�s(s)

〉
ds

→
∫ T

0

〈
B(F�s − B−Ġ�s −KuB�s)(s), uB�s(s)

〉
ds

=

∫ T

0

〈
Bu̇B�s(s), uB�s(s)

〉
ds =

∫ T

0

〈u̇B(s), uB(s)〉 ds.

As in the proof of Theorem 4.3 we conclude with (5.13) that Uτ,B → uB�s in
L2(0, T ;VB,s). A direct implication is given by

Uτ,B = bTA−1Uτ,B → bTA−1uB�s = uB in L2(0, T ;VB) ⊆ L2(0, T ;V).

Furthermore, we obtain the convergence of d
dt Ûτ,B in L2(0, T ;V∗

B) by

d
dt Ûτ,B = bTA−1 d

dt Ûτ,B

= bT (Fτ − B−Ġτ −KUτ,B) → bT (F − B−Ġ − KuB)�s = u̇B.

Step 4 (Convergence of Ûτ ). For the proof of the convergence of Ûτ,B → u we argue
as in the proof of Theorem 4.3, using the estimate

〈Duj,B, uj,B〉 = 〈bTA−1Duj,B, uj,B〉
= 〈bTF j , uj,B〉 − 〈bTB−Gj , uj,B〉 − 〈bTKuj,B, uj,B〉
� ‖F j‖2V∗ + |B−Gj |2 + ‖uj,B‖2 + ‖uj,B‖2.

With this, the same arguments as in the proof of Theorem 4.3 show the claim.

Step 5 (Convergence of bTPτ ). For the proof of the distributional convergence of
bTPτ we introduce primitives for the expansions of the stages Uτ , Pτ , Λτ , and for
the right-hand side Fτ . We mark the absolutely continuous primitives with zero
initial conditions at t = 0 by a tilde, e.g.,

Ũτ (t) =

∫ t

0

U(s) ds.

Recall that Λτ converges to zero in L2(0, T ;Qs) and therefore Uτ,c → uc�s in
L2(0, T ;Vs) by equation (5.3b). Now, consider the equality

B∗bT P̃τ = B∗
∫ ·

0

bTPτ (s) ds = Ûτ +KbT Ũτ − B∗bT Λ̃τ − bT F̃τ − a(5.14)

in AC([0, T ],V∗), which follows from equation (5.3a). Then, the inf-sup condition

of B, and an argumentation as in the proof of Theorem 4.3 yields that bT P̃τ

converges to p̃ with p̃(t) =
∫ t

0
p dt in L2(0, T ;Q). �
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Remark 5.11. In Theorem 5.10 we have shown the convergence of bT P̃τ . For a

proof of P̃τ → p̃ in L2(0, T ;Q) we would need a result of the form

A�saB +

∫ t

0

d
dtÛ τ,B ds → A�suB in L2(0, T ;V∗

s ).

With this, we could consider B∗bTA−1P̃τ similarly as in equation (5.14).

Remark 5.12. The proof of Theorem 5.10 also shows the convergence of the con-
tinuous representation of the internal stages Uτ to u�s in L2(0, T ;Vs).

As for the implicit Euler scheme, we can prove the convergence of the variable p
if we assume additional regularity of the right-hand side F and the initial data.
This gives the second main result.

Theorem 5.13 (Convergence with more regular data). In addition to the as-
sumptions of Theorem 5.10, consider an initial value a ∈ V with Ba = G(0) and
F ∈ L2(0, T ;H∗). Furthermore, let the approximation Fj satisfy Assumption 5.2
in L2(0, T ;H∗

s) and let the operator K be symmetric. Then, the approximations
satisfy

d
dt Ûτ ⇀ u̇ in L2(0, T ;H), Pτ ⇀ p in L2(0, T ;Q).

Proof. We follow the ideas of the proofs of Theorems 4.4 and 5.10. With the
splitting V = VB ⊕ Vc and the strong convergence

d
dt Û τ,c = bTA−1

(
d
dtÛ τ,c

)
→ bTA−1u̇c�s = u̇c

in L2(0, T ;Vc) ↪→ L2(0, T ;H) (cf. the proof of Theorem 5.10), we consider the

remaining part d
dt Û τ,B. For this, we test equation (5.12) by BA−1Duj,B ∈ VB,s.

Now Remark 5.8 with A = K and the symmetry of K yield

c |Duj,B|2+
1

2τ

(
〈Kuj,B, uj,B〉 − 〈Kuj−1,B, uj−1,B〉

)
≤ 〈A−1Duj,B,BA−1Duj,B〉+ 〈Kuj,B,BA−1Duj,B〉
= 〈F j ,BA−1Duj,B〉+ 〈B−Ġj ,BA−1Duj,B〉.

Therein, c > 0 denotes the smallest eigenvalue of A−TBA−1. As in the proof of
Theorem 4.4, a multiplication by τ and a summation over all time steps leads to
the estimate

(5.15)

∫ T

0

| ddt Ûτ,B(s)|2 ds � ‖aB‖2 +
n∑

j=1

τ
(
|A−TBF j |2 + |B−A−TBĠj |2

)
.

Since the right-hand side is bounded, d
dtÛ τ,B is bounded in L2(0, T ;Hs) and, thus,

d
dt Ûτ,B = bTA−1

(
d
dtÛ τ,B

)
is bounded in L2(0, T ;H). We conclude the weak con-

vergence of d
dt Ûτ in L2(0, T ;H). Further, estimate (5.15) guarantees the existence

of a weak converging subsequence of A−1 d
dtÛ τ,B in L2(0, T ;HB,s) with a limit

denoted by H . Note that by equations (4.12), (5.12), Assumption 5.2, and the
convergence of Uτ it holds that (H − u̇B�s,vB) = 0 for all vB ∈ VB,s. Since VB,s

is densely embedded in HB,s, it follows that H = u̇B�s. Note that the entire se-

quence converges, since all subsequences have the same limit. Thus, A−1 d
dtÛτ,B
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converges weakly to u̇B�s in L2(0, T ;HB,s) ⊆ L2(0, T ;Hs). With the continuity of
the operators it holds that

B∗Pτ = bTA−1
(
A−1 d

dt Ûτ,B + B−Ġτ −Fτ

)
+KUτ − B−Λτ

∗
⇀ bTA−1

(
u̇B + B−Ġ − F

)
�s +Ku = u̇−F +Ku in L2(0, T ;V∗).

As in the proof of Theorem 4.4, this results in the claimed convergence of Pτ . �

Remark 5.14. The condition in Assumption 5.4 that the scheme has to be al-
gebraically stable may be weakened. It is sufficient if a positive definite matrix
M ∈ R

s×s exists such that M := MA+ATMT −bbT is positive semidefinite and
MT

�s = b.

6. Conclusion

Within this paper, we have analyzed the convergence of the implicit Euler scheme
and, more generally, of algebraically stable Runge-Kutta schemes with R(∞) = 0
applied to linear operator DAEs of semi-explicit structure. For this, we have con-
sidered a regularized version of the system equations where a spatial discretization
leads directly to a DAE of index one. This implies that the system is more stable
than the original formulation although the solution set remains unchanged.

Within the convergence analysis, we have distinguished several cases for the
smoothness of the data, which includes the right-hand sides as well as the initial
data. In the weakest case, we can only prove the convergence of the Lagrange
multiplier in a distributional sense, i.e., only its integral converges. Note that we
cannot expect more, since for the given assumptions also the solution only exists
in a distributional sense. With more regularity, the Lagrange multiplier converges
weakly as well as the derivative of the approximation of the differential variable in
a space equipped with a stronger norm.
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[Rou05] T. Roub́ıček, Nonlinear Partial Differential Equations with Applications, International
Series of Numerical Mathematics, vol. 153, Birkhäuser Verlag, Basel, 2005. MR2176645

[She95] J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equa-
tions, SIAM J. Numer. Anal. 32 (1995), no. 2, 386–403, DOI 10.1137/0732016.
MR1324294

[Sim00] B. Simeon, Numerische Simulation gekoppelter Systeme von partiellen und
differential-algebraischen Gleichungen der Mehrkörperdynamik, VDI Verlag,
Düsseldorf, 2000.

[Sim13] B. Simeon, Computational Flexible Multibody Dynamics: A Differential-Algebraic
Approach, Differential-Algebraic Equations Forum, Springer, Heidelberg, 2013.
MR3086702

[Tar06] L. Tartar, An introduction to Navier-Stokes equation and oceanography, Lecture Notes
of the Unione Matematica Italiana, vol. 1, Springer-Verlag, Berlin; UMI, Bologna, 2006.
MR2258988

[Tar07] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes
of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007.
MR2328004

[Tem77] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in
Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-

New York-Oxford, 1977. MR0609732
[Tis96] C. Tischendorf, Solution of index-2 differential algebraic equations and its application

in circuit simulation, Ph.D. thesis, Humboldt-Universität zu Berlin, 1996.
[Tis03] C. Tischendorf, Coupled Systems of Differential Algebraic and Partial Differential

Equations in Circuit and Device Simulation. Modeling and Numerical Analysis, Ha-
bilitationsschrift, Humboldt-Universität zu Berlin, 2003.

[Wlo87] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge,
1987. MR895589

[Zei90] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Mono-
tone Operators, Springer-Verlag, New York, 1990. MR1033497

Institut für Mathematik MA4-5, Technische Universität Berlin, Straße des 17. Juni

136, 10623 Berlin, Germany

E-mail address: raltmann@math.tu-berlin.de

Institut für Mathematik MA4-5, Technische Universität Berlin, Straße des 17. Juni

136, 10623 Berlin, Germany

E-mail address: zimmer@math.tu-berlin.de

http://www.ams.org/mathscinet-getitem?mr=0141248
http://www.ams.org/mathscinet-getitem?mr=849286
http://www.ams.org/mathscinet-getitem?mr=2176645
http://www.ams.org/mathscinet-getitem?mr=1324294
http://www.ams.org/mathscinet-getitem?mr=3086702
http://www.ams.org/mathscinet-getitem?mr=2258988
http://www.ams.org/mathscinet-getitem?mr=2328004
http://www.ams.org/mathscinet-getitem?mr=0609732
http://www.ams.org/mathscinet-getitem?mr=895589
http://www.ams.org/mathscinet-getitem?mr=1033497

	1. Introduction
	2. Preliminaries
	2.1. Runge-Kutta methods for DAEs
	2.2. Spaces and embeddings
	2.3. Norms and operators

	3. Regularization
	3.1. Formulation as operator DAE
	3.2. Finite-dimensional case
	3.3. Infinite-dimensional case

	4. Convergence of the implicit Euler scheme
	4.1. Temporal discretization
	4.2. Convergence results
	4.3. Convergence results for more regular data

	5. Convergence of implicit Runge-Kutta schemes
	5.1. Temporal discretization
	5.2. Convergence results for linear operator equations
	5.3. Convergence results for linear operator DAEs

	6. Conclusion
	References

