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CONVERGENCE OF ADAPTIVE
DISCONTINUOUS GALERKIN METHODS

CHRISTIAN KREUZER AND EMMANUIL H. GEORGOULIS

ABSTRACT. We develop a general convergence theory for adaptive discontinu-
ous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and
LDG schemes as well as all practically relevant marking strategies. Another
key feature of the presented result is, that it holds for penalty parameters only
necessary for the standard analysis of the respective scheme. The analysis is
based on a quasi-interpolation into a newly developed limit space of the adap-
tively created non-conforming discrete spaces, which enables us to generalise
the basic convergence result for conforming adaptive finite element methods by
Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive
finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].

1. INTRODUCTION

Discontinuous Galerkin finite element methods (DGFEM) have enjoyed consid-
erable attention during the last two decades, especially in the context of adaptive
algorithms (ADGMs): the absence of any conformity requirements across element
interfaces characterizing DGFEM approximations allows for extremely general adap-
tive meshes and/or an easy implementation of variable local polynomial degrees in
the finite element spaces. There has been substantial activity in recent years for
the derivation of a posteriori bounds for discontinuous Galerkin methods for ellip-
tic problems [KPO3|[BHLO3I[Ain07HSWO7ICGI0EVOIESVIOZGHSTIDPEI2).
Such a posteriori estimates are an essential building block in the context of adaptive
algorithms, which typically consist of a loop

(1.1) SOLVE — ESTIMATE — MARK — REFINE.

The convergence theory, however, for the ‘extreme’ non-conformity case of ADGMs
had been a particularly challenging problem due to the presence of a negative
power of the mesh-size h stemming from the discontinuity-penalization term. As a
consequence, the error is not necessarily monotone under refinement. Indeed, con-
sulting the unprecedented developments of convergence and optimality theory of
conforming adaptive finite element methods (AFEMs) during the last two decades,
the strict reduction of some error quantity appears to be fundamental for most of
the results. In fact, Dorfler’s marking strategy typically ensures that the error is
uniformly reduced in each iteration [Dor96, MNS00LMNS02] and leads to optimal
convergence rates [SteQ7,[CKNSO08|[KS11L[DKO8,BDKI2]; compare also with the
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monographs [NSV09,/CFP14] and the references therein. Showing that the error
reduction is proportional to the estimator on the refined elements, instance opti-
mality of an adaptive finite element method was shown recently for an AFEM with
modified marking strategy in [DKSI6l[KS16]. A different approach was, however,
taken in [MSVO08|[Siell], where convergence of the AFEM is proved, exploiting that
the approximations converge to a solution in the closure of the adaptively created
finite element spaces in the trial space together with standard properties of the a
posteriori bounds. The result covers a large class of inf-sup stable PDEs and all
practically relevant marking strategies without yielding convergence rates.

Karakashian and Pascal [KP07] gave the first proof of convergence for an adaptive
DGFEM based on a symmetric interior penalty scheme (SIPG) with Dorfler marking
for Poisson’s problem. Their proof addresses the challenge of negative power of h in
the estimator, by showing that the discontinuity-penalization term can be controlled
by the element and jump residuals only, provided that the DGFEM discontinuity-
penalisation parameter, henceforth denoted by o, is chosen to be sufficiently large;
the element and jump residuals involve only positive powers of h and, therefore, can
be controlled similarly as for conforming methods. The optimality of the adaptive
SIPG was shown in [BN10]; see also [HKW09].

The standard error analysis of the SIPG requires that o is sufficiently large for
the respective bilinear form to be coercive with respect to an energy-like norm. It
is not known in general, however, whether the choice of o required for coercivity
of the interior penalty DGFEM bilinear form is large enough to ensure that the
discontinuity-penalization term can be controlled by the element and jump residuals
only. Therefore, the convergence of SIPG is still open for values of o large enough
for coercivity but, perhaps, not large enough for the crucial result from [KP07] to
hold. To the best of our knowledge, the only result in this direction is the proof of
convergence of a weakly overpenalized ADGM for linear elements [GG14], utilizing
the intimate relation between this method and the lowest order Crouzeix-Raviart
elements.

This work is concerned with proving that the ADGM converges for all values
of ¢ for which the method is coercive, thereby settling the above discrepancy be-
tween the magnitude of o required for coercivity and the, typically much larger,
values required for proof of convergence of ADGM. Apart from settling this open
problem theoretically, this new result has some important consequences in practical
computations: it is well known that as o grows, the condition number of the re-
spective stiffness matrix also grows. Therefore, the magnitude of the discontinuity-
penalization parameter o affects the performance of iterative linear solvers, whose
complexity is also typically included in algorithmic optimality discussions of adap-
tive finite elements. In addition, the theory presented here includes a large class of
practically relevant marking strategies and covers popular discontinuous Galerkin
methods like the local discontinuous Galerkin method (LDG) and even the non-
symmetric interior penalty method (NIPG), which are coercive for any o > 0.
Moreover, we expect that it can be generalised to non-conforming discretisations
for a number of other problems like the Stokes equations or fourth order elliptic
problems. However, as for the conforming counterpart [MSV0S§|, no convergence
rates are guaranteed.

The proof of convergence of the ADGM, discussed below, is motivated by the
basic convergence for the conforming adaptive finite element framework of Morin,
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Siebert, and Veeser [MSV08]. More specifically, we extend considerably the ideas
from [MSV0§] and [Gud10] to be able to address the crucial challenge that the limits
of DGFEM solutions, constructed by the adaptive algorithm, do not necessarily
belong to the energy space of the boundary value problem as well as to conclude
convergence from a perturbed best approximation result.

To highlight the key theoretical developments without the need to resort to com-
plicated notation, we prefer to focus on the simple setting of the Poisson problem
with essential homogeneous boundary conditions and conforming shape regular tri-
angulations. We believe, however, that the results presented below are valid for
general elliptic PDEs including convection and reaction phenomena as well as for
some classes of non-conforming meshes; compare with [BN10].

The remainder of this work is structured as follows. In Section [2] we shall in-
troduce the ADGM framework for Poisson’s equation and state the main result,
which is then proved in Section [ after some auxiliary results, needed to generalise
[MSV0S], are provided in Sections Bl and @l In particular, in Section [l a space is
presented, which is generated from limits of discrete discontinuous functions in the
sequence of discontinuous Galerkin spaces constructed by ADGM. Section []is then
concerned with proving that the sequence of discontinuous Galerkin solutions pro-
duced by ADGM converges indeed to a generalised Galerkin solution in this limit
space. This follows from an (almost) best-approximation property, generalising the
ideas in [Gud10].

2. THE ADGM AND THE MAIN RESULT

Let a measurable set w and a m € N. We consider the Lebesgue space L?(w; R™)
of square integrable functions over w with values in R, with inner product (-, -)
and associated norm ||-|| ,. We also set L?(w) := L?(w;R). The Sobolev space H' (w)
is the space of all functions in L?(w) whose weak gradient is in L?(w;R?), for d € N.
Thanks to the Poincaré-Friedrichs’ inequality, the closure H¢ (w) of C§°(w) in H'(w)
is a Hilbert space with inner product (V-, V-) and norm ||V-|| . Also, we denote
the dual space H!(w) of H}(w), with the norm 19/ =1y *= SUPweri () %,
v € HY(w), with dual brackets defined by (v, w) := v(w), for w € H} (w).

Let Q C RY d = 2,3, be a bounded polygonal (d = 2) or polyhedral (d = 3)
Lipschitz domain. We consider the Poisson problem

(2.1) —Au=f in Q, u=0 on 09,
with f € L?(2). The weak formulation of (2] reads: find u € H}(2), such that
(2.2) (Vu, Vu),, = (f, v)q for all v € H} ().

From the Riesz representation theorem, it follows that the solution w exists and is
unique.

2.1. Discontinuous Galerkin method. Let G be a conforming (that is, not con-
taining any hanging nodes) subdivision of 2 into disjoint closed simplicial elements
E sothat Q = J{E : E € G} and set hg = |E|'/9. Let S = S(G) be the set
of (d — 1)-dimensional element faces S associated with the subdivision G including
01, and let §=8 (G) C S by the subset of interior faces only. We also introduce
the mesh-size function hg : @ — R, defined by hg(z) := hg, if € E\JE and
hg(z) = hg :==|S|Y@ D ifreSeSandset I =T(G) =J{S: 5 €S}and I =
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I'(G) = U{S : S € S}. We assume that G is derived by iterative or recursive newest
vertex bisection of an initial conforming mesh Gy; see [Ban91L[Kos94[Mau95l[Tra97].
We denote by G the family of shape regular triangulations consisting of such sub-
divisions of Gy.

Let P,.(E) denote the space of all polynomials on E of degree at most r € N, we
define the discontinuous finite element space

(2.3) V(@) := [[ Pr(E) c [[ W'P(E) = W'?(G), 1<p<o,
Eeg Eecg

and H'(G) := W12(G). Let N = N(G) be the set of Lagrange nodes of V(G) and
define the neighbourhood of a node z € N(G) by Ng(z) := {E' € G : z € E'},
and the union of its elements by wg(z) = (J{E’ € G : z € E'}. We also define
the corresponding neighbourhoods for all elements E € G by Ng(E) :={E' € G :
ENE #0}and wg(E) = U{E' €G: ENE#0} = {wg(z) : z € N(E)N E},
respectively, and set wg(S) := |J{F € G : S C E}; compare with Figure I The
numbers of neighbours #Ng(z) and #Ng(E) are uniformly bounded for all z € NV,
respectively, E € G, depending on the shape regularity of G and, thus, on Gy.

FIGURE 1. The neighbourhood Ng(F) of some E € G.

Let ET, E~ be two generic elements sharing a face S :== ET N E~ € S and
let nT and n~ be the outward normal vectors of E*, respectively, E~ on S. For
¢:Q—=Rand ¢:Q — R? let ¢* := ¢|grop= and ot = &|snoE+, and set

s =5 +a),  (SHsi= 56" +07),
[dls :=a"'n" +¢ n", [9]ls =T - nT+0~ -n;

if S C OEN 0N, we set {p}|s := ¢T and [¢] |s := ¢*nt.

In order to define the discontinuous Galerkin schemes, we introduce the following
local lifting operators. For S € S, we define R§ : L*(S)? — []pcg Pe(E)* and
L3 : L2(S) = [l geg Pe(E)? by

(2.4a) /§2R§(¢)-sz:/3¢.{f}ds VT € H P,(E)¢

Eeg
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and

(2.4b) /QLg(q) crdr = /Sq [7] ds VT € H Py (E)Y,

EcgG

with ¢ € {r,r +1}. Note that L3(q) and R§(¢) vanish outside wg(S). Moreover,
using the local definition and the boundedness of the lifting operators in a reference
situation together with standard scaling arguments, we have for ¢ € P,.(S)% and
g € P,.(S) that

@40)  [25@)o S s %e]|, and [R@]g < [1s%d

compare with [ABCMO02]. Also, here and below we write a < b when a < Cb for a
constant C not depending on the local mesh size of G or other essential quantities for
the arguments presented below. Observing that the sets wg(S), S € S do overlap
at most d + 1 times, we have for the global lifting operators Rg : L%(T')? — V(G)¢
and Lg : L2(I') — V(G)¢ defined by

Rg(¢) =Y R3(¢) and  Lg(q):= > RI(q),

Ses scé
that

||Rg(uv]])||Q§Hh;1/%HF and [|Lg(8 - [v] g < 18] Hh?/Qva

for all v € V(G) and B € R%.
We define the bilinear form Bg|-, -] : V(G) x V(G) — R by

Ba[w, 1] ::/ng~Vvd:v—/S({Vw}-[[v]]+6‘{Vv}-[[w]])ds
+ [ (8- [ Ve + [Vul 8- ) ds
+ [ 2(Reful) + Lo(8 - [wD) - (Re([o]) + Lo (8- [¢]) =
+ [ Z ol Bl s

for @ € {£1}, v € {0,1}, B € R and ¢ > 0. Here we have used the shorthand

notation
-dx = /-dx and /-ds = /-ds.
/g Z E S Z s

E€g ses

We consider the choices § = 1, 8 = 0, and v = 0 yielding the symmetric interior
penalty method (SIPG) [DD76], # = —1, 8 = 0, and v = 0 which gives the nonsym-
metric interior penalty methods (NIPG) [RWG99], and = 1, B € R% and v = 1
which yields the local discontinuous Galerkin method (LDG) [CS98]; compare also
with [ABCMO02] and [JNS16].

In all three cases, the corresponding discontinuous Galerkin finite element method
(DGFEM) then reads: find ug € V(G) such that

(2.6) Bglug, vg] = /vag dz =:l(vg) for all vg € V(G).
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Upon denoting by Vpzv the piecewise gradient Vpyv|p = Vu|g for all E € G, the
corresponding energy norm ||-[|; is defined by

B 2
H|w|Hg = (HVPWwH?Z +o thl/Q [[wHHF>

for w|g € HY(E), E € G. Here ¢ := max{1,0}. Also, for some subset M C G with
w=|J{E | E € M}, we define

B 9 ~ _1/2 2 )1/2
ol g = (I¥ueoll? + 7 | g HWHHW '

1/2
)

If for SIPG we have o := C,7? for some constant C, > 0 sufficiently large, o > 0
for NIPG and for LDG ¢ > 0 when £ = r and ¢ = 0 when ¢ = r + 1 (J[JNS16]), then
there exists a = a(o) > 0, such that

(2.7) afwlg < Bglw, w]  Vw € V(G),

i.e., all three DGFEMs are coercive in V(G). Note that coercivity (277) holds true
also for functions in H'(G) after extending the discrete bilinear form using some
liftings; see, e.g., [Arn82/[ABCMO2L[JNSI6| for details. The choice & = max{l,o0}
accounts for the fact that we can have o = 0 for the LDG in [JNS16].

From standard scaling arguments, we conclude the following local Poincaré-
Friedrichs inequality from [Bre03,BO09).

Proposition 1 (Poincaré-V(G)). Let G be a triangulation of Q and G, some re-
finement of G. Then, for v € V(G,), E € G and vg := |wg(E)|™* fwg(E)Udl", we
have

he|Vpuvl|* dz + / hghg! [v]” ds,
5€8,,8Cwg(E)

lv—vgl|? 5/

wg

where S, = S(G,) and the hidden constant depends on d and on the shape regularity
of Ng(E).

The next important result from [KP03, Theorem 2.2] (compare also with [BN10,

Lemma 6.9] and [BO09, Theorem 3.1]) quantifies the local distance of a discrete

non-conforming function to the conforming subspace with the help of the scaled
jump terms.

Proposition 2. For G € G, there exists an interpolation operator Ig : H'(G) —
V(G) N HY(Q), such that we have

Bl 7 2 2 < 172
g (v—1Igv) )+||V(U—IQU)||L2(E)N 6Ehg [v]” ds

L2(E
for all E € G andv € V(G).

From this, we can easily deduce the following broken Friedrichs type inequality;
compare also with [BO09, (4.5)].

Corollary 3 (Friedrichs-V(G)). Let G € G, then
[0l L2y S lvllg  for all v e V(G).

Let BV (£2) denote the Banach space of functions with bounded variation equiped
with the norm

[l gy () = Il L1 () + [DVI(2),
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where Dwv is the measure representing the distributional derivative of v with total
variation

|Dv|(2) = sup /vdiv¢dx.
PeCHN L9l L o<1 /2

Here the supremum is taken over the space C}(€2)¢ of all vector valued continuously
differentiable functions with compact support in 2.

Another crucial result [BO09, Lemma 2] states then that the total variation of
the distributional derivative of broken Sobolev functions is bounded by the discon-
tinuous Galerkin norm.

Proposition 4. For G € G we have that
[Dv|(2) S Vvl q) + /S W] ds S llvllg — for all v e HY(G).

2.2. A posteriori error bound. We recall the a posteriori results from [KP03]
BN10,BGC05,[BHLO3|; compare also with [CG.J09].
For v € V(G), we define the local error indicators for E € G by

1/2
g, E) == (/ h§|f+Av|2dx+/ hg [Vv]? ds—l—a/ hg' [v]” ds) ;
E SENQ OF
when v = ug, we shall write Eg(F) := Eg(ug, E). Also, for M C G, we set
1/2
Eg(v, M) == ( 3 5(U,E)2) .
EcM
Proposition 5. Let u € H}(Q) be the solution of 22) and let ug € V(G) be its
respective DGFEM approzimation (2.8) on the grid G € G. Then,
lu—uglg <> Eg(B)>.
Eeg

The efficiency of the estimator follows with the standard bubble function tech-
nique of Verfirth [Ver96lVer13]; compare also with [KP03, Theorem 3.2], [Gud10,
Lemma 4.1] and Proposition 22] below.

Proposition 6. Let u € HE(Q) be the solution of [22) and let G € G. Then, for
allv e V(G) and E € G, we have

/ hg\f+Au\2dx+/ hg [Vv]” ds
E AENQ
2
< = ol gy + [Vl = )| ) + 05c(NG(E), £)7,
with data-oscillation defined by

osc(M, f) := ( Z osc(E7f)2)1/2’

E'eM
where osc(E, f):= inf ||hg(f— fe)lg
fEEP,. 1

for all M C G. In particular, this implies
& (v, E) < llv = ull yg () + 05¢(Ng (E), f)-
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Remark 7. Note that the presented theory obviously applies to all locally equivalent
estimators as well; compare, e.g., with [KP03|[BNT0,[BGCO5,[BHLO3,[CGI09]. For
the sake of a unified presentation, we restrict ourselves to the above representation.

2.3. Adaptive discontinuous Galerin finite element method (ADGM). The
adaptive algorithm, whose convergence will be shown below, reads as follows.

Algorithm 8 (ADGM). Starting from an initial triangulation Gy, the adaptive
algorithm is an iteration of the following form:

(2) {€:(E)} weq, = ESTIMATE(uy. Gy);
(3) Mk - MARK({gk(E)}EEgk,gk)7
(4) Gry1 = REFINE(Gy, My,); increment k.

Here we have used the notation & (E) := &g, (F) for brevity.
SOLVE. We assume that the output

ug = SOLVE(V(G))

is the DGFEM approximation (28] of u with respect to V(G).
ESTIMATE. We suppose that

{8Q(E)}E€g = EST|MATE(Ug,g)

computes the error indicators from Section
MARK. We assume that the output

M = MARK({&g(E)}Eeg, G)
of marked elements satisfies

(2.8) EG(E) < g(Eg(M)) for all E € G\ M.

Here g : Rf — R{ is a fixed function, which is continuous in 0 with g(0) = 0, i.e.,
lim,_,0 g(e) = 0.
REFINE. We assume for M C G € G, that for the refined grid

G := REFINE(G, M)
we have
(2.9) EeM = Ee€gG\G,

i.e., each marked element is refined at least once.

2.4. The main result. The main result of this work states that the sequence of
discontinuous Galerkin approxiations, produced by ADGM, converges to the exact

solution of (2T]).
Theorem 9. We have that

Ex(Gr) >0 ask — .
In particular, this implies that

lw = ull, =0 ask— oo.
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FIGURE 2. Selection of a sequence of triangulations of = (0,1)2,
where in each iteration the elements in Q= = [0,0.5] x [0,0.5] are
marked for refinement. The elements G in the remaining domain
0\ Q are, after some iteration, not refined anymore. Moreover,
after some iteration, their whole neighbourhood is not refined any-
more.

3. A LIMIT SPACE AND QUASI-INTERPOLATION

In this section we shall first introduce a new limit space V., of the sequence
of adaptively constructed discontinuous finite element spaces {V(Gi)}ren. A new
quasi-interpolation operator is then introduced in Section [33]in order to to prove
that there exists a unique Galerkin solution u., of a generalised discontinuous
Galerkin problem in V,

3.1. Sequence of partitions. The ADGM produces a sequence {Gy }en, of nested
admissible partitions of €. Following [MSV08], we define

gr=1{J¢ and QF:=Q(G")
k>035>k

to be the set and domain of all elements, respectively, which eventually will not be
refined any more; here Q(X) := interior (J{F : E € X}) for a collection of elements
X. We also define the complementary domain 2~ := interior(2\ Q7). For the ease
of presentation, in what follows, we shall replace subscripts Gy by k to indicate the
underlying triangulation, e.g., we write Ny (FE) instead of Ng, (E).

The following result states that neighbours of elements in G* are eventually also
elements of G1; cf. [MSV08|, Lemma 4.1].

Lemma 10. For E € G there exists a constant K = K(E) € Ny, such that
Nu(E) = Ng(E)  forallk > K,
i.e., we have Nx(E) C GT for allk > K.
Next, for a fixed k € Ny, we set

Gy = {E€Gr: wi(B)Cc O}, Q= QG),

G =G.ng*, O =G,
Git ={EeG: Nu(B)CGtY,  Qft =G,

Gr =G\ (GIT UG, Q= QGR);

compare also with Figure 2l This notation is also adopted for the corresponding
faces, e.g., we denote S,j = S(g;) and S,j = S(g;) and correspondingly for all
other above subtriangulations of Gy.
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The next lemma is related to [MSV08| (4.15) and Corollary 4.1]. However, the
definitions of Qf and €, differ from the corresponding ones in [MSVO0§|, which
requires some modifications in the proof.

Lemma 11. We have that limg_oc || = 0 and limy_ o ||thQ; |Lo () = 0, with

Xoy denoting the characteristic function of €1} .

Proof. In order to prove the first claim, we begin by observing that |Q| < [Q7 \
Q.|+ 197\ Q| and consider the two terms on the right-hand side separately.

Since #g,j < 00, we have, thanks to Lemma [I0, that for all k£ € N there exists
K = K(k) > k, such that Q}?*‘ D g,j. Consequently, we have

R\ <10\ = Y Bl =0,
EegH\g}

as k — oo. This holds because the right-hand side is a tail of the series ) 5 g+ |E|,
which is convergent, as |E| > 0 and all partial sums are bounded by [€|. Since
|Q+ \ Q| is monotonically decreasing, we conclude that [T \ Qf*| — 0 as
k — oo.

We observe that the sequence {€; }ren is nested, ie., Qy C Q7 CQ; C--- C
Q. Therefore, we have that the sequence {|Q~ \ Q |}ren is converging, because
it is monotonically decreasing. Assume that limy_,o Q27 \ .| # 0, then we have
by the continuity of the Lebesgue measure that

0# lim |07\ Q| =]\ [J ]
k>0
Consequently, there exists a ball B, with some radius p > 0 such that B, C
Q7 \ U0 Q- For kB € N let g,fp = {E € Gy: EN B, # 0}, then there exists

E e gf” with |E| 2 p independent of k. This follows from the fact that, since
B, C Q7 \ Q, there exists no E € G, with Q(N(E)) C B,, together with the
local quasi-uniformity of Gi. Thanks to the fact that the size of an element is
reduced under refinement by a factor 27'/¢ and that the grids G are nested, we
have that there is some K > 0, such that there exists F € Q,fp with E € G for all
k> K,ie., E € G*. This is the contradiction since ) # ENB? C ENQ~.

The second claim follows from [MSV08| Corollary 4.1] noting that Q= C Q9 with
QY as in [MSVO0S]. O

3.2. The limit space. In this section, we shall investigate the limit of the finite
element spaces Vi, := V(Gg), k € N. To this end, we define

Voo := {v € BV(Q) 1 v|g- € Hjgnpa-(27) and v|p € P, VE € GT

such that I{vg fren, vx € Vi with lim [Jv — vif|, =0
k—o0

and limsup [Jvg |, < oo};
k—o0

here Hjo oq- (27) denotes the space of functions from Hg(Q) restricted to Q.
Note that for v € BV () there exists the L'-trace of v on T, = [J{S : S € S };
compare, e.g., with the trace theorem [BOQ9, Theorem 4.2]. In other words, v is
measurable with respect to the (d — 1)-dimensional Hausdorff measure on Sy, and,
therefore, the term ||v||,, v € Vo, makes sense. Obviously, we have V,NC(Q) C V
for all £ € N and, thus, V, is not empty.
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Setting hy := hg+ and ST := S(G"), we define

(v, w), = Vv - Vwdzr + Vv - Vwdzr + 6/ hit [o] [w] ds,
Q- gt S+
and [|v] o, = (v, v)l/ % for all v,w € V.. For brevity, we shall frequently use the
notation
/ Vopu? - Vpyw dz = Vo - Vwdx + Vv - Vwdz.
Q Q- g+

We shall next list some basic properties of the space V,
Proposition 12. Forv € V,, we have
Ioll, ~ vl < oo as k — oo
In particular, for fited £ € N, let E € Gy; then, we have

/ hy! [v]* ds / hit [v]* ds, as k — oco.
{sesk:SCE} {Ses+:SCE}

Proof. Since v € Vo, there exists {v}ren,vp € Vi with limy_o [|v — k]|, = 0
and limsup,_, o [luk]l, < oo. We first observe that
Ioll, < llv = villy, + lloell, < oo

uniformly in k. Thanks to the mesh-size reduction, i.e., h,, < hj for all m > k, we

conclude that
/ it [v]? ds < / ht[v]? ds < / h o] ds,
Sk Sk S

m

thanks to the inclusion Ugcs, S C Uges,, S-  Therefore, we have [, < |vll,,
for all m > k and, thus, {]|v||, }keN converges. Consequently, for € > 0 there exists
K = K (e), such that for all k > K and m > k large enough, we have

e> |l — ol | = o / Bl o] ds — o / Bt [ol? ds
S\ (EmNSk) S\ (SmNSk)

Z (21/(d71) _ 1) 5_/ h]}:l [[U]]2
S\ (SmNSk)

> (2141 _ 1)5/ hit [v]? ds.
Sp\SF

This follows from the fact that h,,|s < 27/ Dhy|s for all S € S\ (S N Sk)
together with S;” = S,,, NSy, for sufficiently large m > k.

Therefore, we have fsk\8+ hit [v]? ds — 0 as k — oo and, thus,
K

lolly = /Q |vau\2dx+5/8+ I ds+5/8 il ds = flollS, +0

k k\Sy,
This proves the first claim. The second claim is a localised version and follows
completely analogously. ]

Lemma 13 (Poincaré-V,). Fiz k € N and let E € Gi,. Then for v € Vo and
Vg = m fwk(E) vdx, we have

o = vsl2, ) S 1 Vou [}, ) + h2h7 [o]? ds.

/{SGSJF:Ska(E)}
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Proof. By the definition of V, there exists v, € V, £ € No, with lim,_, [J[v — v,
=0 and limsup,_,  |Jve]l, < oo. Therefore, we have

2 - 2
Vou + / h;t d
Ve WHM(E) (SespsconE] [ve]” ds

2 —1 2 .
o (V2 oy + /{s€s+;swE>}h+ [I? ds s £ - oo

see Proposition Moreover, we have

lve = veelly, 5 < lv=velly @ < v =vell, = 0 as £— oo,

where v, g = ‘Wk—]EE'” fwk(E) vgdx. We conclude with Proposition [I] that

2 2
v —=vEly, (g < llve —veBll,, (5

2 . 2
S HhkvPWWHwk(E) +/ hih;t [ve]” ds
{S€S,:SCwi(E)}

2 27 —17, 72
- HhkvavHWk(E) i ‘/{SES+:Ska(E)} hkth [[v]] dS7

as { — oo. O

In order to extend the dG bilinear form (Z3)) to V., we need to define ap-
propriate lifting operators. For each S € ST, there exists £ = ¢(S) € N, such
that S € S/*. We define the local lifting operators RS : L?(S)? — L%(Q)? and
L3 : L3(S) — L*(Q)? by

(3.1) RS, =R} :=R3  and L5 =L7:=1Lg,.

From (Z4) it is easy to see, that Ry and L7 depend only on S and the at most
two adjacent elements E, E’ € G with S C EN E’. Therefore, and thanks to the
fact that the g,j are nested, we have that RS = Rf for all k > ¢ and, thus, the
definition is unique. We formally define the global lifting operators by

Ry = Z RS, and Ly = Z LS
ses+t Ses+

here St := {S e St : 5 ¢ a0}
Moreover, from the local estimates (2.4d), it is easy to see that for v € V
and B € R? we have that ZSeS,j RS ([v]) and Zseélj L3.(B - [v]) are Cauchy

sequences in L2(Q)?. Consequently, Roo([v]), Loo(B - [v]) € L%(2) are well posed
and we have

)

(32)  |Ru(Dllg S [037%]| | and JLc(8- BDIg < 181 220

I+
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where Tt = [J{S : § € &t} and I't = [J{S : S € §T}. This enables us to
generalise the discontinuous Galerkin bilinear form to V, setting

Boolw, v] = /vaww - Vpwv do — /s+ ({Vw} - [v] + 0{Vv} - [w] ) ds

+[ (8- [w] [Vv] + [Vw] B+ [v] ) ds

S

4 /Q Y (Roo([w]) + Loo(B - [0]) - (Roc([0]) + Lo (B [1])) de
—i—/s 7 [w] - [v] ds

v hy
for v,w € V.

Lemma 14. The space (VOO, (-, >OO) is a Hilbert space.

Corollary 15. There exists a unique us € Vo, such that
(3.3) B oo [Uoo, V] = / fvdx for allv € V.
Q

In order to prove the last two statements, we introduce a new quasi-interpolation,
which is designed in due consideration of the future refinements. The proofs of
Lemma [T4] and Corollary [IH] are postponed to the end of Section

3.3. Quasi-interpolation. We shall now define a quasi-interpolation operator 11y,
which maps into V,, N Vy; this will be a key technical tool in the analysis. On the
one hand, membership in V,, NV} suggests to use some Clément type interpolation
since the mapped functions need to be continuous in 2~. On the other hand,
the fact that the ADGM may leave some elements (namely, G;” O G ) unrefined,
suggests to define II; to be the identity on these elements. Note that the quasi-
interpolation operator from [CGS13] is motivated by a similar idea in order to map
from one Crouzeix-Raviart space into its intersection with a finer one.

For fixed k € N, let {®F : E € Gy, 2 € Ni(E)} be the Lagrange basis of
Vi := V(Gr), ie., ®F is a piecewise polynomial of degree r with supp(®F) = E
and

®L(y)=6,, forall 2,y € N}

Its dual basis is then the set {UF : E € G, 2z € Ny (E)} of piecewise polynomials
of degree r, such that supp(¥%) = E and

(vr, <I>5>Q =04y for all z,y € Ni(E).
For all £ > k, we define I, : L1(2) — L(Q) by
(3.4) Meo:= > Y ()|e(z) @,
EE€0y 2N, (E)
where for z € N (E) we have that
[y vPE dz, if Nip(2) NG #0,
(3.5) (Ixv)|e(z):=<0 else if z € 092,

E /
ZE’ENk(z) m ™ v E dr, else.
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Lemma 16 (Properties of I1;). The operator IT;, : LY (2) — LY(Q) defined in ([B3.4)
has the following properties:
(1) My : LP(Q) — LP(QY) is a linear and bounded projection for all 1 < p < co.
In particular, we have that

HHkUHLp(E) S ”v”LP(wk(E))a

where the constant solely depends on p, r, d, and the shape reqularity of Gy.

(2) Uyv € Vi for all v € LY(Q);

(3) Hk’l)|E = U|E, ZfE € G and v|wk(E) € Pr(wk(E));

(4) Upv|p =v|g, if E € G and v|g € P.(E); if, moreover, v € Vi, then also
[v -] |s =0 for all S € ST.

(5) Hkv|Q\Q; € C(Q\ Q) and [xv] =0 on A(Q\ QF);

(6) Ixv = v, for all v € Vi with v\Q\Qkﬁ eC(Q\ Q) T);

(7) v € Vo, and we have ||Iv||,, = |[Ixv| -

Proof. Claims (I)-@) follow by standard estimates for the Scott-Zhang opera-
tor [SZ90I[DGI12].

Assertion () is a consequence of the definition (Z.5)) of II; since E € G ™ implies
that N, (E)NG; "t = Ni,(E). Note that v € V(G) implies v|g € P,.(E) for all E € Gy,
and thus (IIxv)|p(2) = v|p(2) for all E € Ni(2) if Nk(2) NG # 0. This is in
particular the case when z € SN N}, with S € S;"”.

For E € Gi \ Gi, we have that Nj(z) N G = 0 since otherwise there exists
E' € Np(E)N Gt and thus E € Ng(E'), which implies E € G;", thanks to the
definition of Q,’:Jr. Therefore, (B3] implies that IIxv is continuous on Q \ Qg
Moreover, for z € Nj(E) N Q\ ), definition (3.3 is independent of E and thus
IT;v does not jump across the boundary € \ Qﬁ This completes the proof of (&l).

On the one hand, if v € Vi with U|Q\Q;r € C(Q\ QfT), then we have clearly

HkU\Q\Qz = U‘Q\Qz. On the other hand, we can conclude Hkv|9k++ = ’U|Q;+
from (@)). This yields (@).
The claim () is an immediate consequence of (&). O

Lemma 17 (Stability). Let v € V, for some k < £ € NgU {o0}. Then for all
E ¢ Gy, we have

/ hvai el dac—i—/ hit 0] ds
E OFE

fs / |va’U|2 dz + Z he_l [['UHQ dS,
wi (E)

E'€Ge. B Cun(B) 7 OF
setting Go :== G and hy := hy, when £ = oo. In particular, we have |1, < JJvf,-

Proof. We begin by noting that, summing over all elements in G; and accounting
for the finite overlap of the domains wy(E), E € Gy, the global stability estimate is
an immediate consequence of the corresponding local one.

We first assume ¢ < co. LetE € G;"t C G/ . Then, thanks to Lemma [[6(H), we
have IIxv|g = v|g. Moreover, let E' € Gy, such that ENE’ € Sy; then Ni(z) 3 E €
Gt and thus (IIyv)| g (2) = v| g/ (2) for all 2 € Ny (E) NNy (E'). Consequently, we
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have [IIyv] = [v] on OE, in other words,

(3.6) / |VILv|? dx—|—/ ;! [0]” ds :/ IVo)? dx—|—/ h; !t [v]? ds.
E OF E OF

Now, let E € G, be arbitrary. Then, an inverse estimate and the local stability
(Lemma [T6] (@) and @) for vg := ‘Wk—]EE)l fwk(E) vdz € R, imply

/ V| dz < / Ry 2 | (v — vp)]? dz < / hi % v — vp|? dz
B E wi ()

< |Vl da —1—/ hyt [v]? ds;
O L

E'Cwi(E),E'€G,

(3.7)

here the last estimate follows from the broken Poincaré inequality, Proposition [

Now, if for all B/ € Gy, with E' C wy(E), we have E’' ¢ G;"", which implies
E € Gg\G; ™. Then, thanks to Lemmal[I6i[]), we have that IT,v is continuous across
OF, i.e., [IIzv] |pr = 0. On the contrary, assuming that there exists B’ € G,
with B’ € Ni(E), we conclude that E € Ni(E’) and thus E € G*. From the local
quasi-uniformity, we thus have for all E” € G, with E” N E # () that |E"| = |E|.
Let z € N (E); then, according to (3.3]), we have that

[v]lop(2),  if 3B € Np(2) NG ™
0, else.

[Mv] op(z) = {
Using standard scaling arguments, this implies

/BE[[Hkvﬂ?ds:wm S (Mmwlles)* =108 Y (Illos(2)”

2€ENLNOE 2€NLNOE

<PEl S ([lls()* = / []? ds.

2EN,NOE oF

Combining this with ([8.7) proves the local bound in the case ¢ < co.

For ¢ = oo, we observe that a bound similar to (X)) can be obtained with
Lemma [[3] instead of Proposition[Il The local bound then follows by arguing as in
the case ¢ < oo. O

Corollary 18 (Interpolation estimate). For v € Vo, k < ¢ € NU {oo}, we have
that

/|prv—prHkv|2dx+/ h,;2|v—nkv|2+/ hit o — To]?
E E oE

[ Vet |,
Lk(E) ? Z s "

S€Sy,SCwi (E)

where we set Go := GV and hy :== h,, when £ = co. The constant depends only on
d, v and the shape reqularity of Gy.
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Proof. The claim follows from Lemma [[6[3]), together with the stability Lemma [I7]
and the local Poincaré inequality from Proposition [Il respectively, Lemma I3 O

The next result concerns the convergence of the quasi-interpolation.
Lemma 19. Let v € V; then,
Jlo—Tell, >0 and  Jlo -l —0
as k — oo.

Proof. For brevity, set v, := IIyv € Vi. Thanks to Lemma [I3] and Lemma [T6|[H)
and (B), we have that

o=l S [ %= Spar e [l ds
k

\Gy k\sk+Jr

< / | Vout — prvk|2 dx + / | Vout — prvk|2 dx
_ ot

k
+/ h,;1|[[v—vk]]|2 ds + h,;l\[[v—vk]HQ ds
Si S;
= I, + I} + 11, +IIf.

We first observe that I1,” = 0 since v, v, € H'(2;) (note that [v] = [vi] = 0 even
on the boundary 09, since 2, C Q7). We conclude from Lemma [I7] that

Ii +1If = /g [Vpu = Vo * da + /5 Bt Il = vl ds
k k

S (/wk<E>|VPWU|2dx+ > it [o]? ds)

EEG; E'eG+,E cun(B) Y OF

<) / \prv|2dx+/ hit [v]? ds.
S

Beg; Y wn(E) ST

The first term on the right-hand side vanishes in the limit & — oo, from Lemmal[IT]
The second term is the tail of a convergent series, since it is bounded thanks to
llv]l o, < oo and all of its summands are positive. Therefore, I} +11} — 0 as k — oo.

Thus, it remains to prove that I, — 0 as £ — oo. To this end, recall that
H} o0 (€27) is the space of restrictions of Hg(€2)-functions to Q. Since Hg(Q)
is dense in H{(Q), for € > 0, there exists v. € Hg(€2) such that [[v — ve|| g1 (o-) <
lv = ve|la1) < e Combining Lemma [I63) and () with the Bramble-Hilbert
lemma (see, e.g., [BS02]), we obtain with standard arguments that

J

Vo — V|2 dz < €2 +/ Vv, — Vo] dz
G
< € +/ h3 |D*|? dz
N(G) 042_2

S+ 1Pkxq 100 (62 /Q > (D] da,

|a|=2

k
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where we have used that ”hk”LOO(Q(Nk(gk_))) < ||thQ;HLoc(Q), thanks to the lo-
cal quasi-uniformity of G,. Thus, we have ||thQ;HLoc(Q) — 0 as k — oo from

Lemma [I1] and, therefore, we can conclude that limy_, I, < e. This completes
the proof of the first claim, since € > 0 is arbitrary.

The second claim follows similarly by replacing S, by ST and noting that
Ik, = ko], since v is continuous in Q\ QF. O

Proof of Lemma [[4l. The positivity of |||, on V4 follows from Lemma 9 together
with [|w|| gy o) < [lwl|, for all w € Vi; see Corollary Bl and Proposition El

In order to prove that V. is complete with respect to |-|| ., let 0 # v € Vm o

i.e., there exists a sequence {v'}seny C Voo, such that |Hv — ve|||oO — 0 as £ — oo.

Note that v*|g € P, for all E € G and thus it follows from the definition of ||-||
that also v|g € P, for all £ € G+.

For each ¢,m € N, we define v, = II,,v* € V,, and since v, € C(Q\ Q1)
(see Lemma IEI(IE)) we have that |”vm|||£ = |”vfn|||OO for all £ > m € N. Thanks to
Lemma [T9] for each ¢ € N, there exists a monotone sequence {my}, € N, such that

”W - Ufn,z |”oo < % and thus
o= C s < o= vl < flo = ol + o = el >0 as €= oc.

Consequently, we have that
oblln, = Mol = Mol <00 as £ — oo,

Thanks to Corollary Bl and Proposition 4] we can extract another subsequence of
{v!,, }een which is weakly-x converging in BV (). Therefore, v € BV (1), and we
have in the distributional sense, that

_ ) . 00le
v(¢) /QVPW’U (ﬁdﬂc—l—/s+ [v] - ¢ds Vo € C5°(Q)

Note that V, C V; for j > k and thus wy := vl me € Vi, k€ {my, ... ,mgyq — 1}
Consequently, we have ||v — wg|, < |lv — wi|, = |||v — v, |||OO —0as k — oo.

It remains to verify that vjg- € H}q nq- (27), Le., that v is a restriction of a
function from H{(2) to Q™. To this end, we consider the conforming interpolation
Trwy, € Vi N HY(Q) from Proposition Bl which also implies that IVZrwk| 2 ) S
lwgll,, < oo uniformly in k, i.e., there exists a weak limit o € H}(2) of a sub-
sequence of {Zpwy}ren. On the other hand, it follows from Lemma [I6[E]) that
[wi] lop = 0 for all E € G} (recall that ., C Q) for k > my). Consequently, the
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local estimate in Proposition Bl implies Zywy, = wy, in Q= C (Q2\ ;). Therefore,
we have

HV’U — VIkwk||L2(Q—) = HVU - prwkHLz(Q—) < H|’U - wk”|oo —0
as k — oo and thus v|g- = ¥|g-.
Concluding, we have proved v € V,, which implies Lemma [T4 O

Proof of Corollary T8l The assertion follows from Lemma [I4] and the observation
that

2
Ioll% S Boolvs v]  and  Boofo, w] S ol lwll

for all v,w € V. Indeed, the continuity follows with standard techniques us-
ing (B:2)) and the coercivity is a consequence of

IML0)%, = [kl < Bk[v, o] = Boo v, i)

and Lemma [T9 O

4. (ALMOST) BEST APPROXIMATION PROPERTY

In this section we shall prove that the solution us, € Vo of [B3) is indeed
the limit of the discontinuous Galerkin solutions produced by ADGM. This is a
consequence of the density of spaces {Vi}ren, in Vo and the (almost) best ap-
proximation property of discontinuous Galerkin solutions; the latter generalises
[Gud10].

Lemma 20. Let us € Voo be the solution of B3) and ug € Vi be the DGFEM
approximation from ([Z8) on Gy for some k € N and us the unique solution of the
limit problem from Corollary I3l Then, we have

(f, up — Ipur) g — Br[Mptioo, up — Hiug]
lur — Miuooll,

oo = urlly, S lluce = Mrtiooflo +

Proof. Assume that ug # Hpue € Vi NV, and set ¢ = ug — [gus. Then, we
have from (27 that

aur = Mool < Bfux — Moo, Y] = (f, ¥)g = Bi[Mituoo, ¥]
= (fs Wph)q + (f, ¥ — Upth) g — By [lruco, Y]
= (Boo[tioo, xt)] — Bi[Mxuco, Mxy)])
+ (<f7 P — Hk¢>gz — B [Hptioo, ¥ — ka) =)+ 1),
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using that Iz € Vi, NV, from Lemma [[6[7). For (I), we have, respectively,

(I) = /vawuoo ’ prﬂwdx B /S+ ({VUOO} ' [[ka]] + Q{Vka} ’ [[UOOH ) ds

+ / (B [use] [VIue] + [Vuoe] B - [Mxt] ) ds

S

+ /Q”y(Roo([[uoo]]) + Loo(B - [uos])) - (Roo([Mx)]) 4+ Loo(B - [Ix¢])) da
+/S+ hi [uoo] - [t ds

+

—/prHkuoo~prsz/)dx
Q
+/S ({VILiuoo} - M) + 6{VIL 0} - [Hpuse] ) ds

- / (8 Mituoo] [VT] + [VTTkuo] 8- [Mx9] ) ds

S

- / Y (Ri([Myusc]) + Le(8- Myusc])) - (Re([Ix]) + Li(8 - [Myl])) o
- /5+ e Myuoe] - [Txy] ds
= /Qpr(uoo — M) - Vpullpey da
[ (Ve — M)} - [Me] ds — 6 / (VIT0} - [t — Tpus] ds
S, S+

4 /S (8 [too — Mytioc] [VITtE] + [Vitoe — VIt B+ [I0] ) ds

+ /Q’Y(Roo([[uoo — Hkuoo]]) + Loo(ﬂ. [[uoo _ Hkuooﬂ))
(Roo([Mi¥]) + Lo (8 - [¢])) d
+ /SJr hik [uso — Mruso] - [Hxy] ds

S Moo = Mittoo |l oo Ml = lluce = Mitioo [l MLk,
S e = Mytioo[| o flur = Trtioo |l ;

here we used that [Ty, ) € VNV, hoo = hi on S,j and that I[Ipus and I
are continuous on 2\ QF, ie., [Myus] = [xy] = 0 on St \ S;", which follows
from Lemma Note that this and [[zus] = [Ix¢] = 0 on (2 \ ) from
Lemma [I6 also implies that Ly(I1x1)) = Leo (k) and Ly (Mgtieo) = Loo(Txteo)
as well as the corresponding relations between Ry and R..; compare with (B1]).
Thus, the above estimate follows from the Cauchy—Schwarz inequality, application

of inverse inequalities in conjunction with the stability of the lifting operators ([3.2]),
and Lemma [T
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Consequently, triangle inequality and the above imply
luse = urlly < lluco — Mrtioolly, + llur — Truco |l
S luco = Mitiso |y, + ltioe — Miuoofl o

(f, ¥ —p) g — Bi[Mptoo, ¥ — Hk@/’].

_|_
llur — Mool

Thanks to [Juce — Hptss |, < [Jttee — Hitios || o » this proves the assertion. O

The properties of the quasi-interpolation (B.4) allow for the consistency term in
Lemma 20 to be bounded by the a posteriori indicators of essentially the elements,
which will experience further refinements.

Lemma 21. Let us € Voo be the solution of [B3) and uy € Vi be the DGFEM
approximation from [2.8) on Gy for some k € N. Then, we have

R —1II — B, |IT 00 —1I V2

(f ue — Myur) g — B [Upvoo, ur — Myuy] < ( > &;(HwoovE)Q) ,
|||uk — Hkuoo ”|k 3+

E€Gr\G,

where Git == {E € Gy : Nx(E) C G 1.

Proof. Let vy, := Hpuoo and ¢ := uy, —Mpup = ug, — Ipie — g (up — s ). Then,

using integration by parts, we have

<fa ¢>Q — %k[vk, (b}
— []k(f—i— Avg)pda —/ [Vui] {¢}ds + /Sk 0{V¢} [vi] ds

k

- / (B[] [Vo] + [Vue] B+ [4]) ds

Sk

- /Q'Y(Rk([[vk]]) + Li(B - [vr])) - (Re([0]) + Li(B - [¢])) da
- 0’/ h;l [ve] [¢] ds.
Sk

Thanks to properties of ITj, (see Lemmal[I]), we have that [vy] |s = 0 for S € Sp\Sy,
[ve] |Q\Qk+ =0,¢lg=0for F € g,;“r, and [¢] |s =0 for S € S,;H'. Therefore, we
have

(f, 9o — Brlvk, 9]
— [ urawede- [ [Vul{e}ds
G\GTT Sk\

++
Sk

+0 [ {vo} [l as
(4.1)
S AR CILOTIEy AN C LR RS
— [ AR + L8 o)) - (Rull6]) + Lu(8 - o)
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The last term on the right-hand side of ([41]) can be estimated using the Cauchy—
Schwarz inequality; for the first two terms we use the interpolation estimates from
Corollary I8 for ¢ = 1 — IIxep with ¢ = up — pus € Vi as to obtain

/ (f + Avg)ddz — / [Voi] {6} ds
Gi\G;

S\S;H T

1/2 1/2
< ( / h2| f+Avk|2dx) +( / hy, [Vor]? ds) g, — Mytoo ],
G\GT Si\S;t

Moreover, from ¢|p =0, E € G;"*, we have that ¢|,, sy = 0 and thus {V@}|s =0
for all S € Sg+ = S(g,§+). Therefore, by standard trace inequalities, inverse
estimates and Corollary [[8 we have that

1/2
Vo) [vr ds:/ Vo) [ui] ds < / Bt [og]? ds 3, .
/S:{ Vodas= [ (Vobtnlas S ([ il as) ol
A similar argument yields

[ B [ux] [V4] ds = / 8- [u] [V4] ds
St Sst

k k

) ) 1/2
siB( ., o ds) el
shsy*
Finally, we have with (Z4d) and the local support of the local liftings, that

| At Ruieb s = [ (0 REED)-( X RE(ED)ds

ses;t Ses\SHt

:/+ . Ry ([v]) - Re([¢]) d
Ge\Gp

1/2
< _1 9
N(/S:\Sg+ i Lol dS) Il

Similar bounds hold for the remaining terms in ([@1]). Combining the above obser-
vations proves the desired assertion. ([l

In order to conclude convergence of the sequence of discrete discontinuous
Galerkin approximations from Lemma 21l we need to control the error estimator.
To this end, we shall use Verfiirth’s bubble function technique.

Proposition 22. Let us be the solution of B3). Then, for every E € G,. and
v € Vg, k € N, we have

/h§|f+Av|2dx+/ hy, [Vpr])” ds
E OENQ

2

S [ Vaultioe — ”)Hwk(E) + hit [ueo — o] ds

/{SES+:Ska(E)}
+ osc(Np(E), £)?;
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in particular, we also have

> [Ehi|f+Av|2dx+/a hy, [Vpuo])” ds

_ ENQ
Eeg,

Sluse vl + > > ose(E, f)%

E€g, E'ewn(E)
Note that since v € Vi, & Vo in general, the above terms may be equal to infinity.

Proof. The proof follows from standard techniques; compare, e.g., [KP03,[BNT0].
However, in order to keep the presentation self-contained, we provide a sketch of
the proof. For E € G, , let ¢ € H}(E) be Verfiirth’s element bubble function with

(42)  hGIVedl i S IVadlE S hp’ laln  for all g € Py (E).

Note that extending ¢ by zero to the whole domain 2, we have that ¢p € V,
since E C Q7. Let fg € P._1(F) an arbitrary polynomial. Observing that (fg +
Av)pr € C(2) and thus does not jump across faces, we have by equivalence of
norms on finite dimensional spaces and a scaled trace inequality, that

/ |fe + Av|? dz
E
N / (fe + Av)(fE + Av)pp da
E
= Bosluse — v, (fi + Av)ds] /E (f = o) + Av)op da

S I Veu(toe = 0)|| , IV (fE + Av)¢gll ) — /S+ [tueo —v[{V(fE + Av)¢pr}ds
+If = felg I(fE + Av)dEl g -

From (2] and standard inverse estimates, we conclude that

‘/s+ [ue = o[ {V (/& + Av)ér} ds

< Y[ b= o a5V + A0)r

SeSt,SCE

1/2 _{_4
S () = ol as) g e+ Al
S+

1/2
S (1 e = ol ds) hEt I+ Aol
S+

since hy < hg on E. Therefore, we arrive at

L ise + Mo dn S [T =05+ 3 [ 5 e = s
(4.3) B ses+,5cevS
+R2 IS~ felh-

Thanks to the definition of G, , the same bound applies for all E’ € Ny (E).

We now turn to investigate the jump terms. To this end, we fix one S € Sk,
S C E and let E' € Ni(E) with S = ENE'. Let ¢5 € H(wk(S)) be Verfiirth’s
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face bubble function. Note that extending ¢g by zero to ), we have ¢g € V, since

w(S) € Q. For each ¢ € P,._1(S), there exists some extension § € P,_1(wg(59))
such that

- ~ 2
(4.4) W V395 1o 59y S 180sll05) S b /S g2 ds.

Noting that [Vv] € P._1(S), we have, by the equivalence of norms on finite dimen-
sional spaces, that

2 2
/S[[Vv]] dsg/s[[Vv]] s ds
— Bl v, [Volos] = [ (74 20)[Felosds
wk(S)

S ||pr(u0<> - U)Hwk(S) va%‘

+ /S e — o1 {VIV oI5} ds

+ (I1f + Avll% + 1 f + Avl3 )

\WM

wi(S)

Similarly, as for the element residual, we have that
/ [t — 0] {V[Vo] s} ds
S+
< Wit fuso — v]? ) /hEVdes
(2 mme—ol) ([ he Vel as)

S'EST,S Cwi(S)

using ([@4). Again with ([@4), we obtain

/ShE Vol ds € [Vl = )|, g+ 3 / oy — o]? ds

S'ESH,S Cwi(S)
2
Wy If + Avl| % + W I + Aol

Finally, applying the bound @3] to E,E’ € Ni(F), we have proved the first
assertion.

The second assertion follows, then, by summing over all E € G, together with
an observation from [MSV0S], which we sketch here in order to keep this work
self-contained. Let M := max{#Ny(F) : E € G, } be the maximal number of
neighbours, then G, can be split into M? + 1 subsets Gros--es Q,;M2 such that for
each j, we have that E', E' € G, ; with E' # E’ implies that Nj(E) N Ny(E") = 0.
Consequently, we have

Z [ Vw1100 — v) wk (B) = Z Z [ Vou(tioe — v ||wk(E)

Eeg, 7=0 Eeg;

< (M 4 1) || Vpu(ttoo = )| -

Together with similar estimates for the jump terms and the oscillations the second
assertion follows from the first one. O
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Theorem 23. Let uy the solution of B3) and uy € Vi be the DGFEM approxi-
mation from Z0) on Gy for some k € N. Then,

lucs — urll, =0 ask — oo.

Proof. Thanks to Lemma 20l Lemma [[9 and Lemma 21l we have that

. 2 . 2 2
Dim e — upll} S lim Juse —wnlll + D0 Exlon, B)
Ee€gi\gyt

= kl;r& Z €k(vk,E)2,
EeG\G;+
where vy := [Ixus,. Using Lemma [Tl we have
9\ (@ U < [N\ (@ U]+ [0\ |

< Qi + 1@\ Qi =0,

as k — oo. Indeed, for k € N, it follows from Lemma [I0] and #g,j < 00, that there
exists K = K(k), such that G;" C G, ie., |QT\ Q3| < QT \ Q| = 0 as k — .
Thanks to monotonicity we conclude that [QF \ Q3*| — 0 as k — co. We next
show that this implies

Z gk(’l)k, E)2 — 0.
E€Gi\ (G, UG

Lemma [I9] implies that [|ue — vk, — 0 and, thus, the interior residual and the
gradient jumps part of the estimator vanish due to uniform integrability. Moreover,
it follows from Proposition [[2] that

hit [ok]? ds < / hit Tusol® ds + [Juco — vill}
S(Gr\GPT)

< / B! Tueel® ds + flue — vellz
S(GH\g3)

/s@k\(gk uget)

The last term on the right-hand side of the above estimate vanishes thanks to
Lemma[[0 Again, letting K = K(k), such that G;" C gfj, we have

/ hit [uos]® ds < / hit [use]® ds — 0, as k — oo.
S(GH\G%) S(GH\G)
Thanks to monotonicity, we thus conclude fs(g+\g3+) hjrl [[uooﬂ2 ds — 0, as k — oo.
k
On the remaining elements G, , it follows from Proposition 22] that
Y Eulon B) S lluse — onllig + D ose(Ni(E), £)*.
EeG; EeGy,

The first term on the right-hand side vanishes due to Lemma For the second
term we observe that |(J{wr(E) : E € G, }| < 9], depending on the shape
regularity of Gy and, therefore, it vanishes since

—0 ask — oo,

45 Hh .
(4.5) kXq; Lo (9)
thanks to Lemma [I1] O
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5. PROOF OF THE MAIN RESULT

We are now in the position to prove that the error estimator vanishes, following
the ideas of [MSVO08]. This in turn implies that the sequence of discontinuous
Galerkin approximations produced by ADGM indeed converges to the exact solution

of 2I).
Lemma 24. We have that

E(G,) =0, ask — oo.

Proof. Thanks to Proposition 22, we have

> /hi|f+Auk\2dx+/ hy, [Vug]? ds
E 7]

_ ENQ
E€g,

S Moo —urllsg + D ose(Nu(E), f)*.
Eeg,;

The right-hand side vanishes thanks to Theorem 23] and (£.3]).
It remains to prove that

/ it [ug]® ds — 0, as k — oco.
SG;)

By definition, Q, C Q\ Q] and, thanks to Lemma [6I[F), we have that ITu., €
C(2\ Q). Therefore, we conclude that

/ hpt [u? ds = / b [ — Tuse]? ds < Jug — Mgy, — 0,
S(G:) S(Gy)
as k — oo; see Lemma [[9 and Theorem 231 a
Lemma 25. We have that
lim &,(G;) =0.
k—o0
Proof. We conclude from the lower bound (Proposition [ that
> / B2\ f + Aug|? da +/ hi, [Vug]? ds
Begr VB OE
h

< Z [l — WvHik(E) + HVu — prukHik(E) + osc(Ni(E), f)?
E€g;

2 2 2
S 37 (Il ) + Moo = wnll2, iy + ool )
E€G;,

+ ||VU||ik(E) + || Vowttoo — pruk”ium + ||VPWuOOHik(E)
+ ose(Nk(E), /)2}.

This vanishes as k — oo thanks to Theorem 23] and Lemma [I1] together with the
uniform integrability of the terms involving u and u.,. Note that ‘ H{wi(E) : E €
g,:}] < €2, with the constant depending on the shape regularity of Gy.
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It remains to prove

/ h; !t [ug]® ds = 0, as k — oo.
S(G7)

To this end, we observe that

/ hit ug]” ds = / hit Tk — Tiuso]? ds+/ hit [Mpus]” ds
S(65) S(61) S(97)

1

< -
o

o~ e+ [0 M .
S(95,

As in the proof of Lemma 24, we have that the first term vanishes as k — oo.
Thanks to Lemma [I0, there exists ¢(k) > K(k) > k such that g,j C Q}?‘k) and

gj((k) - QZE:). Consequently, we have that [[jus]|s = 0 for all S € Gi; see
Lemma [T6l[5). Therefore, we conclude from Lemma [T9] that

0/ hit ] ds = a/ hi ! Mtine — Hpus]” ds
S(9%) S(67)

< Mitos — ool + fluce — Meuso|l; — 0,
as k — oo. O

Lemma 26. We have

E(GIT) =0 ask — oo
Proof.

Step 1. By definition, elements in Q,j* will not be subdivided, i.e., we have that
My C Gi \ g,j+; compare with (2Z9). As a consequence of Lemmas 24] and 28] we
conclude from (Z38) for all E € G/ " that

(5.1) E(F) < Tim g(€(M)) = lim g(€x(Gy UGD) =0,

as k — oo. We shall reformulate the above elementwise convergence in an integral
framework, in order to conclude &, (G ) — 0 as k — oo via a generalised version of
the dominated convergence theorem. To this end, we shall consider some properties
of the error indicators.

Step 2. Thanks to the definition of g,ji we have for all £ € g,j*, that wg(E) =
we(E) =: w(F) and Ni(E) = Ny(E) = N(E) for all £ > k. Therefore, we obtain by
the lower bound, Proposition [@] that

ER(E)? S i — ulldy( + ose(N(E), /)’

2 2 2 2
(5.2) S Nk = voolly gy + Nt vy + lullg sy + 1l

2
=t Jluk — toslnm) + Ch.

Arguing as in the proof of Proposition 22] we can conclude from the local estimate
that

2 2
(5.3) Z Ch S llucollse + [l ) + /117200y < o0
EegrT

independently of k.
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Step 3. We shall now reformulate & (g,j*) in integral form. Note that, thanks to
Lemma [0, we have that GT = Uren, g = UkeNo G, and also that the sequence
{G* been, is nested. For z € QF, let

¢ ={(z) :=min{k € Ny : there exists E € G/t such that = € E}.
Then, we define
ex(z) == My(z) =0 fork </

and

1

1
ex(x) := EE?(E), My, := E

(s — vy +C3) for k> 0.
Consequently, for any k € Ny, we have
&G )? :/ ex () dm.
o+

Moreover, thanks to the fact that the sequence {g,jﬂkeNO is nested, we conclude
from (&) that

: R S
khlgo ex(z) = khlgo Egk (E)=0.
It follows from (B2) and (B3] that M} is an integrable majorant for eg.

Step 4. We shall show that the majorants { My }ren, converge in L*(QF) to

M(x)::ﬁc% forre E and Ee€gG™.

Then the assertion follows from a generalised majorised convergence theorem; see
[Z€190, Appendix (19a)]. In fact, by the definition of My, we have that

My = M| 1oy = Z My = M1y + Z Ml 2y -
EegHt EegH\G} ™

The latter term vanishes since it is the tail of a converging series (compare with (5.3]))
and for the former term, we have, thanks to Theorem 23] that

2
SToMe =Ml = Y luk — usclliymy S Nk — tsoll, = 0
Eegtt Eegtt

as k — oo. ]
Proof of Theorem [@. We have
GHtugrug, = Gr.

Therefore, the claim follows from Lemmas 24] 23] and 26] together with Proposi-
tion [ O
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