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FASTER INDIVIDUAL DISCRETE LOGARITHMS IN FINITE

FIELDS OF COMPOSITE EXTENSION DEGREE

AURORE GUILLEVIC

Abstract. Computing discrete logarithms in finite fields is a main concern in
cryptography. The best algorithms in large and medium characteristic fields
(e.g., GF(p2), GF(p12)) are the Number Field Sieve and its variants (special,
high-degree, tower). The best algorithms in small characteristic finite fields
(e.g., GF(36·509)) are the Function Field Sieve, Joux’s algorithm, and the
quasipolynomial-time algorithm. The last step of this family of algorithms is
the individual logarithm computation. It computes a smooth decomposition
of a given target in two phases: an initial splitting, then a descent tree. While
new improvements have been made to reduce the complexity of the dominating
relation collection and linear algebra steps, resulting in a smaller factor basis
(database of known logarithms of small elements), the last step remains at
the same level of difficulty. Indeed, we have to find a smooth decomposition
of a typically large element in the finite field. This work improves the initial
splitting phase and applies to any nonprime finite field. It is very efficient when
the extension degree is composite. It exploits the proper subfields, resulting in
a much more smooth decomposition of the target. This leads to a new trade-off
between the initial splitting step and the descent step in small characteristic.
Moreover it reduces the width and the height of the subsequent descent tree.

1. Introduction

This work is interested in improving the last step of discrete logarithm (DL)
computations in nonprime finite fields. The discrete logarithm instances that we
target come from Diffie-Hellman (DH) [21] key-exchange, or from pairing-based
cryptography. In the latter case, the security relies on the hardness of computing
discrete logarithms in two groups: the group of points of a particular elliptic curve
defined over a finite field, and a small extension of this finite field (in most of the
cases of degree 2, 3, 4, 6, or 12).

The finite fields fall in three groups: small, medium and large characteristic finite
fields, corresponding to the respective size of the characteristic p compared to the
total size Q = pn of the finite field. This is formalized with the L notation:

(1.1) LQ[α, c] = e(c+o(1))(logQ)α(log logQ)1−α

, where Q = pn, α ∈ [0, 1], c 6= 0.

Small, medium and large characteristic correspond to α < 1/3, 1/3 < α < 2/3,
and α > 2/3 respectively. The boundary cases are α = 1/3 and α = 2/3. In large
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2 AURORE GUILLEVIC

characteristic, that is p = LQ[α, c] where α > 2/3, the Number Field Sieve (NFS)

[27, 61, 37] provides the best expected running time: in LQ[1/3, (64/9)
1/3 ≈ 1.923]

and was used in the latest record computations in a 768-bit prime field [47]. Its
special variant in expected running time LQ[1/3, (32/9)

1/3 ≈ 1.526] was used to
break a 1024-bit trapdoored prime field [25]. In 2015 and 2016, the Tower-NFS
construction of Schirokauer was revisited for prime fields [14], then Kim, Barbulescu
and Jeong improved it for nonprime finite fields Fpn where the extension degree n
is composite [45, 46], and used the name Extended TNFS algorithm. To avoid a
confusion due to the profusion of names denoting variants of the same algorithm, in
this paper we will use TNFS as a generic term to denote the family of all the variants
of NFS that use a tower of number fields. Small characteristic means p = LQ[α, c]
where α < 1/3. The first L[1/3] algorithm was proposed by Coppersmith, and
generalized as the Function Field Sieve [8, 9].

The NFS and FFS algorithms are made of four phases: polynomial selection (two
polynomials are chosen), relation collection where relations between small elements
are obtained, linear algebra (computing the kernel of a huge sparse matrix over an
auxiliary large prime finite field), and individual discrete logarithm computation.
In this work, we improve this last step. All the improvements of NFS, FFS, and
related variants since the 90’s decrease the size of the factor basis, that is, the
database of known discrete logarithms of small elements obtained after the linear
algebra step, small meaning an element represented by a polynomial of small degree
(FFS), resp., an element whose pseudonorm is small (NFS). The effort required in
the individual discrete logarithm step increases: one needs to find a decomposition
of a given target into small elements, to be able to express its discrete logarithm
in terms of already known logarithms of elements in the factor basis, while the
factor basis has decreased at each major improvement. In characteristic 2 and 3
where the extension degree is composite, obtaining the discrete logarithms of the
factor basis elements can be done in polynomial time. The individual discrete
logarithm is the most costly part, in quasi-polynomial -time in the most favorable
cases [13, 29]. In practice, the record computations [26, 35, 5, 7, 42, 4] implement
hybrid algorithms made of Joux’s L[1/4] algorithm [36], and the individual discrete
logarithm is computed with a continued fraction descent, then a classical descent,
a QPA descent, and a Gröbner basis descent, or a powers-of-two descent algorithm
(a.k.a. zig-zag descent) [32, 31, 30].

The heart of this paper relies on the following two observations. Firstly, to
speed up the individual discrete logarithm phase, we start by speeding up the
initial splitting step, and for that we compute a representation of a preimage of
the given target of smaller degree, and/or whose coefficients are smaller. It will
improve its smoothness probability. Secondly, to compute this preimage of smaller
degree, we exploit the proper subfields of the finite field GF(pn), and intensively use
this key-ingredient: since we are computing discrete logarithms modulo (a prime
divisor of) Φn(p), we can freely multiply or divide the target by any element in a
proper subfield without affecting its discrete logarithm modulo Φn(p).

Organization of the paper. The background needed is presented as preliminaries
in Section 2. We present our generic strategy to lower the degree of the polynomial
representing a given element in GF(pn) in Section 3. We apply it to characteristic
two and three in Section 4. Preliminaries before the large characteristic case are
given in Section 5. We apply our technique to medium and large characteristic
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finite fields, that is the NFS case and its tower variant in Section 6, and provide
examples of cryptographic size in Section 7. Finally in Section 8 we present a more
advanced strategy, to exploit several subfields at a time, and we apply it to Fp6 .

2. Preliminaries

2.1. Setting. In this paper, we are interested in nonprime finite fields GF(pn), n >
1. To keep the same notation between small, medium, and large characteristic finite
fields, we assume that the field Fpn is defined by an extension of degree n2 above
an extension of degree n1, that is, F(pn1)n2 , and n = n1n2. The elements are of the

form T =
∑n2−1

i=0

∑n1−1
j=0 aijy

jxi, where the coefficients aij are in Fp, the coefficients

ai =
∑n1−1

j=0 aijy
j are in Fpn1 = Fp[y]/(h(y)), and F(pn1)n2 = Fpn1 [x]/(ψ(x)), where

h is a monic irreducible polynomial of Fp[y] of degree n1 and ψ is a monic irreducible
polynomial of Fpn1 [x] of degree n2. In other words, T is represented as a polynomial
of degree n2 − 1 in the variable x, and has coefficients ai ∈ Fpn1 . For the FFS and
NFS algorithms, n1 = 1 and n2 = n; for finite fields from pairing constructions,
n2 > 1 is a strict divisor of n, and for the original version of TNFS, n1 = n and
n2 = 1.

Definition 2.1 (Smoothness). Let B be a positive integer. A polynomial is said
to be B-smooth w.r.t. its degree if all its irreducible factors have a degree smaller
than B. An integer is said to be B-smooth if all its prime divisors are less than
B. An ideal in a number field is said to be B-smooth if it factors into prime ideals
whose norms are bounded by B.

Definition 2.2 (Preimage). The preimage of an element a =
∑n2−1

i=0

∑n1−1
j=0 aijy

jxi

∈ F(pn1)n2 will be, for the NFS and TNFS algorithms, the bivariate polynomial
∑n2−1

i=0

∑n1−1
j=0 a′ijy

jxi ∈ Z[x, y], where each coefficient a′ij is a lift in Z of the coef-

ficient aij in Fp. It is a preimage for the reduction modulo (p, h, ψ), that we denote
by ρ : Z[x, y] → F(pn1)n2 . In small characteristic, the preimage of a is a univariate
polynomial in Fpn1 [x]. It is a preimage for the reduction modulo ψ, that we also
denote by ρ : Fpn1 [x]→ F(pn1 )n2 .

Definition 2.3 (Pseudonorm). The integral pseudonorm w.r.t. a number field

Q[x]/(f(x)) (f monic) of a polynomial T =
∑deg f−1

i=0 aix
i of integer coefficients ai

is computed as Resx(T (x), f(x)).

Since there is no chance for a preimage of a target T0 to be B-smooth, the
individual discrete logarithm is done in two steps: an initial splitting of the target,1

and then a descent phase.2 The initial splitting is an iterative process that tries
many targets gtT0 ∈ F∗

pn , where t is a known exponent (taken uniformly at random),
until a B1-smooth decomposition of the preimage is found. Here smooth stands for
a factorization into irreducible polynomials of Fpn1 [x] of degree at most B1 in the
small characteristic setting, resp., a pseudonorm that factors as an integer into a
product of primes smaller than B1 in the NFS (and TNFS) settings.

1also called boot or smoothing step in large characteristic finite fields
2in order to make no confusion with the mathematical descent, which is not involved in this

process, we mention that in this step, the norm (with NFS) or the degree (with FFS) of the
preimage decreases.
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The second phase starts a recursive process for each element less than B1 but
greater than B0 obtained after the initial splitting phase. Each of these medium-
sized elements are processed until a complete decomposition over the factor basis
is obtained. Each element obtained from the initial splitting is at the root of its
descent tree. One finds a relation involving the original one and other ones whose
degree, resp., pseudonorm, is strictly smaller than the degree, resp., pseudonorm,
of the initial element at the root. These smaller elements form the new leaves
of the descent tree. For each leaf, the process is repeated until all the leaves are
elements in the factor basis. The discrete logarithm of an element output by the
initial splitting can be computed by a tree traversal. This strategy is considered in
[19, §6], [48, §7], [38, §3.5], [18, §4].

In small characteristic, the initial splitting step is known as the Waterloo3 algo-
rithm [15, 16]. It outputs T = U(x)/V (x) mod I(x), and U, V are two polynomials
of degree ⌊(n2 − 1)/2⌋. It uses an Extended GCD computation. For prime fields,
the continued fraction algorithm was already used with the Quadratic Sieve and
Coppersmith-Odlyzko-Schroeppel algorithm. It expresses an integer N modulo p
as a fraction N ≡ u/v mod p, and the numerator and denominator are of size about
the square root of p. The generalization of this technique was used in [39]. As for
the Waterloo algorithm, this technique provides a very good practical speed up but
does not improve the asymptotic complexity.

this subfield tool was highlighted in [34]; we will intensively use it.

Lemma 2.4 ([34, Lemma 1]). Let T ∈ F∗
pn , and let deg T < n. Let ℓ be a nontrivial

prime divisor of Φn(p). Let T ′ = u · T with u in a proper subfield of Fpn . Then

(2.1) logT ′ ≡ logT mod Φn(p) and in particular logT ′ ≡ logT mod ℓ .

3. The heart of our strategy: representing elements in the
cyclotomic subgroup of a nonprime finite field with less

coefficients

In the FFS setting, n1 = 1 and usually n2 is prime and our technique cannot
be helpful, but if n is not prime, our algorithm applies, and moreover in favorable
cases Joux’s L[1/4] algorithm and its variants can be used and our technique can
provide a further notable speed-up in the descent. For the implementations in small
characteristic, the factor basis is made of the irreducible polynomials of Fpn1 [x] of
very small degree, e.g., of degrees 1, 2, 3, and 4 in [3]. Our aim is to improve the
smoothness probability of a preimage P ∈ Fpn1 [x] of a given target T ∈ F(pn1)n2

and for that we want to reduce the degree in x of the preimage P (as a lift of T in
Fpn1 [x], P has degree at most n2 − 1 in x), while keeping the property

log(ρ(P )) = logT mod ℓ ,

where ρ : Fpn1 [x]→ F(pn1)n2 is the reduction modulo ψ.
Let d denote the largest proper divisor of n, 1 < d < n (d might sometimes be

equal to n2 in the QPA setting). We will compute P in Fpn1 [x] of degree at most
n2 − d/n1 in x (and coefficients in Fpn1 ) such that

(3.1) P = uT (mod ψ), where up
d−1 = 1 .

3the name comes from the authors’ affiliation: the University of Waterloo, ON, Canada.
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It means that we will cancel the d/n1−1 higher coefficients (in Fpn1 ) of a preimage
of T in Fpn1 [x].

There are two strategies: either handle coefficients in Fp or in Fpgcd(d,n1) . We

will consider the latter case. Let d′ = d/ gcd(d, n1) to simplify the notation, and

let [1, U, . . . , Ud′−1] be a polynomial basis of Fpd′ . Every product P = U iT satisfies

(3.1). Define the d′×n2 matrix L whose rows are made of the coefficients (in Fpn1 )
of U iT for 0 ≤ i ≤ d′ − 1:

Ld′×n2 =











T
UT
...

Ud′−1T











∈Md′,n(Fpn1 ) .

Then we compute a row-echelon form of this matrix by performing only Fpgcd(n1,d) -
linear operations over the rows, so that each row of the echeloned matrix is a
Fpgcd(n1,d)-linear combination of the initial rows, that can be expressed as

P =

d′−1
∑

i=0

λiU
iT = uT, where λi ∈ Fpgcd(n1,d) , U i ∈ Fpd/ gcd(n1,d)

so that P = uT with up
d−1 = 1. Assuming that the matrix is lower-triangular (the

other option being an upper-triangular matrix), we take the first row of the matrix
as the coefficients of a polynomial in Fpn1 [x] of degree at most4 n2 − d/n1. This is
formalized in Algorithm 1. We obtain the following Theorem 3.1.

Algorithm 1: Computing a representation by a polynomial of smaller degree

Input: Finite field Fpn represented as a tower F(pn1)n2 = Fpn1 [x]/(ψ(x)) (one
may have n1 = 1), a proper divisor d of n (d | n, 1 < d < n), T ∈ Fpn

Output: P ∈ Fpn1 [x] a polynomial of degree ≤ n2 − d/n1 satisfying
P mod ψ = uT , where u ∈ Fpd

1 d′ = d/ gcd(n1, d)

2 Compute a polynomial basis (1, U, U2, . . . , Ud′−1) of the subfield Fpd′

3 Define L =











T
UT
...

Ud′−1T











a d′ × n2 matrix of coefficients in Fpn1

4 M ← RowEchelonForm(L) with only Fpgcd(n1,d)-linear combinations

5 P (x)← polynomial from the coefficients of the first row of L

6 return P (x)

Theorem 3.1. Let Fpn be a finite field represented as a tower F(pn1)n2 . Let T ∈ F∗
pn

be an element which is not in a proper subfield of Fpn . Let d be the largest proper
divisor of n, 1 < d < n (n is not prime). Assume that T is represented by a
polynomial in Fpn1 [x] of degree larger than n2−d/n1. Then there exists a preimage

4n2−d/n1 is not necessarily an integer, meaning that the leading coefficient of the polynomial
is some element in Fpn1 . Its degree in x is actually n2 − ⌈d/n1⌉.
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P of T , in Fpn1 [x], of degree n2 − ⌈d/n1⌉ in x and coefficients in Fpn1 , and such
that

log(ρ(P )) = logT mod Φn(p) .

Proof. We use Algorithm 1 to compute P . The matrix has full rank since the U is
form a polynomial basis of Fpd′ . The linear combinations involve T and elements
in Fpd/ gcd(n1,d) and Fpgcd(n1,d) that are in the proper subfield Fpd by construction.
The first row after Gaussian elimination will have at least d/n1 − 1 coefficients
equal to zero at the right, and will represent a polynomial P of degree at most
n2 − d/n1, that satisfies P = uT (mod ψ) where u =

∑

λiU
i ∈ Fpd , since in the

process, T was multiplied only by elements whose images in F(pn1)n2 are in the
subfield Fpd . We have ρ(P ) = uT , u ∈ Fpd , and the equality of logarithms follows
by Lemma 2.4. �

We can now directly apply Algorithm 1 to improve the initial splitting algorithm
in practice.

4. Application to small characteristic finite fields,
and cryptographic-size examples

In all the examples of small characteristic finite fields from pairings, n is not
prime, for instance n = 6 · 509. The notation in [6] was n = lk, with the property
pl ≈ k. With our notation, n1 = l and n2 = k.

4.1. Algorithm. We directly use Algorithm 1 as a subroutine of Algorithm 2.
Then to improve it in practice, we list valuable modifications.

Remark 4.1. As was pointed out to us by F. Rodŕıguez-Henŕıquez [56, 3], the
elements of the form xiR(x) where R itself is of degree ≤ n2 − d/n1 are evenly
interesting because the discrete logarithm of xi can be deduced from the discrete
logarithm of x, which is known after linear algebra.

So we can increase the number of elements tested for B1-smoothness for each
exponent t by a factor d′ almost for free in the following way. We again run
a Gaussian elimination algorithm on the matrix M but in the reverse side, for
instance from row one to row d′ and left to right if it was done from row d′ to
row one and right to left the first time. The matrix is in row-echelon form on the
left-hand side and on the right-hand side (the upper right and lower left corners
are filled with zeros). We obtain a matrix N of the form

N =













∗ . . . ∗ ∗ 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 ∗ . . . ∗ ∗













.

The i-th row represents a polynomial P ′
i = xeiPi, where Pi is of degree at most n2−

d/n1, and ei ≈ (i− 1) gcd(n1, d)/n1. Since x is in the factor basis (by construction,
like all the degree one polynomials), its logarithm is known at this point (after the
relation collection and linear algebra steps), hence the logarithm of any power xei

is known. It remains to compute the discrete logarithm of Pi.
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Algorithm 2: Initial splitting in small characteristic with the subfield technique

Input: Finite field Fpn of small characteristic (e.g., p = 2, 3), with a tower
representation Fpn = F(pn1)n2 = Fpn1 [x]/(I(x)) (one may have n1 = 1),
generator g (of the order ℓ subgroup of the cyclotomic subgroup of Fpn),
target T0 ∈ F(pn1)n2 , smoothness bound B1

Output: t, P ∈ Fpn1 [x] a polynomial of degree ≤ n2 − d/n1 such that
vlogg ρ(P ) = t+ vlogg T0 mod ℓ, and P (x) is B1-smooth (w.r.t. its
degree in x)

1 d← the largest divisor of n, 1 < d < n

2 d′ ← d/ gcd(d, n1)

3 Compute U(x) ∈ F(pn1)n2 s.t. (1, U, U2, . . . , Ud′−1) is a polynomial basis of the

subfield Fpd′

4 repeat

5 take t ∈ {1, . . . , ℓ− 1} at random
6 T ← gtT0 in F(pn1)n2

7 Define L =











T
UT
...

Ud′−1T











a d′ × n2 matrix of coefficients in Fpn1

8 M ← RowEchelonForm(L) (with Fpgcd(d,n1) -linear Gaussian elimination)

9 P (x)← the polynomial of lowest degree made of the first row of L

10 until P (x) is B1-smooth

11 return t, P (x)

In practice there are some technicalities: in the second Gaussian elimination,
if the leading coefficient is zero, then two rows are swapped, and it cancels the
previous Gaussian elimination (computed at the other end of the matrix) for that
row. We end up with a matrix which is in row-echelon form on the right and
almost row-echelon form on the left (or vice-versa). Since each set of subsequent
n1/ gcd(n1, d) rows produces polynomials of the same degree, swapping two rows
from the same set will not change the degree in x of the polynomial. In average
(this is what we observed in our experiments for F36·509 and F35·479), some rare
polynomials will have a degree in x increased by one or two. This second Gaussian
elimination increases the number of tests by a factor d′ at a very cheap cost, since
in fact it allows one to share the cost of computing the U iT and the two Gaussian
eliminations over d′ tests.

Remark 4.2. If gcd(d, n1) > 1 we can increase the number of rows by a small factor.
We perform linear combinations of n1/ gcd(d, n1) subsequent rows (all giving a
polynomial of same degree):

∑

0≤j≤n1/ gcd(d,n1)
µjrj where µ ∈ Fpgcd(d,n1) , and it

will result in new rows and new polynomials of same degree.

Remark 4.3. Other improvements are possible [56, 3], for instance computing
Fpgcd(n1,d)-linear combinations over a small number of rows corresponding to poly-
nomials of almost the same degree. The resulting polynomial will have degree
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increased by one or two, which does not significantly affect its B1-smoothness prob-
ability in practice for cryptographic sizes. This technique allows one to produce
many more candidates, at a very cheap cost of linear operations in Fpn1 [x].

4.2. Complexity analysis.

4.2.1. Cost of computing one preimage P ∈ Fpn1 [x] in the initial splitting step. We
use the notation of Algorithm 2: let d be the largest proper divisor of n (d | n,
1 < d < n), and let d′ = d/ gcd(d, n1). Since d′ | d | n = n1n2 and gcd(d′, n1) =
1, then d′ | n2 and d′ ≤ n2. The computation of all the U iT of the matrix L
costs at most d′n2

2 multiplications in Fpn1 , since a schoolbook multiplication in
F(pn1)n2 costs n2

2 multiplications in Fpn1 . There are d′ such multiplications. The
complexity of a reduced row-echelon form computation of a (d′ × n2)-matrix, d′ ≤
n2, is less than O(d′2n2) multiplications in Fpn1 [23, §13.4.2]. To simplify, we
consider that the computation of the matrix L and of two Gaussian eliminations
is done in time at most O(d′n2

2). This cost is shared over d′ polynomials Pi to be
tested for B1-smoothness. In this way, the complexity of computing a preimage
P with our initial splitting algorithm is the same as in the Waterloo algorithm:
O(n2

2), and moreover the smoothness probabilities are much higher for the targeted
cryptographic cases coming from supersingular pairing-friendly curves. We also
replace two B1-smoothness tests by only one, and that might save some time in
practice (this saving disappears in the O notation). We present the theoretical costs
in Tables 1 and 2 from [24]. XGCD stands for extended Euclidean algorithm, SQF
stands for SQuare-free Factorization, DDF stands for Distinct Degree Factorization,
and EDF stands for Equal Degree Factorization. All the polynomials to be factored
are of degree smaller than n2; we take n2 as an upper bound to get the costs of
Table 2.

Table 1. Costs for the initial splitting step. The preimage ob-
tained with Algorithm 2 has degree dP ≤ n2 − d/n1. The
Waterloo algorithm [15, 16] produces two polynomials of degree
dP = ⌊n2/2⌋.

Factorization cost
Square-free (SQF) O(d2P )
Distinct degree (DDF) O(d3P log pn1)
Equal degree (EDF) O(d2P log pn1)

Table 2. Cost in multiplications in Fpn1 to compute one preimage
to be tested for smoothness, in the initial splitting step.

Computation XGCD(T, I) matrix [U iT ]0≤i≤d′−1 and row echelon form
Algorithm Waterloo this work, Alg. 2 this work + Rem. 4.1

Cost O(n2
2) O(d′n2

2) O(n2
2)
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4.2.2. running time of the initial splitting step. To start, we recall some results on
the smoothness probability of a polynomial of given degree.

Definition 4.4. Let Nq(b; d) denote the number of monic polynomials over Fq of
degree d which are b-smooth. Let Nq(b; d1, d2) denote the number of coprime pairs
of monic polynomials over Fq of degrees d1 and d2, respectively, which are b-smooth.

Let Prq(b; d) denote the probability of a monic polynomial over Fq of degree
d to be b-smooth. Let Prq(b; d1, d2) denote the probability of two coprime monic
polynomials over Fq of degrees d1 and d2 to be both b-smooth.

Odlyzko gave the following estimation for Prq(b; d) in [54, (4.5), p. 14].

(4.1) Prq(b, d)
−1 = exp

(

(1 + o(1))
d

b
loge

d

b

)

for d1/100 ≤ b ≤ d99/100 .

Writing the smoothness bound degree b = logLQ[αb, cb]/ log p
n1 to match

Odlyzko’s convention b = cbn
αb
2 (logn2)

1−αb , and the degree of the polynomial to be
tested for smoothness d = an2, where a ∈]0, 1[ and n2 = logQ/ log pn1 , one obtains

Prpn1 (b, d) = LQ [1− αb,−(1− αb)a/γ] , where Q = pn1n2 .

Theorem 4.5 ([22, Theorem 1]). Let δ > 0 be given. Then we have, uniformly for

b, d1, d2 →∞ with dδ1 ≤ b ≤ d1−δ
1 and dδ2 ≤ b ≤ d1−δ

2 ,

Nq(b; d1, d2) ∼
(

1− 1

q

)

Nq(b; d1)Nq(b; d2) .

Corollary 4.6 ([22, Theorem 1]). Let δ > 0 be given. Then we have, uniformly

for b, d1, d2 →∞ with dδ1 ≤ b ≤ d1−δ
1 and dδ2 ≤ b ≤ d1−δ

2 ,

Prq(b; d1, d2) ∼
(

1− 1

q

)

Prq(b; d1) Prq(b; d2) .

We can now compare the Waterloo algorithm with this work. Assuming that
B1 = logpn1 Lpn [2/3, γ] for a certain γ, then the probability of a polynomial of
degree an2, 0 < a < n2, to be B1-smooth is Lpn [1/3,−a/(3γ)]. In the Water-
loo algorithm, two polynomials of degree n2/2 should be B1-smooth at the same
time, and the expected running time to find such a pair is Lpn [1/3, 1/(3γ)] (the
square of Lpn [1/3, 1(6γ)]). In our algorithm, a polynomial of degree ⌊n2− d/n1⌋ =
⌊n2(1− d/n)⌋ is tested for B1-smoothness, so finding a good one requires

(4.2) Lpn [1/3, a/(3γ)] tests, where a ≈ 1− d/n ,
which is always faster than the Waterloo algorithm, for which a = 1. When n is
even (this is always the case for finite fields of supersingular pairing-friendly curves),
one can choose d = n/2, hence a = 1/2 and our algorithm has running time the
square root of the running time of the Waterloo algorithm.

4.3. Improving the record computation in GF(36·509). Adj, Menezes, Oliveira,
and Rodŕıguez-Henŕıquez estimated in [6] the cost to compute discrete logarithms
in the 4841-bit finite field GF(36·509) and announced their record computation in
July 2016 [4]. The details of the computations are available in Adj’s PhD thesis [2]
and the details for initial splitting and descent can be found in [17]. The elements
are represented by polynomials of degree at most 508 whose coefficients are in F36 .
In this case n1 = 6 and n2 = 509. The initial splitting made with the Waterloo
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algorithm outputs two polynomials of degree 254. The probability that two inde-
pendent and relatively prime polynomials of degree 254 over F36 are simultaneously
b-smooth is (1−1/36) Pr236(254, b) [22]. The term (1−1/36) is negligible in practice
for the values that we are considering.

4.3.1. Improvements. Our Algorithm 2 outputs one polynomial of degree 254, whose
probability to be b-smooth is Pr36(n, b), i.e., the square root of the previous one.
So we can take a much smaller b while reaching the same probability as before
with the Waterloo algorithm. We list in Table 3a, p. 11, the values of b to obtain
a probability between 2−40 and 2−20. For instance, if we allow 230 trials, then
we can set b = 28 with our algorithm, instead of b = 43 previously: we have
Pr236(254, 43) = 2−30.1, and we only need to take b = 28 to get the same probability
with this work: Pr36(254, 28) = 2−29.6. This will provide a good practical speed-up
of the descent phase: much fewer elements need to be “reduced”: this reduces the
initial width of the tree, and they are of much smaller degree: this reduces the
depth of the descent tree.

4.3.2. A 30-smooth initial splitting. The finite field is represented with n1 = 6 and
n2 = 509, that is, as a first extension F36 = Fpn1 = F3[y]/(y

6 + 2y4 + y2 + 2y +
2), then a second extension F36·509 = F36 [x]/(I(x)), where I(x) is the degree 509
irreducible factor of h1x

q1 − h0, where q1 = pn1 , h1 = x2 + y424x, and h0 =
y316x + y135. The generator is g = x + y2. As a proof of concept, we computed

a 30-smooth initial splitting of the target T0 =
∑508

i=0(y
⌊π(36)i+1⌋ mod 36)xi, with

the parameters d = 3 × 509, d′ = d/ gcd(d, n1) = 509. Each trial gtT0 produces
d′ = 509 polynomials to test for smoothness. We found that g47233T0 = uvx230P ,
where u = 1 ∈ F36 , v ∈ F33·509 , and P is of degree 255 and 30-smooth. The equality

(g47233T0)
pn−1

ℓ = (uvx230P )
pn−1

ℓ is satisfied. The explicit value of P is available at
https://members.loria.fr/AGuillevic/files/F3_6_509_30smooth.mag.txt.

The whole computation took less than 6 days (real time) on 48 cores Intel Xeon
E5-2609 at 2.40GHz (274 core days, i.e., 0.75 core-years). This is obviously an
overshot compared to the estimate of 226.6, but this was done with a nonoptimized
Magma implementation.

As a comparison, with the classical Waterloo algorithm, Adj et al. computed a
40-smooth initial splitting in 51.71 CPU (at 2.87GHz) years [2, Table 5.2, p. 87]
and [4]. They obtained irreducible polynomials of degree 40, 40, 39, 38, 37, and
seven polynomials of degree between 22 and 35. They needed another 9.99 CPU
years (at 2.66 GHz) to compute a classical descent from 40-smooth to 21-smooth
polynomials. A complete comparison can be found in [3] and [1]. In [3], Adj et
al. estimated that with our Algorithm 2 enriched as in Remarks 4.1 and 4.3, it is
possible to compute discrete logarithms in F36·709 at the same cost as in F36·509 with
the former Waterloo algorithm.

4.4. Computing discrete logarithms in F2512 and F21024 . In [28, §3.6] discrete
logarithms in F2512 and F21024 need to be computed modulo the full multiplicative
group order 2n − 1. As pointed to us by R. Granger, our technique can be used to
compute discrete logarithms in F21024 . Our algorithm provides a decomposition of
the target as the product uR where u is an element in the largest proper subfield
F2512 , and P is an element of F21024 of degree 512 instead of 1023. The discrete

https://members.loria.fr/AGuillevic/files/F3_6_509_30smooth.mag.txt
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Table 3. Smoothness probabilities of polynomials over finite
fields, comparison of the Waterloo algorithm and Algorithm 2. The
values were computed with Odlyzko’s induction formula [54] and
Drmota and Panario’s Theorem 4.5, as in [17].

(a) Probabilities for GF(36·509)

Waterloo alg. Algorithm 2

b Pr236(254, b) b Pr36(254, b)
36 2−40.1 22 2−42.3

37 2−38.4 23 2−39.6

38 2−36.8 24 2−37.2

39 2−35.3 25 2−35.1

40 2−33.9

41 2−32.5 26 2−33.1

42 2−31.3 27 2−31.3

43 2−30.1 28 2−29.6

44 2−28.9

45 2−27.9 29 2−28.1

46 2−26.9

47 2−25.9 30 2−26.6

48 2−25.0 31 2−25.3

49 2−24.1 32 2−24.1

50 2−23.3 33 2−23.0

51 2−22.5

52 2−21.8 34 2−21.9

53 2−21.1 35 2−21.0

54 2−20.4 36 2−20.1

55 2−19.7

56 2−19.1 37 2−19.2

57 2−18.5

58 2−18.0 38 2−18.4

59 2−17.4 39 2−17.6

60 2−16.9 40 2−16.9

61 2−16.4 41 2−16.3

62 2−15.9 42 2−15.6

(b) For GF(35·479)

Waterloo alg. Algorithm 2

b Pr235(239, b) Pr35(383, b)
24 2−67.96 2−67.59

25 2−63.95 2−63.86

26 2−60.30 2−60.45

27 2−56.95 2−57.32

28 2−53.89 2−54.44

29 2−51.07 2−51.79

30 2−48.46 2−49.34

31 2−46.06 2−47.06

32 2−43.83 2−44.95

33 2−41.76 2−42.99

34 2−39.83 2−41.16

35 2−38.03 2−39.44

36 2−36.35 2−37.84

37 2−34.77 2−36.34

38 2−33.30 2−34.92

39 2−31.91 2−33.60

40 2−30.61 2−32.34

41 2−29.39 2−31.16

42 2−28.23 2−30.05

43 2−27.14 2−28.99

44 2−26.11 2−27.99

45 2−25.13 2−27.04

46 2−24.21 2−26.14

47 2−23.33 2−25.29

48 2−22.50 2−24.47

49 2−21.71 2−23.70

50 2−20.96 2−22.96

logarithm of the subfield cofactor u can be obtained by a discrete logarithm com-
putation in F2512 . More generally, our technique is useful when discrete logarithms
in nested finite fields such as F22i are computed recursively.

4.5. Improving the record computation in GF(35·479). Joux and Pierrot an-
nounced a discrete logarithm record computation in GF(35·479) in [42] (then pub-
lished in [40]). They defined a first degree 5 extension F35 = F3[y]/(y

5 − y + 1)
and then a degree 479 extension on top of F35 . With our notation, we have
p = 3, n1 = 5, and n2 = 479. The irreducible degree 479 polynomial I(x) is
a divisor of xh1(x

q1) − h0(x
q1 ), where q1 = pn1 = 35, h0 = x2 + y111x and

h1 = yx + 1. Given a target T ∈ F35·479 , the Waterloo initial splitting outputs
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two polynomials u(x), v(x) ∈ F35 [x] of degree ⌊478/2⌋ = 239. Our Algorithm 1
outputs one polynomial of degree ⌊ 45479⌋ = 383. This example is interesting be-
cause the smoothness probabilities are very close. We computed the exact val-
ues with Drmota–Panario’s formulas, and give them in Table 3b, p. 11. We ob-
tain Pr235(239, 50) = 2−20.96 (Waterloo) and Pr35(383, 50) = 2−22.96, i.e., our Al-
gorithm 2 would be four times slower compared to Joux’s and Pierrot’s record;
Pr235(239, 40) = 2−30.61 and Pr35(383, 40) = 2−32.34; Pr235(239, 30) = 2−48.46 and
Pr35(383, 30) = 2−49.34 ; and the cross-over point is for b = 24: in this case, we
have Pr235(239, 24) = 2−67.96 and Pr35(383, 24) = 2−67.59, which is slightly larger.

The probabilities would advise using the classical initial splitting with the Wa-
terloo (extended GCD) algorithm. We remark that this algorithm would output
two B1-smooth polynomials of degree (n2 − 1)/2. Each would factor into at least
(n2 − 1)/(2B1) irreducible polynomials of degree at most B1. Each such factor is
sent as an input to the second step (descent step), that is, roughly n2B1 factors.
If we use Algorithm 2, the initial splitting will outputs one polynomial of degree
4/5n2 = 383 that factors into at least 4/5n2/B1 polynomials of degree at most B1,
each of them sent as input to the second step, that is, the descent step is called 20%
time less, and that would reduce the total width of the descent tree in the same
proportion. Since the descent is the most costly part, and in particular, the memory
size required is huge, this remark would need to be taken into consideration for a
practical implementation.

As a proof of concept of our algorithm, we implemented in Magma our algorithm,
took the same parameters, generator, and target as in [42], and found a 50-smooth
decomposition for the target given by the 471-th row of the matrix computed for
g23940T0 in 1239 core-hours (22.12 hours over 56 cores) on an Intel Xeon E5-2609
at 2.40GHz (compared to 5000 core-hours announced in [42]).

The value can be found at https://members.loria.fr/AGuillevic/files/F3_5_479_50smooth.mag.txt.
In our technique, we compute gtT0 = uvR where u ∈ F35 (this is the leading term
of the polynomial), v ∈ F3479 , and R is 50-smooth. The discrete logarithm of u can
be tabulated, however it remains quite hard to compute the discrete logarithm of v.
Our technique is useful if it is easy (or not required) to compute discrete logarithms
in the subfields.

5. Preliminaries before medium and large characteristic cases

In the first part of this paper, we were considering polynomials, and we wanted
polynomials of smallest possible degree. Now we turn to the medium and large
characteristic cases, where we do not have polynomials but ideals in number fields,
and we want ideals of small norm. It requires testing whether large integers (norms)
are smooth as fast as possible. We recall the results of Pomerance and Barbulescu
on the early abort strategy.

5.1. Pomerance’s Early Abort Strategy. Pomerance in [55] introduced the
Early Abort Strategy (EAS) to speed up the factorization of large integers, within
Dixon’s algorithm, the Morrison–Brillhart (continued fraction) algorithm, and the
Schroeppel (linear sieve) and quadratic sieve, with several variations in the fac-
torization sub-routine (trial-division, Pollard–Strassen method). The Early Abort
Strategy provides an asymptotic improvement in the expected running time. Two
versions are studied in [55]: one early-abort test, then many tests. In the relation
collection step of the NFS algorithm, the partial factorization of the pseudonorms

https://members.loria.fr/AGuillevic/files/F3_5_479_50smooth.mag.txt
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is done with ECM in time LQ[1/6] (Q = pn), which is negligible compared to the
total cost in LQ[1/3]. So Pomerance’s EAS does not provide an asymptotic speed-
up, but a practical one. However, in the individual discrete logarithm computation,
the initial splitting requires to find smooth integers (pseudonorms) of larger size:
LQ[1]. This time the ECM cost is not negligible, and Pomerance’s EAS matters.
The speed-up was analyzed by Barbulescu in [10].

Remark 5.1. Instead of the ECM test, it could be possible to use the hyperelliptic
curve method test of H. Lenstra, Pila and Pomerance [51, 52]. This was investigated
for instance by Cosset [20, Chapter 4].

Pomerance’s analysis is presented in the general framework of testing integers for
smoothness. This is named smoothing problem in [10, Chapter 4]. In the individual
discrete logarithm context, the numbers we want to test for smoothness are not
integers in an interval, but pseudonorms, and their chances of being smooth do
not exactly match the chances of random integers of the same size. However, we
will make the usual heuristic assumption that for our asymptotic computations, the
pseudonorms considered behave as integers of the same size. We give Pomerance’s
Early Abort Strategy with one test in Algorithm 3 and with k tests in Algorithm 4.

Algorithm 3: Pomerance’s Early Abort Strategy (EAS)

Input: Integer m, smoothness bound B1, real numbers θ, b ∈]0, 1[
Output: B1-smooth decomposition of m, or ⊥

1 (m0,m1)← ECM (m,Bθ
1) // cost: LBθ

1
[1/2,

√
2]

// m0 is a Bθ
1-smooth part of m

// m1 is the non-factorized part of m

2 if m1 ≤ m1−b then

3 (m2,m3)← ECM(m1, B1) // cost: LB1 [1/2,
√
2]

4 if m3 = 1 then

5 return B1-smooth decomposition m1,m2 of m

6 return ⊥

Writing the complexities as in Pomerance’s paper, in terms of k early-abort tests,
one obtains Theorems 5.2 and 5.3.

Theorem 5.2 ([10, § 4.3]). The expected running time of the smoothing problem
of an integer N with Pomerance’s EAS and the ECM smoothness test is LN [1/3, c]
where c = (23/3)2/3/3, the smoothness bound is B = LN [2/3, γ], where γ = 1/c,
θ = 4/9, and b = 8/23.

Theorem 5.3 ([10, § 4.5 Th. 4.5.1]). The expected running time of the smoothing
problem of an integer N with k tests of Pomerance’s EAS and the ECM smoothness
test is LN [1/3, c] where

c = 31/3((15 + 4(2/3)3k)/19)2/3 ,

the smoothness bound is B = LN [2/3, γ], where

γ = 1/c ,
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Algorithm 4: Pomerance’s Early Abort Strategy with k tests (k-EAS)

Input: Integer m, smoothness bound B1, number of tests k ≥ 0,
array of positive real numbers b = [b0, b1, . . . , bk] where 0 < bi ≤ 1, and
∑k

i=0 bi = 1
array of positive real numbers θ = [θ0, . . . , θk = 1] where θi < θi+1

Output: B1-smooth decomposition of m, or ⊥
1 mi ← m

2 i← 0

3 S ← ∅
4 repeat

5 (si,mi+1)← ECM (mi, B
θi
1 ) // cost: L

B
θi
1

[1/2,
√
2]

// si is a Bθi
1 -smooth part of mi, mi+1 is not factorized

6 S ← S ∪ si
7 mi ← mi+1

8 i← i+ 1

9 until (i > k) OR (mi = 1) OR (mi > m1−
∑i−1

j=0 bj )

10 if mi == 1 then

11 return B1-smooth decomposition S of m

12 return ⊥

the bound bi for 0 ≤ i ≤ k − 1 on the remaining part mi in Algorithm 4 is

bi = (2/3)3(k−i)19/(15 + 4(2/3)3k) ,

and the exponent θi for 0 ≤ i ≤ k is

θi = (4/9)k−i .

In Section 6.3, we will consider that pseudonorms behave in terms of smoothness
like integers bounded by Ne (instead of N). We will need the following lemmas.

Lemma 5.4 ([18, §4.1], [34, Lemma 1] Running time of B-smooth decomposition
of integers with ECM). Let Ni be integers taken uniformly at random and bounded
by Ne, for a fixed real number e > 0. Write B = LN [αB , γ] the smoothness bound.
Then the expected running time to obtain a B-smooth Ni, using ECM for B-smooth
tests, is LN [1/3, (3e)1/3], obtained with B = LN [2/3, e/c = (e2/3)1/3].

Lemma 5.5 ([55, 10] Running time of B-smooth decomposition of integers with
ECM and k-EAS). Let Ni be integers taken uniformly at random and bounded by
Ne, for a fixed real number e > 0. Write B = LN [αB, γ] for the smoothness
bound. Then the expected running time to obtain a B-smooth Ni, using ECM for
B-smooth tests and Pomerance’s Early Abort Strategy with one test, is LN [1/3, c =
(3e)1/3(23/27)2/3], obtained with B = LN [2/3, e/c]. The expected running time with
k-EAS is LN [1/3, c = (3e)1/3((15 + 4(2/3)3k)/19)2/3] , with B = LN [2/3, e/c].

We will mix Pomerance’ strategy with our new initial splitting step to improve
its running time.

5.2. LLL algorithm. We recall an important property of the LLL algorithm [49]
that we will widely use in this paper. Given a lattice L of Zn defined by a basis
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given by an n × n matrix L, and parameters 1
4 < δ < 1, 1

2 < η <
√
δ, the LLL

algorithm outputs a (η, δ)-reduced basis of the lattice. the coefficients of the first
(shortest) vector are bounded by

(δ − η2)n−1
4 det(L)1/n .

In the remainder of this paper, we will simply denote by C this LLL approximation
factor.

5.3. NFS and Tower variants.

5.3.1. Settings. There exist many polynomial selection methods to initialize the
NFS algorithm for large and medium characteristic finite fields. We give in Table 4
the properties of the polynomials that we need (degree and coefficient size) to
deduce an upper bound of the pseudonorm, as in (5.3), and (5.4).

Q

Kf0 Kf1

deg f0 ≥ n deg f1 ≥ n

(a) NFS number fields

Q

Kh

deg h = n1

Kf0 Kf1

deg f0 ≥ n2 deg f1 ≥ n2

(b) Tower-NFS number fields

Figure 1. Extensions of number fields for NFS and tower variants

Z[x]

Z[x]/(f0(x)) Z[x]/(f1(x))

Fpn = Fp[x]/(ϕ(x))
ρ0 ρ1

(a) NFS diagram for Fpn

Rh = Z[y]/(h(y))

Rh[x]

Rh[x]/(f0(x)) Rh[x]/(f1(x))

F(pn1)n2 = (Rh/pRh)[x]/(ψ(x))
ρ0 ρ1

(b) Tower-NFS diagram

Figure 2. NFS and tower variant diagrams for Fpn

Three polynomials define the NFS setting: ψ, f0, f1, where f0, f1 are two poly-
nomials of integer coefficients, irreducible over Q, of degree ≥ n, defining two non-
isomorphic number fields, and whose GCD modulo p is an irreducible polynomial
ψ of degree n, used to define the extension Fpn = Fp[x]/(ψ(x)).

In a tower-NFS setting, one has n = n1n2, n1, n2 6= 1 and four polynomials are
defined: h, ψ, f0, f1, where deg h = n1 and h is irreducible modulo p, degψ = n2

and ψ is irreducible modulo p, and gcd(f0 mod (p, h), f1 mod (p, h)) = ψ. It can be
seen as a generalization of the NFS setting as follows: writing n = n1n2, one starts
by defining a field extension Fpn1 = Fp[y]/(h(y)) and then adapting any previously
available polynomial selection designed for NFS in GF(pn2), using Fpn1 as the base
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field instead of Fp. When gcd(n1, n2) > 1, the polynomials f0, f1, resp., ψ, will have
coefficients in Q[y]/(h(y)), resp., Fpn1 , instead of Q, resp., Fp. Then one defines
the second extension Fpn

1
[x]/(ψ(x)) of degree n2 = degx ψ.

Again, to cover all the cases, we consider Fpn = F(pn1 )n2 . The NFS case will
correspond to n1 = 1, n2 = n and the original TNFS case to n1 = n, n2 = 1.

5.3.2. Pseudonorm and upper bound. Let f be a monic irreducible polynomial over
Q, and let K = Q[x]/(f(x)) be a number field. Write T ∈ K as a polynomial in x:

T =
∑deg f−1

i=0 aix
i. The norm is defined by a resultant computation:

(5.1) NormK/Q(T ) = Res(f, T ) .

In the NFS case, we will consider elements expressed as polynomials in x whose
coefficients are integers. We define the pseudonorm as the resultant of the element
with the given polynomial f :

T =

deg f−1
∑

i=0

aix
i, pseudonorm(T (x)) = Res(T (x), f(x)) .

We use Kalkbrener’s bound [43, Corollary 2] for an upper bound:

(5.2) |Res(f, T )| ≤ κ(deg f, deg T )‖f‖degT
∞ ‖T ‖deg f

∞ ,

where κ(n,m) =
(

n+m
n

)(

n+m−1
n

)

and ‖f‖∞ = max0≤j≤deg f |fj| is the absolute value
of the largest coefficient. An upper bound for κ(n,m) is (n+m)!. We will use the
following bound in Section 6:

(5.3) NormKf/Q(T ) ≤ (deg f + deg T )!‖f‖degT
∞ ‖T ‖deg f

∞ .

In a Tower-NFS case, we nest two resultants:

T =

deg f−1
∑

i=0

deg h−1
∑

j=0

aijy
jxi, pseudonorm(T (x, y)) = Resy(Resx(T (x), f(x)), h(y)) .

A bound is [45, §A Lemma 2]

(5.4)
|NKf/Q

∑degxP
i=0

∑deg h−1
j=0 aijα

j
hα

i
f |

< ‖aij‖degh deg f
∞ ‖f‖degxP deg h

∞ ‖h‖(degxP+deg f)(deg h−1)
∞ D(deg h, deg f) ,

where ‖aij‖∞ = maxi,j |aij | and D(d1, d2) is a combinatorial term, D(d1, d2) =

((2d2 − 1)(d1 − 1) + 1)d1/2(d1 + 1)(2d2−1)(d1−1)/2((2d2 − 1)!d2d2
1 )d1 .

6. Faster Initial Splitting with NFS and Tower variants for medium
and large characteristic finite fields

We apply Algorithm 1 to the medium and large characteristic cases. For a general
exposition, we assume that we are in a tower setting, where Q = pn = (pn1)n2 . The

elements of Fpn are represented as T =
∑n1−1

i=0

∑n2−1
j=0 ai,jy

jxi. the NFS setting
corresponds to n1 = 1, n2 = n. When n is prime, the tower setting is n1 = n,
n2 = 1 but our algorithm does not apply. Denote by h(y) the polynomial defining
the field Fpn1 and by ψ the polynomial defining the degree n2 extension F(pn1)n2 .
Here we are not interested (only) in computing a preimage of degree as small as
possible, but more generally one whose size of pseudonorm is as small as possible.
According to the bounds (5.3), (5.4), we need to combine small coefficients ai,j (to

reduce the contribution of ‖aij‖degh deg f
∞ ) with a small degree in x (to reduce the
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contribution of ‖f‖degx P deg h
∞ ), and balance the two terms to find a pseudonorm of

smaller size.

6.1. The algorithm. We start again with the same idea as in Algorithm 1: let d
be the largest proper divisor of n, with 1 < d < n.5 Assume we want to obtain a
preimage P ∈ Fpn1 [x] of the target, of degree (n− d)/n1 ≤ degP < deg f . We will
use relations of the form

P = uT (mod ψ), where up
d−1 = 1 as in (3.1).

We use the relations

xiyjp = 0 (mod p, h, ψ) for 0 ≤ ij < d ,

P = U iT (mod p, h, ψ) ,

where {1, U, . . . , Ud−1} is a polynomial basis of Fpd and where

xiyjψ = 0 (mod p, h, ψ) for 0 ≤ j < n1, 0 ≤ i < deg(P )− n2.

We define the lattice of these relations and we obtain a matrix

Ln1(degP+1)×n1(degP+1) =







































p
. . .

p
coeff(T )

coeff(UT )
...

coeff(Ud−1T )
coeff(ψ)

. . .

coeff(xi(yjψ mod h(y)))







































Wewant to obtain a matrix in row-echelon form. The d first rows and the n1(degP−
n2) last rows are in row-echelon form by construction. We compute Gaussian
elimination to obtain a reduced row-echelon form for the rows U iT . We use Fp-
linear combinations of these rows, and we allow divisions in Fp so that the leading
coefficient is one. We then obtain a square matrix of dimension n1(degP+1) in row-
echelon form. Now at this point we apply a lattice reduction algorithm such as LLL
or BKZ to reduce the size of the coefficients of L. We obtain a matrix R whose first
row has coefficients bounded by CLLL det(L)

1/(n1(degP+1)) = p(n−d)/(n1(degP+1)).

6.2. Properties and pseudonorm size bound.

Proposition 6.1. The preimage P output by Algorithm 5 satisfies logg ρ(P ) ≡
logg g

tT0 = logg T0 + t mod Φn(p), where ρ : Z[x, y] → F(pn1)n2 was defined in
Figure 2.

5d = deg(h) = n1 is the case studied independently in the preprint [64]. Since an earlier

version of this work was presented at Asiacrypt 2015 and ECC 2015, and the question of how
to use larger subfields raised in discussions at these conferences, it is not surprising that other
researchers though of similar ideas to improve individual discrete logarithms in the same time
period.
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Algorithm 5: Initial splitting, Tower-NFS setting

Input: Finite field Fpn , n = n1n2, monic irreducible polynomials h, ψ s.t.
Fpn1 = Fp[y]/(h(y)), F(pn1)n2 = Fpn1 [x]/(ψ(x)), prime order subgroup
ℓ | Φn(p), generator g (of the order ℓ subgroup), target T0 ∈ Fpn , degree of
the preimage degP , polynomial fi, smoothness bound B1

Output: t ∈ {1, . . . , ℓ− 1}, P ∈ Z[x] s.t. logg ρ(P ) ≡ t+ logg T0, and the
pseudonorm Resy(Resx(P, fi), h) is B1-smooth

1 d← the largest divisor of n, 1 ≤ d < n

2 Compute a polynomial basis (1, U, U2, . . . , Ud−1) of the subfield Fpd , where U

satisfies Upd−1 = 1 ∈ Fpn

3 repeat

4 take t ∈ {1, . . . , ℓ− 1} uniformly at random

5 T ← gtT0 ∈ Fpn

6 L←







































p
. . .

p
coeff(T )

coeff(UT )
...

coeff(Ud−1T )
coeff(ψ)

. . .

coeff(xi(yjψ mod h(y)))







































7 Compute a Fp- reduced row echelon form of the rows n− d+ 1 to n of L

8 N ← LatticeReduction(L)

9 P ← polynomial in Z[y, x] made of the shortest vector output by the

LatticeReduction algorithm

10 until Resy(Resx(P, fi), h) is B1-smooth // ECM, ECM+EAS, or ECM+k-EAS

11 return t, P , factorization of Resy(Resx(P, fi), h)

Proof of Proposition 6.1. Each row of the row-echelon matrix M represents a Fp-

linear combination of the d elements U iT , 0 ≤ i ≤ d−1, i.e., an element
∑d−1

i=0 λiU
iT ,

where λi ∈ Fp. We can factor T in the expression. Each element uj =
∑d−1

i=0 λiU
i

satisfies up
d−1

j = 1, i.e., is in Fpd by construction. So each row represents an el-

ement Tj = ujT , where u
pd−1
j = 1 (uj ∈ Fpd), so that logTj ≡ logT mod Φn(p) by

Lemma 2.4.
The second part of the proof uses the same argument: the short vector output

by the LLL algorithm is a linear combination of the rows of the matrix N . Each
row represents either 0 or a Fpd -multiple Tj of T , hence the short vector is also a
Fpd -multiple of T . We conclude thanks to Lemma 2.4, that log ρ(P ) ≡ logT mod
Φn(p). �
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Proposition 6.2. The pseudonorm of P in Algorithm 5 has size

(6.1) |Resy(Resx(P, fi), h)| = O
(

Q
(1− d

n )
deg fi

degx P+1 ‖fi‖n1 degx P
∞

)

assuming that ‖h‖∞ = O(1).

Proof of Proposition 6.2. The matrix N computed in Algorithm 5 is a square ma-
trix of (degx P + 1)n1 rows and columns, whose coefficients are in Fp. Its determi-

nant is detN = pn−d = Q1−d/n. Using the LLL algorithm for the lattice reduction,
the coefficients of the shortest vector P are bounded by CQ(1−d/n)/((degx P+1)n1),
where C is the LLL factor. We obtain the bound (6.1) according to the bound
formula (5.4), and neglecting the combinatorial factor D(n1, deg fi). Moreover in
the Tower-NFS setting, the polynomial selection is designed such that ‖h‖∞ =
O(1). �

We finally obtain the following.

Theorem 6.3. Let GF(pn) be a finite field, and let d be the largest divisor of n,
d < n, and d = 1 if n is prime. Let n = n1n2 and h, ψ, fi be given by a polynomial
selection method. Let T ∈ F(pn1)n2 be an element which is not in a proper subfield
of Fpn . Then there exists a preimage P ∈ Z[x, y] of T , of any degree (in x) between

⌊n2−d/n1⌋ and deg fi−1, of coefficients bounded by O(Q
(1− d

n ) 1
(deg P+1)n1 ), and such

that when P is mapped in F(pn1)n2 as ρ(P ), its discrete logarithm is equal to the
discrete logarithm of T modulo Φn(p) (and in particular modulo any prime divisor
ℓ of Φn(p)), that is,

log ρ(P ) ≡ logT mod Φn(p) .

The degree of P in x and the polynomial fi can be chosen to minimize the resultant
(pseudonorm):

min
i

min
⌊n2−d/n1⌋≤degx P≤deg fi−1

‖fi‖n1 degx P
∞ Q(1− d

n )
deg fi

degx P+1 .

We recall in Table 4 the degree and coefficient sizes of the polynomial selections
published as of July 2017.

Corollary 6.4. With the notation of Table 4 and the NFS setting corresponding
to n2 = n and n1 = 1,

(1) For the polynomial selection methods where there is a side i such that
‖fi‖∞ = O(1) (GJL, Conjugation, Joux–Pierrot and Sarkar–Singh up to
now), we do the initial splitting on this side and choose degx P = degx fi−1
to obtain the smallest norm: |Resy(Resx(P, fi), h)| = O

(

Q1− d
n

)

. We ob-

tain the same bound for NFS and its tower variants.
(2) When ‖fi‖∞ = Q1/(2n) as for the JLSV1 method, the bound is

Q
(1− d

n )
n2

degx P+1+
degx P
2n2 . When degx P = degx fi − 1 = n2 − 1, one obtains

Q
3
2−

d
n− 1

2n2 . In the NFS setting, n2 = n, while in the tower setting, n2 < n
and the pseudonorm is slightly smaller.

(3) When ‖fi‖∞ = Q1/(n1(D+1)) as for the JLSV2 method, the lower bound is

Q
degx P
D+1 +(1− d

n )
n2

degx P+1 on the f0-side where deg f0 = n2, and it is

Q
degx P
D+1 +(1− d

n ) D
degx P+1 on the f1-side, where deg f1 = D ≥ n2. Accord-

ing to the value of n, one can decide which value of degx P will produce a
smaller norm.
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Table 4. Properties: degree and coefficient size of the main poly-
nomial selection methods for NFS-DL in FQ, where Q = pn.

We give a bound on the coefficient size of the polynomials with the notation
‖fi‖∞ = O(x). To lighten the notation, we only write x, without O(). In the
Joux–Pierrot method, the prime p can be written p = px(x0), where px is a

polynomial of tiny coefficients and degree at least 2. This table takes into account
the methods published until July 2017.

method deg h deg f0 deg f1 ‖f0‖∞ ‖f1‖∞
NFS

JLSV1 [39] n n Q1/2n Q1/2n

JLSV2 [39] n D > n Q1/(D+1) Q1/(D+1)

GJL [53, 10, 12] D + 1 D ≥ n log p Q1/(D+1)

Conjugation [12] 2n n log p Q1/2n

Joux-Pierrot [41]
p = px(x0)

n(deg px) n log p Q1/(ndeg px)

Sarkar-Singh [59]
n = n1n2, D ≥ n2

(D + 1)n1 Dn1 log p Q1/(n1(D+1))

Tower-NFS

TNFS + base-m [14] n D 1 p1/D p1/D

Tower-JLSV1

n = n1n2
n1 n2 n2 Q1/(2n) Q1/(2n)

Tower-JLSV2

n = n1n2 [44, 45]
n1 n2 D ≥ n2 Q1/(n1(D+1)) Q1/(n1(D+1))

Tower-GJL
n = n1n2 [45]

n1 D + 1 D ≥ n2 log p Q1/(n1(D+1))

Tower-Conjugation
n = n1n2 [11, 45, 46]

n1 2n2 n2 log p Q1/(2n)

Tower-Joux–Pierrot
n = n1n2, p = px(x0)

[45, 46]
n1 n2(deg px) n2 log p Q1/(ndeg px)

Tower-Sarkar–Singh
n = n1n2n3, D ≥ n3

[57, 60, 58]
n1 (D + 1)n2 Dn2 log p Q1/(n1n2(D+1))

6.3. running time. To apply Lemma 5.4 to the initial splitting case, we make
the usual heuristic assumption that the pseudonorms of the elements gtT0 behave
asymptotically like random integers of the same size. Their size is O(Qe), so we
replace Ne by Qe. The basis {1, U, . . . , Ud−1} can be precomputed. The cost of
computing the U iT for 0 ≤ i ≤ d − 1 is at most dn2 multiplications in Fp with
a schoolbook multiplication algorithm. We can roughly upper-bound it by O(n3).
The time needed to compute the reduced row-echelon form of a d × n matrix is
in O(n3) which is polynomial in n [23]. These two complexities are asymptotically
negligible compared to any LQ[α > 0]. We obtain the following.

Corollary 6.5. The running time of the initial splitting step with Algorithm 5 to
find a B-smooth pseudonorm, where the pseudonorm has size O(Qe) for a fixed
real number e > 0 determined by the polynomial selection (Table 4, two right-most
columns), is
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(1) LQ[1/3, c = (3e)1/3] with ECM to perform the smoothness tests;

(2) LQ[1/3, c = (3e)1/3(23/27)2/3] with ECM and EAS;

(3) LQ[1/3, c = (3e)1/3((15 + 4(2/3)3k)/19)2/3] with ECM and k-EAS.

For each case, the lower bound was obtained for B = LQ[2/3, e/c].

Corollary 6.4 gives a bound on the size of the pseudonorms, from which we can
deduce e to apply Corollary 6.5, and get the expected running time.

7. Examples

Example 7.1. Let p = ⌊1025π⌋ + 7926 = 31415926535897932384634359 be a
85-bit prime made of the first 26 decimals of π so that Fp6 is a 509-bit finite
field. Moreover, Φ6(p) = p2 − p + 1 is a 170-bit prime, we denote it by ℓ =
986960440108935861883947021513080740536833738706523. We want to compute
discrete logarithms in the order-ℓ cyclotomic subgroup of Fp6 . The JLSV1 method

computes two polynomials f0, f1, where deg f0 = deg f1 = 6, and ‖fi‖∞ ≈ p1/2. In
our example, we have log2 ‖f0‖∞ = 44.67 and log2 ‖f1‖∞ = 46.67 (and log2 p/2 =
42.35):

f0 = x6 − 11209975711932 x5 − 28024939279845 x4 − 20 x3

+28024939279830 x2 + 11209975711938 x+ 1
f1 = 5604994576830 x6 + 20986447533158 x5 − 31608799819555 x4

−112099891536600 x3 − 52466118832895 x2 + 12643519927822 x
+5604994576830.

Since f0 is already of degree 6 and monic, it can define the extension Fp6 =
Fp[x]/(f0(x)). Let T0 be our target in Fp6 whose coefficients are made of the
decimals of π (starting at the 26-th decimal, since the first 25 ones were already
used for p):

T0 = 6427704988581508162162455 x5 + 16240052432693899613177738 x4

+4509390283780949909020139 x3 + 3868374359445757647591444 x2

+8209755913602112920808122 x+ 3279502884197169399375105.

Let g = x + 3 be a generator of Fp6 . Let (1, U, U2) be a polynomial basis of

Fp3 considered as an implicit subfield of Fp6 , where U = g1+p3

= NormFp6/Fp3
(g).

We run Algorithm 5 and find that the fourth preimage of T = g812630T0 gives a
61-smooth pseudonorm. We compute the reduced row-echelon form

M =





m00 m01 m02 1 0 0
m10 m11 m12 m13 1 0
m20 m21 m22 m23 m24 1



 of the matrix





T
UT
U2T



 ,

where

m00 = 30930778358987253373198053 m01 = 16172276732961477886471865,
m02 = 251875570676859576731124 m10 = 8981071706647180870633008,
m11 = 26297121233008662476505921 m12 = 4999545867425989707589927,
m13 = 4380553940470247124926451 m20 = 4787502941827866787698085,
m21 = 18855419729462744536987506 m22 = 15450347628775338768673252,
m23 = 31092163492444411597011243 m24 = 9824382756181109886988461.

Then we reduce with the LLL algorithm the following lattice defined by the (6× 6)-
matrix, where mij stands for the coefficient at row i and column j of the above



22 AURORE GUILLEVIC

matrix M , and mi,3+i = 1:

N =

















p 0 0 0 0 0
0 p 0 0 0 0
0 0 p 0 0 0
m00 m01 m02 1 0 0
m10 m11 m12 m13 1 0
m20 m21 m22 m23 m24 1

















.

Each row of LLL(N) gives us a preimage P ∈ Z[x] of short coefficients such that
log2 ‖P‖∞ ≈ log2 p/2 = 42.34 bits and log ρ(P ) ≡ logT mod ℓ (in other words,

(T/ρ(P ))
p6−1

ℓ = 1). The fourth row has coefficients of at most 41.82 bits and gives

P = 482165402365 x5 + 3892831179802 x4 + 2694050932529 x3

+2325450478817 x2 + 1117470283668 x+ 3688595236671 .

The pseudonorm of P w.r.t. f0 is

Res(P, f0) =
32601551184187978602887820222780280368556791213406352787959859478882009\
89411710052105812763285379877699363515358275429392312189582741360186561

of 471 bits, which is very close to log2Q
11/12 = 466 bits. Its factorization in prime

ideals of Kf0 is

〈3, x+ 2〉3〈11, x+ 5〉〈17, x+ 4〉〈67, x+ 44〉〈2011, x+ 463〉〈501997, x+ 18312〉
〈340575947, x+ 27999767〉〈506032577, x+ 177467846〉〈604579099, x+ 309800481〉
〈1402910243559283, x+ 1034551157262971〉
〈1587503571970639, x+ 524543605465730〉
〈36834399852305717, x+ 24916507207930752〉
〈242270403627311729, x+ 170018299727614229〉
〈1070632553963863603, x+ 408232161861505290〉
〈4305864084909925127, x+ 3252872861595329896〉.

A common choice for the factor basis would be to set its smoothness bound to
30 or 32 bits. There are six prime ideals whose norm is larger than 30 bits, and
that should be retreated to reach the factor basis. This initial splitting, testing all
pseudonorms obtained for giT0, i from 0 to 930000, that is, 5.58 · 106 pseudonorms,
with our Magma implementation, took 0.95 day on one node of 16 physical cores
(32 virtual cores thanks to hyperthreading) Intel Xeon E5-2650 at 2.0GHz, that is,
15.2 core-days.

Example 7.2 (A more general example with NFS). Assume that n is even and let
T ∈ Fpn . Compute a polynomial basis (1, U, U2, . . . , Un/2−1) of the subfield Fpn/2.
Let

L =











T
UT
...

Un/2−1T











and compute M =













m1,1 . . . m1,n2 −1 1 0 . . . 0
...

. . .
. . .

...
...

. . . 0
mn

2
. . . mn

2 ,n2 −1 1













to be the reduced echelon form of L. Then we define the lower triangular matrix
made of the n/2×n/2 identity matrix with p on the diagonal in the upper left quar-
ter, the n/2× n/2 zero matrix in the upper right quarter, and the n/2× n matrix
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M in reduced echelon form in the lower half. Moreover, if deg(f) > n, then we add
(deg f − n− 1) rows made of the coefficients of xiψ where Fpn = Fp[x]/(ψ(x)), for
0 ≤ i < deg f − n − 1. Finally we apply the LLL algorithm to this matrix. The
short vector gives us a preimage P whose pseudonorm is bounded by Q1/2, with a
polynomial selection such that ‖f‖∞ = O(1) (such as conjugation or GJL). Apply-
ing Lemma 5.4, we set the bound B1 to be B1 = LQ[2/3, ((1/2)

2/3)1/3 ≈ 0.436].

The running time of Algorithm 5 will be Lq[1/3, (3/2)
1/3 ≈ 1.144]. We obtain

preimages P whose pseudonorm is bounded by Q1− 1
2n with the JLSV1 polynomial

selection method as shown in Example 7.1. Applying Lemma 5.4, we set the bound
B1 to be B1 = LQ[2/3, ((1− 1

2n )
2/3)1/3]. The running time of Algorithm 5 will be

LQ[1/3, (3(1− 1
2n ))

1/3].

8. Optimal representation: monic polynomial of degree ϕ(n)

In Section 3, we exploited the largest proper subfield Fpd of Fpn to find an
alternative representation of a given element T ∈ Fpn , with n−d nonzero coefficients,
and d − 1 coefficients (in Fp) set to zero. The key ingredient was to compute an
expression of the form P = uT , where P has d − 1 coefficients set to zero, and
u ∈ Fpd , so that we have the equality (P/T )(p

n−1)/Φn(p) = 1. We can generalize
this strategy: given an element T in the cyclotomic subgroup of Fpn , of order Φn(p),

we would like to compute an element P ∈ Fpn such that (P/T )(p
n−1)/Φn(p) = 1 and

P has only ϕn(p) = degΦn(x) non-zero coefficients in Fp. To achieve that, we
would like to compute an expression

T = u1u2 . . . uiP, where each ui is in a proper subfield Fpdi of Fpn .

Given an element T ∈ Fpn such that T (pn−1)/Φn(p) 6= 1 (in other words, its order
in the cyclotomic subgroup of Fpn is not zero), we can sometimes compute an
element P with ϕ(n) non-zero coefficients, where ϕ(n) is the Euler totient function,
plus a monic leading term. Since in Algorithm 5 we do not need a one-to-one
correspondence between the given elements of the cyclotomic subgroup on one hand,
and their representation with only ϕ(n) non-zero non-one coefficients on the other
hand, we can just solve a system of equations even if we do not expect a solution at
all times. If no such compact representation is found, one picks a new t and tests
for the next gtT0. To define the system we need to solve, we list all the distinct
subfields Fpd of Fpn that are not themselves contained in another proper subfield,
compute a polynomial basis for each of them, and allow a degree of freedom for the
coefficients to be ϕ(d) for each subfield Fpd . If we consider the system as a Gröbner
basis computation, it becomes very costly even for Fp30 , where we need to handle
n− ϕ(n)− 1 = 21 variables. We give a numerical example for Fp6 .

What we do is different than what is done in XTR and CEILIDH compact repre-
sentations. In the XTR cryptosystem [50], the elements of the cyclotomic subgroup
of Fp6 are represented with an optimal normal basis over Fp2 , also in normal basis
representation. Only their trace over Fp2 is considered for representation, storage,
and transmission. In [63, 62], the aim is to define a one-to-one correspondence
between the elements in the torus of Fpn and the set of coefficients (Fp)

ϕ(n). This
optimal compression was achieved for n = 6 but not for n = 30. These techniques
are not compatible with the representation of the elements in the NFS algorithm:
one chooses a representation by choosing two polynomials f0, f1 that define the



24 AURORE GUILLEVIC

two number fields involved in the algorithm. One cannot change the representa-
tion afterwards: the elements in the individual discrete logarithm phase should be
represented in the same way as the elements of the factor basis.

8.1. Compressed representation of elements in the cyclotomic subgroup

of Fp6 by a monic polynomial of degree 2. We consider the finite field Fp6 .
We will use the two subfields Fp2 and Fp3 to cancel three coefficients. Let U ∈ Fp6

such that (1, U, U2) is a basis of Fp3 ⊂ Fp6 . Let V ∈ Fp6 such that (1, V ) is a basis
of Fp2 ⊂ Fp6 . We want to solve

uvwT = (u0 + u1U + u2U
2)(v0 + v1V )wT = P ,

where u = u0 + u1U + u2U
2 ∈ Fp3 , v = v0 + v1V ∈ Fp2 , w ∈ Fp, and P ∈

Fp6 is represented by a monic polynomial in x of degree 2. To simplify, we set
u2 = v1 = 1 so that we obtain equations where we can recursively eliminate the
variables by computing resultants. We compute u, v, w such that uvwT = P , where
P = a0 + a1x+ x2 is monic of degree 2. We define the lattice

L =





p 0 0
0 p 0
a0 a1 1



 .

The determinant of L is p2 hence LLL(L) computes a short vector P of coefficient
size bounded by Cp2/3, where C is the LLL approximation factor (we can take
C ≈ 1 in this practical case). The pseudonorm of P will be in the JLSV1 case
|Res(P, f)| ≈ ‖P‖6∞‖f‖2∞ = p5 = Q5/6. This is better than the bound Q11/12

obtained with the cubic subfield cofactor method. This specific method can be
generalized to specific cases of finite fields where reducing as much as possible the
degree of the target is the best strategy, as in Example 8.1. This technique was
implemented in [33] for computing a new discrete logarithm record in Fp6 of 422
bits.

Example 8.1. We take the same finite field parameters as in Example 7.1, where

Fp6 = Fp[x]/(f(x)). g = x+ 3 is a generator of Fp6 . (1, U, U2) where U = g1+p3

is

a basis of Fp3 and (1, V ) where V = g1+p2+p4

is a basis of Fp2 . We solve the system
(u0+u1U +U2)(v0+V )T = P where ui, vi ∈ Fp and P is monic and represented by
a polynomial of degree 2 instead of 5. We ran Algorithm 5 with this modification
on the same machine (Intel Xeon E5-2650 at 2.0GHz with hyperthreading turned
on), from g0T0 to g90000T0. On average, the set of I candidates giT0 led to six
times more monic degree two polynomials Pi. We found that the third polynomial
output for T = g60928T0 has a 64-bit-smooth pseudonorm. Testing the 90000 giT0
(that is, 2.7 · 105 pseudonorms) took 1.2 core-day:

u = 12307232765040677532260293+ 18116887363761988927417497 U + U2

v = 30422514788629575495025401+ V
w = 21470888563719305004900851
P = uvwT

= x2 + 479190487430850236087613 x+ 6943966382910680737931850 .
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We checked that (P/T )
p6−1

ℓ = 1, meaning that logg P = logg T = 60928 + logg T0.
Then we reduce the lattice defined by the matrix





p 0 0
0 p 0

6943966382910680737931850 479190487430850236087613 1





to get three polynomials of smaller coefficients, the third one being

R = 107301402613441938 x2 − 32014642452727111 x+ 60125316588415598

whose pseudonorm is

Res(R, f) =
12474200655939339762647720853686893930822373172685245800138935320
22514918959041066623605301421497621878867497302294873400285994921

of 429 bits, which corresponds to the estimate log2Q
5/6 = 423 bits. We still have

logg ρ(P ) ≡ logg T0 + 60928 mod ℓ. The pseudonorm is 64-bit-smooth, and its
factorization into prime ideals is

〈11, x+ 8〉〈23, x+ 15〉〈12239, x+ 482〉 (small)
〈1144616018827, x+ 218590032699〉
〈2682498999539, x+ 1582479651452〉
〈42175797334421, x+ 14828919302862〉
〈1195156519724071, x+ 966160984838340〉
〈13533793331200309, x+ 12224259030902272〉
〈92644276473186311, x+ 5754482791048201〉
〈101186915694167857, x+ 42826432866764905〉
〈20516170632026633467, x+ 14633926248916275064〉 .

The first three ideals are small enough to be in the factor basis, and eight ideals on
side 0 remain to be descended.

Conclusion

The algorithms presented in this paper were implemented in Magma and used for
cryptographic-size record computations. It was shown in [3] that combined with a
practical variant of Joux’s algorithm, our Algorithm 2 allows to compute a discrete
logarithm in the finite field F36·709 at the same cost as in F36·509 with the previous
state of the art. The large characteristic variant (Algorithm 5) was used in [33] for
a 422-bit record computation in Fp6 . It would be interesting to be able to generalize
it further, to be able to exploit at the same time several subfields, and provide a
practical implementation of it for cryptographic sizes.
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crete logarithms in Fp6 , SAC 2017 (Carlisle Adams and Jan Camenisch, eds.), LNCS, vol.
10719, Springer, Heidelberg, August 2017, pp. 85–105.

34. Aurore Guillevic, Computing individual discrete logarithms faster in GF(pn) with the NFS-
DL algorithm, ASIACRYPT 2015, Part I (Tetsu Iwata and Jung Hee Cheon, eds.), LNCS, vol.
9452, Springer, Heidelberg, November / December 2015, pp. 149–173.

35. Antoine Joux, Discrete logarithms in GF(26168) = GF((2257)24), Number Theory list, May
21 2013, https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305.

36. , A new index calculus algorithm with complexity L(1/4+o(1)) in small characteristic,
SAC 2013 (Tanja Lange, Kristin Lauter, and Petr Lisonek, eds.), LNCS, vol. 8282, Springer,
Heidelberg, August 2014, pp. 355–379.

http://delta.cs.cinvestav.mx/~francisco/Thesis_IAC.pdf
https://dl.acm.org/citation.cfm?id=6835
https://doi.org/10.1007/BF01840433
https://tel.archives-ouvertes.fr/tel-00642951
http://algo.inria.fr/flajolet/Publications/FlGoPa01.pdf
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;fe9605d9.1304
https://www.ccrwest.org/gordon/log.pdf
http://eprint.iacr.org/2014/119
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;23651c2.1401
http://eprint.iacr.org/2014/300
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305


28 AURORE GUILLEVIC

37. Antoine Joux and Reynald Lercier, The function field sieve is quite special, Algorithmic Num-
ber Theory (ANTS-V) (Claus Fieker and David R. Kohel, eds.), LNCS, vol. 2369, Springer,
Heidelberg, 2002, https://perso.univ-rennes1.fr/reynald.lercier/file/JL02.pdf ,
pp. 431–445.

38. , Improvements to the general number field sieve for discrete logarithms in prime fields.
A comparison with the Gaussian integer method, Math. Comp. 72 (2003), no. 242, 953–967,
http://www.ams.org/journals/mcom/2003-72-242/S0025-5718-02-01482-5 .

39. Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren,
The number field sieve in the medium prime case, CRYPTO 2006 (Cyn-
thia Dwork, ed.), LNCS, vol. 4117, Springer, Heidelberg, August 2006,
https://www.iacr.org/archive/crypto2006/41170323/41170323.pdf, pp. 326–344.

40. Antoine Joux and Cécile Pierrot, Improving the polynomial time precomputation of frobenius
representation discrete logarithm algorithms - simplified setting for small characteristic finite
fields, ASIACRYPT 2014, Part I (Palash Sarkar and Tetsu Iwata, eds.), LNCS, vol. 8873,
Springer, Heidelberg, December 2014, pp. 378–397.

41. , The special number field sieve in Fpn - application to pairing-friendly constructions,
PAIRING 2013 (Zhenfu Cao and Fangguo Zhang, eds.), LNCS, vol. 8365, Springer, Heidelberg,
November 2014, pp. 45–61.

42. Antoine Joux and Cécile Pierrot, Discrete logarithm record in characteristic 3,

GF(35·479) a 3796-bit field, Number Theory list, item 004745, September 15 2014,
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;1ff78abb.1409.

43. Michael Kalkbrener, An upper bound on the number of monomials in determinants
of sparse matrices with symbolic entries, Mathematica Pannonica 8 (1997), 73–82,
http://kalkbrener.at/Selected_publications_files/Kalkbrener97b.pdf.

44. Taechan Kim, Extended tower number field sieve: A new complexity for medium prime case,
Cryptology ePrint Archive, Report 2015/1027, 2015, http://eprint.iacr.org/2015/1027.

45. Taechan Kim and Razvan Barbulescu, Extended tower number field sieve: A new complexity
for the medium prime case, CRYPTO 2016, Part I (Matthew Robshaw and Jonathan Katz,
eds.), LNCS, vol. 9814, Springer, Heidelberg, August 2016, pp. 543–571.

46. Taechan Kim and Jinhyuck Jeong, Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree, PKC 2017, Part I (Serge Fehr, ed.), LNCS, vol.
10174, Springer, Heidelberg, March 2017, pp. 388–408.

47. Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin Stahlke,
Computation of a 768-bit prime field discrete logarithm, EUROCRYPT 2017, Part I (Jean-
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