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QUASI-OPTIMALITY OF A PRESSURE-ROBUST

NONCONFORMING FINITE ELEMENT METHOD

FOR THE STOKES-PROBLEM

A. LINKE, C. MERDON, M. NEILAN, AND F. NEUMANN

Abstract. Nearly all classical inf-sup stable mixed finite element methods
for the incompressible Stokes equations are not pressure-robust, i.e., the ve-
locity error is dependent on the pressure. However, recent results show that
pressure-robustness can be recovered by a nonstandard discretization of the
right-hand side alone. This variational crime introduces a consistency error in
the method which can be estimated in a straightforward manner provided that
the exact velocity solution is sufficiently smooth. The purpose of this paper
is to analyze the pressure-robust scheme with low regularity. The numerical

analysis applies divergence-free H1-conforming Stokes finite element methods
as a theoretical tool. As an example, pressure-robust velocity and pressure
a priori error estimates will be presented for the (first-order) nonconforming
Crouzeix–Raviart element. A key feature in the analysis is the dependence of
the errors on the Helmholtz projector of the right-hand side data, and not on
the entire data term. Numerical examples illustrate the theoretical results.

1. Introduction

Nearly all inf-sup stable mixed finite elements methods for the incompressible
Stokes problem on shape-regular meshes (with constant ν > 0),

−νΔu+∇p = f , in Ω,

−∇ · u = 0, in Ω,

relax the divergence constraint and, as a result, their a priori velocity error estimates
have the form

‖u− uh‖1,h ≤ C
(

inf
wh∈Xh

‖u−wh‖1,h + ν−1 inf
qh∈Qh

‖p− qh‖
)

with a constant C = O(1) ≥ 1 independent of h, ν, and (u,p) [7, 14, 24]. Here,
Xh denotes the space of discrete velocity functions, Qh denotes the space of dis-
crete pressure functions, ‖·‖1,h denotes some (possibly discrete) H1-norm, and ‖·‖
denotes the L2-norm. While such discretization schemes are relatively popular,
they may not be the best possible ones from a qualitative point of view. Indeed,
it is possible to construct inf-sup stable, H1-conforming schemes, which fulfill an a
priori velocity error estimate of the form

‖∇u−∇uh‖ ≤ C inf
wh∈X̃h

‖∇u−∇wh‖,
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with some (possibly different) constant C = O(1) ≥ 1, and some H1-conforming

discrete velocity space X̃h. Such schemes, which do not relax the divergence-free
constraint, are called divergence-free [39,42,43], and require the identity ∇ · X̃h =
Qh; they have become — modestly — popular only very recently [3,8,10,11,16–18,
29, 30, 32, 33, 37, 38, 44, 45].

The main advantage of divergence-free schemes is that they are pressure-robust
[19, 26–28], i.e., their velocity error is independent of the pressure. Classical inf-
sup stable schemes guarantee a small velocity error whenever the velocity u and
the scaled pressure 1

ν p can be accurately approximated on a given regular finite
element mesh. Numerical errors of classical mixed methods that arise in such a
case are often called poor mass conservation [2, 13, 19, 23, 25]. Instead, pressure-
robust schemes guarantee a small velocity error whenever the velocity u alone can
be accurately approximated. Even further, for many pressure-robust schemes, it
was recently proven that even some discrete a priori pressure estimates can be
pressure-independent. In such cases one can show that the difference of the discrete
pressure to the best approximation [19,28] or some projection [21] of the continuous
pressure is only velocity-dependent.

Quite recently it was realized that the pressure-dependence of the velocity error of
inf-sup stable Stokes discretizations is due to a lack of L2-orthogonality of gradient
fields and discretely divergence-free velocity test functions [24]. This means that
nearly all inf-sup stable Stokes discretizations can be made pressure-robust [1, 20,
21, 24, 28] by only replacing the standard discretization of the right-hand side

ˆ
Ω

f · vh dx →
ˆ
Ω

f · πF (vh) dx ,

while the Stokes stiffness matrix remains unchanged. Here, πF is an appropriate
velocity reconstruction operator that approximates discretely-divergence-free test
functions by divergence-free ones in the sense of H(div).

Using a nonstandard velocity test function in the discretization of the right-hand
side introduces a variational crime and a consistency error [24]. Classical estimates
of the consistency error require a minimal regularity of u ∈ H1+s(Ω) with s > 1/2
in order for edge integrals to be defined. For the nonconforming Crouzeix–Raviart
element with the standard BDM1 interpolator as velocity reconstruction operator
πF := πBDM, such classical arguments deliver optimal error estimates [4]. However,
the behavior of the consistency error in the case of a low regularity s ≤ 1/2 is not
addressed. This question seems to be important, since assuming f ∈ L2(Ω) and
assuming homogeneous Dirichlet velocity boundary conditions for a (polygonal)

slit domain yields a velocity regularity u ∈ H3/2−ε(Ω). Further, assuming different
kinds of boundary conditions such a low regularity is typical [12].

New ideas have recently been proposed to handle consistency errors in the case
of low regularity [15, 22, 31]. In the paper [31] the consistency error of noncon-
forming finite element methods for scalar diffusion equations is represented as a
Céa lemma–like term and a data oscillation term that vanishes with optimal order.
This estimate is performed using some finite element interpolation operator that
maps nonconforming finite element functions to H1-conforming ones. In [22] this
approach is extended to classical inf-sup stable discretizations of the incompressible
Stokes problem, which are not pressure-robust.
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In this contribution, we will now extend the (scalar) approach of [31] to the
pressure-robust modification of the Crouzeix–Raviart Stokes element using the ve-
locity construction operator πF = πBDM. The main challenge is to avoid any
pressure-dependent terms in the estimate of the consistency error. Moreover, the
data (oscillation) term should not depend on f , but only on its Helmholtz projection
P(f), i.e., its divergence-free part, since the irrotational part of f corresponds to the
pressure gradient ∇p [24]. These goals will be achieved by constructing some finite
element interpolation operator that maps nonconforming discretely-divergence-free
Crouzeix–Raviart finite element functions to divergence-free H1-conforming vector
fields. The approach exploits recent progress on the construction of divergence-
free, inf-sup stable mixed methods for the Stokes equations and uses rational bub-
ble functions [17–19]. A preliminary version of this contribution was presented in
F. Neumann’s master thesis [34].

2. Preliminaries

Let Ω ∈ R
d with d ∈ {2, 3} be a domain with polyhedral boundary ∂Ω. Slit

domains are explicitly allowed. We denote by (·, ·)D the L2 inner product over a
d-dimensional domain D ⊂ Ω, and drop the subscript in the case D = Ω. The L2

inner product over a k-dimensional domain D, with k < d, is denoted by 〈·, ·〉D.
The L2-norm over D is denoted by ‖·‖D, and again, we drop the subscript if D = Ω.
For a number m > 0, we denote by ‖ · ‖m the Hm-norm over Ω.

We consider the steady incompressible Stokes equations with homogeneous
boundary conditions to be our model problem:

−νΔu+∇p = f , in Ω,

−∇ · u = 0, in Ω,

u = 0, on ∂Ω.

(2.1)

Here, we assume f ∈ L2(Ω) := L2(Ω)d and ν > 0 denotes the kinematic viscosity.
Introducing trial and test spaces X := H1

0(Ω) := H1
0 (Ω)

d, Q := L2
0(Ω) and bilinear

forms

a(u,v) = ν

ˆ
Ω

∇u : ∇v dx, b(u, q) = −
ˆ
Ω

q(∇ · u) dx,

the weak formulation of (2.1) reads: Find (u, p) ∈ X × Q such that for all
(v, q) ∈ X ×Q it holds that

a(u,v) + b(v, p) = (f ,v),

b(u, q) = 0.
(2.2)

Over the space of weakly divergence-free functions

V :=
{
v ∈ X : b(v, q) = 0 ∀q ∈ Q

}
,(2.3)

we can formulate (2.2) as an elliptic equation for the velocity alone: Seek u ∈ V
such that for all v ∈ V it holds that

a(u,v) = (f ,v).(2.4)

In the following, we recall some fundamental properties of the Helmholtz decom-
position and of the corresponding Helmholtz projector [19,40]. First, we introduce
the following space of divergence-free L2 vector fields

(2.5) L2
σ(Ω) = {w ∈ L2(Ω) : −(w,∇φ) = 0 for all φ ∈ H1(Ω)}.
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Note that for a vector field w ∈ L2(Ω), the mapping φ ∈ C∞
0 (Ω) → −(w,∇φ)

denotes the distributional divergence of w. Therefore, all vector fields in L2
σ(Ω) are

weakly divergence-free. Further, it holds w ·n = 0 at the boundary of Ω. From the
definition (2.5), one recognizes that all divergence-free, smooth vector fields with
compact support belong to L2

σ(Ω). Indeed, L
2
σ(Ω) is the topological closure of these

vector fields with respect to the H(div)-norm.

Theorem 2.1 (Helmholtz decomposition). Let Ω ⊂ R
d be a polyhedral domain.

Then, any vector field f ∈ L2(Ω) can be uniquely decomposed into a gradient of a
scalar potential φ ∈ H1(Ω)/R and a divergence-free vector field ψ ∈ L2

σ(Ω):

f = ∇φ+ψ.(2.6)

Proof. For a given vector field f ∈ L2(Ω) one defines the following (well-posed)
problem: Find φ ∈ H1(Ω)/R such that for all χ ∈ H1(Ω)/R it holds that

(∇φ,∇χ) = (f ,∇χ),

which allows us to introduce ψ := f − ∇φ ∈ L2(Ω). Obviously, it holds that
ψ ∈ L2

σ(Ω). Further, ∇φ and ψ are orthogonal in L2(Ω) by the definition of
L2

σ(Ω), thus implying the uniqueness of the Helmholtz decomposition. �

Definition 2.2. For f = ∇φ+ψ ∈ L2(Ω) with ψ ∈ L2
σ(Ω), one defines P(f) = ψ,

i.e., P(f) is the divergence-free component of f .

Remark 2.3. The most important property of the Helmholtz projector in the fol-
lowing is that it holds for all χ ∈ H1(Ω):

P(∇χ) = 0,

which is a consequence of the uniqueness of the Helmholtz decomposition (2.6).

3. Discrete formulations

In this section, we introduce the standard nonconforming Crouzeix–Raviart fi-
nite element method for discretising the Stokes equations. To this end, we first
require some notation. We denote by Th a conforming, shape-regular, simplicial
triangulation of Ω, and by FI

h and FB
h the set of (d− 1)-dimensional interior faces

and boundary faces, respectively. For a face f ∈ Fh := FI
h ∪ FB

h , we denote its
barycenter by mf and its diameter by hf . For an element T ∈ Th, we denote by
Fj(T ) and hT , the set of j-dimensional subsimplices of T , and the diameter of T ,
respectively. The set of interior and boundary j-dimensional subsimplices of T are
denoted by FI

j (T ) and FB
j (T ), respectively. We denote the outward unit normal

of a (d− 1)-dimensional face f ∈ Fh by nf . For f ∈ Fj(T ), let {Fi}d−j
i=1 ⊂ Fd−1(T )

be the (d − 1)-dimensional faces such that f ⊂ ∂Fi. We then set n
(i)
f = nFi

, and

note that {n(i)
f }d−j

i=1 spans the orthogonal subspace of the tangent space of f .

For an interior face f = ∂T+ ∩ ∂T− ∈ FI
h , we define the jump of a scalar or

vector-valued function v on f by

[v]|f = v+|f − v−|f , v± := v|T± .
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For a boundary face f = ∂T+ ∩ ∂Ω ∈ FB
h , we set [v]|f = v+|f . In addition, for a

j-dimensional simplex f , we define the average of v on f by

{v}f =
1

|Tf |
∑
T∈Tf

vT |f ,

where Tf ⊂ Th denotes the set of simplices that have f as a subsimplex, |Tf | is
the cardinality of the set, and vT := v|T . In the case j = d − 1, we shall omit the
subscript, i.e., we write {v} = {v}f when f ∈ Fh.

The Crouzeix–Raviart finite element spaces are given by

CR(Ω) := {vh ∈ P1(Th), vh(mf ) is single-valued, f ∈ Fh},
CR0(Ω) := {vh ∈ CR(Ω) : vh(mf ) = 0 ∀f ∈ FB

h },

where Pk(Th) with k ∈ N+ denotes the space of piecewise kth degree polynomials
with respect to the partition Th. We set

Xh := CR0(Ω)
d, Qh := L2

0(Ω) ∩ P0(Th),
and let ∇h and ∇h· denote the piecewise gradient and piecewise divergence opera-
tors, respectively, i.e.,

∇h : Xh −→ L2(Ω)d×d, (∇hvh)
∣∣
T
= ∇

(
vh

∣∣
T

)
∀T ∈ Th,

∇h· : Xh −→ L2(Ω), (∇h · vh)
∣∣
T
= ∇ ·

(
vh

∣∣
T

)
∀T ∈ Th.

For the discrete analogs of the bilinear forms a(·, ·), b(·, ·) we define ah(·, ·), bh(·, ·)
piecewise over each element T ∈ Th:

ah : Xh ×Xh −→ R, ah(uh,vh) := ν(∇huh,∇hvh),

bh : Xh ×Qh −→ R, bh(uh, qh) := −(qh,∇h · uh).

The classical discrete formulation of (2.2) reads as follows: Find (uh, ph) ∈ Xh×Qh

such that for all (vh, qh) ∈ Xh ×Qh it holds that

ah(uh,vh) + bh(vh, ph) = (f ,vh),

bh(uh, qh) = 0.
(3.1)

Over the space of discretely divergence-free functions,

V h :=
{
vh ∈ Xh : bh(vh, qh) = 0 for all qh ∈ Qh

}
,

problem (3.1) can be reformulated solely in terms of the velocity unknown: Find
uh ∈ V h such that for all vh ∈ V h it holds that

ah(uh,vh) = (f ,vh).(3.2)

The next two results are standard, and can be found, e.g., in [7] and [5], respec-
tively.

Theorem 3.1. The Crouzeix–Raviart finite-element pair (Xh, Qh) is inf-sup
stable. There exists a constant β∗ > 0 independent of h with

inf
qh∈Qh\{0}

sup
vh∈Xh\{0}

|bh(vh, qh)|
‖qh‖‖∇hvh‖

≥ β∗ > 0.

We note that for the discrete inf-sup constant of the Crouzeix–Raviart element holds
β∗ ≥ β, where β denotes the continuous inf-sup constant.
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Lemma 3.2. There holds for all vh ∈ Xh,∑
f∈Fh

h−1
f

∥∥[vh]
∥∥2

f
≤ C‖∇hvh‖2.

3.1. A pressure-robust Crouzeix–Raviart element via velocity reconstruc-
tions. As argued in [4,24], the classical Crouzeix–Raviart element is only discretely
divergence-free, as it relaxes the L2-orthogonality against arbitrary gradient fields.
This leads to error estimates which are not pressure-robust, and hence depend
on the inverse viscosity ν−1 > 0 and the irrotational part of the right-hand side
f ∈ L2(Ω). Here we describe a relatively simple procedure that recovers pressure-
robustness by mapping discretely divergence-free test functions to L2

σ(Ω).
Set Y h = P1(Th) ∩ H0(div; Ω) to be the lowest order Brezzi–Douglas–Marini

space [6,7], consisting of piecewise linear vector-valued functions. Here, H0(div; Ω)
denotes the space of L2(Ω) functions with divergence in L2(Ω), whose normal com-
ponent vanishes on ∂Ω. We recall that any wh ∈ Y h is uniquely determined by
the moments ˆ

f

wh · nfq ds ∀qh ∈ P1(f) ∀f ∈ FI
h .

We define πBDM : X +Xh −→ Y h as the unique operator satisfyingˆ
f

(πBDMv) · nfqh ds =

ˆ
f

{v · nf}qh ds ∀qh ∈ P1(f) ∀f ∈ FI
h .(3.3)

Lemma 3.3. There holds∑
T∈Th

h−2
T ‖v − πBDMv‖2T ≤ C‖∇hv‖2,(3.4)

‖∇hπ
BDMv‖ ≤ C‖∇hv‖(3.5)

for all v ∈ X +Xh, and∑
T∈Th

h
−2(1+s)
T ‖v − πBDMv‖2T ≤ C‖v‖1+s(3.6)

for all v ∈ H1+s(Ω) ∩H1
0(Ω). Moreover, ∇ · πBDMv ≡ 0 for all v ∈ V + V h.

Proof. The proof of (3.4)–(3.6) in the case v ∈ X can be found in [7].
Let vh ∈ Xh and set vT := vh

∣∣
T
for some T ∈ Th. Since the valueswh·nf

∣∣
f
(f ∈

Fd−1(T )) uniquely determine any wh ∈ P1(T ), and since (vh − πBDMvh)
∣∣
T

∈
P1(T ), a scaling argument and the shape-regularity of Th show that

h−2
T ‖vh − πBDMvh‖2T ≤ C

∑
f∈Fd−1(T )

h−1
f ‖(vT − πBDMvh) · nf‖2f .

Because (vT −πBDMvh) ·nf = ± 1
2 [vh ·nf ] on f ∈ FI

h and (vT −πBDMvh) ·nf =

vT · nf on f ∈ FB
h , we have by Lemma 3.2,∑

T∈Th

h−2
T ‖vh − πBDMvh‖2T ≤ C

∑
f∈Fh

h−1
f ‖[vh]‖2f ≤ C‖∇hvh‖2.

This proves (3.4). The stability estimate (3.5) follows from (3.4) and an inverse
estimate.
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Finally, let v ∈ V + V h so that ∇h · v ≡ 0 and
´
f
{v · nf} ds =

´
f
v · nf ds for

all f ∈ Fh. Then by the divergence theorem, we have for each T ∈ Th,ˆ
T

∇ · πBDMv dx = −
ˆ
∂T

(πBDMv) · n ds = −
ˆ
∂T

(v · n) ds =
ˆ
T

∇ · v dx = 0.

Thus, ∇ · πBDMv ≡ 0. �

Inspired by the L2-orthogonality (2.5) of L2
σ(Ω) against all gradient fields, the

following variational crime improves the L2-orthogonality of discretely divergence-
free vector fields vh ∈ V h against the irrotational part of f in the sense of the
Helmholtz decomposition [4, 24]:

ah(uh,vh) + bh(vh, ph) = (f ,πBDMvh) ∀vh ∈ Xh,

bh(uh, qh) = 0 ∀qh ∈ Qh.
(3.7)

Restricting (3.7) to V h and applying the Berger–Scott–Strang lemma gives us the
following abstract error estimate that decomposes the error into two parts: one
that measures the interpolation error and another that measures the consistency
error.

Lemma 3.4 (Berger–Scott–Strang). Let u ∈ X be the continuous solution of
(2.2) and uh ∈ V h the discretely divergence-free solution of (3.7). Then the error
satisfies

‖∇h(u− uh)‖ ≤ inf
vh∈V h

‖∇h(u− vh)‖+ ν−1 sup
wh∈V h\{0}

|Ch(u,wh)|
‖∇hwh‖

,

where the consistency error is given by Ch(u,wh) := ah(u,wh)− (f ,πBDMwh).

4. Conforming and divergence-free element

In this section we present the conforming and divergence-free finite-element in-
troduced in [17, 18]. These elements are constructed by enhancing a family of
H(div; Ω)-conforming elements with rational bubble functions such that they pos-
sess tangential continuity.

For a simplex T ∈ Th, let {ai}di=0 = F0(T ) and {λi}di=0 ⊂ P1(T ) denote the
vertices and barycentric coordinates of T , i.e., λi is the unique linear polynomial
satisfying λi(aj) = δi,j . In two dimensions, we label the edges F1(T ) = {ei}2i=0

such that ai is not a vertex of ei. Likewise, in three dimensions, we label the faces
F2(T ) = {fi}3i=0 such that ai is not a vertex of fi.

The edge/face bubble functions and volume bubble function are given by

bi :=
d∏

j=0

j �=i

λj ∈ Pd(T ), bT :=
d∏

j=0

λj ∈ Pd+1(T ),

and the rational edge/face bubble functions are given by (mod d):

Bi := bT bi
/ d∏

j=1

(λi + λi+j) for 0 ≤ λi ≤ 1, 0 ≤ λi+j < 1,

Bi(ai+j) = 0 else.
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We note that Bi ∈ W 2,∞(T ), Bi|∂T = 0, ∇Bi|∂T = −|∇λi|binfi (cf. [17, 18] for
details). In particular, the rational bubble functions and its derivatives reduce to
polynomial functions on the boundary of each element.

We set Nm−1(T ) := {wh ∈ Pm−1(T ) : wh · x ∈ Pm−1(T )} to be the (lo-
cal) H(curl; Ω) Nedelec space of index m − 1 [35], and define the local space of
divergence-free polynomials (m ≥ 1):

Qm(T ) :=
{
vh ∈ Pm(T ) : (vh,ρh)T = 0 ∀ρh ∈ Nm−1(T ) and

〈vh · nf , κh〉f = 0 ∀κh ∈ Pm−1(f), f ∈ Fd−1(T )
}
.

Note that ∇qh ∈ Nm−1(T ) for qh ∈ Pm−1(T ), and thereforeˆ
T

(∇ ·wh)qh dx = −
ˆ
T

wh · ∇qh dx

+

ˆ
∂T

(wh · n)qh ds = 0 ∀wh ∈ Qm(T ), qh ∈ Pm−1(T ).

Thus, functions in Qm(T ) are divergence-free as claimed. Moreover, since any
vh ∈ Pm(T ) is uniquely determined by the moments (vh,ρh)T and 〈(vh ·nf ), κh〉f
for ρh ∈ Nm−1(T ) and κh ∈ Pm(f) (cf. [36]), we conclude that the dimension
of Qm(T ) is dimQm(T ) = (d + 1)

(
dimPm(Rd−1) − dimPm−1(R

d−1)
)
= (d +

1)
(
m+d−2
d−2

)
. This discussion also shows that Qm(T ) ∩Pm−1(T ) = {0}.

We set

Mk(T ) := Pk(T )

d−1⊕
j=1

Qk+j(T ) ⊂ Pk+d−1(T )(4.1)

to be the local H(div;T )-conforming finite element space with continuity at the
vertices introduced in [17, 18] (also see [9, 41]).

To summarize the divergence-free finite element spaces constructed in [17,18] we
discuss the two- and three-dimensional cases separately.

4.1. Two-dimensional construction. This section summarizes the two-dimen-
sional family of divergence-free (yielding) finite elements constructed in [17]. As a
first step, for an integer k ≥ 1, we define the auxiliary space consisting of divergence-
free rational bubble functions:

U(T ) :=

2∑
i=0

curl(BiA
(i)
k−1(T )),

A
(i)
k−1(T ) : = {qh ∈ Pk−1(T ) : (qh, Biph)T = 0 ∀ph ∈ Pk−2(T )} (k ≥ 2),

and A
(i)
0 (T ) = P0(T ). Here, curl = (∂/∂x2,−∂/∂x1)

t is the two-dimensional

vector curl operator. Note that the dimension of A
(i)
k−1(T ) is k, and therefore

dimU(T ) = 3k. In addition, due to the properties of the rational bubble functions,
there holds zh|∂T ∈ Pk+1(∂T ) for zh ∈ U(T ).

The local space of the divergence-free conforming element is then given by

W k(T ) = Mk(T )⊕U(T ),

where Mk(T ) given by (4.1) with d = 2. Since dimQk+1(T ) = 3, we find that

dimW k(T ) = (k + 2)(k + 1) + 3 + 3k = (k + 5)(k + 1).
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A unisolvent set of degrees of freedom is given in the next lemma (cf. [17, Lemma
5.1]). For completeness, we provide the proof in the appendix.

Lemma 4.1. The following degrees of freedom are unisolvent over W k(T ):

vh(a) ∀a ∈ F0(T ),(4.2a)

〈vh,κh〉e ∀κh ∈ Pk−1(e), e ∈ F1(T ),(4.2b)

(vh,ρh)T ∀ρh ∈ Nk−1(T ).(4.2c)

Remark 4.2. The rational bubble functions and local spaces are constructed such
that W k(T )|∂T ⊂ Pk+1(∂T ). Since the boundary degrees of freedom (4.2a)–(4.2b)
are the same as the Lagrange finite element space of degree (k+1), we see that the
degrees of freedom (4.2) induce an H1(Ω)-conforming finite element space.

For given k ≥ 1 we set

W h = W k
h := {vh ∈ X : vh

∣∣
T
∈ W k(T ) ∀T ∈ Th}

as the two-dimensional, globally H1(Ω)-conforming finite element space. The de-
grees of freedom (4.2) induce a Fortin operator which satisfies the following prop-
erties; see [17] for details.

Proposition 4.3. There exists πh : X → W k
h such that, for all v ∈ X,ˆ

Ω

(∇ · πhv)qh dx =

ˆ
Ω

(∇ · v)qh dx ∀qh ∈ Pk−1(Th) ∩Q

and

‖∇πhv‖ ≤ C‖∇v‖.
Furthermore, if k ≥ 2, thenˆ

T

πhv dx =

ˆ
T

v dx ∀T ∈ Th.

The following lemma extends the results of Proposition 4.3 by constructing a
Fortin-type operator on the Crouzeix–Raviart element space Xh in two dimensions.

Lemma 4.4. For each k ≥ 1, there exists an operator Eh : Xh → W k
h such that:

(i)
´
e
Ehvh ds =

´
e
vh ds for all e ∈ Fh and vh ∈ Xh,

(ii) ∇ · (Ehvh) = ∇ · (πBDMvh)
(
= ∇h · vh

)
for all vh ∈ Xh,

(iii) Eh : V h → W k
h ∩ V ,

(iv) ‖∇Ehvh‖ ≤ C‖∇hvh‖ for all vh ∈ Xh.

Proof. For T ∈ Th, we uniquely define the local operator ET : Xh −→ W k(T )
such that: (

ETvh

)
(a) = {vh}a ∀a ∈ FI

0 (T ),(4.3a) 〈
(ETvh − {vh}),κh

〉
e
= 0 ∀κh ∈ Pk−1(e), e ∈ FI

1 (T ),(4.3b) (
ETv − πBDMvh,ρh

)
T
= 0 ∀ρh ∈ Nk−1(T ),(4.3c)

and ETvh(a) = 0 for a ∈ FB
0 (T ), and 〈ETvh,κh〉e = 0 for κh ∈ Pk−1(e) and

e ∈ FB
1 (T ). Setting Ehvh

∣∣
T
:= ETvh, we clearly see that property (i) is satisfied.

To show (ii), for e ∈ F1(T ), let Pe : L2(e) → Pmin{1,k−1}(e) denote the L2-

projection onto Pmin{1,k−1}(e). For vh ∈ Xh we have {vh · ne}
∣∣
e
∈ P1(e), and
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therefore, since (πBDMvh) · ne

∣∣
e
∈ P1(e), (4.3b)–(4.3c) and integration by parts,

we get

(∇ · (ETvh), qh)T = −(ETvh,∇qh)T +
∑

e∈FI
1 (T )

〈(ETvh) · ne, qh〉e

= −(πBDMvh,∇qh)T +
∑

e∈FI
1 (T )

〈{vh · ne},Peqh〉e

= −(πBDMvh,∇qh)T +
∑

e∈FI
1 (T )

〈πBDMvh · ne,Peqh〉e

= (∇ · (πBDMvh), qh)T

for all qh ∈ Pk−1(T ). Thus, due to ∇· (ETvh) ∈ Pk−1(T ), the statement (ii) holds.
Further, (iii) is a simple consequence of (ii), restricting Eh to V h.

To show (iv), we set wT := ETvh and vT := vh

∣∣
T
for notational convenience.

Since W k(T ) is finite dimensional, a simple scaling argument shows that

(4.4)

‖∇(wT − vT )‖2T �
∑

a∈F0(T )

|(wT − vT )(a)|2

+
∑

e∈F1(T )

h−1
e

∣∣∣ sup
κh∈Pk−1(e)

‖κh‖e=1

〈wT − vT ,κh〉e
∣∣∣2

+ sup
ρh∈Nk−1(T )

‖ρh‖T=1

h−2
T

∣∣(wT − vT ,ρh)T
∣∣2.

Note that {vh} − vT = ± 1
2 [vh] on e ∈ FI

1 (T ) and wT = 0 on e ∈ FB
1 . It then

follows from (4.3) and the Cauchy–Schwarz inequality that∑
e∈F1(T )

h−1
e

∣∣∣ sup
κh∈Pk−1(e)

‖κh‖e=1

〈wT − vT ,κh〉e
∣∣∣2 ≤

∑
e∈F1(T )

h−1
e

∥∥[vh]
∥∥2

e
.(4.5)

We also have by (4.3), for a ∈ FI
0 (T ),∣∣wT − vT (a)

∣∣2 =
∣∣{vh}a − vT (a)

∣∣2 ≤ C
∑

T ′∈Ta

|vT ′(a)− vT (a)|2

≤ C
∑

T ′,T ′′∈Ta

T ′ and T ′′ share a common edge

|vT ′(a)− vT ′′(a)|2.

Letting Fa ⊂ Fh denote the set of edges that have a as a vertex, we conclude from
an inverse inequality that∣∣wT − vT (a)

∣∣2 ≤ C
∑
e∈Fa

‖[vh]‖2L∞(e) ≤ C
∑
e∈Fa

h−1
e ‖[vh]‖2e.(4.6)

Likewise, for a ∈ FB
0 (T ), we have wT (a) = 0, and therefore,∣∣wT − vT (a)

∣∣2 = |vT (a)|2 ≤
∑

e∈FB
1 (T )

‖vT ‖L∞(e) ≤ C
∑
e∈Fa

h−1
e ‖[vh]‖2e.(4.7)
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Combining (4.4)–(4.7), summing over T ∈ Th, and applying Lemmas 3.2 and 3.3
yield

‖∇h(Ehvh − vh)‖2 �
∑
e∈Fh

h−1
e ‖[vh]‖2e +

∑
T∈Th

h−2
T ‖vh − πBDMvh‖2T � ‖∇hvh‖2.

An application of the triangle inequality now gives (iii). This completes the proof.
�

4.2. Three-dimensional construction. To describe the three-dimensional,
divergence-free conforming finite element space, we first label the six edges of an
element T as F1(T ) = {ei,j}3i<j such that ei,j = ∂fi ∩ ∂fj . The quadratic edge
bubble functions are given by

bi,j =
3∏

k=0
k �=i,k �=j

λk,

and the rational edge bubble functions are then defined as [18]:

si,j =
bT bi,j

2
(
λiλj + bi,j(λi + λj)

)
(λi + λj)

(
∇(λ2

j − λ2
i ) + 4(λi∇λj − λj∇λi)

)
.

The (seemingly abstruse) function si,j is constructed such that [18, Lemma 2.2]

curl si,j ∈ C0(T̄ ) ∩W 1,∞(T ), curl si,j
∣∣
∂T

= bi,j(∇λi ×∇λj), si,j
∣∣
∂T

= 0.

Thus, similar to the rational face bubble functions, the rational edge bubble func-
tions and its derivatives reduce to polynomials on the boundary of the element.

We define the auxiliary spaces consisting of divergence-free rational face and
edge bubbles:

U(T ) =

3∑
i=0

curl(BiP0(T )× nfi),

Z(T ) =
{ 3∑

i,j=0
i>j

curl(psi,j) : p ∈ M (i,j)(T )
}
,

where M (i,j)(T ) = span{λk, λ�} and k, 
 �= i, k, 
 �= j, and k �= 
.
The local space of the divergence-free element is obtained by enriching the local

H(div;T )-element (4.1) with rational edge and rational face bubble functions:

W (T ) = M1(T )⊕U(T )⊕Z(T ).(4.8)

Note that, since the last two spaces in (4.8) are divergence-free, there holds ∇ ·
W (T ) = ∇ ·M1(T ) = ∇ ·P1(T ) ⊂ P0(T ). Moreover, restricted to the boundary,
we have W (T )|∂T ⊂ P3(∂T ). A unisolvent set of degrees of freedom that induce
an H1-conforming finite element space is given in the next lemma [18, Theorem
3.1].
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Lemma 4.5. The dimension of W (T ) is 60, and a function vh ∈ W (T ) is uniquely
determined by the values

vh(a) ∀a ∈ F0(T ),(4.9a)

〈vh,κh〉e ∀κh ∈ P1(e), e ∈ F1(T ),(4.9b)

〈vh,κh〉f ∀κh ∈ P0(f), f ∈ F2(T ).(4.9c)

We set

W h := {vh ∈ X : vh

∣∣
T
∈ W (T ) ∀T ∈ Th}

Analogous to Proposition 4.3 (with k = 1), the degrees of freedom (4.9) induce
a Fortin operator.

Proposition 4.6. There exists πh : X → W h such that, for all v ∈ X,

ˆ
Ω

(∇ · πhv)qh dx =

ˆ
Ω

(∇ · v)qh dx ∀qh ∈ P0(Th) ∩Q

and

‖∇πhv‖ ≤ C‖∇v‖.

Similarly to Lemma 4.4, we construct a Fortin-type operator on the Crouzeix–
Raviart element space Xh.

Lemma 4.7. In three dimensions there exists an operator Eh : Xh → W h such
that

(i)

ˆ
f

Ehvh ds =

ˆ
f

vh ds for all f ∈ Fh and vh ∈ Xh,

(ii) ∇ · (Ehvh) = ∇ · (πBDMvh)
(
= ∇h · vh

)
for all vh ∈ Xh,

(iii) Eh : V h → W h ∩ V ,
(iv) ‖∇Ehvh‖ ≤ C‖∇hvh‖ for all vh ∈ Xh.

Proof. The proof closely follows the proof of Lemma 4.4, so we only sketch the
argument.

For T ∈ Th, define ET : Xh −→ W (T ) such that

(
ETvh

)
(a) = {vh}a ∀a ∈ FI

0 (T ),(4.10a) 〈
(ETvh − {vh}e),κh

〉
e
= 0 ∀κh ∈ P1(e), e ∈ FI

1 (T ),(4.10b) 〈
(ETvh − vh),κh

〉
f
= 0 ∀κh ∈ P0(f), f ∈ F2(T ),(4.10c)

and ETvh(a) = 0 for a ∈ FB
0 (T ), and 〈ETvh,κh〉e = 0 for κh ∈ P1(e) for

e ∈ FB
1 (T ). Setting Ehvh

∣∣
T
:= ETvh, we clearly see that property (i) is satisfied.

Moreover, since (∇ ·ETvh) ∈ P0(T ) and (∇ ·vh)|T ∈ P0(T ), condition (4.10c) and
integration by parts shows that ∇·Ehvh = ∇h ·vh = ∇·(πBDMvh). Thus, (ii)–(iii)
holds.
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Setting wT = ETvh and vT = vh

∣∣
T
, a scaling argument yields

‖∇(wT − vT )‖2T �
∑

a∈F0(T )

hT |(wT − vT )(a)|2+
∑

e∈F1(T )

∣∣∣ sup
κh∈P1(e)

‖κh‖e=1

〈wT − vT ,κh〉e
∣∣∣2

(4.11)

+
∑

f∈F2(T )

∣∣∣ sup
κh∈P0(f)

‖κh‖f=1

h−1
F 〈wT − vT ,κh〉f

∣∣∣2

≤
∑

a∈F0(T )

hT |{vh}a − vT (a)|2 +
∑

e∈F1(T )

‖{vh}e − vT ‖2e.

Applying similar arguments found in the proof of Lemma 4.4, we have (cf. (4.6))∑
e∈F1(T )

‖{vh}e − vT ‖2e ≤ C
∑

e∈F1(T )

∑
f∈Fe

h−1
F

∥∥[vh]‖2f ,(4.12)

where Fe denotes the set of faces that have e as an edge. Likewise, we have for
a ∈ FI

0 (T ),

|{vh}a − vT (a)|2 ≤ C
∑

T ′∈Ta

|vT ′(a)− vT (a)|2(4.13)

≤ C
∑

T ′,T ′′∈Ta

T ′ and T
′′

share a common face

|vT ′(a)− vT ′′ (a)|2

≤ C
∑
f∈Fa

∥∥[vh]‖2L∞(f) ≤ C
∑
f∈Fa

h−2
f

∥∥[vh]
∥∥2

f
,

where Fa denotes the set of faces that have a as a vertex. For a ∈ FB
0 (T ) we have

|{vh}a − vT (a)|2 = |vT (a)|2 ≤ C
∑
f∈Fa

h−2
f

∥∥[vh]‖2f .(4.14)

Combining the estimates (4.12)–(4.14) to (4.11) and summing over T ∈ Th yields

‖∇(Evh − vh)‖2 ≤ C
∑
f∈F

h−1
f ‖[vh]‖2f .

Applying Lemma 3.2 and the triangle inequality, we obtain (iv). This completes
the proof. �

5. Pressure-robust error estimates

Following the Berger–Scott–Strang lemma 3.4, estimates of the energy error
contain a consistency error Ch(u,wh). Classical estimates of the consistency error
require a minimal regularity of u ∈ H1+s(Ω) with s > 1/2 in order for edge-
integrals to be defined. Together with the preceding section, we are now in position
to estimate the energy and L2 errors of the modified Crouzeix–Raviart element
method (3.7) for arbitrary regularities

u ∈ X ∩H1+s(Ω), s ≥ 0.

We will use the Fortin-type operator defined in Theorem 4.4 to estimate the con-
sistency error by the velocity-best approximations and additional higher-order os-
cillations.
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Theorem 5.1. Let k ≥ 1 if d = 2, and k = 1 if d = 3. Let u ∈ V be the continuous
solution of (2.4) and uh ∈ V h be the discrete solution to the reconstructed scheme
(3.7). There holds

‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1Rk−2

(
P(f)

))
,

with

Rk−2(g)
2 =

{∑
T∈Th

h2
T ‖g‖2T for k = 1,∑

T∈Th
h2
T infqh∈Pk−2(T ) ‖g − qh‖2T for k ≥ 2,

(5.1)

and C > 0 is independent of h, ν and (u, p).

Proof. Let vh,wh ∈ V h be arbitrary. Using the BDM reconstruction leads to
the modified consistency error Ch(u,wh) defined in Lemma 3.4. For Ehwh ∈ V
being conforming and divergence-free, it holds that ah(u,Ehwh) = (f ,Ehwh),
and therefore,

Ch(u,wh) = ah(u,wh)− (f ,πBDMwh)

= ah(u,wh −Ehwh)− (f ,πBDMwh −Ehwh)

= ah(u− vh,wh −Ehwh)︸ ︷︷ ︸
=:I1

+ ah(vh,wh −Ehwh)︸ ︷︷ ︸
=:I2

− (f ,πBDMwh −Ehwh)︸ ︷︷ ︸
=:I3

for arbitrary vh ∈ Xh.
To bound the first term I1 we apply Lemmas 4.4 and 4.7, and the Cauchy–

Schwarz inequality:

I1 ≤ ν‖∇h(u− vh)‖‖∇h(wh −Ehwh)‖ ≤ νC‖∇h(u− vh)‖‖∇hwh‖.

Since vh is piecewise linear, an integration by parts for the second term I2 yields

(5.2)

I2 = ν
∑
T∈Th

ˆ
T

∇vh : ∇
(
wh −Ehwh

)
dx

= −ν
∑
T∈Th

ˆ
T

Δvh︸︷︷︸
≡0

·
(
wh −Ehwh

)
dx

+ ν
∑
T∈Th

ˆ
∂T

∂vh

∂n︸︷︷︸
≡ const

·
(
wh −Ehwh

)
ds

= 0.

Concerning the last term I3, it follows for k ≥ 2 from (4.3c) that for any qh ∈
Pk−2(Th),

I3 =
(
f ,πBDMwh −Ehwh

)
=

(
P(f),πBDMwh −Ehwh

)
(5.3)

=
(
P(f)− qh,π

BDMwh −Ehwh

)
.

In the case k = 1, a similar argument follows with qh = 0.
Next, it follows from Lemmas 4.4 and 4.7 that the integral of πBDMwh −Ehwh

vanishes on each edge/face. Applications of the Poincaré and Cauchy–Schwarz



QUASI-OPTIMALITY FEM FOR THE STOKES-PROBLEM 1557

inequalities then lead to

I3 ≤
( ∑

T∈Th

h2
T ‖P(f)− qh‖2T

)1/2( ∑
T∈Th

h−2
T

∥∥πBDMwh −Ehwh

∥∥2

T

)1/2

≤ C

( ∑
T∈Th

h2
T ‖P(f)− qh‖2T

)1/2

‖∇h(π
BDMwh −Ehwh)‖.

Using the H1-stability results of Eh and πBDM then yields

I3 ≤ CRk−2

(
P(f)

)
‖∇hwh‖.

A combination of all preceding estimates yields

Eh(u,wh) ≤ C
(
ν‖∇h(u− vh)‖+Rk−2

(
P(f)

))
‖∇hwh‖.

Finally, inf-sup stability implies [5]

inf
vh∈V h

‖∇h(u− vh)‖ ≤ C inf
vh∈Xh

‖∇h(u− vh)‖.

Combining these results with Lemma 3.4 then gives the desired result (5.1). �

Remark 5.2. The dependence of the error estimate on the term ν−1
P(f) is briefly

discussed in a special case here. For a more detailed discussion; see Subsection 5.1.
Assume that Δu,∇p ∈ L2(Ω) holds. Then, one obtains

1

ν
P(f) =

1

ν
P(−νΔu+∇p) = P(Δu),

due to Remark 2.3. Hence, ν−1
P(f) is ν-independent. Note that ν−1f = Δu +

ν−1∇p is not ν-independent, instead, and hence, any error estimate that depends
on this term is not pressure-robust. Indeed, a dependence on ν−1f indicates a
locking-phenomenon; see the discussion in [1].

In order to estimate the L2-error, we follow the lines of Aubin–Nitsche [5]. First
we define (φ,φh) ∈ V × V h as the solutions to the following dual problems:(

∇φ,∇v
)
= (u− uh,v) ∀v ∈ V ,(5.4a) (

∇hφh,∇hvh

)
= (u− uh,π

BDMvh) ∀vh ∈ V h.(5.4b)

We assume that the continuous dual problem (5.4a) satisfies the following regularity:

‖φ‖1+s0 ≤ C‖u− uh‖,(5.5)

with s0 ∈ [0, 1] and for some constant C > 0.

Lemma 5.3 (Dual energy error). Let φ ∈ V be the continuous solution of (5.4a)
and φh ∈ V h be the discrete dual solution of (5.4b). Then it follows that the dual
energy error satisfies

‖∇h(φ− φh)‖ ≤ Chs0‖u− uh‖.

Proof. The dual energy error can be estimated by Theorem 5.1 for ν = 1 and k = 1:

‖∇h(φ− φh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(φ− vh)‖+
√ ∑

T∈Th

h2
T ‖u− uh‖2T

)
.
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By standard approximation results and (5.5) we have

inf
vh∈Xh

‖∇h(φ− vh)‖ ≤ Chs0‖φ‖1+s0 ≤ Chs0‖u− uh‖.(5.6)

and hence, by the definition of Rk−2 in (5.1), for meshes satisfying hT ≤ 1, we get

‖∇h(φ− φh)‖ ≤ hs0‖u− uh‖. �

Theorem 5.4. Let u ∈ V be the solution of (2.4) and uh ∈ V h be the discrete
solution of the reconstructed scheme (3.7). Then there holds

‖u− uh‖ ≤ Chs0

(
inf

vh∈Xh

‖∇h(u− vh)‖+ hν−1‖P(f)‖
)
,(5.7)

with s0 ∈ [0, 1] being the dual regularity (5.5).

Proof. Let us define the following terms:

I1 :=
(
∇h(u− uh),∇h(φ− φh)

)
,

I2 :=
(
u− uh,π

BDM(u− uh)
)
−

(
∇h(u− uh),∇φ

)
,

I3 := ν−1
(
P(f),πBDM(φ− φh)

)
−

(
∇u,∇h(φ− φh)

)
,

I4 :=
(
u− uh,u− uh − πBDM(u− uh)

)
,

I5 := ν−1
(
P(f),φ− πBDMφ

)
,

such that the L2-error splits up as follows:

‖u− uh‖2=(u− uh,u− uh)−
(
∇h(u− uh),∇hφh

)
−

(
∇u,∇h(φ− φh)

)(5.8)

+ ν−1
(
f ,φ− πBDMφh

)
=

(
∇h(u−uh),∇h(φ−φh)

)
−

(
∇h(u−uh),∇φ

)
−

(
∇u,∇h(φ−φh)

)
+

(
u− uh,u− uh − πBDM(u− uh)

)
+

(
u− uh,π

BDM(u− uh)
)

+ ν−1
(
f ,φ− πBDMφh

)
=I1 + I2 + I4 + ν−1

(
P(f),φ− πBDMφ

)
+ ν−1

(
P(f),πBDM(φ− φh)

)
−

(
∇u,∇h(φ− φh)

)
=I1 + I2 + I3 + I4 + I5.

The transition to the Helmholtz-projection P(f) is admissible since φ ∈ V and
πBDM(φ− φh) is divergence-free.

For the first term we use the Cauchy–Schwarz inequality and apply the preceding
Lemma 5.3 to estimate the dual energy error ‖∇h(φ − φh)‖. It follows for mesh
sizes h ≤ 1 that

I1 ≤ ‖∇h(u− uh)‖‖∇h(φ− φh)‖ ≤ Chs0‖∇h(u− uh)‖‖u− uh‖.(5.9)

In order to estimate the second term, we make use of the Fortin operators πh

and Eh given in Proposition 4.3 and Lemma 4.4, respectively, (with k ≥ 2). For
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vh ∈ V h arbitrary, it follows that

I2 =
(
u− uh,π

BDM(u− uh)
)
−

(
∇h(u− uh),∇φ

)
(5.4a)
=

(
u− uh,π

BDM(u− uh)− (πhu−Ehuh)
)

+
(
∇φ,∇h(πhu−Ehuh − (u− uh))

)
=

(
u− uh,π

BDM(u− uh)− (πhu−Ehuh)
)

+
(
∇h(φ− vh),∇h(πhu−Ehuh − (u− uh))

)
+

(
∇hvh,∇h(πhu−Ehuh − (u− uh))

)︸ ︷︷ ︸
=0

=: J1 + J2.

Concerning the first contribution, we apply the Poincaré inequality, Lemma 3.3,
Lemma 4.4, and Proposition 4.3 to obtain

J1 ≤ ‖u− uh‖‖πBDM(u− uh)− (πhu−Ehuh)‖
≤ Ch‖u− uh‖

∥∥∇h

(
πBDM(u− uh)− (πhu−Ehuh)

)
‖

≤ Ch‖u− uh‖‖∇h(u− uh)‖.

Likewise, for the second contribution, we apply Lemmas 3.3 and 4.4 and Proposition
4.3:

J2 ≤ ‖∇h(φ− vh)‖
∥∥∇h

(
πhu−Ehuh − (u− uh)

)∥∥
≤ C‖∇h(φ− vh)‖‖∇h(u− uh)‖.

Altogether it holds for the second term I2 that

I2 ≤ C
(

inf
vh∈V h

‖∇h(φ− vh)‖+ h‖u− uh‖
)
‖∇h(u− uh)‖(5.10)

≤ C
(

inf
vh∈Xh

‖∇h(φ− vh)‖+ h‖u− uh‖
)
‖∇h(u− uh)‖

≤ Chs0‖u− uh‖‖∇h(u− uh)‖.

The estimate of I3 follows from the same arguments as I2 by interchanging φ
with u, πBDM(u− uh) with πBDM(φ− φh) and u− uh with ν−1

P(f); thus,

I3 ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ hν−1‖P(f)
)
‖∇h(φ− φh)‖(5.11)

≤ Chs0
(

inf
vh∈Xh

‖∇h(u− vh)‖+ hν−1‖P(f)‖
)
‖u− uh‖.

Next, applying Lemma 3.3 we obtain

I4 = (u− uh,u− uh − πBDM(u− uh)) ≤ Ch‖u− uh‖‖∇h(u− uh)‖.

In order to bound the last contribution I5 we again employ Lemma 3.3:

I5 = ν−1
(
P(f),φ− πBDMφ

)
≤ ν−1‖P(f)‖‖φ− πBDMφ‖(5.12)

≤ Cν−1h1+s0‖P(f)‖‖u− uh‖.

Finally we combine the estimates (5.9)–(5.12) to (5.8) to obtain (5.7). The proof
is complete. �
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Theorem 5.5. Let k ≥ 1 if d = 2 and k = 1 if d = 3. Let (u, p) ∈ V × Q
be the solution of (2.2) and (uh, ph) ∈ V h × Qh be the discrete solution of the
reconstructed scheme (3.7). Then there holds

(5.13) ‖πhp− ph‖ ≤ C
ν

β∗ ‖∇h(u− uh)‖+
C

β∗Rk−2

(
P(f)

)
,

where πhp denotes the L2 best approximation of p in Qh.

Proof. For an arbitrary wh ∈ Xh one obtains

(πhp− ph,∇h ·wh) = (πhp,∇ · (Ehwh))− (ph,∇h ·wh)

= (p,∇ · (Ehwh))− (ph,∇h ·wh),

since it holds for all elements T in the mesh, (∇h · wh)|T = (∇ · (Ehwh))|T (see
Lemmas 4.4 and 4.7 (ii)). Using the definitions of the continuous and the discrete
Stokes problems (2.2) and (3.7), one obtains

(πhp− ph,∇h ·wh) = a(u,Ehwh)− ah(uh,wh)︸ ︷︷ ︸
I1

+
(
f ,πBDMwh −Ehwh

)︸ ︷︷ ︸
I2

.

The first term can be estimated using the arguments for (5.2)

I1 = a(u,Ehwh)− ah(uh,wh) = ah(u− uh,Ehwh) ≤ Cν‖∇h(u− uh)‖ ‖∇hwh‖.

For the second term, the right-hand side data f is represented via the Helmholtz
decomposition as f = P(f) +∇φ with some φ ∈ H1(Ω); see Theorem 2.1. Hence,
one obtains

I2 = (
(
f ,πBDMwh −Ehwh

)
= (

(
P(f),πBDMwh −Ehwh

)
− (φ,∇ · (πBDMwh −Ehwh)),

and the last term is zero, since it holds that ∇ · (πBDMwh) = ∇ · (Ehwh) due
to Lemma 4.4 (ii). Now we remark that I2 is the same term as I3 in (5.3). The
discrete inf-sup stability concludes the proof. �

Remark 5.6 (Pressure-robustness of the discrete pressure error). Assuming again
that Δu,∇p ∈ L2(Ω), we see that the discrete pressure ph equals the best approx-
imation πhp up to an error, which is only velocity-dependent, since it holds in this
special case that

‖πhp− ph‖ ≤ C
ν

β∗ ‖∇h(u− uh)‖+ C
ν

β∗Rk−2

(
P(Δu)

)
,

In this sense, the discrete pressure error ‖πhp− ph‖ is pressure-robust.

Remark 5.7 (Hydrostatics). Classical mixed methods and pressure-robust mixed
methods differ most dramatically for hydrostatic problems with complicated pres-
sures p ∈ Q. Assume that f = ∇φ for some φ ∈ H1(Ω) ∩Q. Then, the continuous
solution of (2.2) is given by (u, p) = (0, φ). Due to P(f) = 0 it holds, according to
Theorems 5.1 and 5.5, for the discrete solution (uh, ph) = (0, πhφ). Therefore, the
pressure-robust discrete solution is the best possible on the given grid. On the con-
trary, the classical Crouzeix–Raviart element will show (at least on unstructured
grids) for ν � 1 extremely large errors, if φ is complicated, i.e., if it holds that
ν−1‖φ− πhφ‖ � 1.
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Remark 5.8 (Pressure error). The full pressure error ‖p− ph‖ can be obtained by

‖p− ph‖2 = ‖p− πhp‖2 + ‖πhp− ph‖2.
The convergence order of ‖p − ph‖ is given by the minimum of the convergence
order of the velocity error and the order of the pressure best approximation error.

5.1. Impact of the velocity-reconstruction. In this section we study the ad-
vantages of the velocity reconstruction on the error estimates in Theorem 5.1. In
[22], it was shown that the classical Crouzeix–Raviart energy error satisfies
(5.14)
‖∇h(u− uh)‖ ≤ C

(
inf

vh∈Xh

‖∇h(u− vh)‖+ ν−1 inf
qh∈Qh

‖p− qh‖+ ν−1Rk−2(f)
)
.

On the contrary, let uh be the discrete solution to the reconstructed scheme (3.7).
Then it follows from Theorem 5.1 that

(5.15) ‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1Rk−2

(
P(f)

)
.

Remark 5.9. In Remark 5.2 it is argued that the term ν−1
P(f) indicates a pressure-

robust and locking-free error estimate for ν � 1, if one assumes that f ∈ L2(Ω)
and Δu ∈ L2(Ω) hold, simultaneously.

Avoiding the assumption Δu ∈ L2(Ω) requires first to extend the domain of the
Helmholtz projector P from L2(Ω) to H−1(Ω) by simply restricting the application
of f ∈ H−1(Ω) to the divergence-free test space C∞

0,σ(Ω); see [40]. Again, an

important property of the Helmholtz projector in theH−1-sense is that all gradients
in the distributional sense vanish for divergence-free vector fields from C∞

0,σ(Ω) [40].
Exploiting the weak formulation (2.4) for u, one obtains for the Helmholtz projector
in the H−1-sense

P(−Δu) =
1

ν
P(f) ∈ L2(Ω),

which shows that the expression ‖P(Δu)‖ has a precise meaning, even if the as-
sumption Δu ∈ L2(Ω) does not hold. Therefore, the error estimate in Theorem
5.1 is pressure-robust and does not suffer from any kind of locking phenomenon for
ν � 1.

Remark 5.10. The operator Eh : Xh → W h for k = 1 is also a useful tool for
the numerical analysis of the classical Crouzeix–Raviart element, i.e., where one
uses the classical right-hand side discretization wh → (f ,wh). Then, a similar
reasoning as in Theorem 5.1 will deliver the a priori error estimate

(5.16) ‖∇h(u− uh)‖ ≤ C
(

inf
vh∈Xh

‖∇h(u− vh)‖+ ν−1R−1

(
f

))
.

From a qualitative point of view, this is a better estimate than the estimate (5.14)
presented in [22], since the new estimate does not contain any terms depending
explicitly on the pressure regularity. But note that also this estimate is not pressure-
robust, since ν−1R−1

(
f

)
depends implicitly on the pressure via the data term

f = −νΔu+∇p.
Please note also that using the operator Eh for k ≥ 2 in a similar way for the

analysis of the classical Crouzeix–Raviart element (with the classical right-hand side
discretization wh → (f ,wh)), does not deliver further qualitative improvements of
the estimate (5.16), since the inclusion of the BDM-operator in the definition of Eh

(in order to get H1-conforming divergence-free velocities Eh(wh) for all wh ∈ V h)
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Table 6.1. Comparison of the gradient errors of the classical and
the modified Crouzeix–Raviart method for zero pressure p1 and
ν = 1 in the first example.

ndof ‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR) quotient
2431 7.7508e-03 1.2310e-02 0.6296
9855 3.9152e-03 6.2873e-03 0.6227
39679 1.9652e-03 3.1713e-03 0.6197

Table 6.2. Comparison of the gradient errors of the classical and
the modified Crouzeix–Raviart method for pressure p2 and ν = 1
in the first example.

ndof ‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR) quotient
2431 2.7103e-02 1.2310e-02 2.2017
9855 1.4029e-02 6.2873e-03 2.2313
39679 7.1242e-03 3.1713e-03 2.2465

is in contradiction to the necessary property for the volume moments (4.3c), in
order to get an oscillation term in the error estimate.

6. Numerical experiments

6.1. Illustration of pressure-robustness. The first example studies the velocity
field

u(x, y) := (∂/∂y,−∂/∂x) x2(x− 1)2y2(y − 1)2

and two different pressure fields

p1 := 0 and p2 := x3 + y3 − 1/2

on the unit cube Ω := (0, 1)2 and the matching right-hand sides f j := −νΔu+∇pj
for different values of ν and j = 1, 2. The choice j = 1 yields a worst-case for
the modified Crouzeix–Raviart method, since the pressure is then in the pressure
ansatz space and so the pressure-dependent term in the classical estimate vanishes.
However, the modified method makes a consistency error and by comparing the
errors of both methods one can estimate the size of this consistency error. Table 6.1
shows that the error of the modified method in this worst-case scenario is about 60
percent larger than the error of the classical method.

In presence of a nonzero pressure that is not in the pressure ansatz space, like p2,
the situation changes. Table 6.2 shows that the error of the classical method is more
than 120 percent larger than the error of the modified pressure-robust method, even
for ν = 1. For smaller ν the quotient increases proportional to 1/ν, see Table 6.3
for ν = 10−4 which results in factors of more than 2100. Note, that the error of the
modified Crouzeix–Raviart method is the same in all three tables since its discrete
velocity is pressure-independent.

6.2. The impact of quadrature rules. The second example employs the exact
velocity u ≡ 0 on the square domain Ω := (−1, 1)2, where the pressure is given (up
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Table 6.3. Comparison of the gradient errors of the classical and
the modified Crouzeix–Raviart method for pressure p2 and ν =
10−4 in the first example.

ndof ‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR) quotient
2431 2.6109e+02 1.2310e-02 2121.0
9855 1.3540e+02 6.2873e-03 2153.5
39679 6.8819e+01 3.1713e-03 2170.1

Table 6.4. Comparison of the gradient errors of the classical and
the modified Crouzeix–Raviart method on a fixed mesh with 16173
degrees of freedom and different ν and three different quadrature
orders k ∈ {2, 7, 15} in the second example.

‖∇h(u− uh)‖ (classical CR) ‖∇h(u− uh)‖ (modified CR)
ν k = 2 k = 7 k = 15 k = 2 k = 7 k = 15

1 8.0921e-01 8.0951e-01 8.0951e-01 3.7434e-04 7.5452e-09 8.7045e-15
1e-1 8.0921e+00 8.0951e+00 8.0951e+00 3.7434e-03 7.5452e-08 2.3337e-14
1e-2 8.0921e+01 8.0951e+01 8.0951e+01 3.7434e-02 7.5452e-07 2.2706e-13
1e-3 8.0921e+02 8.0951e+02 8.0951e+02 3.7434e-01 7.5452e-06 2.3470e-12
1e-4 8.0921e+03 8.0951e+03 8.0951e+03 3.7434e+00 7.5452e-05 2.3913e-11
1e-5 8.0921e+04 8.0951e+04 8.0951e+04 3.7434e+01 7.5452e-04 2.4806e-10
1e-6 8.0921e+05 8.0951e+05 8.0951e+05 3.7434e+02 7.5452e-03 2.2993e-09
1e-7 8.0921e+06 8.0951e+06 8.0951e+06 3.7434e+03 7.5452e-02 2.4221e-08

to a constant) by

p(x, y) := 1/(0.01 + x2 + y2).

Since the pressure is nonpolynomial, the right-hand side f = ∇p cannot be in-
tegrated exactly by simple quadrature rules. This leads to some quadrature er-
ror that pollutes the pressure-robustness. The reason is that the application of a
quadrature rule in the right-hand side is similar to a projection of f onto some
polynomial space. Even if f is irrotational, its projection needs not to be exactly
irrotational. Therefore, the error, though theoretically pressure-independent, shows
some pressure-dependence that can be reduced by better quadrature rules. For a
fixed mesh and different choices of ν, Table 6.4 compares the gradient errors of the
classical and the modified methods for three different quadrature rules of degrees
2, 7, and 15.

Appendix A. Proof of Lemma 4.1

Recall that the dimension of W k(T ) is (k + 5)(k + 1). On the other hand, the
number of conditions given in (4.2) is equal to

2(3) + 3 dimPk−1(R) + dimNk−1(T ) = 6 + 6k + (k − 1)(k + 1) = (k + 5)(k + 1).

We show that vh ∈ W k(T ) vanishes on (4.2) if and only if vh ≡ 0.
First, since vh|∂T ∈ Pk+1(∂T ), we have vh|∂T = 0. Now write vh = wh + zh

with wh ∈ Pk(T ) ⊕Qk+1(T ), zh =
∑2

i=0 curl(Biz
(i)
h ) and z

(i)
h ∈ A

(i)
k−1(T ). Since

Bi|∂T = 0 and ∇Bi|∂T = −|∇λi|binei , we find that zh|ei = −|∇λi|biz(i)h tei , where
tei the unit tangent of ei, obtained by rotating nei counterclockwise 90 degrees.
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Thus, zh · n|∂T = 0, and therefore 0 = vh · n|∂T = wh · n|∂T . In addition, by the

definition of A
(i)
k−1(T ) and (4.2b),

0 = (vh,ρh)T = (wh + zh,ρh)T = (wh,ρh)T +

2∑
i=0

(Biz
(i)
h , curl(ρh))T = (wh,ρh)T

for all ρh ∈ Nk−1(T ). In summary, we have wh · n|∂T = 0 and (wh,ρh)T = 0 for
all ρh ∈ Nk−1(T ). We now show that these conditions imply that wh ≡ 0.

Write wh = ph + qh with ph ∈ Pk(T ) and qh ∈ Qk+1(T ). From the definition
of Qk+1(T ) we see that

0 = (wh,ρh)T = (ph,ρh)T ∀ρh ∈ Nk−1(T )

and

0 = 〈wh · ne,ph · ne〉e = 〈ph · ne,ph · ne〉e ∀e ∈ F1(T ).

These two conditions imply that ph ≡ 0. Therefore qh · n|∂T , and by applying the
definition of Qk+1(T ) once again, we get qh ≡ 0 and wh ≡ 0.

Finally, we have

0 = 〈vh · tei , κ〉ei = 〈zh · tei , κ〉ei = −|∇λi|〈biz(i)h , κ〉ei ∀κ ∈ Pk−1(ei),

which implies z
(i)
h |ei = 0. Thus, z

(i)
h = λip

(i)
h for some p(i) ∈ Pk−2(T ). Applying

the definition of A
(i)
k−1(T ) we conclude that

0 = (Biz
(i)
h , p

(i)
h )T = (Biλip

(i)
h , p

(i)
h )T .

Since Biλi > 0 on T , we conclude that p
(i)
h ≡ 0 and therefore vh ≡ 0.
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