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SPECTRAL NORM OF A SYMMETRIC TENSOR AND ITS COMPUTATION

SHMUEL FRIEDLAND AND LI WANG

Abstract. We show that the spectral norm of a d-mode real or complex symmetric tensor in n variables
can be computed by finding the fixed points of the corresponding polynomial map. For a generic complex
symmetric tensor the number of fixed points is finite, and we give upper and lower bounds for the number of
fixed points. For n = 2 we show that these fixed points are the roots of a corresponding univariate polynomial
of degree at most (d− 1)2 +1, except certain cases, which are completely analyzed. In particular, for n = 2
the spectral norm of d-symmetric tensor is polynomially computable in d with a given relative precision. For
a fixed n > 2 we show that the spectral norm of a d-mode symmetric tensor is polynomially computable in
d with a given relative precision with respect to the Hilbert-Schmidt norm of the tensor. These results show
that the geometric measure of entanglement of d-mode symmetric qunits on Cn are polynomially computable
for a fixed n.
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Keywords : Symmetric tensors, homogeneous polynomials, spectral norm, anti-fixed and fixed points, com-
putation of spectral norm, d-mode symmetric qubits, d-mode symmetric qunits on Cn, geometric measure
of entanglement.

1. Introduction

The spectral norm of a matrix, i.e., the maximal singular value, has numerous applications in pure and
applied mathematics. One of the fundamental reasons for the tremendous use of this norm is that it is
polynomial-time computable and the software for its computation is easily available on MAPLE, MATHE-
MATICA, MATLAB and other platforms.

Multiarrays, or d-mode tensors, i.e. d > 3, are starting to gain popularity due to data explosion and other
applications. Usually, these problems deal with real valued tensors. Since the creation of quantum physics,
d-mode tensors over complex numbers became the basic tool in treating the d-partite states. Furthermore,
the special case of d-partite symmetric qubits, called bosons, is the basic ingredient in construction the boson
sampling devices [1, 47].

The (F-)spectral norm of a tensor is a well defined quantity over the real (F = R) or complex numbers
(F = C). Unlike in the matrix case, the computation of the spectral norm in general can be NP-hard [26, 36].
Furthermore, the complex spectral norm of a real tensor can be bigger than its real spectral norm. In spite of
these numerical difficulties, there is a need to compute these norms in special cases of interesting applications,
as the geometric measure of entanglement. (See later in the Introduction and §2.) Even the simplest case
of d-partite qubits poses theoretical and numerical challenges [33]. This can be partly explained by the fact
that the space ⊗dC2 has dimension 2d.

In this paper we restrict ourselves to d-mode symmetric tensors over Fn, denoted as SdFn. The dimension
of this space is

(

n+d−1
d

)

=
(

n+d−1
n−1

)

. Hence for a fixed n this dimension is O(dn−1). In particular, the

dimension of SdC2 is d+1. A symmetric tensor S ∈ SdFn can be identified with a homogeneous polynomial
f = fS of degree d in n variables over F, denoted here as P(d, n,F). It was already observed by J. J.
Sylvester [53] that binary forms, i.e., n = 2, posses very special properties related to polynomials of one
complex variable. The spectral norm of S ∈ SdFn is denoted by ‖S‖σ,F. Its value is equal to the following
maximum of f ∈ P(d, n,F) on the unit sphere in Fn:

‖f‖σ,F = max{|f(x)|, x ∈ Fn, ‖x‖ = 1}.
The spectral norm of a complex valued symmetric tensor is given as the maximum of the real part ℜf over

the set of complex valued vectors of norm one. The critical vector of ℜf is an anti-eigenvector of F = 1
d∇f .
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The critical value is the eigenvalue of this system. In this paper we first convert this eigenvalue problem to the
anti-fixed point F(x) = x̄. Next we show that this anti-fixed point is a fixed point of another polynomial map

H, where H(x) = F(F(x)). In the generic case, where the hypersurface f(x) = 0 is a smooth hypersurface
in the complex projective space, the number of fixed points is (d− 1)2n, counted with multiplicities. In this
case we find all fixed of H and compute the ‖f‖σ,C. In the real case F = R, it is enough to consider the
fixed points of F. Our approach is completely different from the standard optimization methods that are
used now in the literature [9, 15, 27, 29, 48, 57].

We now highlight the new and most important results of our paper. Associate with S ∈ SdCn the
polynomial f(x) = fS(x) = S × ⊗dx,x ∈ Cn. (See the beginning of §2 for tensor notations.) Let F and
H be defined as above. Each component of F and H is a homogeneous polynomial of degree (d − 1) and
(d − 1)2 respectively. Theorem 7 shows that the complex spectral norm of S ∈ SdCn can be computed by
finding the fixed points of the homogeneous polynomial map H : Cn → Cn, which is the polynomial system
of equations H(x) − x = 0 . Let H(d, n) be the classical hyperdeterminant variety in the space P(d, n,C)
[31]. Assume that f ∈ P(d, n,C) \ H(d, n). Then the number of fixed points of F and H is (d − 1)n and
(d − 1)2n respectively, (counted with multiplicities). If in addition S is real then its real spectral norm can
be found by considering only the real fixed points of F in projective space PCn.

Recall the elimination method for finding the roots of a system of n polynomial equations in n variables,
each of degree at most d, with only isolated roots [58, 44]. Its complexity upper bound d2

n

follows from
Kronecker’s work [34]. If the system does not have roots at infinity then the solutions of this system have
rational univariate representation. The arithmetic complexity of finding these roots is O(dc n) for some c > 0
[50, 42]. Using the above result, and the fact that the maps F or H corresponding to fS ∈ P(d, n,C)\H(d, n)
have a finite number of fixed points with a polynomial univariate representation, we give an algorithm to find
the F-spectral norm of S ∈ SdFn with an arbitrary relative precision with respect to the Hilbert-Schmidt
norm of ‖S‖. See Theorems 12, 13 and 14. The arithmetic complexity of this algorithm is O(dc n). We
remark that in all papers on complexity of finding the roots of zero dimensional zero set of polynomial
equations in more than one variable cited in this paper we did not see any results on approximation of these
roots within δ > 0 precision.

We study in detail the case of d-mode symmetric qubits, which are tensors in SdC2 of Hilbert-Schmidt norm
one. We show that the nonzero fixed points of H can be computed by finding the roots of the corresponding
polynomial of one complex variable of degree at most (d− 1)2 +1, provided that this symmetric qubit is not
in the exceptional family, (Theorem 18). We give a polynomial time algorithm for a relative approximation
for all symmetric qubits, (Theorem 19). If S is real valued then its real spectral norm depends only on the
real roots of this polynomial, or actually, on the real root of another polynomial of degree at most d+ 1.

Our results have an important application to the notion of the geometric measure of entanglement of d-
partite symmetric states, (bosons), in quantum physics and its computation. Recall that a d-partite state is
represented by a d-mode tensor T of Hilbert-Schmidt norm one: ‖T ‖ = 1. One of the most important notion
in quantum physics is the entanglement of d-partite systems [20, 51, 52, 7]. A state T is called entangled
if it is not a product state, (rank one tensor). The distance of a state T to the product states is called the

geometric measure of entanglement. It is given by
√

2(1− ‖T ‖σ,C), where ‖T ‖σ,C is the C-spectral norm of
T . (See §2). In particular, we deduce that the geometric measure of entanglement of a d-partite symmetric
state S ∈ SdCn, called a symmetric d-qunit, is polynomial time computable in d for a fixed n. For symmetric
qubits our results have much better complexity than in the case n > 2.

We now survey briefly the contents of our paper. In §2 we state our notations for tensors. We recall the
definition of the spectral norm of a tensor T . We state the well known connection between the notion of the
geometric measure of entanglement and the spectral norm of the d-partite state (1).

In §3 we first discuss the identification of d-symmetric tensors with the homogeneous polynomials of degree
d. Then we study the spectral norm of d-symmetric tensors on Fn. We recall the remarkable theorem of
Banach [4] (7) that characterizes the spectral norm of a symmetric tensor, which was rediscovered a number
of times in the mathematical and physical literature [9, 24, 38].

In §4 we study the critical points of the homogeneous polynomial f of degree d on the unit sphere in Fn.
We call a symmetric tensor S, where f = fS , singular if the system ∇f(x) = 0 has a nontrivial solution
in Cn. Equivalently, if the corresponding hypersurface f(x) = 0 in the projective space PCn is singular.
We show that the critical points of the real part of f(x) correspond to anti-fixed points of F for F = C:
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F(x) = x̄ and to fixed points of ±F for F = R. Theorem 7, explained above, outlines our theoretical approach
for numerical computation of the spectral norm of symmetric tensors. Using the degree theory we give in
Theorem 8 lower and upper bounds on the number of anti-fixed points of F corresponding to nonsingular
S ∈ SdCn.

In §5 we study the available algorithms and their complexities to approximate the spectral norms of
symmetric tensors in SdFn for a fixed n. A symmetric tensor S, and the corresponding fS ∈ P(d, n,C), are
called strongly nonsingular if they are nonsingular and the coordinates x1 of the (d− 1)2n fixed points of H
are pairwise distinct. We show that most of the symmetric tensors in SdCn are strongly nonsingular. The
fixed points of H corresponding to a strongly nonsingular tensor satisfy the conditions of the shape Lemma
[50]. In Theorem 12 we consider the case of a strongly nonsingular T ∈ SdZ[i]n,where Z[i] are Gaussian
integers. Assume that the coordinates of T are bounded in absolute value by 2τ for some τ ∈ N. Using
recent results in [5] and [42] we show that the bit complexity of the computation of an approximation L(T )

to the norm ‖T ‖σ,C with a relative precision 2−e, e ∈ N is Õ
(

(τ + e)d8n
)

.

In Theorem 13 we discuss the computational complexity of an approximation L(T ) to a given T ∈ SdZ[i]n,
without assuming that T is strongly nonsingular. We give a probabilistic algorithm to compute L(T ) with
a similar bit complexity. Similar results are obtained in Theorem 14 for an approximation of the spectral
norm of T ∈ SdZn with slightly better complexity estimations. Theorems 7, 12, 13, and 14 constitute the
first major contribution of this paper.

An obvious question is what is the complexity of finding an approximation L(T ) to T ∈ SdZn if we do
not keep n fixed. Theorem 15 shows that an approximation of the spectral norm of homogeneous quartic
polynomials with an arbitrary precision is NP-hard. This result follows from the old result of Motzkin-Straus
[45] relating the clique number of a graph to a certain maximum problem for the adjacency matrix of the
graph, and its tensor interpretation to the spectral norm of tensors [26, (8.2)]. Unfortunately, it was not
observed in [26] that the corresponding tensor is symmetric. Note that the approximation algorithm outlined

in Theorem 14 has at least complexity O(3n
2

), while the brute force method looking over all possible subsets
of n vertices of the given graph is O(2n).

In §6 we discuss in detail theoretical and numerical aspects of the computation of the spectral norm of
S ∈ SdF2. In Theorem 18 we show that the fixed points of the corresponding H in this case can be reduced
to one polynomial equation of degree at most (d − 1)2 + 1, unless we are in the exceptional family. In the
nonexceptional case we give a simple formula to compute the spectral norm. In Theorem 19 we give an
approximation algorithm for the spectral norm of T ∈ SdZ[i]2 with a relative error 2−e of bit complexity

Õ(d2(d4 max(d2, τ) + e)). For T ∈ SdZ2 we have better complexity results. Theorems 18 and 19 constitute
the second main contribution of this paper.

In §7 we analyze completely the exceptional family. We show how to obtain a relative approximation for
symmetric tensors in this family. The complexity of this approximation is the same as for the nonexceptional
family.

In §8 we give numerical examples of our method for calculating the complex and the real spectral norm
of some of S ∈ SdCn for n = 2, 3, 4. Many of our examples correspond to polynomials that are sum of two
monomials. Lemma 20 shows that in this case one can assume that the coefficients of these two monomials
are nonnegative, if we compute the complex spectral norm. That is, the corresponding symmetric tensors
have nonnegative entries. (This result is false if we consider the real spectral norm of real symmetric tensor
which corresponds to a sum of two monomials.) Most of the examples of d-qubits considered in [3] are
sums of two monomials. The authors believe that their examples for d = 4, 5, . . . , 12 are the most entangled
d-qubits. Our software confirms the values of the spectral norms of the examples in [3]. We also consider
five one complex parameter families of these examples, and we compute a number of values of the spectral
norms in these families. As expected, in all these computed examples the spectral norms are higher than in
the examples in [3].

In Appendix 1 we consider a standard orthonormal basis in SdCn, the analog of Dicke states in SdC2

[18], and the entanglement of each element in the basis. We give an upper bound on the entanglement of
symmetric states in SdCn.

In Appendix 2 we discuss the complexity results associated with a system of m polynomial equations in
m variables with isolated roots and no roots at infinity. We recall simple necessary and sufficient conditions
on such systems. We define an x1-simple system which has only simple solutions with pairwise distinct x1
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coordinates. For x1-simple systems the reduced Gröbner basis with respect to the order x1 ≺ · · · ≺ xm
satisfies the shape lemma. We recall the known complexity results of finding the reduced Gröbner basis in
this case [5]. We also recall the complexity results for finding the roots of a polynomial in one complex
variable [46]. Lemma 5 summarize the complexity results of finding all the roots of x1-simple system with a
given precision.

In Appendix 3 we discuss briefly the Majorana representation. This representation is used in physics
literature [3, 43]. We explain how Majorana representation suggests two kinds of the most entangled d-
symmetric qubits, which solve either Tóths or Thomson’s problems [56, 55]. Most of the example in [3] are
based on these two problems. However, in certain cases as shown in [3] the most entagled symmetric states
do not solve neither of the above problems.

2. Spectral norm and entanglement

For a positive integer d, i.e., d ∈ N, we denote by [d] the set of consecutive integers {1, . . . , d}. Let
F ∈ {R,C}, n = (n1, . . . , nd) ∈ Nd. We will identify the tensor product space ⊗d

i=1F
ni with the space of

d-arrays Fn. The entries of T ∈ Fn are denoted as Ti1,...,id . We also will use the notation T = [Ti1,...,id ]. So
T is called a vector for d = 1, a matrix for d = 2 and a tensor for d > 3. Note that the dimension of Fn is
N(n) = n1 · · ·nd.

Assume that d > 2 is an integer and k ∈ {0, 1}. For n = (n1, . . . , nd) ∈ Nd let m = (nk+1, . . . , nd) ∈ Nd−k.
Assume that T ∈ Fn and S ∈ Fm. Then T ×S is the scalar

∑n1,...,nd

i1=···=id
Ti1,...,idSi1,...,id for k = 0 and a vector

in Fn1 , whose i-th coordinate is given by (T × S)i =
∑n2,...,nd

i2=···=id=1 Ti,i2,...,idSi2,...,id , for k = 1.

The inner product on Fn is given as 〈S, T 〉 := S × T , where T = [Ti1,...,id ]. Furthermore, ‖S‖ =
√

〈S,S〉
is the Hilbert-Schmidt norm of S. Assume that xi = (x1,i, . . . , xni,i)

⊤ ∈ Fni for i ∈ [d]. Then ⊗d
i=1xi is

a tensor in Fn, with the entries (⊗d
i=1xi)i1,...,id = xi1,1 · · ·xid,d. (⊗d

i=1xi is called a rank one tensor if all
xi 6= 0.) Assume that x1 = · · · = xd = x. Then ⊗dx = ⊗d

i=1xi.
Denote the unit sphere in Fn by S(n,F) = {x ∈ Fn, ‖x‖ = 1}. Recall that the spectral norm of T ∈ Fn is

given as

‖T ‖σ,F = max{|T × ⊗d
i=1xi|, xi ∈ S(ni,F) for i ∈ [d]}.

Assume that d = 2. Then T is a matrix T ∈ Fn1×n2 . In that case ‖T ‖σ,F is the spectral norm of T , and is
equal to its maximum singular value σ1(T ). In particular, for T ∈ Rn1×n2 one has equality ‖T ‖σ,R = ‖T ‖σ,F.
Furthermore, as σ1(T )

2 is the maximum eigenvalue of hermitian matrix TT ∗ or T ∗T . It is well known that
σ1(T ) can be computed in polynomial time in the entries of T and max(n1, n2). See for example [32] for
a general rectangular matrix, or [41] for direct of Lancos algorithm for TT ∗. Another method for T , with
Gaussian integer entries, is as follows: First compute the characteristic polynomial p(z) of the hermitian

matrix H(T ) =

[

0 T
T ∗ 0

]

. The complexity of such an algorithm is described in [19]. Next recall that

the eigenvalues of H(T ) are ±σi(T ) and 0 [25, Theorem 4.11.1]. Now use well known algorithms as [46] to
approximate the roots p(z).

In the rest of this paper we assume that d > 3, i.e., T is a tensor, unless stated otherwise. Unlike in the
matrix case, for a real tensor T ∈ Rn it is possible that ‖T ‖σ,R < ‖T ‖σ,C [26]. For simplicity of notation we
will let ‖T ‖σ denote ‖T ‖σ,C, and no ambiguity will arise.

A standard way to compute ‖T ‖σ,F is an alternating maximization with respect to one variable, while
other variables are fixed, see [15]. Other variants of this method is maximization on two variables using the
SVD algorithms [27], or the Newton method [29, 57]. These methods in the best case yield a convergence to
a local maximum, which provide a lower bound to ‖T ‖σ,F. Semidefinite relaxation methods, as in [48], will
yield an upper bound to ‖T ‖σ,F, which will converge in some cases to ‖T ‖σ,F.

Recall that in quantum physics T ∈ Cn is called a state if ‖T ‖ = 1. (Furthermore, all tensors of the form
ζT , where ‖T ‖ = 1 and ζ ∈ C, |ζ| = 1 are identified as the same state. That is, the space of the states in
Cn is the quotient space S(N(n),C)/S(1,C). For simplicity of our exposition will ignore this identification.)
Denote by Πn the product states in Cn:

Πn = {⊗d
i=1xi, xi ∈ S(ni,C), i ∈ [d]}.
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The geometric measure of entanglement of a state T ∈ Cn is

dist(T ,Πn) = min
Y∈Πn

‖T − Y‖.(1)

As ‖T ‖ = ‖Y‖ = 1 it follows that dist(T ,Πn) =
√

2(1− ‖T ‖σ). Hence an equivalent measurement of
entanglement is [33]

(2) η(T ) = − log2 ‖T ‖2σ.
The maximal entanglement is

(3) η(n) = max
T ∈Cn,‖T ‖=1

− log2 ‖T ‖2σ.

See [16] for other measurements of entanglement using the nuclear norm of T . Lemma 9.1 in [26] implies

η(n) 6 log2N(n).

Let n×d = (n, . . . , n) ∈ Nd. For n = 2 we get that η(2×d) 6 d. In [39] it is shown that η(2×d) 6 d− 1. A

complementary result is given in [33]: For the set of states of Haar measure at least 1− e−d2

on the sphere
‖T ‖ = 1 in ⊗dC2 the inequality η(T ) > d − 2 log2 d − 2 holds. A generalization of this result to ⊗dCn is
given in [17].

3. Symmetric tensors

A tensor S = [Si1,...,id ] ∈ ⊗dFn is called symmetric if Si1,...,id = Siω(1),...,iω(d)
for every permutation

ω : [d] → [d]. Denote by SdFn ⊂ ⊗dFn the vector space of d-mode symmetric tensors on Fn. In what follows
we assume that S is a symmetric tensor and d > 2, unless stated otherwise. A tensor S ∈ SdFn defines a
unique homogeneous polynomial of degree d in n variables f(x) = S × ⊗dx, where

f(x) =
∑

jk+1∈[d+1],k∈[n],j1+···+jn=d

d!

j1! · · · jn!
fj1,...,jnx

j1
1 · · ·xjnn .

Conversely, a homogeneous polynomial f(x) of degree d in n variables defines a unique symmetric S ∈ SdFn

as given in part (4) of Lemma 1.
Hence it is advantageous to replace SdFn by the isomorphic space of all homogeneous polynomials of degree

d in n variables over F, denoted as P(d, n,F). We now introduce the standard multinomial notation as in
[49]. Let Z+ be the set of all nonnegative integers. Denote by J(d, n) be the set of all j = (j1, . . . , jn) ∈ Zn

+

appearing in the above definition of f(x):

J(d, n) = {j = (j1, . . . , jn) ∈ Zn
+, j1 + · · ·+ jn = d}.

It is well known that |J(d, n)| =
(

n+d−1
n

)

=
(

n+d−1
d−1

)

, see for example [49]. Define

c(j) =
d!

j1! · · · jn!
For x = (x1, . . . , xn)

⊤ ∈ Fn and j = (j1, . . . , jn) ∈ J(d, n) let xj be the monomial xj11 · · ·xjnn . Then the above
definition of f(x) is equivalent to

(4) f(x) =
∑

j∈J(d,n)

c(j)fjx
j.

Let U and V be finite dimensional vector spaces over F. Then U and V are isomorphic if and only if U
and V have the same dimension. Assume that U and V are two inner product vector spaces over F of the
same dimension N . Then L : U → V is called an isometry if L preserves the inner product. Assume that
u1, . . . ,uN in U is an orthonormal basis in U. Then a linear transformation L : U → V is an isometry if
and only if v1 = L(u1), . . . ,vN = L(uN ) is an orthonormal basis in V.

The following lemma summarizes the properties of the isomorphisms of SdFn to P(d, n,F) and to the
auxiliary vector space FJ(d,n), and recalls Banach’s characterization of the spectral norm of S ∈ SdFn as the
maximum of the absolute value of the polynomial S × (⊗dx) on the unit sphere S(n,F) [4]:
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Lemma 1. Let FJ(d,n) be the space of all vectors f = (fj), j ∈ J(d, n). Assume that the inner product and

the Hilbert norm on FJ(d,n) are given by

〈f ,g〉 =
∑

j∈J(d,n)

c(j)fjgj, ‖f‖ =
√

〈f , f〉, f = (fj),g = (gj) ∈ FJ(d,n).

Then

(1) Let ej = (δj,k)k∈J(d,n), j ∈ J(d, n), where δj,k is Kronecker’s delta function, be the standard basis in

FJ(d,n). Then 1√
c(j)

ej, j ∈ J(d, n) is an orthonormal basis in FJ(d,n).

(2) FJ(d,n) is isomorphic to F(
n+d−1
d−1 ). There is an isometry L : FJ(d,n) → F(

n+d−1
d−1 ) which maps the

orthonormal basis 1√
c(j)

ej, j ∈ J(d, n) to the standard orthonormal basis in F(
n+d−1
d−1 ).

(3) FJ(d,n) is isomorphic to P(n, d,F), where f corresponds to f(x) given by (4).
(4) The map L : SdFn → P(d, n,F) which is given by L(S) = f , where f(x) = S × (⊗dx), is an

isomorphism and an isometry.
(5) Assume that S ∈ SdFn and let F(x) = S × (⊗d−1x). Then

F(x) = (F1(x), . . . , Fn(x)) =
1

d
∇f(x) = 1

d
(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)),(5)

n
∑

i=1

xiFi(x) = f(x).(6)

(6) The spectral norm of a symmetric tensor is given by Banach’s characterization [4]:

(7) ‖S‖σ,F = max{ |S × (⊗dx)|
‖x‖d , x ∈ Fn \ {0}} = max{|S × (⊗dx)|, x ∈ S(n,F)}, S ∈ SdFn.

Proof. Parts (1)-(3) are straightforward.
Part (4). Let S ∈ SdFn. Define L(S) = f , where f(x) = S × (⊗dx). Clearly f ∈ P(d, n,F). Assume that
f(x) is given by (4). For a given i1, . . . , id ∈ [n] and k ∈ [n] let jk be the number of times k appears in
the multiset {i1, . . . , id}. Set j = (j1, . . . , jn). Then L(S)j = fj. It is straightforward to show that L is an
isomorphism. Furthermore, 〈S, T 〉 = 〈L(S), L(T )〉. Hence L is an isometry.
Part (5). Observe that ∂

∂xm
(Si1,...,idx

j) is not zero if and only if il = m for some l ∈ [d]. So assume that

il = m. Since S is symmetric we can choose l ∈ [d]. Hence dFm = ∂f
∂xm

, and (5) holds. Equality (6) is

Euler’s formula for f ∈ P(d, n,F) and F = 1
d∇f .

Part (6) is Banach’s theorem [4], see [26] for details. �

Banach’s theorem (7) was rediscovered several times since 1938. In quantum physics literature it appeared
in [38] for the case F = C. In mathematical literature, for the case F = R, it appeared in [9, 24]. (Observe
that a natural generalization of Banach’s theorem to partially symmetric tensors is given in [24].)

In view of Lemma 1 it makes sense to introduce the spectral norm on FJ(d,n) and P(d, n):

(8) ‖f‖σ,F = ‖f‖σ,F = max{ |f(x)|‖x‖d ,x ∈ F \ {0}} = max{|f(x)|,x ∈ S(n,F)},

where f(x) is given by (4).
We denote by S(j) ∈ SdCn the symmetric state corresponding to 1√

c(j)
ej, j ∈ J(d, n). Note that S(j)

corresponds to the monomial
√

c(j)xj, i.e., S(j) ×⊗dx =
√

c(j)xj. We also let ‖f‖ = ‖f‖.

4. Critical points of ℜ(S × ⊗dx) on S(n,F)

Recall that the projective space PCN is the space of lines through the origin in CN . Thus a point in PCN

is the equivalence class [y] = {ty, t ∈ C \ {0},y ∈ CN \ {0}}. Note that for each [y] ∈ PCN , the hyperplane
{x ∈ CN , 〈x,y〉 = 0} is independent of the representative corresponding to [y].

Recall that S ∈ SdCn is called nonsingular [28] if

S × ⊗d−1x = 0 ⇒ x = 0.
6



Otherwise S is called singular. A nonzero homogeneous polynomial f(x) defines a hypersurface H(f) :=
{x ∈ Cn \ {0}, f(x) = 0} in PCn. H(f) is called a smooth hypersurface if ∇f(x) 6= 0 for each x 6= 0 that
satisfies f(x) = 0.

Proposition 2. Assume that S ∈ SdCn. Let f(x) = S × ⊗dx. Then S is nonsingular if and only if H(f)
is a smooth hypersurface in PCn.

Proof. Let F = 1
d∇f . Assume that F(x) = 0 for some x 6= 0. Euler’s identity yields that f(x) = 0. Use

part (5) of Lemma 1 to deduce the proposition. �

The following result is well known [31]:

Proposition 3. Denote by PCJ(d,n) the complex projective space corresponding to the affine space CJ(d,n).
With each [f ] ∈ PCJ(d,n) associate the hypersurface f(x) = 0 in PCn, where f(x) is given by (4). Then the
set of singular hypersurfaces is the hyperdeterminant variety H(d, n) ⊂ PCJ(d,n), which is the zero set of the
hyperdeterminant polynomial on CJ(d,n).

Corollary 4. The set of singular symmetric tensors in SdCn is the zero set V (d, n) ⊂ SdCn of the polynomial
on SdCn which is induced by the hyperdeterminant polynomial on CJ(d,n).

For a complex number z = x+ iy ∈ C, x, y ∈ R we denote x = ℜz and y = ℑz. Fix x ∈ Cn and let ζ ∈ C.
Then S ×⊗d (ζx) = ζd

(

S × ⊗dx
)

. Hence there exists ζ ∈ C, |ζ| = 1 such that |S ×⊗dx| = ℜ
(

S × ⊗d (ζx)
)

.
Therefore for F = C we can replace the characterization (7) with:

‖S‖σ = max
x∈S(n,C)

ℜ(S × ⊗dx), for S ∈ SdCn.

Let f ∈ P(d, n,F). Consider ℜf |S(n,F), the restriction of ℜf to the sphere S(n,F). Suppose first that
F = R. Then ℜf |S(n,R) = f |S(n,R). A point x ∈ S(n,R) is called a critical point of f |S(n,R) if the
directional derivative of f at x in direction of each y, where 〈y,x〉 = 0, is 0. Assume that x is a critical
point of f |S(n,R). Then f(x) is called a critical value of f |S(n.R).

Assume now that F = C. View Cn as R2n by writing z ∈ Cn as z = x + iy, where x,y ∈ Rn. Clearly
ℜf(z), z ∈ Cn can be viewed as a homogeneous polynomial g(x,y) of degree d in 2n variables (x,y). We
then identify S(n,C) with S(2n,R). Then ℜf |S(n,C) is g|S(2n,R). Thus a critical point of ℜf |S(n,C) is the
critical point of g|S(2n,R), and the critical value of ℜf |S(n,C) is the critical value of g|S(2n,R). Note that
the points x ∈ S(n,F) where ℜf |S(n,F) is maximum or minimum are critical points, and the maximum and
minimum values are critical values.

Lemma 5. Assume that S ∈ SdFn, d > 2. A point x ∈ S(n,F) is a critical point of ℜf(x) on S(n,F) if and
only if

(9) S × ⊗d−1x = λx, x ∈ S(n,F), λ ∈ R,

where x denote the complex conjugate of x. The number of critical values λ satisfying (9) is finite.

Proof. First assume that F = R. Let x ∈ S(n,R). First assume that x is a critical point of f(z) = S × ⊗dz

for z ∈ S(n,R). Let y ∈ Rn be orthogonal to x: y⊤x = 0. Then ‖x + ty‖ =
√

1 + t2‖y‖2 = 1 + O(t2) for
t ∈ R. Clearly

S × ⊗d(x+ ty) = S × ⊗dx+ tdy⊤(S × ⊗d−1x) +O(t2).

As x is a critical point of S × ⊗dz for z ∈ S(n,R) it follows that y⊤(S × ⊗d−1x) = 0 for each y orthogonal
to x. Hence S × ⊗d−1x is colinear with x. As x̄ = x for each x ∈ Rn we deduce (9). Similar arguments
show that if (9) holds for x ∈ S(n,R) then x is a critical point.

As f(x) is a polynomial on Rn it follows that the set of critical points of f |S(n,R) is a real algebraic
set. This algebraic set is a finite union of connected algebraic sets [14, Proposition 1.6]. On each connected
algebraic set of critical points f is a constant function, whose value on this set is a critical value. This proves
that the number of critical values for F = R is finite.

Second assume that F = C. View Cn as 2n-dimensional real vector space R2n with the standard inner
product ℜ(y∗x), where y∗ = y⊤. Hence ‖x‖ =

√

ℜ(x∗x). Assume that x ∈ S(n,C) is a critical point
7



of ℜ(S × ⊗dz) on S(n,C). Let y ∈ Cn be orthogonal to x: ℜ(y∗x) = ℜ(y⊤x) = 0. Then ‖x + ty‖ =
√

1 + t2‖y‖2 = 1 +O(t2) for t ∈ R. Hence

ℜ(S × ⊗d(x+ ty)) = ℜ(S × ⊗dx) + tdℜ(y⊤(S × ⊗d−1x)) +O(t2).(10)

As x is a critical point we deduce that

0 = ℜ(y⊤(S × ⊗d−1x)) = ℜ(y∗(S × ⊗d−1x)).

Hence S × ⊗d−1x is R-colinear with x. Thus (9) holds. Vice versa, suppose that (9) holds. As λ ∈ R and
0 = ℜ(y∗x) = ℜ(y⊤x̄) = 0 the equality (10) yields that x is a critical point.

Since q(x) := ℜ(S × ⊗dx) is a polynomial on Cn ∼ R2n it follows from the above arguments for F = R

that q|S(n,C) has a finite number of critical values. �

Clearly, a maximum point of |S × ⊗dx| on S(n,F) is a critical point of ℜ
(

S × ⊗dx
)

on S(n,F). Hence:

Corollary 6. Let d, n > 2 be integers.

(1) Assume that S ∈ SdRn. Then there exists x ∈ S(n,R) satisfying (9) such that |λ| = ‖S‖σ,R.
Furthermore, ‖S‖σ,R is the maximum of all |λ| satisfying (9).

(2) Assume that S ∈ SdCn. Then there exists x ∈ S(n,C) satisfying (9) such that λ = ‖S‖σ. Further-
more, ‖S‖σ is the maximum of all |λ| satisfying (9).

We call x ∈ S(n,F) and λ ∈ F an eigenvector and an eigenvalue of S ∈ SdFn if the following conditions
hold [8]:

S × ⊗d−1x = λx, x ∈ S(n,F), λ ∈ F, S ∈ SdFn.(11)

Assume that F = R. Then the above equality is equivalent to (9). First assume that d is odd and x is an
eigenvector of S. Then −x is an eigenvector of S corresponding to −λ. Hence without loss of generality we
can consider only nonnegative eigenvalues of S. Second assume that d is even and x is an eigenvector of S.
Then −x is also eigenvector of S corresponding to λ.

A vector x ∈ S(n,C) and a scalar λ ∈ R that satisfy (9) are called the anti-eigenvector and anti-eigenvalue
of S ∈ SdCn. Note that if x is an anti-eigenvector and λ a corresponding anti-eigenvalue then ζx is also anti-
eigenvector with a corresponding anti-eigenvalue ελ, where ε = ±1 and ζd = ε. Hence, we can always assume
that each nonzero anti-eigenvalue is positive, and there are d different choices of ζ such that ζx ∈ span(x) is
an anti-eigenvector corresponding to a given positive anti-eigenvalue λ.

We now state the first main result of this paper, which gives the theoretical foundation for the computa-
tional methods of our paper.

Theorem 7. Let S ∈ SdFn \ {0} and d > 3. Associate with S the polynomial f(x) = S ×⊗dx ∈ P(d, n,F) \
{0}. Let F = 1

d∇f . Denote

fix(F) = {x ∈ Cn, F(x) = x}, afix(F) = {x ∈ Cn, F(x) = x̄},
the set of fixed and antifixed points of F in Cn respectively. Let ωd−2 = eπi/(d−2), ( ωd−2

d−2 = −1). Assume
that f ∈ P(d, n,R). Denote

fixR(F) =

{

fix(F) ∩ Rn if d is odd,

(fix(F) ∪ ω̄d−2fix(F)) ∩ Rn if d is even.

(1) Assume that F = R. Then

‖S‖σ,R = ‖f‖σ,R = max{ |f(x)|‖x‖d ,x ∈ fixR(F) \ {0}}.(12)

(2) Let F = C. Denote by F : Cn → Cn the polynomial mapping given by the equality F(x) = F(x̄).
Let H = F ◦ F. Then the set of fixed points of fix(H) = {x ∈ Cn,H(x) = x} contains afix(F).
Furthermore, x is a fixed point of H if and only if (x,y) ∈ Cn × Cn is a solution to the system:

F(x) − y = 0, F̄(y) − x = 0.(13)
8



Moreover

‖S‖σ = ‖f‖σ = max{ |f(x)|‖x‖d ,x ∈ fix(H) \ {0}}.(14)

(3) Assume that S ∈ SdCn is nonsingular. Then fix(F) and fix(H) have cardinalities (d − 1)n and
(d − 1)2n respectively, counted with multiplicities. The origin x = 0 is a fixed point of F and H

of multiplicity one. Let x ∈ fix(F) \ {0} and y ∈ fix(H) \ {0}. Then φx ∈ fix(F) \ {0} and

ψy ∈ fix(H) \ {0} if and only if φd−2 = 1 and ψ(d−1)2−1 = 1.

Proof. (1-2) Let
{

αR = sup{ |f(z)|
‖z‖d , z ∈ fixR(F) \ {0}},

αC = sup{ |f(z)|
‖z‖d , z ∈ afix(F) \ {0}}.

The characterization (8) yields that αF 6 ‖f‖σ,F. Corollary 6 claims that ‖S‖σ,F = |λ⋆|, where |λ⋆| is the
maximum of all |λ| satisfying (9). As f 6= 0 it follows that λ⋆ ∈ R \ {0}. From the discussion before this
theorem it follows that we can assume that λ∗ > 0 unless d is even and F = R.

Assume that u ∈ S(n,F) satisfies F(u) = λ⋆ū. (I.e. u satisfies (9) with λ = λ⋆). Then there exists

a positive t such that |λ⋆|td−1 = t. Let x = tu. Then F(x) = λ⋆

|λ⋆| x̄. First assume that λ⋆ > 0. Then

x ∈ afix(F). Furthermore, if F = R then x ∈ fix(F) ∩ Rn ⊆ fixR(F). Clearly, ‖S‖σ,F = |λ⋆| = |f(x)|
‖x‖d . Hence

‖S‖σ,F = αF in this case.
Second assume that F = R, d is even and λ⋆ < 0. Then F(x) = −x and x ∈ Rn. Define y = ωd−2x.

Then F(y) = y. Clearly ω̄d−2y = x ∈ Rn. Hence x ∈ fixR(F). As ‖S‖σ,R = |λ⋆| = |f(x)|
‖x‖d we deduce that

αR = ‖S‖σ,R. This show the characterization (12).
Assume that F(x) = x̄. Then

H(x) = F(F(x)) = F(x̄) = F(x) = x.

Hence afix(F) ⊆ fix(H). Similarly, x ∈ fix(H) if and only if (13) holds. (Set y = F(x).) Let β be the right
hand side of (14). By definition ‖f‖σ > β. As afix(F) ⊆ fix(H) it follows that αC 6 β. Hence ‖f‖σ = β and
(14) holds.
(3) Recall that fix(F) is the set of solutions of the system F(x)− x = 0. As d > 3 the highest homogeneous
part of this system is F(x) = S ×⊗d−1x. As S is nonsingular we deduce that F(x) = 0 has the only solution
x = 0. That is, the system F(x) − x = 0 does not have solutions at infinity. Therefore the Bezout theorem
yields that the number of solutions counting with multiplicities is (d − 1)n =

∏n
i=1 degFi. (See [23] for a

proof using degree theory.)
Observe next that 0 ∈ fix(F). As the Jacobian D(F(x) − x) is −I at x = 0 it follows that 0 is a fixed

point of multiplicity one. Assume that x ∈ fix(F) \ {0}. Then F(φx) = φd−1x = φd−2(φx). Hence φx is a
nonzero fixed point of F if and only if φd−2 = 1.

To show similar results for H we first have to show that H(x) = 0 has the only solution x = 0. As S is
nonsingular it follows that S̄ is nonsingular. Thus

H(x) = F̄(F(x)) = 0 ⇒ F(x) = 0 ⇒ x = 0.

As degHi = (d− 1)2 for i ∈ [n] we deduce the similar results for H. �

Thus our approach to compute the spectral norm of S is to compute the fixed points of F and H using
the available software as Bertini [6] for polynomial system of equations, and then use (12) or (14). Note that
to compute the fixed points of H we can use also the system (13).

In [37] the authors consider the dynamics of a special anti-holomorphic map of C of the form z 7→ z̄d + c.
They also note that the dynamics of the “squared” map is given by the holomorphic map z 7→ (zd + c̄)d + c.

Thus the dynamics of the maps x 7→ F(x) and its square - H are generalizations of the dynamics studied in
[37].

Suppose that F = C. Assume that x ∈ S(n,C) and λ ∈ C are an eigenvector and the corresponding
eigenvalue of S ∈ SdCn, i.e., (11) holds. Let ζ ∈ C, |ζ| = 1. Then ζx is an eigenvector of S with the
corresponding eigenvalue ζd−2λ. Assume that λ 6= 0. For d > 2 we can choose ζ of modulus 1 such that
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ζd−2λ = |λ| > 0. Furthermore, the number of such choices of ζ is d − 2. In this context it is natural to
consider the eigenspace span(x), to which correspond a unique eigenvalue λ > 0.

It is shown in [8] that the number of different eigenspaces of generic S ∈ SdCn is

c(2, n) = n, c(d, n) =
(d− 1)n − 1

d− 2
for d > 3.

For d > 3 and a nonsingular S this result follows from part (3) of Theorem 7, where we count the number of
nonzero fixed points of F. That is, each S ∈ SdCn\V (d, n) has the above number of eigenspaces span(x),x ∈
S(n,C). The obvious question is: what is the maximal number of eigenspaces span(x) corresponding to
x ∈ S(n,R) for S ∈ SdRn \ V (d, n). Since S × ⊗dx has at least two critical points on S(n,R) for S 6= 0,
corresponding to the maximum and minimum values, it follows that S 6= 0 has at least one real eigenspace.
In [2] the authors study the average number of critical points of a random homogeneous function f(x) of
degree d, where its coefficients are independent Gaussian random variables.

Assume that d = 2. Then P(2, n,F) is the space of quadratic forms in n variables on F, which correspond
to the space of symmetric matrices S2Fn. That is f(x) = x⊤Sx, where S ∈ Fn×n is symmetric. For
F = R the critical points of f(x) correspond to the eigenvalues of S. For F = C recall Schur’s theorem:
There exists a unitary matrix U ∈ Cn×n such that U⊤SU = diag(a1, . . . , an), a1 > · · · > an > 0, where
diag(a1, . . . , an) ∈ S2Cn is a diagonal matrix with the diagonal entries a1, . . . , an. As Ū is unitary it follows
that ai = σi(S), i ∈ [n] are the singular values of S. Let U = [u1, · · · ,un]. Then SU = Ū diag(a1, . . . , an)
which is equivalent to Sui = aiūi, i ∈ [n], which is a special case of (9).

We now give an estimate of the number of different positive anti-eigenvalues for a nonsingular S ∈ SdCn.

Theorem 8. Assume that S ∈ SdCn is nonsingular. Then the number of positive anti-eigenvalues with cor-
responding anti-eigenspaces is finite. This number µ(S), counting with multiplicities, satisfies the inequalities

(d− 1)n − 1

d
6 µ(S) 6 (d− 1)2n − 1

(d− 1)2 − 1
=

n−1
∑

k=0

(d− 1)2k.

Proof. Assume that S ∈ SdCn is nonsingular. First suppose that d = 2. Schur’s theorem implies that the
number of different positive anti-eigenvalues of a complex symmetric matrix, which are the singular values
of S, is at most n. Hence our theorem holds.

Second suppose that d > 2. Assume that x ∈ S(n,C) is an anti-eigenvector with corresponding anti-
eigenvalue λ > 0. As in the proof of Theorem 7 we can assume that y ∈ afix(F) \ {0}. Recall that
afix(F) \ {0} ⊂ fix(H). Theorem 7 yields that fix(H) \ {0} has cardinality (d − 1)2n − 1. The subspace

spanned by y ∈ fix(H) \ {0} contains (d − 1)2 − 1 fixed points corresponding to ψy, where ψ(d−1)2−1 = 1.
This shows the upper bound in (15).

We now show the lower bound using the degree theory as in [23]. Let µ = min{‖F‖, ‖x‖ = 1}. As F(x) =
0 ⇒ x = 0 it follows that µ > 0. Let Gt(x) = F(x) − t̄(x) for t ∈ [0, 1]. Then ‖Gt(x)‖ > µ‖x‖d − t‖x‖.In
particular, lim‖x‖→∞ ‖Gt(x)‖ = ∞. Hence Gt : Cn → Cn is a proper map. Let Cn ∪ {∞} be one point

compactification of Cn. So Cn ∪ {∞} is homeomorphic to the 2n dimensional sphere S2n. Thus Gt extends

to a continuous map Ĝt : S2n → S2n. Let deg Ĝt be the topological degree of Ĝt. The above arguments
so that this topological degree is constant for t ∈ [0, 1]. Hence deg Ĝ1 = deg Ĝ0 = deg F̂. The topological

degree F̂ is just the covering degree of the proper complex polynomial map F, which is (d − 1)n. Hence

the number of the antifixed points of F is at least deg Ĝ = (d − 1)n. As 0 is a simple fixed point of H,
0 is a simple zero of G. Therefore |afix(F) \ {0}| > (d − 1)n − 1. Recall that if x ∈ afix(F) \ {0} then
ζx ∈ afix(F) \ {0} for ζd = 1. This establishes the lower bound in (15). �

Consider the following example: f(x) =
∑n

i=1 x
d
i . Then F(x) = (xd−1

1 , . . . , xd−1
n )⊤. It is straightforward

to show that |afix(F)| = (d+1)n. Furthermore the number of positive eigenvalues of the corresponding S is
(d+1)n−1−1

d .
In what follows we will need the following observation:

Lemma 9. Assume that S ∈ SdFn \ {0}. Let F(z) = S × (⊗d−1z) and H = F̄ ◦F. Then

‖F(z)‖ 6 ‖S‖σ,F‖z‖d−1, ‖H(z)‖ 6 ‖S‖dσ,F‖z‖(d−1)2 , z ∈ Fn.
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For z ∈ S(n,F) satisfying |S × ⊗dz| = ‖S‖σ,F equality holds in the above inequalities. Suppose furthermore
that d > 2 and x ∈ Fn \ {0} is a fixed point of H. Then

‖x‖−(d−2) 6 ‖S‖σ,F,
and this inequality is sharp.

Proof. Since F and H are homogeneous maps of degree d− 1 and (d− 1)2 respectively, it is enough to prove
the first two inequalities of our lemma for z ∈ S(n,F). Assume that z ∈ S(n,F). Let w = S × ⊗d−1z.
First assume that w = 0. Then F(z) = H(z) = 0 and the first two inequalities of our lemma trivially hold.
Second assume that w 6= 0. Let u = 1

‖w‖w. Hence

‖F(z)‖ = |S × (u⊗ (⊗d−1z))| 6 ‖S‖σ,F.
This establishes the first inequality of our lemma. Clearly, ‖S̄‖σ,F = ‖S‖σ,F. Hence

‖H(z)‖ = ‖F̄(F(z))‖ 6 ‖S‖σ,F(‖F(z)‖)d−1 6 ‖S‖σ,F(‖S‖σ,F)d−1 = ‖S‖dσ,F.
This establishes the second inequality of our lemma.

Suppose that |S×⊗dz| = ‖S‖σ,F for z ∈ S(n,F). First assume that F = C. Hence there exists ζ ∈ C, |ζ| = 1
such that x = ζz satisfies (9) with λ = ‖S‖σ. Clearly ‖F(z)‖ = ‖F(x)‖ = λ = ‖S‖σ. Moreover

H(x) = F̄(λx̄) = λd−1F̄(x̄) = λdx = ‖S‖dσx.
Hence ‖H(z)‖ = ‖H(x)‖ = ‖S‖dσ.

Second assume that F = R. Then z ∈ S(n,R) is a critical point of S ×⊗dx on S(n,R). Corollary 6 yields
that S × ⊗d−1z = ±‖S‖σ,Rz. Hence ‖F(z)‖ = ‖S‖σ,R and ‖H(z)‖ = ‖S‖dσ,R.

Assume finally that H(x) = x,x 6= Fn \ {0}. The second inequality of our lemma yields ‖x‖ = ‖H(x)‖ 6

‖S‖dσ,F‖x‖(d−1)2. Hence ‖S‖dσ,F > ‖x‖−(d−1)2+1 = ‖x‖−d(d−2) which yields the third inequality of our

lemma. If x corresponds to the critical vector z ∈ S(n,F) with the eigenvalue λ satisfying |λ| = ‖S‖σ,F then

‖x‖−(d−2) = ‖S‖σ,F. �

5. Polynomial-time computability of the spectral norm of S ∈ SdFn for a fixed n

In this section we assume that d > 3 and S 6= 0. (For d = 2, (matrices), the spectral norm is the maximal
singular value of the matrix, which is polynomially computable.)

Furthermore we are going to use the results of Appendix 2.

Definition 10. A symmetric tensor S ∈ SdCn, and the corresponding polynomial f(x) = fS(x) = S ×⊗dx,
are called strongly nonsingular if the following conditions hold: First, d > 3 and S is nonsingular, i.e. the
hypersurface f = 0 is smooth in PCn. Second, the x1 coordinates of (d− 1)2n solutions (x,y) of the system
(13) are distinct.

Lemma 11. The set of f ∈ P(d, n,C) which are not strongly nonsingular, denoted as Pss(d, n,C), has the
following structure: Identify P(d, n,C) with CJ(d,n) and Pss(d, n,C) with Vss(d, n). Then Vss(d, n) is a
disjoint union of hyperdeterminant variety H(d, n) and the set V′

ss(d, n) ⊂ CJ(d,n) which is characterized as
follows. There exists a bihomogeneous polynomial p(u,v), (u,v) ∈ CJ(d,n) × CJ(d,n) of total degree 2((d −
1)2n − 1) and of degree (d − 1)2n − 1 in u and v such that u ∈ V′

ss(d, n) if and only if u 6∈ H(d, n) and
p(u, ū) = 0.

Proof. Let f, g ∈ P(d, n,C). Define F = 1
d∇f,G = 1

d∇g. Consider a generalization of the system (13):

F(x) − y = 0, G(y) − x = 0.(15)

As d > 3, the homogeneous part of the above system, i.e., the system (40), F(x) = 0,G(y) = 0 has a unique
solution x = y = 0 if and only if f = 0 and g = 0f are smooth hypersurfaces. That is, f, g 6∈ H(d, n). In this
case the system (15) has D = (d − 1)2n isolated solutions, counting with multiplicities, and no solution at
infinity. (See Appendix 2). Thus if we find the reduced Gröbner basis with respect to the order

x1 ≺ · · · ≺ xn ≺ y1 ≺ · · · ≺ yn(16)

then the last polynomial is a monic polynomial p1(x1) of degree (d− 1)2n. We now show an example where
p1(x1) has (d− 1)2n distinct roots.
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Let f = g = h, where h =
∑n

i=1 x
d
i . Then the system (15) is the system (13). It splits to n systems in

(xk, yk) for k ∈ [n]:

xd−1
k = yk, yd−1

k = xk, k ∈ [n].

Note that this system has D distinct solutions. However x1 in these solutions has only (d − 1)2 distinct
values: 0, and (d − 1)2 − 1 roots of unity. We now show how perturb h so that the x1-coordinates of
the solutions of (15) for f = g = h are distinct. Let a = (a2, . . . , an)

⊤ ∈ Cn−1 and denote ha(x) =
(x1 +

∑

j=2 ajxj)
d +

∑n
i=2 x

d
i . It is straightforward to check that ha is nonsingular. Assume that a is

close to 0. Then the D solutions of (15) corresponding to ha are close the D distinct solutions of (15)
corresponding to h0. In particular each solution of of (15) corresponding to ha is analytic in a in the
neighborhood of a = 0. It is left to show that we can choose a close to 0 such that x1(a) are all distinct.
Let (xl(a),yl(a)) = (x1,l(a), . . . , xn.l(a), y1,l(a), . . . , yn,l(a))

⊤ be the l-analytic solution of the system (15)
corresponding to ha for l ∈ [D]. Clearly if x1,p(0) 6= x1,q(0) then x1,p(a) 6= x1,q(a) for a small a. Thus we

need to study the case where x1,p(0) = x1,q(0) = ζ. That is, ζ is a root of z(d−1)2 − z = 0.
The two equations of the system (15) corresponding F1(x) − y1 = 0 and G1(y)− x1 = 0 is

(x1 +
∑

j=2

ajxj)
d−1 − y1 = 0, (y1 +

∑

j=2

ajyj)
d−1 − x1 = 0.

To find the ∇x1,p(0) we can assume that xi,l(a) = xi,l(0) and yi,l(a) = yi,l(0) for i > 2. Observe that

yi,l(0) = xd−1
i,l (0) for i ∈ [n] and l ∈ [D]. First assume that x1,p(0) = ζ 6= 0. Hence ζ(d−1)2−1 = 1. Thus

x1,p(a) = (y1,p(a) +

n
∑

j=2

ajyp,j(a))
d−1 = yd−1

1,p (a) + (d− 1)ζd−2
n
∑

j=2

ajyj,p(0) +O(‖a‖2) =

(x1,p(a) +

n
∑

i=2

aixj,p(a))
(d−1)2 + (d− 1)ζd−2

n
∑

j=2

ajx
d−1
j,p (0) +O(‖a‖2) =

x
(d−1)2

1,p (a) + (d− 1)2ζ(d−1)2−1
n
∑

j=2

ajxj,p(0) + (d− 1)ζd−2
n
∑

j=2

ajx
d−1
j,p (0) +O(‖a‖2).

As ζ(d−1)2−1 = 1 we obtain the equation

x1,p(a) − x1,p(a)
(d−1)2 = (d− 1)

n
∑

j=2

((d− 1)xj,p(0) + ζd−2xd−1
j,p (0))aj +O(‖a‖2).

Hence

∇x1,p(0) = − d− 1

d(d− 2)

n
∑

j=2

((d− 1)xj,p(0) + ζd−2xd−1
j,p (0))aj .

Recall that xj,p(0)
(d−1)2 = xj,p(0) for j > 2 and p ∈ [D]. Hence, for generic real a2, . . . , an the values of

∇x1,p(0) are disrinct for all solution xp(a) such that x1,p(0) = ζ 6= 0.
Assume ζ = 0. The above arguments yield that ∇x1,p(a) = 0. Similarly, ∇y1,p(a) = 0. Hence the

power series of x1,p(a) and x1,p(a) start from at least a quadratic polynomial. As x1,p(a) = (y1,p(a) +
∑n

j=1 ajyj,p(a))
d−1 we deduce that the power series of x1,p(a) start with a homogeneous polynomial of

degree d − 1 of the form (
∑n

j=2 ajyj,p(0))
d−1. Recall that y

(d−1)2

j,p = yj,p(0) for j > 2 and p ∈ [D]. Hence

for generic real a2, . . . , an all polynomials (
∑n

j=2 ajyj,p(0))
d−1 are different. Hence for a small real generic

values of a2, . . . , an we have that p1(x1) have D distinct roots. (Note that x1 = 0 is always a root of p1(x1).)
Assume that f, g ∈ P(n, d,C) are represented by u,v ∈ CJ(d,n). Suppose that u,v 6∈ H(d, n). Then

p1(x1) is a polynomial of degree D. Its coefficients are rational functions in u,v. By multiplying p1(x1)
by a corresponding polynomial in u,v we obtain a polynomial P1(x1) of degree D whose coefficients are
polynomials in u,v each one of degree D. P1(x1) will not have D distinct roots if and only if the discriminant
of P1(x1) is zero. This discriminant is a polynomial p(u,v) of degree 2(D − 1). It is not hard to see that
p(u,v) is a bihomogeneous polynomial in (u,v) of degree D − 1 in u and v respectively.
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Observe next that the system (13) corresponds to a point (u, ū). For a real u the system (15) corresponds
to f = g. We showed that for a generic choice of u p(u,u) 6= 0. Thus Vss(d, n) = H(d, n) ∪V′

ss(d, n), where
V′

ss(d, n) = {u ∈ CJ(d,n),u /∈ H(d, n), p(u, ū) = 0}. �

Let i =
√
−1 ∈ C, i.e., i2 = −1. Denote by Z[i] = Z + iZ ⊂ C the integral domain of Gaussian integers,

and by Q[i] the field of Gaussian rationals. Let Zn ⊂ Rn and Z[i]n ⊂ Cn be the Z and Z[i] modules of vectors
with integer and Gaussian integer coordinates respectively. We now give an upper bound on the complexity
of finding the spectral norm ‖S‖σ, assuming first that S is strongly nonsingular and the entries of S are
Gaussian rationals, i.e., S ∈ SdQ[i]n. (Note that the assumption that S is strongly nonsingular yields that
S 6= 0.) Equivalently, we can assume that S = 1

N T , where T is a symmetric tensor with Gaussian integers

entries T ∈ SdZ[i]n and N ∈ N. Thus it is enough to estimate the spectral norm of T . We identify T with
f(x) = T × (⊗dx). We assume that each coefficient fj in (4) is aj + ibj, where aj, bj ∈ Z and |aj|, |bj| 6 2τ

for each j ∈ J(d, n) for a given integer M ∈ N.
Next we compute F = (F1, . . . , Fn) = 1

d∇f . As F = T × ⊗d−1x, it follows that the coefficient of each
monomial in the coordinates of F is a Gaussian integer. Hence the bit length of an integer coefficient is τ .
As T is strictly nonsingular we deduce that the system (13) has exactly D = (d − 1)2n simple solutions.
Furthermore, after finding the reduced Gröbner basis with respect to the lexicographical order (16) we have
the conditions of Lemma 4, the Shape Lemma, in Appendix 2. That is, the reduced Gröbner basis is of the
form

p1(x1), x2 − p2(x1), . . . , xn − pn(x1), y1 − pn+1(x1), . . . , yn − p2n(x1).

The degree of p1(x1) is D, and p1(x1) has simple zeros. The degree of each pi(x1) is less than D for i > 1.
The solutions of the system (13) are parametrized by the roots x1 of p1(x1). They are of the form (x,y),
where x = (x1, p2(x1), . . . , pn(x1)

⊤ and y = (pn+1(x1), . . . , p2n(x1))
⊤. Recall that the fixed points of H are

the x part of the solutions (x,y) of the solutions of (13). Let

X = {(x1, p2(x1), . . . , pn(x1))⊤ ∈ Cn, p1(x1) = 0}.(17)

Thus X is a parametrization of all fixed points of H for strongly nonsingular T ∈ SdCn. In particular,
|X | = D. Lemma 5 of Appendix 2 gives the bit complexity of computing the coordinate of each solution
(x,y) of (13) with precision 2−ℓ, for a given ℓ ∈ N.

Recall that for a nonzero fixed point x of H corresponding to S the third inequality of Lemma 9 holds.
As ‖T ‖σ 6 ‖T ‖ we obtain that a nonzero fixed point of H corresponding to T satisfies the inequality

‖x‖ > ‖T ‖− 1
d−2 . Hence Lemma 9 yields

(18) ‖T ‖σ = max{‖x‖−(d−2), x ∈ X, ‖x‖ > ‖T ‖− 1
d−2 }, f(y) = T × (⊗dx).

Theorem 12. Let d > 3 be an integer. Assume that T ∈ SdZ[i]n, and each coordinate of T is bounded
above by 2τ for some τ ∈ N. If T is strongly nonsingular then for a given e ∈ N we can compute rational
L(T ) satisfying

|‖T ‖σ − L(T )| 6 2−e‖T ‖σ.
The bit complexity of computing L(T ) is Õ

(

(τ + e)d8n
)

Proof. Recall that x ∈ X \ {0} satisfies the inequality ‖x‖ > ‖T ‖− 1
d−2 . As T ∈ SdZ[i]n \ {0} it follows that

1 6 ‖T ‖ 6

√

(

n+ d− 1

d

)

2τ 6 (d+ 1)(n−1)/22τ .

We compute the coordinates of x ∈ X \ {0} with precision 2−(e+k), where k ∈ N is specified below. This will
give an approximation x̂(x) = (x̂1, . . . , x̂n)

⊤ of x. Observe that ‖x− x̂(x)‖ 6
√
n2−(e+k). We assume that

√
n2−k 6 2−d(d+ 1)−(n−1)/2(d−2)2−τ/(d−2).

To satisfy the above inequality we choose

k = ⌈d+ (1/2) log2 n+
n− 1

2(d− 2)
log2(d+ 1) + τ/(d− 2)⌉.(19)
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Hence for any nonzero fixed point one has the inequality

‖x− x̂(x)‖ 6
√
n2−(e+k) 6 2−(e+d)‖T ‖− 1

d−2 6 2−(e+d)‖x‖.

In particular (1− 2−(e+d))‖x‖ 6 ‖x̂(x)‖ 6 (1 − 2−(e+d))‖x‖. Let

L(T ) = max{‖x̂(x)‖−(d−2),x ∈ X \ {0}}.

We claim that the inequality (19) holds. For a nonzero fixed point ofH we estimate |‖x‖−(d−2)−‖x̂(x)‖−(d−2)|.
First observe that

|‖x‖d−2 − ‖x̂(x)‖d−2| 6 |‖x‖ − ‖x̂(x)‖|(d− 2)max(‖x‖d−3, ‖x̂(x)‖d−3) 6

2−(e+d)(d− 2)(1 + 2−(e+d))d−2‖x‖d−2.

Hence

|‖x‖−(d−2) − ‖x̂(x)‖−(d−2)| = |‖x‖d−2 − ‖x̂(x)‖d−2|‖x‖−(d−2)‖x̂(x)‖−(d−2) 6

2−(e+d)(d− 2)(1 + 2−(e+d))d−2(1 − 2−(e+d))−(d−2)‖x‖−(d−2).

As e > 1and d > 3 it follows that (1 + 2−(e+d))/(1 − 2−(e+d)) 6 17/15. It is straightforward to show that
(d − 2)(1 + 2−(e+d))d−2(1 − 2−(e+d))−(d−2) 6 2d for an integer d > 3. Hence|‖x‖−(d−2) − ‖x̂(x)‖−(d−2)| 6
2−e‖x‖−(d−2).

First choose a fixed point x of satisfying ‖x‖−(d−2) = ‖T ‖σ. Therefore L(T ) > (1 − 2−e)‖T ‖σ. Assume
that L(T ) = ‖x̂(x)‖−(d−2) for some x ∈ X \ {0}. Then L(T ) 6 (1 + 2−e)‖x‖−(d−2) 6 (1 + 2−e)‖T ‖σ. Thus
|‖T ‖σ − L(T )| 6 2−e‖T ‖σ.

It is left to show that the bit complexity of computing L(T ) is Õ
(

(τ + e)d8n
)

. This follows from the proof
of Lemma 5 in Appendix 2. First note that in Lemma 5 m = 2n. Next observe that the value of ℓ in Lemma
5 is e+ k, where k is given by (19). �

We now present the main result of this section:

Theorem 13. Let d > 3 be an integer. Assume that J ∈ SdZ[i]n is a strongly nonsingular tensor that
satisfies ‖J ‖ 6 2c, c ∈ N. Suppose that T ∈ SdZ[i]n, and each coordinate of T is bounded above by 2τ , τ ∈ N.
For a given b, e ∈ N we can compute L(T ) satisfying

|‖T ‖σ − L(T )| 6 2−e‖T ‖,

with probability greater than 1− (d−1)−2nb. The bit complexity of computing L(T ) is Õ
(

(τ +c+2nb log2(d−
1) + e)d8n

)

.

Proof. Clearly, it is enough to assume that T 6= 0. Lemma 11 yields that the set of strongly singular
symmetric tensors is the zero set of ∆(u)p(u, ū), where u ∈ CJ(d,n) represents the polynomial f(x) = S×⊗dx,
for S ∈ SdCn. Here ∆(u) is a polynomial of degree n(d−1)n−1, and ∆(u) = 0 is the hyperdeterminant variety.
The polynomial p(u, ū) is a polynomial of degree 2((d−1)2n−1). Let g(x) = J ×⊗dx. Denote by g ∈ CJ(d,n)

the vector corresponding to g(x). We now consider the affine line of polynomials ft(x) = tf(x) + g(x) for
t ∈ R. The value of the polynomial ∆p on tf+g is q(t) = ∆(tf+g)p(tf+g, tf̄+ḡ). As J is strongly nonsingular
q(0) 6= 0. Hence q(t) is a nonzero polynomial of degree at most n(d− 1)n−1 + 2((d− 1)2n − 1) < 3(d− 1)2n.

Let A = {M,M + 2, . . . ,M +N − 1} ⊂ Z. We assume that M = 2c+e+2 and N = 3(d− 1)2n(b+1). The
cardinality of A is N . For each a ∈ A, let us consider the tensor T (a) = aT +J . Note q(t) vanishes at most
at n(d− 1)n−1 + 2((d− 1)2n − 1) points of A. Choose a random a ∈ A from the uniform distribution on A.
Then with probability greater than 1− (d− 1)−2nb the tensor T (a) is strongly nonsingular.

Let L(T (a)) be the approximation given by Theorem 12, where we replace e by e + 2. We now choose
L(T ) = 1

aL(T (a)). We claim that |‖T ‖σ − L(T )| 6 2−e‖T ‖. Indeed, the inequality of Theorem 12 yields

|‖T +
1

a
J ‖σ − L(T )| 6 2−e

4
‖T +

1

a
J ‖σ.
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As T ∈ SdZ[i] \ {0} it follows that ‖T ‖ > 1. Since a > 2c+e+2 and ‖J ‖ 6 2c we deduce

|‖T ‖σ − L(T )| 6 |‖T +
1

a
J ‖σ − L(T )‖+ |‖T ‖σ − ‖T +

1

a
J ‖σ‖ 6

2−(e+2)‖T +
1

a
J ‖σ +

1

a
‖J ‖σ 6 2−(e+2)‖T ‖σ + (2−(e+2) + 1)

1

a
‖J ‖σ 6

2−(e+2)(‖T ‖σ + 2−(e+2) + 1) 6 2−(e+2)(‖T ‖+ (2−(e+2) + 1)‖T ‖) < 2−e‖T ‖.
It is left to show that the bit complexity of finding L(T ) is Õ

(

(τ + c+2nb log2(d− 1)+ c)d8n
)

. This follows

from Theorem 12. Indeed observe that each entry by T (a) is bounded by 2τ+c+2(d− 1)2n(b+1). �

We remark that we can find a strongly nonsingular J ∈ SdZn as follows: We choose a tensor of the form
given in the proof of Lemma 11 by choosing a2, . . . , an ∈ Z at random.

We now give a similar complexity result for an approximation of ‖T ‖σ,R:

Theorem 14. Let d > 3 be an integer. Suppose that T ∈ SdZn, and each coordinate of T is bounded above
by 2τ , τ ∈ N. For a given e ∈ N we can compute L(T ) that satisfies the following conditions:

(1) Assume that T is strongly nonsingular. Then |‖T ‖σ,R − L(T )| 6 2−e‖T ‖σ,R. The bit complexity of

computing L(T ) is Õ
(

(τ + e)d4n
)

.

(2) Assume that J ∈ SdZn is a strongly nonsingular tensor that satisfies ‖J ‖ 6 2c, c ∈ N. For a given
b ∈ N we can compute L(T ) with probability greater than 1 − (d − 1)−2nb that satisfies |‖T ‖σ,R −
L(T )| 6 2−e‖T ‖. The bit complexity of computing L(T ) is Õ

(

(τ + c+2nb log2(d−1)+e)d4n
)

. With
probability

Proof. We point out briefly the corresponding modifications of the proofs of Theorems 12 and 13 respectively.
Let f(x) = T × ⊗dx. First observe that F̄ = F. Hence any fixed point of F is a fixed point H.

First assume that T is nonsingular. Then x1 coordinates of (d−1)n fixed points of F are pairwise distinct.
We now find the Gröbner basis of the system F(x)− x = 0 with respect to the order x1 ≺ · · · ≺ xn. It is of
the form p1(x1), x2−p2(x1), . . . , xn−pn(x1), where p1, . . . , pn ∈ R[x1]. Here deg p1 = D, where D = (d−1)n.
Furthermore p1(x1) has D distinct roots. Recall that deg pi < D for i > 1. The set of the fixed points of F
is given by (17).

Recall that ‖T ‖σ,R can be computed using (12). Thus we need to determine fixR(F) with precision 2e+k,
as in the proof of Theorem 12. This can be done as follows. First consider XR = X ∩ Rn. For each
approximation of a root of x1 with precision 2e+k, we check if the disk |z − x1| < 2e+k contains a real
root of p1(x1). If yes, we replace x1 by x̃1 ∈ R. Then a real approximation of the real fixed point is
(x̃1, p2(x̃1), . . . , pn(x̃n))

⊤. Similarly we can find a real approximation of ω̄d−2X ∩ Rn for an even n. (See
Theorem 7.) Now we proceed as in the proof of Theorem 12.

For a general T ∈ SdZn we repeat the arguments of the proof of Theorem 13 taking into account the
above results for a strongly nonsingular T ∈ SdZn. �

We conclude this section with the following NP-hardness result for an arbitrary approximation of the
spectral norm of a real or complex valued homogeneous quartic polynomial in n variables.

Theorem 15. Let A = [Ai,j ] be an n× n nonzero symmetric matrix with {0, 1} entries and zero diagonal.
Set

fA =

n
∑

i=j=1

Ai,jx
2
i x

2
j .

(1) Let 2e be the number of nonzero elements in A. Then

‖fA‖ =

√
2e√
3
,

√
2√
3
6 ‖fA‖ 6

√

n(n− 1)√
3

< n,

where ‖fA‖ is the norm defined in Lemma 1.
(2) Equality

‖fA‖σ,R = ‖fA‖σ = 1− 1/κ(A)

holds, where κ(A) is an integer in the set [n].
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(3) It is NP-hard to compute an approximation of ‖fA‖σ within relative precision δ < 1
2n2(n+1) with

respect to ‖fA‖.

Proof. (1) Assume that fA corresponds to S = [Sk1,k2,k3,k4 ] ∈ S4Cn. Then Sk1,k2,k3,k4 = 1/3 if the multiset
{k1, k2, k3, k4} is of the form {i, i, j, j}, i < j and Ai,j = Aj,i = 1. (The number of nonzero Sk1,k2,k3,k4

corresponding to {i, i, j, j} is 4!/(2!)2 = 6.) Otherwise Sk1,k2,k3,k4 = 0. Hence ‖fA‖ = ‖S‖ =
√
2e/

√
3. The

second inequality follows straightforward.
(2) The matrix A is the adjacency matrix of the following simple undirected graph G = (V,E): Here V = [n]
and the edge (i, j) is in E if and only if Ai,j = 1. Let κ(A) be the cardinality of the maximal clique in G,
(the clique number of G). The equality ‖fA‖σ,R = 1− 1/κ(A) is [26, (8.2)]. As S has nonnegative entries it
follows that ‖fA‖σ,R = ‖fA‖σ [26].
(3) Since ‖fA‖σ = 1 − 1/κ(A), an approximation of ‖fA‖σ within relative precision ε < 1

2n2(n+1) with

respect to ‖fA‖ determines the clique number. However, it is an NP-complete problem to determine the
clique number of a simple graph [40]. �

6. Polynomial-time computability of spectral norm of symmetric d-qubits

In this section we improve the results of the previous section for the case n = 2. We parametrize
S = [Si1,...,id ] ∈ SdF2 by s = (s0, . . . , sd) as follows: Si1,...,id = sk if exactly k indices from the multiset

{i1, . . . , id} are equal to 2. Note that exactly
(

d
k

)

entries of S are equal to sk. Hence ‖S‖ =
√

∑d
k=0

(

d
k

)

|sk|2.
The following lemma is a restatement of some results of Lemma 1.

Lemma 16. Let S ∈ SdC2 and associate with S the vector s = (s0, . . . , sd)
⊤ ∈ Cd+1. Denote

(20) φ(z) =

d
∑

j=0

(

d

j

)

sjz
j.

Then

(1) Let f(x) = S × ⊗dx and S × ⊗d−1x = F(x) = (F1(x), F2(x))
⊤, where x = (x1, x2)

⊤. Then

f(x) =

d
∑

j=0

(

d

j

)

sjx
d−j
1 xj2 = xd1φ(

x2
x1

),

F1(x) =

d−1
∑

j=0

(

d− 1

j

)

sjx
d−1−j
1 xj2 =

1

d

∂f

∂x1
, F2(x) =

d−1
∑

j=0

(

d− 1

j

)

sj+1x
d−j−1
1 xj2 =

1

d

∂f

∂x2
.

(2) For s = (0, . . . , 0, sd)
⊤ we have ‖S‖σ,F = |sd|.

Proof. (1). Use equalities (4) and (5).
(2). Assume that s = (0, . . . , 0, sd)

⊤. Then S × ⊗dx = sdx
d
2. Hence ‖S‖σ,F = |sd|. �

The next proposition studies the fixed points of F and H for the case n = 2.

Proposition 17. Suppose that the assumptions and notations of Lemma 16 hold. Assume that d > 3 and

(21) s 6= (0, . . . , 0, sd)
⊤.

(1) Define polynomials p(z), q(z) and the rational function r(z) as follows

p(z) =

d−1
∑

j=0

(

d− 1

j

)

sj+1z
j, q(z) =

d−1
∑

j=0

(

d− 1

j

)

sjz
j, r(z) =

p(z)

q(z)
.

Then

(22) p(z) =
1

d
φ′(z), q(z) = φ(z)− 1

d
zφ′(z), r(z) =

φ′(z)

dφ(z)− zφ′(z)
.
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(2) Suppose that F(x) = (x1, x2)
⊤ 6= 0. First assume that x1 6= 0. Let z = x2/x1. Then

(23) zq(z)− p(z) = 0 and q(z) 6= 0.

Vice versa, for each z ∈ C satisfying the above conditions there are exactly d− 2 fixed points of F of
the form (x1, x1z), where x1 satisfies xd−2

1 = 1
q(z) .

Second assume that x1 = 0. Then sd−1 = 0 and sd 6= 0. Vice versa, if sd−1 = 0 and sd 6= 0 then

there are exactly d− 2 nonzero fixed points of the form (0, x2), where x2 satisfies xd−2
2 = 1/sd.

(3) Suppose that F(x) = (x̄1, x̄2) 6= 0. First assume that x1 6= 0. Let z = x2/x1. Then

(24) z̄q(z)− p(z) = 0

and q(z) 6= 0. Vice versa, for each z ∈ C satisfying the above conditions there are exactly d antifixed

points of F of the form (x1, x1z), where x1 satisfies x1 = ζ
|q(z)|1/(d−2) and ζd = 1.

Second assume that x1 = 0. Then sd−1 = 0 and sd 6= 0. Vice versa, if sd−1 = 0 and sd 6= 0 then

there are d nonzero fixed points of the form (0, ζ
|sd|1/(d−2) ) and ζ

d = 1.

(4) Let

p̄(z) =

d−1
∑

j=0

(

d− 1

j

)

s̄j+1z
j, q̄(z) =

d−1
∑

j=0

(

d− 1

j

)

s̄jz
j, r̄(z) =

p̄(z)

q̄(z)
, g(z) = r̄(r(z)).

Then g(z) = u(z)
v(z) , where

u(z) =

d−1
∑

j=0

(

d− 1

j

)

s̄j+1

(

d−1
∑

k=0

(

d− 1

k

)

sk+1z
k
)j(

d−1
∑

k=0

(

d− 1

k

)

skz
k
)d−1−j

,(25)

v(z) =

d−1
∑

j=0

(

d− 1

j

)

s̄j
(

d−1
∑

k=0

(

d− 1

k

)

sk+1z
k
)j(

d−1
∑

k=0

(

d− 1

k

)

skz
k
)d−1−j

.(26)

Suppose that F(x) = (x̄1, x̄2)
⊤ 6= 0 as in (3). Assume that x1 6= 0. Then each solution of (24)

satisfies

(27) zv(z)− u(z) = 0

and v(z) 6= 0. This is a polynomial equation of degree at most (d− 1)2 + 1.

Proof. (1) The assumption s 6= (0, . . . , 0, sd)
⊤ is equivalent to the assumption that the polynomial q(z) is not

zero identically. Assume that x1 6= 0. Let z = x2

x1
. Lemma 16 yields: F2(x1,x1)

xd−1
1

= p(z) and F1(x1,x1)

xd−1
1

= q(z).

Recall that

dF2 =
∂f

∂x2
=
∂(xd1φ(

x2

x1
))

∂x2
= xd−1

1 φ′(
x2
x1

),

dF1 =
∂f

∂x1
=
∂(xd1φ(

x2

x1
))

∂x1
= dxd−1

1 φ(
x2
x1

)− x2x
d−2
1 φ′(

x2
x1

).

These equalities yield (22).

(2) Assume that F(x) = (x1, x2)
⊤ 6= 0. Suppose first that x1 6= 0. Then xd−1

1 q(z) = F1(x) = x1 and

xd−1
1 p(z) = F2(x) = x2. As x1 6= 0 it follows that q(z) 6= 0. Divide the second equality by the first one to

deduce (23). Note that xd−2
1 = 1

q(z) .

Assume that z ∈ C satisfies (23). Suppose furthermore that xd−2
1 = 1

q(z) . Let x = (x1, x1z)
⊤. Then

F1(x) = xd−1
1 q(z) = x1, F2(x) = xd−1

1 p(z) = xd−1
1 zq(z) = xd−1

1 (x2/x1)q(z) = xd−2
1 q(z)x2 = x2.

Hence each z that satisfies (23) gives rise to exactly d− 2 distinct nonzero fixed points of F.

Assume that x1 = 0. Hence x2 6= 0. Note that F1(x) = sd−1x
d−1
2 . As F1(x) = x0 = 0 we deduce that

sd−1 = 0. Clearly, F2(x) = sdx
d−1
2 = x2. As x2 6= 0 it follows that sd 6= 0.

Suppose that sd−1 = 0 and sd 6= 0. Then all nonzero fixed points of F of the form (0, x2)
⊤ are exactly

those x2 satisfying xd−2
2 = 1/sd.
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(3) The proof of this part is very similar to the part (2) and we leave it to the reader.
(4) From the definitions of p(z), q(z), p̄(z), q̄(z), r̄(z) and g(z) we deduce straightforward the identities (25)
and (26). Let

u(z) =

(d−1)2
∑

k=0

ukz
k, v(z) =

(d−1)2
∑

k=0

vkz
k.

Then

u(d−1)2 =

d−1
∑

j=0

(

d− 1

j

)

s̄j+1s
j
ds

d−1−j
d−1 , v(d−1)2 =

d−1
∑

j=0

(

d− 1

j

)

s̄js
j
ds

d−1−j
d−1 .

Hence the polynomial zv(z)−u(z) is of degree at most (d− 1)2+1. Suppose x = (x1, x2)
⊤ ∈ fix(H), x1 6= 0:

F(F(x)) = x. Since we assumed that x1 6= 0 it follows that

u(z) =
F̄2(F(x))

x
(d−1)2

1

, v(z) =
F̄1(F(x))

x
(d−1)2

1

= x
−(d−1)2+1
1 6= 0.

Therefore

r̄(r(z)) =
F̄2(F(x))x

−(d−1)2

1

F̄1(F(x))x
−(d−1)2

1

=
x2
x1

= z.

This yields (27), which is a polynomial equation of degree at most (d− 1)2 + 1. �

The following theorem gives much more efficient way to compute the spectral norm of symmetric qubits
than the general methods suggested in §5.
Theorem 18. Let S ∈ SdC2, d > 2 and associate with S the vector s = (s0, . . . , sd)

⊤ ∈ Cd+1. Let φ(z) be
given by (20). Assume the notations of Proposition 17. Then

(1) The polynomial zv(z)− u(z) is a zero polynomial if and only if one of the following conditions hold.
Either

s = A(δ1(k+1), . . . , δ(d+1)(k+1))
⊤ for k ∈ [d− 1], (f(x) = A

(

d

k

)

xd−k
1 xk2),

where A is a nonzero scalar constant and δij is Kronecker’s delta function. For this S ∈ SdF2 we
have

(28) ‖S‖σ,F = |A|
(

d

k

)

(

1− k

d

)
d−k
2
(k

d

)
k
2 .

Or S has corresponding φ given by

φ(z) = A(z + a)p(z + b)d−p, A 6= 0,(29)

a = e−θic, b = −e−θic−1, c ∈ R \ {0}, θ ∈ R, p ∈ [d− 1].

Assume that S ∈ SdC2 corresponds to φ is of the form (29). Then ‖S‖σ can be computed to an
arbitrary precision as explained in §7.

(2) Let

R1 = {z ∈ C, zv(z)− u(z) = 0}, R′
1 = R1 ∩ R.

Suppose that S ∈ SdC2 is not of the form given in (1). (Hence the set R1 is finite.) Then ‖S‖σ has
the following maximum characterization:

‖S‖σ = max

{

|sd|,max{ |φ(z)|
(1 + |z|2) d

2

, z ∈ R1}
}

.(30)

(3) Assume that S ∈ SdR2. Let

R = {z ∈ C, zq(z)− p(z) = 0}, R′ = R ∩ R

Then zq(z)− p(z) is a zero polynomial if and only if d is even and φ(z) = A(z2 +1)d/2. In this case
‖S‖σ,R = |A|.
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Assume that φ(z) is not of the form A(z2 + 1)d/2. Then ‖S‖σ,R has the following maximum
characterizations:

‖S‖σ,R = max

{

|sd|,max{ |φ(z)|
(1 + |z|2) d

2

, z ∈ R′}
}

.(31)

Proof. (1) The analysis of the exceptional cases is given in §7.
(2) Assume that s = (s0, . . . , sd)

⊤ ∈ Cd+1 is the vector corresponding to S = [Si1,...,id ] ∈ SdC2. Let ω be
the righthand side of (30). We claim that Banach’s characterization (7) yields that ω 6 ‖S‖σ. Indeed,
‖S‖σ > |S × (⊗d(0, 1)⊤)| = |S2,...,2| = |sd|. Assume now that x = (x1, x2)

⊤ and x1 6= 0. Let z = x2/x1.

Then |S × (⊗dx)|/‖x‖d = |φ(z)|/(1 + |z|2)d/2. Hence ω 6 ‖S‖σ. As any maximal point of |S × (⊗dx)| on
S(2,C) is either ζ(0, 1)⊤, |ζ| = 1, or of the form ζ(1, z), ζ ∈ C \ {0}, where z ∈ R1 we deduce that ω = ‖S‖σ.
(3) Assume that zq(z)− p(z) is identically zero. The equalities (22) yield that

zφ = (1/d)(z2 + 1)φ′(z) ⇒ (d/2)(ln(z2 + 1))′ = (ln φ)′ ⇒ φ = A(z2 + 1)d/2.

As φ is a polynomial, it follows that d is even. Note that S × (⊗dx) = A(x20 + x21)
d/2. Hence ‖S‖σ,R = |A|.

Assume now φ is not of the form A(z2 + 1)d/2. Then the arguments of the proof of part (2) yield the
equality (31). �

We now give the complexity of finding the spectral norm of S ∈ SdZ[i]2 or S ∈ SdZ2.

Theorem 19. Let S ∈ SdZ[i]2, d > 2 and associate with S the vector s = (s0, . . . , sd)
⊤ ∈ Z[i]d+1. Assume

that |si−1| 6 2τ , i ∈ [d+ 1] for some τ ∈ N. Let φ(z) be given by (20). Assume the notations of Proposition
17. For a given e ∈ N we can compute a rational L(S) satisfying

|‖S‖σ,F − L(S)| 6 2−e‖S‖σ,F
under the following conditions:

(1) The tensor S ∈ SdZ[i]2 does not satisfy condition (1) of Theorem 18. The bit complexity of compu-

tation of L(S) for F = C is Õ(d2(d4 max(d2, τ) + e)).
(2) The tensor S has real integer entries. The bit complexity of computation of L(S) for F = R is

Ô(d(d2 max(d, τ) + e)).

Proof. (1) The assumption that condition (1) of Theorem 18 does not hold is equivalent to the assumption
that the polynomial h(z) = zv(z)−u(z) is a nontrivial polynomial, whose degreeD satisfiesD 6 (d−1)2+1 <
d2. (See part (4) of Proposition 17.) Observe that h(z) = zv(z) − u(z) ∈ (Z[i])[z], and its coefficients are
bounded by 22τ+2d. As in the proof of Theorem 12, we approximate the roots of h(z) with precision
2−(e+k), where k ∈ N is specified later. Now we repeat the arguments of Theorem 12 by replacing the
characterization (18) with (30). This yields the estimate |‖S‖σ − L(S)| 6 2−e‖S‖σ. The bit complexity

estimate Õ(d2(d4 max(d2, τ) + e)) follows from [46]. (See Appendix 2.)
(2) We now repeat the arguments of the proof of (1) with the following modifications. Assume that φ(z)
corresponds to S ∈ SdZn. Suppose first φ(z) = A(z2 + 1)d/2, where d is even. Then ‖S‖σ,R = |A| and let

L(S) = |A|. Assume now that φ(z) 6= A(z2 + 1)d/2. Then h(z) = zq(z) − p(z) is a nonzero polynomial of
degree D 6 d. We approximate the roots of h(z) to approximate the set R′ as given in part (3) of Theorem
18. We use characterization (31) to compute L(S). �

7. The exceptional cases

7.1. Analysis of the exceptional cases. In this subsection we discuss part (1) of Theorem 18. Assume
that g(z) = r̄(r(z)) = z identically. Recall that r(z) can be viewed as a holomorphic map of the Riemann
sphere. The degree of this map is δ ∈ N since g is not a constant map. Hence the degree of the map g is δ2.
Since g is the identity map, its degree is 1, it follows that δ = 1 and r(z) is a Möbius map:

r(z) =
az + b

cz + d
, ad− bc 6= 0.

Use the formula for r(z) in (22) to deduce

1

d
(log φ(z))′ =

1

d

φ′(z)

φ(z)
=

az + b

cz + d+ z(az + b)
.
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Let l be the number of distinct roots of φ(z). Then the logarithmic derivative of φ(z) has exactly l distinct
poles. Comparing that with the above formula of the logarithmic derivative of φ, we deduce that φ has either
one (possibly) multiple root or two distinct roots.

First assume that φ(z) has one root of multiplicity k: φ(z) = A(z + a)k for k ∈ [d]. Then

r(z) =
k

(d− k)z + da
, r̄(z) =

k

(d− k)z + dā
.

In this case g(z) ≡ z if and only if k ∈ [d− 1] and a = 0. Clearly, if φ(z) = Azk, where A 6= 0, then g(z) ≡ z.

In this case S × ⊗dx = A
(

d
k

)

xd−k
1 xk2 . To find ‖S‖σ,F we need to maximize |A|

(

d
k

)

|x1|d−k|x2|k subject to

|x1|2 + |x2|2 = 1. The maximum is obtained for |x1|2 = 1− k
d , |x2|2 = k

d . This proves (28).
Second assume that φ(z) has two distinct zeros: φ(z) = A(z + a)p(z + b)q, where a 6= b, p, q ∈ N and

p+ q 6 d. Then

r(z) =
(z + a)p−1(z + b)q−1

(

(p+ q)z + pb+ qa
)

(z + a)p−1(z + b)q−1
(

d(z + a)(z + b)− z
(

(p+ q)z + pb+ qa
)) .

Suppose first that p + q < d. In order that r(z) will be a Möbius transformation we need to assume that
(p + q)z + pb + qa divides (z + a)(z + b). This is impossible, since φ′ has exactly p + q − 2 common roots
with φ. Hence we are left with the case p+ q = d. In this case

r(z) =
dz + α

βz + dab
, α = pb+ qa, β = d(a+ b)− α, p+ q = d.

The assumption that g(z) ≡ z is equivalent to the following matrix equality

B̄B = γ2I2, B =

[

d α
β dab

]

γ 6= 0.

Taking the determinant of the above identity we deduce that γ4 = | detB|2 > 0. So γ2 = ±τ−2 for some
τ > 0. Let C = τB. Suppose first that γ2 = τ−2. Then C̄ is the inverse of C. So detC = δ, |δ| = 1. Then

dab = δd, d = δdāb̄, −α = δᾱ,−β = δβ̄.

Hence ab = δ.
We next observe that if we replace φ(z) with φθ(z) := φ(eθiz) for any θ ∈ R we will obtain the following

relations

pθ(z) = eθip(eθiz), qθ(z) = q(eθiz), pθ(z) = e−θip(e−θiz), qθ(z) = q̄(e−θiz).

Let

rθ(z) =
pθ(z)

qθ(z)
, rθ(z) =

pθ(z)

qθ(z)
, gθ(z) = rθ(rθ(z)).

A straightforward calculation shows that gθ(z) = z for all θ ∈ R. Note the two roots of φθ(z) are
−ae−θi,−be−θi. Hence we can choose θ such that δ = −1. Assume for simplicity of the exposition this
condition holds for θ = 0, i.e., for φ. So α and β are real. In particular a + b is real. So b = −a−1 and
a− a−1 is real. Hence a is real and also b is real.

Suppose now that γ2 = −τ2. Then B̄ = −B−1. So detB = δ, |δ| = 1. Then

(32) dab = −δd, d = −δdāb̄, α = δᾱ, β = δβ̄.

By considering φθ as above we may assume that δ = 1 which gives again that a ∈ R \ {0} and b = −a−1.
This proves (29).

Vice versa, assume that φ(z) is of the form (29), where a ∈ R\{0} and b = − 1
a . We claim that r̄(r(z)) ≡ z.

The above arguments show that r(z) = (dz + α)/(βz + dab). Furthermore

ab = −1, α = (d− p)a− p

a
, β = pa− d− p

a
, p ∈ [d− 1].

Consider the matrix B as given above. Note that the trace of this matrix is zero. We claim that B is not
singular. Indeed

detB = −(d2 + αβ) = −(d2 − (d− p)2 − p2 + p(d− p)(a2 + a−2)) =

−p(d− p)(a+ a−1)2.
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Hence B has two distinct eigenvalues {γ,−γ} and is diagonalizable. As B is a real matrix we get that
B̄B = B2 = γ2I2. Therefore r̄(r(z)) ≡ z. As r̄θ(rθ(z)) ≡ z for each s ∈ R we deduce that for each φ of the
form (29) zq(z)− p(z) is a zero polynomial.

7.2. Computation of ‖S‖σ in the exceptional cases. Assume now that Sθ ∈ SdC2 is induced by φ of
the form (29). Then

Sθ ×⊗dx = A(x2 + ce−θix1)
p(x2 − c−1e−θix1)

d−p, c ∈ R \ {0}, θ ∈ R, p ∈ [d− 1],

Clearly, ‖Sθ‖σ = ‖S0‖σ. Thus it is enough to find ‖S0‖σ. For simplicity of notation we let S = S0.
We now suggest the following simple approximations to find ‖S‖σ using the case (2) of Theorem 18. It

is enough to assume that A = 1, i.e., S corresponds to φ(z) = (z + c)p(z − c−1)d−p. Let ω be a rational
in the interval (0, 1). Set φ(z, ω) = φ(z) + ω. Let S(ω) ∈ SdR2 be the symmetric tensor corresponding to
φ(z, ω). Then S(ω)× (⊗dx) = (x2 + cx1)

p(x2 − c−1x1)
p−d + ωxd1. By choosing x = (0, 1)⊤ we deduce that

‖S(ω)‖σ > 1. It is straightforward to show that ‖S(ω)− S‖σ = ω. As ω 6 ω‖S(τ)‖σ we obtain

‖S‖σ ∈ [‖S(ω)‖σ(1− ω), ‖S(ω)‖σ(1 + ω)].

Observe next that φ′(z, ω) = φ′(z). Hence a common root of φ(z, ω) and φ′(z, ω) can not be a common
root of φ(z) and φ′(z). Therefore φ(z, ω) and φ′(z, ω) can have at most one common root. As d > 3 we
deduce that S(ω) does not satisfy the assumptions of part (2) of Theorem 18.

Assume that c ∈ Q. Let δ be rational in the interval (0, 1) and assume that ω = δ/4. Use the case (1)
of Theorem 19 to find an approximation L(S(ω)) that satisfies |‖S(ω)‖σ − L(S(ω))| 6 (δ/4)‖S(ω)‖. Let us
take L(S(ω)) to be an approximation for ‖S‖. Then

|‖S‖σ − L(S(ω))| 6 |‖S‖σ − ‖S(ω)‖σ|+ |‖S(ω)‖σ − L(S(ω))| 6 (ω + δ/4)‖S(ω)‖σ 6
δ

2

1

1− δ/4
‖S‖σ < δ‖S‖σ.

Thus we found a rational approximation of ‖S‖σ that satisfies the inequality of Theorem 19 for F = C. The
complexity of L(S(ω)) is given in case (1) of Theorem 19.

8. Numerical examples

In this section we give some numerical examples of applications of Theorem 18 for the qubit cases, and
of Theorem 7 for n > 2. In many examples here f(x) is a sum of two monomials. In this case we show
that to compute the complex spectral norm of f one can assume that the coefficients of the two monomials
are nonnegative. Equivalently, we can assume the symmetric tensor S has nonnegative entries. Hence
‖S‖σ = ‖S‖σ,R = ‖f‖σ [26]. However, if f has real coefficients then it may happen that ‖f‖σ,R < ‖f‖σ. See
Example 2 below.

Lemma 20. Let f ∈ P(d, n,C), where d, n > 2, and assume that f = axj + bxk, where j 6= k. Denote
g(x) = |a|xj + |b|xk. Then ‖f‖σ = ‖g‖σ = ‖g‖σ,R = g(y) for some y > 0, ‖y‖ = 1.

Proof. Clearly, it is enough to assume that a 6= 0 and b 6= 0. Let x = (x1, . . . , xn)
⊤ and denote x+ =

(|x1|, . . . , |xn|)⊤. Note that ‖x‖ = ‖x+‖. Assume that ‖x‖ = 1. As |f(x)|, |g(x)| 6 g(x+) it follows
that ‖f‖σ 6 ‖g‖σ = g(y), for some y > 0 and ‖y‖ = 1. Hence ‖g‖σ = ‖g‖σ,R. Observe next that

f(x) = xl(axj′ + bxk′
). We can choose l > 0 so that the monomials xj′ and xk′

do not have a common
variable. Assume that z = (z1, . . . , zn)

⊤ such that z+ = y. Then it is possible to choose the arguments of

z1, . . . , zn such that |azj′ + bzk
′ | = |a|yj′ + |b|yk′

. Hence |f(z)| = g(y) = ‖g‖σ. Therefore ‖f‖σ = ‖g‖σ. �

In some of the examples we discuss, we modified the examples of f , that satisfy conditions of Lemma 20,
by considering fe:

fe(x) =
√

1− |e|2f(x) + eh(x), e = tω,(33)

t = 0, 1/5, 1/4/, 1/3, 1/2, 1, ω = 1,−1, i, 1/2+ i

√
3

2
,−1/2 + i

√
3

2
,

f = axj + bxk, h = cxl, j 6= k, j 6= l,k 6= l, a, b, c > 0, ‖f‖ = ‖h‖ = 1.

Note that ‖fe‖ = 1, and f0 = f, f1 = h. Hence, when we give our results for ‖fe‖σ we give separately the
values of ‖f‖σ, ‖h‖σ, and ‖fe‖σ for t = 1/5, 1/4/, 1/3, 1/2 and the above values of ω.
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First we discuss the symmetric d-qubits. If the d-qubits are real we compute both the complex and real
spectral norms of a given tensor S. In Theorem 18, we showed that the spectral norm of a given d-qubit
can be found by solving the polynomial equation zv(z)− u(z) = 0 (see (27)), which is of degree of at most
(d − 1)2 + 1. In what follows that we assume that the polynomial zv(z) − u(z) is not a zero polynomial.
(That is, we are not dealing with the exceptional cases that are discussed in §7.) We use formula (30) to
find ‖S‖σ, and formula (31) to find ‖S‖σ,R.

For n > 2 we use Theorem 7 to compute ‖f‖σ. Thus we need to assume that fix(H) is finite, or if all the
monomials of f have nonnegative coefficents then the set of the real fixed points of F is finite.

In this paper we use Bertini [6] (version 1.5, released in 2015), which is a well developed software to find
all the complex solutions of a given polynomail system. It is worth noting that, in contrast to the theoretical
results of this paper, the output of Bertini is not certified and may be incorrect by an unbounded error if
the software jumps between solutions when tracking the homotopy paths.

All the computation are implemented with Matlab R2018b on a MacBook Pro 64-bit OS X (10.12.6)
system with 16GB memory and 2.9 GHz Intel Core i7 CPU. In the display of the computational results, only
four decimal digits are shown. The default parameters in Bertini are used to solve the polynomial equation
zv(z)− u(z) = 0. Since all examples only take few seconds we will not show the computing time.

In our examples all polynomials correspond to the symmetric tensors S ∈ SdCn of Hilbert-Schmidt norm
one. Furthermore, if S has nonnegative entries then ‖S‖σ = ‖S‖σ,R [26].

Assume that d = 2. Then |sd| = |S2,...,2|, and if S has nonnegative entries then one can use part (2) of
Theorem 18. In these examples we find the degree of the polynomial zv(z)− u(z), the number of real and
complex roots, and the number of roots that fail to satisfy (24).

8.1. Three examples of symmetric 3-qubits. These examples are interesting to us, and some of them
are discussed in other papers.

Example 1. [48] Let f = 0.3104x31 − 1.4598x21x2 − 0.6558x1x
2
2 + 0.2235x32. The polynomial zv(z)− u(z) has

degree 5 = 22+1. It has 5 roots, 3 of them are real and the other 2 are complex. We have R = R1, R
′ = R′

1.
Then

‖f‖σ ≈ 0.7027, ‖f‖σ,R ≈ 0.6205.

Example 2. [26] Let f = 3
2x

2
1x2 − 1

2x
3
2. The polynomial zv(z)− u(z) has degree 4. It has 4 roots, 2 of them

are real and the other 2 are complex. We have R = R1, R
′ = R′

1. Then

‖f‖σ ≈ 0.7071, ‖f‖σ,R = 0.5.

Example 3. Let f = 1√
5
x31 − 3

2
√
5
x21x3 − 3√

5
x1x

3
2 +

1
2
√
5
x32. The polynomial zv(z)− u(z) has degree 5. It has

5 roots, 3 of them are real and the other 2 are complex. We have R = R1, R
′ = R′

1. Then

‖f‖σ ≈ 0.7071, ‖f‖σ,R ≈ 0.5000.

8.2. Five examples from [3] and their variations. In [3] the authors give examples of d-symmetric
qubits for d = 4, . . . , 12, which they assume to have the lowest complex spectral norm. Their examples are
motivated by the Majorana model, see Appendix 3. (Note that some examples have at least two versions
(a) and (b).) Our software gave the same values of the spectral norms for the examples in [3]. We could not
find with our software examples of symmetric d-qubits with lower complex spectral norm. In the following
examples we find the spectral norm of fe of the form (33), where f is the polynomial given in [3]. The
polynomial h corresponds to a monomial given by Dicke basis with the lowest spectral norm. (See Appendix
1.)

Example 4. [3, Corresponds to example 6.1] Let f = 1√
3
x41 +

√
8√
3
x1x

3
2. The polynomial zv(z) − u(z) has

degree 10 = 32 + 1. It has 10 roots, 4 of them are real and the other 6 are complex. We have R = R1,

R′ = R′
1. Then ‖f‖σ ≈ 0.5774. According to [3], ‖f‖σ = 1√

3
. Let h =

√
6x21x

2
2. Then ‖h‖σ =

√
3√
8
≈ 0.6124.

(See (35).) Table 1 gives the results for ‖fe‖σ:

Example 5. [3, Corresponds to example 6.2(b), figure 5(b)] Let f = 1√
1+A2

x51 +
√
5A√

(1+A2)
x1x

4
2, where A ≈

1.53154. The polynomial zv(z)−u(z) has degree 17 = 42+1. It has 17 roots, 5 of them are real and the other
22



‖fe‖σ t = 1
5 t = 1

4 t = 1
3 t = 1

2
ω = 1 0.6787 0.7012 0.7358 0.7918
ω = −1 0.6314 0.6442 0.6645 0.6989
ω = i 0.6662 0.6863 0.7172 0.7676

ω = 1
2 +

√
3

2 i 0.6314 0.6442 0.6645 0.6989

ω = − 1
2 +

√
3

2 i 0.6787 0.7012 0.7358 0.7918

Table 1. Computational Results of ‖fe‖σ for Example 4 with different t and ω.

12 are complex. Four roots do not satisfy (24). Furthermore R′ = R′
1. Then ‖f‖σ = 0.5467. According to

[3], ‖f‖σ = 1√
1+A2

. Let h =
√
10x31x

2
2. Then ‖h‖σ = 6

√
6

25 ≈ 0.5879. (See (35).) Here is the table for ‖fe‖σ:

‖fe‖σ t = 1
5 t = 1

4 t = 1
3 t = 1

2
ω = 1 0.5930 0.6038 0.6214 0.6573
ω = −1 0.5930 0.6038 0.6214 0.6573
ω = i 0.5622 0.5692 0.5793 0.5941

ω = 1
2 +

√
3

2 i 0.5759 0.5830 0.5941 0.6133

ω = − 1
2 +

√
3

2 i 0.5759 0.5830 0.5941 0.6133

Table 2. Computational Results of ‖fe‖σ for Example 5 with different t and ω.

Example 6. [3, Corresponds to example 6.3] Let f =
√
3(x51x2 + x1x

5
2). The polynomial zv(z) − u(z) has

degree 25 < 52+1. It has 25 roots, 7 of them are real and the other 18 are complex. For the 25 roots z, (24)
fails to hold for 5 roots. Six of the seven real roots satisfy zq(z)−p(z) = 0. Then ‖f‖σ = 0.4714. According

to [3], ‖f‖σ =
√
2
3 . Let h =

√
20x31x

3
2. Then ‖h‖σ =

√
5
4 ≈ 0.5590. (See (35).) Here is the table for ‖fe‖σ:

‖fe‖σ t = 1
5 t = 1

4 t = 1
3 t = 1

2
ω = 1 0.5382 0.5590 0.5946 0.6545
ω = −1 0.5382 0.5590 0.5946 0.6545
ω = i 0.4777 0.4811 0.4886 0.5076

ω = 1
2 +

√
3

2 i 0.5054 0.5148 0.5312 0.5688

ω = − 1
2 +

√
3

2 i 0.5054 0.5148 0.5312 0.5688

Table 3. Computational Results of ‖fe‖σ for Example 6 with different t and ω.

Example 7. [3, Corresponds to example 6.4] Let f =
√
7√
2
(x61x2 + x1x

6
2). The polynomial zv(z) − u(z) has

degree 36 < 62 + 1. It has 36 roots, 6 of them are real and the other 30 are complex. For the 36 roots z,
(24) fails to hold for 11 roots. Five of the six real roots satisfy zq(z)− p(z) = 0. Then ‖f‖σ = 0.4508. Let

h =
√
35x41x

3
2. Then ‖h‖σ = 48

√
15

73 ≈ 0.5420. (See (35).) Here is the table for ‖fe‖σ:

‖fe‖σ t = 1
5 t = 1

4 t = 1
3 t = 1

2
ω = 1 0.5006 0.5131 0.5346 0.5796
ω = −1 0.4939 0.5048 0.5229 0.5597
ω = i 0.4988 0.5109 0.5314 0.5742

ω = 1
2 +

√
3

2 i 0.4998 0.5121 0.5332 0.5772

ω = − 1
2 +

√
3

2 i 0.4975 0.5092 0.5291 0.5703

Table 4. Computational Results of ‖fe‖σ for Example 7 with different t and ω.

Example 8. [3, Corresponds to example 6.5] Let f = 4(0.336
√
2x71x2 + 0.3705

√
7x21x

6
2). The polynomial

zv(z)− u(z) has degree 42 < 72 + 1, which has 41 roots, 7 of them are real and the other 34 are complex.
One of the real roots z = 0 has multiplicity 2. For the 41 roots z, (24) fails to hold for 10 roots. Then

‖f‖σ = 0.4288. Let h =
√
70x41x

4
2. Then ‖h‖σ =

√
70
16 ≈ 0.5229. (See (35).) Here is the table for ‖fe‖σ:

More details on the above examples and additional examples for n = 2 are given in [30].
23



‖fe‖σ t = 1
5 t = 1

4 t = 1
3 t = 1

2
ω = 1 0.4946 0.5108 0.5374 0.5867
ω = −1 0.4841 0.4979 0.5206 0.5630
ω = i 0.4919 0.5075 0.5330 0.5806

ω = 1
2 +

√
3

2 i 0.4934 0.5093 0.5354 0.5840

ω = − 1
2 +

√
3

2 i 0.4898 0.5049 0.5297 0.5759

Table 5. Computational Results of ‖fe‖σ for Example 8 with different t and ω.

8.3. A family of symmetric 3-qutrits. Let us consider the following family of symmetric 3-qutrits.

fa,b(x1, x2, x3) = a(x31 + x32 + x33) + bx1x2x3, 3|a|2 + |b|2/6 = 1.

This example is inspired by [13, Example (1)]. It is straightforward to show that

‖f1/√3,0‖σ = ‖f1/√3,0‖σ,R =
1√
3
≈ 0.5774, ‖f0,√6‖σ = ‖f0,√6‖σ,R =

√
2

3
= 0.4714.

Note that f0,
√
6 corresponds to the most entangled Dicke basis S(3, 3) (34). Observe that ‖fa,b‖σ = ‖fā,b̄‖σ =

‖fζa,ζb‖σ for |ζ| = 1. Here is the table for ‖fa,b‖σ:

a b No. of real fixed points No. of complex fixed points ‖fa,b‖σ,R ‖fa,b‖σ
1
3 2 8 56 0.5774 0.5774

1
2

√

3
2 8 56 0.5244 0.5244

1
3 -2 8 56 0.4975 0.5092

1
2 -

√

3
2 8 56 0.5000 0.5000

0
√
6 5 50 0.4714 0.4714

1√
3

0 8 56 0.5774 0.5774

1
6 +

√
3

6 i
√
2 −

√
2i 1 63 - 0.5730

1
4 +

√
3

4 i
√

6
4 + 3

√
2

4 i 1 63 - 0.5244

Table 6. Computational Results for 8.3 with different a and b.

Let us consider the real case. For different real a and b, we use Bertini to solve the equation F (y) = y,
and get the real spectral norm of tensor fa,b. Results are shown in the Table 6. As we see, the number of
real fixed point is 8 = (3 − 1)3 the maximum possible as given by part (3) of Theorem 7, except for f0,

√
6

corresponding to S(3, 3). Thus, among all these examples the Dicke state S(3, 3) is the most entangled one.

8.4. A family of symmetric 4-ququadrits. Recall that most entangled 3-qubit is W ∈ S3C2, which
corresponds to f =

√
3x21x2 [54, 12]. (It is the Dicke basis element S(3, 2).) It is of interest to consider the

tensor product state W ⊗ W ∈ ⊗6C2 [10, 11]. Note that this state is not symmetric. Lemma 2.3 in [16]
yields

‖W ⊗W‖σ = ‖W‖2σ = ‖S(3, 2)‖2 = (
2

3
)2 =

4

9
≈ 0.4444.

It is possible to represent W ⊗ W as a symmetric tensor S ∈ S3C4. It is represented by polynomial
f = x21x4 + 2x1x2x3 [10]. Let us consider fa,b = ax21x4 + 2bx1x2x3, where |a|2 + 2|b|2 = 3. (So ‖fa,b‖ = 1.)
Note that f = f1,1. In Table 7, we show ‖fa,b‖σ for some values of a, b. These computations point

a b ‖fa,b‖σ

1 1 0.4444
√

2
2

√
5

2 0.4536
√

5
2

√

7
8 0.4491

√
2

2 +
√

2
2 i 1

2 +
√

3
2 i 0.4444

√
2

2 ( 1
2 −

√
3

2 i)
√

5
2 (

√
3

4 +
√

13
4 i) 0.4536

√
6

2 (
√

2
2 +

√
2

2 i)
√

3
2 (

√
3

2 + 1
2 i) 0.4714

Table 7. Computational Results for Example 8.4 with different a and b.

out that probably ‖S‖ = ‖f‖σ is equal to ‖W ⊗ W‖σ. This contrast with the results in [10, 11] that
rank S = 7 < rank W⊗W = 8 < (rank W)2 = 9. (Recall that the rank of a tensor T is the minimal number
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of summands in a representation of T as a sum of rank one tensors.) Next observe that f does not have the

minimal complex spectral norm in the above examples. Finally, ‖f‖σ < ‖S(3, 4)‖ =
√
2
3 .

Acknowledgement : We thank the two referees for their useful remarks and comments.

References

[1] S. Aaronson and A. Arkhipov. The computational complexity of linear optics, Theory Comput. 9 (2013), 143–252.
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[21] J.C. Faugére, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional Gröbner bases by change
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[38] R. Hübener, M. Kleinmann, T.-C. Wei, C. González-Guillén, and O. Gühne, Phys. Rev. A 80 (2009), 032324.
[39] E. Jung, M.-R. Hwang, H. Kim, M.-S. Kim, D. Park, J.-W. Son, and S. Tamaryan, Reduced state uniquely defines the

Groverian measure of the original pure state, Phys. Rev. A 77, 062317 (2008).
[40] R. M. Karp, Reducibility among combinatorial problems, pp. 85–103, in R.E. Miller and J.W. Thatcher (Eds), Com-

plexity of Computer Computations, Plenum, New York, NY, 1972.
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Appendix 1: Dicke states and their entanglement

Let S(j), j ∈ J(d, n) be the orthonormal basis in SdFn given in the end of §3. For n = 2 this basis is called

the Dicke basis [18]. Recall that S(j) ×⊗dx =
√

c(j)xj.
Let

S(d, n) = S(j), j = (j1, . . . , jn) ∈ J(d, n), where(34)

j1 = · · · = jl = ⌊ d
n
⌋, jl+1 = · · · = jn = ⌈ d

n
⌉, l = n⌈ d

n
⌉ − d.

In the following lemma we find the entanglement of each S(j), j ∈ J(d, n) and the maximum entanglement
of these states.

Lemma 1. Assume that n, d > 2 are two positive integers. Then

(1) For each j = (j1, . . . , jn) ∈ J(d, n) the following equality holds

η(S(j)) = log2 d
d − log2 d! +

n
∑

k=1

(log2 jk!− log2 j
jk
k ).
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(2)

‖S(d, n)‖σ =

√

√

√

√

d!
(

⌊ d
n⌋

)l⌊ d
n ⌋(⌈ d

n⌉
)(n−l)⌈ d

n ⌉

dd
(

⌊ d
n⌋!

)l(⌈ d
n⌉!

)n−l
, η(S(d, n)) = log2

dd
(

⌊ d
n⌋!

)l(⌈ d
n⌉!

)n−l

d!
(

⌊ d
n⌋

)l⌊ d
n ⌋(⌈ d

n⌉
)(n−l)⌈ d

n ⌉ .

(3)

‖S(d, n)‖σ 6 ‖S(j)‖σ, η(S(j)) 6 η(S(d, n)), for each j ∈ J(d, n).

(4) Assume that the integer n > 2 is fixed and d≫ 1. Then

η
(

S(d, n)
)

=
1

2

(

(n− 1) log2 d− n log2 n
)

+O(
1

d
).

Proof. (1) Clearly

|S(j1, . . . , jn)×⊗dx|2 =
d!

j1! · · · jn!
(|x1|2)j1 · · · (|xn|2)jn .

Use Lagrange multipliers to deduce that the maximum of the above function for ‖x‖ = 1 is achieved at the

points |xk|2 = jk
j1+···+jn

= jk
d for k ∈ [n]. Banach’s theorem (7) yields

‖S(j1, . . . , jn)‖2σ,R = ‖S(j1, . . . , jn)‖2σ =
d!
∏n

k=1 j
jk
k

dd
∏n

k=1 jk!
.(35)

This establishes the expression for η(S(j)).
(2) Follows straightforward from the definition of S(d, n) in (34) and the proof of part (1).
(3) Let a, b be nonnegative integers such that a 6 b− 2. We claim that

a!b!

aabb
<

(a+ 1)!(b− 1)!

(a+ 1)a+1(b − 1)b−1
.

Indeed, the above inequality is equivalent to

a!(a+ 1)a+1

aa(a+ 1)!
<

(b− 1)!bb

(b − 1)b−1b!
⇐⇒

(

a+ 1

a

)a

<

(

b

b− 1

)b−1

.

As 00 = 1 we deduce that the above inequalities hold for a = 0 and b > 2. Assume that a > 1. Then the
last inequality in the above displayed relation is equivalent to the well known statement that the sequence
(1 + 1

m )m is a strictly increasing .

Consider ‖S(j1, . . . , jn)‖−2. Suppose that there exists jp, jq such that |jp − jq| > 2. Without loss of
generality we may assume that jp 6 jq − 2. Let j′l = jl for l ∈ [n] \ {p, q}, and j′p = jp + 1, j′q = jq − 1.

Then the above inequality yields that ‖S(j1, . . . , jn)‖−2 < ‖S(j′1, . . . , j′n)‖−2. Hence the maximum value of
‖S(j1, . . . , jn)‖−2, where {j1, . . . , jn} ∈ J(d, n), is achieved for {j1, . . . , jn} satisfying |jp − jq| 6 1 for all
p, q ∈ [n]. Without loss of generality we can assume that j1, . . . , jn are given as in (34). This shows the
inequality ‖S(d, n)‖σ 6 ‖S(j)‖σ. The definition (2) of η(S) yields the inequality η(S(j)) 6 η(S(d, n)) for
each j ∈ J(d, n).

(4). The expression for η(S(d, n)) follows from Sterling’s formula [22, p. 52] k! =
√
2πkkke−keθk/12k, where

0 < θk < 1. �

We now comment on the results given in Lemma 1. Parts (1)-(3) are well known for n = 2 in physics
community [3]. The states S(j1, j2) are called Dicke states. Note that

‖S(3, 2)‖σ =
2

3
≈ 0.6667, ‖S(4, 2)‖σ =

√
6

4
≈ 0.61237, ‖S(5, 2)‖σ =

6
√
6

25
≈ 0.5879.

It is known that the most entangled 3-qubit state with respect to geometric measure is S(3, 2) [54, 12].
That is, the spectral norm of a nonsymmetric 3-qubit is not less than the spectral norm of S(3, 2), which
is equivalent to the equality η((2, 2, 2)) = η(S(3, 2)) as in (3). However, for d > 3 the examples that are
given in §8 show that the states S(d, 2) are not the most entangled states in SdC2. See the Examples i with
, denoted as Ei, in §8 for i = 4− 8.
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It is shown in [16] that the most entangled 4-qubit is M4 ∈ ⊗4C2, which is not symmetric. (This was a
conjecture of Higuchi-Sudbery [35].) Note that

‖M4‖σ =

√
2

3
≈ 0.4714 < ‖E5‖σ.

According to [3], the symmetric state E5 is the most entangles 4-symmetric qubit.
Lemma 4.3.1 in [?] yields that

(36) η(S) 6 log2

(

n+ d− 1

n− 1

)

, S ∈ SdCn, ‖S‖ = 1.

(See also [43].) In particular, for n = 2 we have the inequality:

(37) η(S) 6 log2(d+ 1), S ∈ SdC2, ‖S‖ = 1.

Note that for a fixed n and large d we have the complexity expression

log2

(

n+ d− 1

n− 1

)

= (n− 1) log2(d+ 1) +
(n− 1)(n− 2)

2 ln 2
− log2(n− 1)! +O

(

1

d

)

.

Let

ηsym(d, n) = max{η(S), S ∈ SdCn, ‖S‖ = 1}.

Combining the inequality (36) with part (3) of Lemma 1 we obtain

(38) log2
dd
(

⌊ d
n⌋!

)l(⌈ d
n⌉!

)n−l

d!
(

⌊ d
n⌋

)l⌊ d
n ⌋(⌈ d

n⌉
)(n−l)⌈ d

n ⌉ 6 ηsym(d, n) 6 log2

(

n+ d− 1

n− 1

)

, l = n⌈ d
n
⌉ − d.

In particular

(39) log2
dd
(

⌊d
2⌋!

)(

⌈d
2⌉!

)

d!
(

⌊d
2⌋
)⌊ d

2 ⌋(⌈d
2⌉
)⌈ d

2 ⌉
6 ηsym(d, 2) 6 log2(d+ 1).

There is a gap of factor 2 between the lower and the upper bounds in (38) and (39) for fixed n and d≫ 1.
In [?] it is shown that the following inequality holds with respect to the corresponding Haar measure on the
unit ball ‖S‖ = 1 in SdC2:

Pr(η(S) 6 log2 d− log2(log2 d) + log2 4− log2 5) 6
1

d6
.

This shows that the upper bounds in (39) have the correct order. In particular, the above inequality is the
analog of the inequality η(T ) > d− 2 log2 d− 2 for most d-qubit states in [33].

Appendix 2: Computing isolated roots of certain polynomial systems

Let g = g(x) be a nonconstant polynomial in x = (x1, . . . , xm)⊤ ∈ Fm. Denote by d = deg g the total
degree of g. Then gπ ∈ P(d,m,F) \ {0} denotes the homogeneous part of d of degree d. That is, g − gπ is
a polynomial of degree less than d. In this Appendix we assume that gi(x) is a nonconstant polynomial of
total degree di = deg gi,π ∈ N for i ∈ [m]. Our next assumption is that the following system of homogeneous
equations has only the trivial solution

g1,π(x) = · · · = gm,π(x) = 0, x ∈ Cm ⇒ x = 0.(40)

It is well known that the above assumption yields that the system

g1(x) = · · · = gm(x) = 0, x ∈ Cm(41)

has exactly D =
∏m

i=1 di solutions, counted with multiplicities, and no solutions at infinity [23].
We now give a simple condition which imply that the system (41) has D distinct solutions.
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Lemma 2. Let gi(x),x = (x1, . . . , xm)⊤ ∈ Cm be a polynomial of degree di > 1 for i ∈ [m]. Assume that
D =

∏m
i=1 di > 1 and the system (41) satisfies the condition (40). Then the system (41) has D distinct

solutions if and only if the system

gi(x) = 0, i ∈ [m], det[
∂gi
∂xj

(x)]i,j∈[m] = 0(42)

is not solvable over Cn.

Proof. Let G = (g1, . . . , gm) : Cm → Cm. Recall that the assumptions that the system (41) satisfies the
condition (40) implies that G is a proper map. Assume that G(ζ) = 0. Then ζ is a simple solution of

G(x) = 0 if and only if det[ ∂gi∂xj
(x)]i,j∈[m] 6= 0. Hence, if the system (41) has D distinct solutions it follows

that the above system is not solvable.
Vice versa, assume that the above system is not solvable. Then the Jacobian matrix D(G) is invertible

at ζ. Therefore G is a local invertible map in the neighborhood of ζ. In particular ζ is a simple zero of G.
As G−1(0) has D points counting with their multipliciites, it follows that |G−1(0)| = D. �

Definition 3. A system of polynomial equations (41) is called simple if the following conditions hold:

(1) For each i ∈ [m] the inequality di = deg gi > 1 holds.
(2) The total degree of the system D =

∏m
i=1 di is greater than 1.

(3) The condition (40) holds.
(4) The system (41) has D distinct solutions.

The system (41) is called x1-simple if in addition to the above conditions the x1-coordinates of D solutions
are distinct.

An example of a simple system system is

1

di
xdi

i − xi = 0, 1 < di ∈ N, i ∈ [m].

An example of x1-simple system is obtained from the above system by replacing the g1(x) =
1
d1
xdi
1 −x1 with

g1(x) =
1
d1
(x1 +

∑m
i=2 aixi)

d1 − x1. It is straightforward to show that this system is x1-simple if and only

if (a2, . . . , am)⊤ is not in a corresponding variety V ⊂ Cm−1. Indeed, find all possible values of x2, . . . , xm
to obtain the monic polynomial p1(x1, a2, . . . , am) of degree D that its zeros are the x1-coordinates of the
corresponding solution of this system. Then p1(x1, a2, . . . , am) has D simple solutions if and only if the
discriminant of p1 is not zero.

We now discuss briefly available methods to find all solutions of an x1-simple system (41) and their
arithmetic and bit complexities. Recall that arithmetic complexity counts the number of operations to
execute a given algorithm, where each operation is counted as one unit of time. The bit complexity takes
also in account the number of bits required for each operation, as addition/subtraction and product/division,
where the length of the bits are count. Let O and OB denote the arithmetic and the bit complexities
respectively. By Õ and ÕB we denote the arithmetic and the bit complexities, where some logarithm terms
are dropped.

One of the standard method to solve system (41) is to use the reduced Gröbner basis with respect to
an ordering of monomials that is preserved under product. See for example [5]. The simplest order is a
lexicographical order x1 ≺ x2 ≺ · · · ≺ xm. We now recall a simple case of the Shape Lemma that we are
using in this paper [50]:

Lemma 4. (Shape Lemma) Let (41) be a simple system. Then the last polynomial in the reduced Gröbner
basis is a monic polynomial p1(x1) of degree D. If the system (41) is x1-simple then the reduced Gröbner
basis is of the form: p1(x1), x2 − p2(x1), . . . , xm − pm(x1), and deg pi < D for i = 2, . . . ,m.

If in addition to the above assumptions g1, . . . , gm have real coefficients then p1, . . . , pm have real coeffi-
cients.

In the rest of this Appendix what we assume that the system (41) is x1-simple. Then all solutions of (41)
are of the form (x1, p2(x1), . . . , pn(x1)), for all zeros x1 of p1. Assume furthermore that g1, . . . , gn have real
coefficients. Then all real solutions of an x1-simple systems are of the form (x1, p2(x1), . . . , pm(x1)), for all
real zeros x1 of p1.
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In what follows we consider an x1-simple system of polynomial equations (41), where

d1 = · · · = dm = d− 1 > 2,(43)

with coefficients either in the domain of Gaussian integers Z[i], or subdomain of integers Z. Let τ − 1 be
the maximal number of bit size of the coefficients of the monomials in g1, . . . , gm. (Thus τ ∈ N.) For our
purposes we assume that m is fixed and the positive integer d varies. First consider p1(x1). What is the
arithmetic complexity to compute p1? Proposition 1 in [5] gives O(md3m−2). (Assuming that the complexity
of multiplication of two p×pmatrices is O(p3).) The bit complexity of finding p1(x1) is τ times the arithmetic
complexity times the size of the linear system to solve. The linear system is of order m(d − 1)m. Hence
the bit complexity is OB(τm

2d4m−2). We next discuss the maximum bit size of the coefficients of pi(x1) for
i ∈ [m]. The arguments of [42] yield that the maximum bit size is O(m(d − 1)m(τ + log d)).

We now recall the complexity results for computations of the roots of p1(x1) with precision 2−ℓ for ℓ ∈ N.
Consider a polynomial equation over C of degree N > 2:

f(x) = xN +

N
∑

i=1

aix
N−i = 0, ai ∈ C, i ∈ [N ].

Assume that |ai| < 2β for i ∈ [N ] and β ∈ N. Then the arithmetic complexity of computing all roots of
the above equation with precision 2−ℓ is O(N log5N log(max(N, β)+ ℓ)). The bit complexity is equal to the
arithmetic complexity times M(2N2 max(N, β) + ℓ) [46]. Here

M(t) = O(t(log t) log log t)

is the complexity of multiplying two t bit integers. That is, the bit complexity of computing all roots of f
with precision 2−ℓ is at most of order

M(2N2max(N, β) + ℓ)N log5N log(max(N, β) + ℓ).

We now give the complexity of finding each coordinate of each solution of the system (41), satisfying the
condition (43), with a relative precision ε:

Lemma 5. Consider an x1-simple system of polynomial equations with coefficients in Z[i], which satisfies
the condition (43). Let τ − 1 be the maximal number of bit size of the coefficients of the monomials in
g1, . . . , gm. Then the bit complexity of computing the value of each coordinate of each solution of the system
with precision 2−ℓ, ℓ ∈ N is of at most of order

τm2d4m−2 +M(2N2max(N, β) + ℓ′)N log5N log(β + ℓ′),

where

N = (d− 1)m, β = O(m(d − 1)m(τ + log d)), ℓ′ = ℓ+N(β + 1).

Proof. We first compute p1(x1). The bit complexity of computing p1(x1) O(τm2d4m−2). Next we compute

all roots of p1(x1) with precision 2−ℓ′ for ℓ′ > ℓ to be determined later. Recall that the degree of the monic
polynomial p1(x1) is N = (d − 1)m, and the maximum bits of its coefficients is bounded by β − 1, where
β = O(m(d−1)m(τ+log d)). Hence the bit complexity of finding the roots of p1(x1) is O(M(2N2max(N, β)+

ℓ′)N log5N log(β + ℓ′)). Observe next that any root z of p1(x1) satisfies the inequality |z|N 6 2β−1 |z|N−1
|z|−1 .

Hence |z| 6 2β . It is left to estimate the error in the k(> 1) coordinate of a solution ζ = (ζ1, . . . , ζm) of the
system. Recall that ζk = pk(ζ1), deg pk < N , and the bit size of each coefficient of pk is at most β − 1. Let

η1 an approximation of ζ1 that satisfies |ζ1 − η1| 6 2−ℓ′ 6 1/2. Then |η1| 6 |ζ1| + 1/2 6 2β + 1/2. It is
straightforward to show that

|pk(ζ1)− pk(η1)| 6 2β−1|ζ1 − η1|
N−1
∑

j=1

jmax(|ζ1|, |η1|)j−1 6 |ζ1 − η1|2N(β+1) < 2N(β+1)−ℓ′.

Hence for ℓ′ = ℓ+N(β + 1) we obtain that ηk = pk(η1) is an approximation of ζk with 2−ℓ precision. �
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Appendix 3: The Majorana representation

The geometrical measure of entanglement for qubits is studied extensively in physics literature [3, 33,
35, 39, 43, 54]. In some papers, as [3, 43], the authors use the Majorana representation of symmetric
qubits. The paper [3] provides examples of what the authors believe the most entangled symmetric qubits
for d = 4, . . . , 12 based on Majorana representation. As most mathematicians are not familiar with Majorana
representation, we descibe in a few sentences the mathematical concepts of Majorama representation for the
interested reader. We also describe briefly the main ideas behind the examples in [3].

Recall that a qubit state is identified with the class of all vectors (d = 1):

{ζx : x = (x1, x2)
⊤ ∈ C2, ‖x‖ = 1, ζ ∈ C, |ζ| = 1}.

Thus the set of all quibits Γ can be identified with the complex projective space PC2. Γ can be also identified
with the Riemann sphere C ∪ {∞}. Indeed, associate with a qubit x = (x1, x2)

⊤, x1 6= 0 a unique complex
number z = x2

x1
∈ C. The qubit x = (0, x2), |x2| = 1 corresponds to z = ∞. Recall that the set of d-symmetric

quibit can be identified with the projective set P(SdC2). Equivalently, the set of d-symmetric quibit can be
identified with P(P(d, 2,C)). Take f(x) ∈ P(d, 2,C) \ {0}. Then f(x1, x2) is a product of d linear forms

f(x1, x2) =
∏d

i=1(ζ1,ix2 − ζi,2x1). Thus, there exists a unique correspondence between [f ] ∈ P(P(d, 2,C))

and the d points [(ζ1,i, ζi,2)
⊤] ∈ PC2, i ∈ [d]. This is the Majorana representation [?, §4.4].

Next one replaces the Riemann sphere by the ordinary sphere S2 ⊂ R3. (For example perform a stere-
ographic projection of the unit sphere onto the complex plane.) The geometric intuition suggests that the
most entangled d-symmetric quibits correspond to the most evenly distributed d points on S2. More precisely
there are two optimal models:
Tóths problem: How d points have to be distributed on the unit sphere so that the minimum distance of
all pairs of points becomes maximal [56].
Thomsons problem: How d point charges can be distributed on the surface of a sphere so that the potential
energy is minimized [55].

However, in certain cases as shown in [3] the most entagled symmetric states are do not solve neither of
the above problems.
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