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ERROR ESTIMATES FOR THE STANDARD GALERKIN-FINITE

ELEMENT METHOD FOR THE SHALLOW WATER EQUATIONS

D. C. ANTONOPOULOS AND V. A. DOUGALIS

Abstract. We consider a simple initial-boundary-value problem for the shal-
low water equations in one space dimension and also the analogous problem
for a symmetric variant of the system. Assuming smoothness of solutions,
we discretize these problems in space using standard Galerkin-finite element
methods and prove L2-error estimates for the semidiscrete problems for quasi-
uniform and uniform meshes. In particular we show that in the case of spatial
discretizations with piecewise linear continuous functions on a uniform mesh,
suitable compatibility conditions at the boundary and superaccuracy proper-
ties of the L2 projection on the finite element subspaces lead to an optimal-
order O(h2) L2-error estimate. We also examine the temporal discretization of
the semidiscrete problems by a third-order explicit Runge-Kutta method due
to Shu and Osher and prove L2-error estimates of optimal order in the tem-
poral variable under a Courant-number stability condition. In a final section
of remarks we prove optimal-order L2-error estimates for smooth spline spa-

tial discretizations of the periodic initial-value problem for the systems. We
also prove that small-amplitude, appropriately transformed solutions of the
symmetric system are close to the corresponding solutions of the usual system
while they are both smooth, thus providing a justification of the symmetric
system.

1. Introduction

In this paper we will analyze standard Galerkin approximations to the system
of shallow water equations (also known as Saint-Venant equations)

(1.1)
ηt + ux + (ηu)x = 0,

ut + ηx + uux = 0,

which is an approximation of the two-dimensional Euler equations of water-wave
theory that models two-way propagation of long waves of finite amplitude on the
surface of an ideal fluid in a uniform horizontal channel of finite depth, [21], [13].
The variables in (1.1) are nondimensional and unscaled; x ∈ R and t ≥ 0 are
proportional to position along the channel and time, respectively, and η = η(x, t)
and u = u(x, t) are proportional to the elevation of the free surface above a level of
rest corresponding to η = 0 and to the horizontal velocity of the fluid, respectively.
(In these variables the bottom of the channel lies at a depth equal to −1.)
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It is well known that, given smooth initial conditions η(x, 0) = η0(x), u(x, 0) =
u0(x), x ∈ R, the initial-value problem for (1.1) has smooth solutions in general
only locally in t. The existence of smooth solutions may be studied by standard
methods of the theory of nonlinear hyperbolic systems; cf. e.g. [12, Ch. 2] and
[18, Ch. 16].

In this paper we shall consider the following initial-boundary-value problem
(ibvp) for (1.1) posed on the spatial interval [0, 1]. We seek η = η(x, t), u = u(x, t),
0 ≤ x ≤ 1, 0 ≤ t ≤ T , satisfying

ηt + ux + (ηu)x = 0,

ut + ηx + uux = 0,
0 ≤ x ≤ 1, 0 ≤ t ≤ T,(SW)

η(x, 0) = η0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T.

In [14] Petcu and Temam established the local existence-uniqueness of H2-solutions
of (SW). Specifically, they proved that given u0, η0 ∈ H2 such that 1+ η0(x) ≥ 2α
for some constant α > 0 for x ∈ [0, 1], there exists a T∗ = T∗(‖η0‖2, ‖u0‖2) > 0 and
a unique solution (u, η) of (SW) for 0 ≤ t ≤ T∗ such that (u, η) ∈ L∞(0, T∗;H

2)
and 1 + η(x, t) ≥ α for x ∈ [0, 1], t ∈ (0, T∗]. In the course of the proof it is
also shown that u ∈ L∞(0, T∗;H

2 ∩ H1
0 ), that ut, ηt ∈ L∞(0, T∗;H

1) and that
ηx(0, t) = ηx(1, t) = 0 for 0 < t < T∗; it is also assumed that u0(0) = u0(1) = 0 and
η′0(0) = η′0(1) = 0. (Here and in the sequel, for integer k ≥ 0, Hk, ‖ · ‖k will denote
the usual L2-based Sobolev space of classes of functions on [0, 1] and its associated
norm and H1

0 the subspace of H1 whose elements are zero at x = 0, 1. For a Banach
space X of functions on [0, 1], L∞(0, T ;X) will denote the space of L∞ maps from
[0, T ] into X.)

We shall also consider the analogous ibvp for a symmetric variant of the shallow
water equations, posed again on [0, 1]. For this purpose we seek η = η(x, t), u =
u(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T , satisfying

ηt + ux + 1
2 (ηu)x = 0,

ut + ηx + 3
2uux + 1

2ηηx = 0,
0 ≤ x ≤ 1, 0 ≤ t ≤ T,(SSW)

η(x, 0) = η0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T.

Here, the nonlinear hyperbolic system is symmetric; existence-uniqueness of H2-
solutions of the ibvp (SSW) for T sufficiently small may be established if one follows
the argument of [14]. Specifically, it may be shown that if u0 ∈ H2 ∩H1

0 , η0 ∈ H2

with η′0(0) = η′0(1) = 0, and α is a constant such that 1 + 1
2η0(x) ≥ 2α > 0,

x ∈ [0, 1], then there exist a T∗ = T∗(‖u0‖2, ‖η0‖2) > 0 and a unique solution (u, η)
of (SSW) for 0 ≤ t ≤ T∗ such that u ∈ L∞(0, T∗;H

2 ∩H1
0 ), η ∈ L∞(0, T∗;H

2), ut,
ηt ∈ L∞(0, T∗;H

1). Moreover 1 + 1
2η(x, t) ≥ α > 0 for (x, t) ∈ [0, 1] × (0, T∗] and

ηx(0, t) = ηx(1, t) = 0 for 0 ≤ t ≤ T∗.
We chose this symmetric system motivated by the work of Bona, Colin, and

Lannes, [6], on completely symmetric Boussinesq-type dispersive approximations
of small-amplitude, long-wave solutions of the Euler equations. In Section 6.2 we
derive the symmetric system in the context of the small-amplitude, scaled shal-
low water equations and study its relation to the usual shallow water system by
analytical and numerical means.



ERROR ESTIMATES FOR THE SHALLOW WATER EQUATIONS 1145

In the analysis of the Galerkin approximations that we pursue in this paper we
generally prove in parallel error estimates for both (SW) and (SSW). It will be
seen that as a result of the symmetry of the latter system, the proofs for (SSW) are
more straightforward and generally hold under less stringent hypotheses compared
to their (SW) analogs. Let us also mention that it is easy to see that the solution
of (SSW) satisfies the L2-conservation equation

(1.2)

∫ 1

0

(
η2(x, t) + u2(x, t)

)
dx =

∫ 1

0

(
η20(x) + u2

0(x)
)
dx

for 0 ≤ t ≤ T .
We begin the error analysis in Section 2 by first considering the standard Galerkin

semidiscretizations of (SW) and (SSW) using for the spatial approximation piece-
wise polynomial functions of order r ≥ 2 (i.e. of degree r − 1 ≥ 1) with respect
to a quasiuniform mesh on [0, 1] of maximum meshlength h; the spaces consist of
Ck functions, where 0 ≤ k ≤ r − 2. We assume throughout that the solutions of
(SW) and (SSW) are sufficiently smooth for the purposes of the error estimates.
In the case of (SSW) the error analysis is straightforward due to the symmetry of
the system and yields, for r ≥ 2, an L2-error estimate of O(hr−1) for the Galerkin
approximations of η and u. It is well known that this is the expected best or-
der of convergence in L2 for the standard Galerkin semidiscretization of first-order
hyperbolic problems on general quasiuniform meshes. (In this proof and in subse-
quent error estimates in this paper we compare the Galerkin approximation with
the L2 projection of the solution of the p.d.e. problem onto the finite element sub-
spaces and estimate their difference.) For (SW) the proof is more complicated: we
use a symmetrizing choice of test function in the error equation corresponding to
the second p.d.e. of (SW), a ‘superapproximation’ property of the finite element
subspaces, and the positivity of 1 + η in order to establish the expected O(hr−1)
L2-error estimates for η and u assuming now that r ≥ 3. This last assumption
is needed in the proof for the control of the W 1,∞ norm of an intermediate error
term. Thus our proof for (SW) and its assumptions resemble those of the analogous
proof of Dupont, [9], in the case of a 2× 2 nonlinear hyperbolic system which is a
close relative of (SW). It is worth noting that numerical experiments, the results
of which are presented at the end of Section 2, suggest that for r = 2, i.e. for
piecewise linear continuous functions on a quasiuniform mesh, the L2- and L∞-
errors of the Galerkin approximations to η and u have O(h) bounds, i.e. that the
assumption r ≥ 3 may not be needed. In fact, for special quasiuniform meshes,
e.g. for piecewise uniform or gradually varying meshes, numerical experiments in
[3] indicate that the error bounds are of O(h2), resembling those of the uniform
mesh case (see below.)

In Sections 3 and 4 we examine the error of the standard Galerkin semidiscretiza-
tion of (SW) and (SSW) in the special case of subspaces of continuous, piecewise
linear functions on a uniform mesh on [0, 1]. It is well known that for linear,
first-order hyperbolic equations in the uniform mesh case the standard Galerkin
approximations may enjoy optimal-order L2-convergence, i.e. of O(hr), as a result
of superaccuracy due to cancellations in the interior mesh intervals and to suitable
compatibility conditions at the boundary, provided the solutions of the continu-
ous problem are smooth enough. Early evidence of this were the classic results of
Dupont, [10], in the case of r = 2 and r = 4 (with k = 2, i.e. cubic splines) and e.g.
of Thomée and Wendroff, [20], for problems with variable coefficients in the case of
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subspaces consisting of smooth splines of arbitrary order (k = r−2, r ≥ 2). In these
works the periodic initial-value problem was under consideration; the spatial peri-
odicity and the assumed smoothness of solutions automatically furnish the requisite
compatibility conditions at the boundary that yield superaccuracy. In Section 6.1
of [2] we pointed out how compatibility at the boundary for smooth solutions of a
simple initial-boundary-value problem for a first-order linear hyperbolic equation
gives the superaccuracy estimate in the case r = 2 for uniform mesh. We also
refer the reader to the papers [11] and [23] for results and references to the Chinese
literature on related topics.

In order to treat the nonlinear case, in Section 3 of the paper at hand we prove
some superconvergence properties of the L2 projections of smooth functions on [0, 1]
satisfying suitable boundary conditions onto spaces of piecewise linear, continuous
functions defined on a uniform mesh in [0, 1]. The key results are Lemmas 3.3
and 3.6, in which it is shown that integrals of the form

∫
Ii
wedx, where w is a C2

function and e is the error of the L2 projection of a C4 function satisfying suitable
boundary conditions at 0 and 1, are, for any mesh interval Ii, of O(h5). These
results are used in Section 4, where optimal-order O(h2) L2-error estimates for the
Galerkin semidiscretizations of (SSW) and (SW) are established. It is assumed that
the ibvp’s have classical, sufficiently smooth solutions, which, as a consequence of
their smoothness, must satisfy natural compatibility conditions at 0 and 1. Again
the proof for (SSW) is relatively straightforward, while in the case of (SW) some
additional twists are needed. These theoretical results are confirmed in numerical
experiments at the end of Section 4. These also indicate that the analogous L2-
errors for spatial discretizations with cubic splines (k = 2, r = 4) on uniform meshes
have convergence rates which are practically equal to 4, i.e. optimal.

In Section 5 we turn to the temporal discretization of the o.d.e. systems rep-
resented by the semidiscretizations considered in Sections 2 and 4. In [9] Dupont
analyzed, in the case of a system similar to the shallow water equations, the con-
vergence of a linearized Crank-Nicolson scheme. In the paper at hand we ana-
lyze a fully discrete scheme for the (SW) system in which the standard Galerkin
semidiscretization is coupled with an explicit, third-order accurate Runge-Kutta
time-stepping method due to Shu and Osher, [17], that has been extensively used
as a time-stepping scheme for the numerical approximation of hyperbolic systems
in conservation law form with finite-volume or DG spatial discretizations. Since
our emphasis in the proof is on the temporal discretization aspect of the fully dis-
crete problem, we chose the most straightforward to treat spatial discretization,
i.e. piecewise polynomial functions of order r ≥ 3 on a quasiuniform mesh. Thus,
as was mentioned previously, the expected spatial rate of convergence in L2 is of
O(hr−1). We prove that there exists a constant λ0 such that if k/h ≤ λ0 (here
k is the time step), then the L2-error estimate of the fully discrete scheme is of
O(k3 + hr−1). An analogous result holds for (SSW); cf. [3].

As is well known, the explicit Euler scheme is not suitable for approximating in
time first-order hyperbolic problems discretized in space by the standard Galerkin
method. These semidiscretizations lead to stiff systems of o.d.e.’s; for example, in
the case of the initial-periodic boundary-value problem for ut + ux = 0 on [0, 1],
the standard Galerkin semidiscretization with splines on uniform meshes leads to
systems of o.d.e.’s having imaginary eigenvalues of magnitude of O(1/h). As a
result, as we prove in [3], the fully discrete scheme with explicit Euler time stepping
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has an L2-error estimate of O(k + hr−1) for (SSW) under the restrictive mesh
condition k = O(h2). In [3] we also analyze time stepping for (SSW) with the
‘improved Euler’ method, a two-stage, explicit, second-order accurate Runge-Kutta
scheme and show that it has an L2-error estimate of O(k2+hr−1) provided the (still
restrictive) stability condition k = O(h4/3) holds. Both these explicit schemes have
no absolute stability intervals on the imaginary axis, as opposed to the Shu-Osher
scheme, whose region of absolute stability includes the interval [−

√
3,
√
3] on the

imaginary axis. The latter fact allows us to show that the Shu-Osher scheme is
stable for linear hyperbolic problems, discretized in space by the standard Galerkin
method, under a Courant-number stability restriction, a property that persists in
the case of (SW), as was mentioned previously.

We should point out that in recent years there have appeared a number of papers
with proofs of error estimates of full discretizations of Galerkin-type methods with
explicit Runge-Kutta methods for first-order hyperbolic problems. For example,
Zhang and Shu have analyzed discontinuous Galerkin methods for scalar conserva-
tion laws in [24] and for symmetrizable systems of conservation laws in [25] using a
second-order explicit Runge-Kutta method (the explicit trapezoidal rule) for time
stepping. For the DG methods analyzed in these papers this full discretization
turns out to be stable under a Courant-number restriction k ≤ αh for a P1 spatial
discretization but needs k to be of O(h4/3) for higher-order polynomial spaces. The
same Runge-Kutta scheme is proved by Ying, [22], to yield a stable full discretiza-
tion and the expected error estimates for a standard Galerkin method for scalar
conservation laws in several space dimensions under the condition k = O(h4/3).
In [26] Zhang and Shu prove error estimates for a fully discrete DG-3d order Shu-
Osher scheme for scalar conservation laws under Courant-number restriction. In
[7] Burman et al. consider initial-boundary-value problems for first-order linear
hyperbolic systems of Friedrichs-type in several space dimensions, discretized in
space by a class of symmetrically stabilized finite element methods that includes
DG schemes, and in time by explicit Runge-Kutta schemes of second (RK2) and
third (RK3) order of accuracy. They prove L2-error estimates of optimal order in
time and quasioptimal in space under Courant-number restrictions for RK2 schemes
with P1 elements and under the condition k = O(h4/3) for higher-order elements
and under Courant-number restrictions for RK3 schemes. Let us also mention that
for a closely related to the shallow water equations dispersive system (the ‘classi-
cal’ Boussinesq equations), we proved error estimates in [2], [1], for the classical,
four-stage, fourth-order explicit Runge-Kutta temporal discretization of standard
Galerkin methods with cubic splines; the error bounds had an O(k4) dependence
under a Courant-number stability condition.

We close the paper with some supplementary remarks in Section 6. In Section 6.1
we consider the periodic initial-value problem for the shallow water system and its
symmetric version and discretize it in space using the standard Galerkin method
with smooth periodic splines of order r ≥ 2 on a uniform mesh. Using suitable
quasiinterpolants in the space of periodic splines (cf. [20]), we prove optimal-order,
i.e. O(hr), L2-error estimates for both systems. In Section 6.2 we first recall
the nondimensional scaled form of the shallow water equations in the case of long
surface waves of small amplitude (in which the nonlinear terms of the system are
multiplied by the small parameter ε = a/h0, where a is a typical wave amplitude and
h0 the depth of the channel) and derive the analogous scaled form of the symmetric
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shallow water equations using the nonlinear change of variables of Bona, Colin,
and Lannes, [6]. In view of the classical theory of local existence of solutions of
initial-value problems of quasilinear hyperbolic systems and the results of [6], we
argue that the difference in suitable norms of appropriately transformed solutions
of the Cauchy problems for the two systems is of O(ε2t) for times t up to O(1/ε).
Given that initially smooth solutions of both systems are expected in general to
develop singularities after times of O(1/ε), this result indicates that appropriately
transformed, smooth, small-amplitude solutions of the symmetric system remain
close to corresponding smooth solutions of the usual system within their life span
and provides a justification for the symmetric system. Section 6.3 closes with some
numerical experiments which suggest that the difference of the solutions of (SW)
and (SSW) (i.e. of the ibvp’s) also behaves like ε2t for times up to O(1/ε).

In summary, the main contributions of the paper at hand are as follows. We
consider the initial-boundary-value problem (SW) for the system of shallow water
equations, a well-known example of a nonlinear hyperbolic system in one space
dimension, in the case of smooth solutions. We first analyze the convergence of
its standard Galerkin spatial discretization on quasiuniform meshes and obtain the
expected O(hr−1) L2-error estimate. In the case of a general quasiuniform mesh
we are not able to dispense with the need for using in the proof at least quadratics
(i.e. r ≥ 3) for the usual, nonsymmetric SW in order to achieve convergence, thus
not advancing beyond Dupont’s [9] analysis. (We point out how symmetry, as
e.g. in the case of (SSW), removes this obstacle and allows taking r = 2 also.)
However, in the case of uniform mesh we show O(h2), i.e. optimal convergence in
L2 for both types of systems for P1 elements by exploiting cancellation properties
in the errors of the L2 projection of the solution and stressing the role that the
compatibility of the boundary conditions plays in the analysis. We then consider
full discretizations of the problem using explicit Runge-Kutta schemes in time. Our
main analysis concerns the Shu-Osher third-order RK scheme that has been widely
used for time stepping in conservation laws. We prove the optimal O(k3) temporal
rate of convergence for this scheme under a Courant-number restriction. We finally
point out that in the case of smooth periodic solutions one has O(hr), i.e. optimal-
rate, spatial discretization L2-error estimates for smooth splines on uniform meshes
for both types of systems. We also justify the use of SSW as an equivalent model
for SW under a simple nonlinear change of variables in the case of small-amplitude
solutions, following the analogous argument put forward for dispersive systems in
[6].

In addition to previously introduced notation, in this paper we let Ck = Ck[0, 1],
k = 0, 1, 2, . . . , denote the space of k times continuously differentiable functions on
[0, 1] and define Ck

0 = {φ ∈ Ck : φ(0) = φ(1) = 0}. The inner product and
norm on L2 = L2(0, 1) are denoted by ‖ · ‖, (·, ·), respectively, while the norms on
L∞ = L∞(0, 1) and on the L∞-based Sobolev space W k

∞ = W k
∞(0, 1) are denoted

by ‖ · ‖∞, ‖ · ‖k,∞, respectively. We let Pr be the polynomials of degree ≤ r and
〈·, ·〉, |·| be the Euclidean inner product and norm on R

N .

2. Semidiscretization on quasiuniform meshes

Let 0 = x1 < x2 < · · · < xN+1 = 1 denote a quasiuniform partition of [0, 1]
with h := maxi(xi+1 − xi), and for integers r, k such that r ≥ 2, 0 ≤ k ≤ r − 2,

let Sh = Sr,k
h := {φ ∈ Ck : φ

∣∣
[xj ,xj+1]

∈ Pr−1 , 1 ≤ j ≤ N} and Sh,0 = Sk,r
h,0 =
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{φ ∈ Sk,r
h , φ(0) = φ(1) = 0}. It is well known that given w ∈ Hr there exists an

element χ ∈ Sh such that

(2.1a) ‖w − χ‖+ h‖w′ − χ′‖ ≤ Chr‖w(r)‖,

and if r ≥ 3 in addition (cf. [16]),

(2.1b) ‖w − χ‖2 ≤ Chr−2‖w(r)‖,

for some constant C independent of h and w, and that a similar property holds in
Sh,0 if w ∈ Hr ∩H1

0 . Let P , P0 denote the L2 projection operators onto Sh, Sh,0,
respectively. Then (cf. [8]), there holds that

‖Pv‖∞ ≤ C‖v‖∞ if v ∈ L∞,(2.2a)

‖Pv − v‖∞ ≤ Chr‖v‖r,∞ if v ∈ W r,∞(2.2b)

and that a similar property holds for P0 if v ∈ W r,∞ ∩H1
0 . (Here and in the sequel

we will denote by C generic constants independent of discretization parameters.)
As a consequence of the quasiuniformity of the mesh the inverse inequalities

‖χ‖1 ≤ Ch−1‖χ‖,(2.3)

‖χ‖j,∞ ≤ Ch−(j+1/2)‖χ‖, j = 0, 1,(2.4)

hold for χ ∈ Sh. (In (2.4) ‖χ‖0,∞ = ‖χ‖∞.)
We let the standard Galerkin semidiscretization of (SW) be defined as follows:

We seek ηh : [0, T ] → Sh, uh : [0, T ] → Sh,0, such that for t ∈ [0, T ],

(2.5)
(ηht, φ) + (uhx, φ) + ((ηhuh)x, φ) = 0, ∀φ ∈ Sh ,

(uht, χ) + (ηhx, χ) + (uhuhx, χ) = 0, ∀χ ∈ Sh,0 ,

with initial conditions

(2.6) ηh(0) = Pη0 , uh(0) = P0u0 .

Similarly, we define the analogous semidiscretization of (SSW), given for t ∈ [0, T ]
by

(ηht, φ) + (uhx, φ) +
1
2 ((ηhuh)x, φ) = 0, ∀φ ∈ Sh,

(uht, χ) + (ηhx, χ) +
3
2 (uhuhx, χ) +

1
2 (ηhηhx, χ) = 0, ∀χ ∈ Sh,0,

(2.7)

ηh(0) = Pη0 , uh(0) = P0u0.(2.8)

Upon choice of bases for Sh, S
0
h, it is seen that the semidiscrete problems (2.5)-

(2.6) and (2.7)-(2.8) represent initial-value problems (ivp’s) for systems of o.d.e’s.
Clearly, these ivp’s have unique solutions at least locally in time. One conclusion of
Propositions 2.1 and 2.2 is that they possess unique solutions up to at least t = T ,
where [0, T ] is the interval of existence of smooth solutions of (SW) or (SSW) as
the case may be. We start with the error analysis of the semidiscrete symmetric
system (2.7)-(2.8), which is quite straightforward, due to the symmetry of (SSW).

Proposition 2.1. Let (η, u) be the solution of (SSW). Then the semidiscrete ivp
(2.7)-(2.8) has a unique solution (ηh, uh) for 0 ≤ t ≤ T satisfying

(2.9) max
0≤t≤T

(
‖η(t)− ηh(t)‖+ ‖u(t)− uh(t)‖

)
≤ Chr−1.
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Proof. Setting φ = ηh and χ = uh in (2.7) and adding the resulting equations we
obtain the discrete analog of (1.2), i.e. that the conservation property

(2.10) ‖ηh(t)‖2 + ‖uh(t)‖2 = ‖ηh(0)‖2 + ‖uh(0)‖2

holds in the interval of existence of solutions of (2.7)-(2.8). By standard o.d.e.
theory we conclude that the ivp (2.7)-(2.8) possesses unique solutions in any finite
temporal interval [0, t∗] and in particular in [0, T ].

We now let ρ := η − Pη, θ := Pη − ηh, σ := u − P0u, ξ := P0u − uh. Using
(SSW) and (2.7)-(2.8) we obtain for 0 ≤ t ≤ T ,

(θt, φ) + (σx + ξx, φ)(2.11)

+ 1
2 ((ηu− ηhuh)x, φ) = 0, ∀φ ∈ Sh,

(ξt, χ) + (ρx + θx, χ)(2.12)

+ 3
2 (uux − uhuhx, χ) +

1
2 (ηηx − ηhηhx, χ) = 0, ∀χ ∈ Sh,0.

Note that ηu − ηhuh = η(σ + ξ) + u(ρ + θ) − (ρ + θ)(σ + ξ), uux − uhuhx =
(uσ)x+(uξ)x− (σξ)x−σσx− ξξx, ηηx−ηhηhx = (ηρ)x− θθx+(ηθ)x− (ρθ)x−ρρx.
Take φ = θ in (2.11) and obtain, for 0 ≤ t ≤ T , using integration by parts,
(2.13)

1
2

d
dt‖θ‖

2 +
(
[(1 + η

2 )ξ]x, θ
)
= −(σx, θ)− 1

2 ((ησ)x, θ)−
1
2 ((uρ)x, θ)

− 1
2 ((uθ)x, θ) +

1
2 ((ρσ)x, θ) +

1
2 ((θσ)x, θ) +

1
2 ((ρξ)x, θ) +

1
2 ((θξ)x, θ).

We now examine the various terms in the r.h.s. of (2.13). Integration by parts yields
that ((θξ)x, θ) =

1
2 (ξxθ, θ). Using now the approximation and inverse properties of

Sh and Sh,0 and integration by parts we have

|(σx, θ)| ≤ ‖σx‖‖θ‖ ≤ Chr−1‖θ‖, |((ησ)x, θ)| ≤ C‖σ‖1‖θ‖ ≤ Chr−1‖θ‖,
|((uρ)x, θ)| ≤ C‖ρ‖1‖θ‖ ≤ Chr−1‖θ‖, |((uθ)x, θ)| = 1

2 |(uxθ, θ)| ≤ C‖θ‖2,
|((ρσ)x, θ)| ≤ ‖ρ‖∞‖σx‖‖θ‖+ ‖σ‖∞‖ρx‖‖θ‖ ≤ Ch2r−1‖θ‖,
|((θσ)x, θ)| = 1

2 |(σxθ, θ)| ≤ C‖θ‖2,
|((ρξ)x, θ)| ≤ ‖ρx‖∞‖ξ‖‖θ‖+ ‖ρ‖∞‖ξx‖‖θ‖ ≤ C‖ξ‖‖θ‖.

Therefore (2.13) and the above yield for 0 ≤ t ≤ T ,

(2.14) 1
2

d
dt‖θ‖

2 +
(
[(1 + η

2 )ξ]x, θ
)
≤ 1

4 (ξxθ, θ) + C(hr−1‖θ‖+ ‖θ‖2 + ‖ξ‖2).
Now take χ = ξ in (2.12). Then for 0 ≤ t ≤ T using integration by parts we have

(2.15)

1
2

d
dt‖ξ‖

2 −
(
[(1 + η

2 )ξ]x, θ
)

= − 1
4 (ξxθ, θ)− (ρx, ξ)− 3

2 ((uσ)x, ξ)−
3
2 ((uξ)x, ξ) +

3
2 ((σξ)x, ξ)

+ 3
2 (σσx, ξ)− 1

2 ((ηρ)x, ξ)−
1
2 (ηxθ, ξ) +

1
2 ((ρθ)x, ξ) +

1
2 (ρρx, ξ).

Again using (2.1a)-(2.4) and integration by parts we see that

|(ρx, ξ)| ≤ ‖ρx‖‖ξ‖ ≤ Chr−1‖ξ‖, |((uσ)x, ξ)| ≤ C‖σ‖1‖ξ‖ ≤ Chr−1‖ξ‖,
|((uξ)x, ξ)| = 1

2 |(uxξ, ξ)| ≤ C‖ξ‖2,
|((σξ)x, ξ)| = 1

2 |(σxξ, ξ)| ≤ C‖σx‖∞‖ξ‖2 ≤ C‖ξ‖2,
|(σσx, ξ)| ≤ ‖σ‖∞‖σx‖‖ξ‖ ≤ Ch2r−1‖ξ‖, |((ηρ)x, ξ)| ≤ C‖ρ‖1‖ξ‖ ≤ Chr−1‖ξ‖,
|(ηxθ, ξ)| ≤ C‖θ‖‖ξ‖, |((ρθ)x, ξ)| ≤ C‖θ‖‖ξ‖, |(ρρx, ξ)| ≤ Ch2r−1‖ξ‖.
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Therefore, by (2.15), for 0 ≤ t ≤ T ,

(2.16) 1
2

d
dt‖ξ(t)‖

2 −
(
[(1 + η

2 )ξ]x, θ
)
≤ − 1

4 (ξxθ, θ) + C(hr−1‖ξ‖+ ‖θ‖2 + ‖ξ‖2).

Adding (2.14) and (2.16) gives

d
dt (‖ξ‖

2 + ‖θ‖2) ≤ C[hr−1(‖θ‖+ ‖ξ‖) + ‖θ‖2 + ‖ξ‖2], 0 ≤ t ≤ T.

Therefore, by Gronwall’s inequality and (2.6) we see that ‖θ‖ + ‖ξ‖ ≤ Chr−1,
0 ≤ t ≤ T , from which (2.9) follows. �

We turn now to the semidiscrete approximation of (SW). The error analysis
that follows is similar to that of Dupont, [9], and the proof assumes that r ≥ 3
and that the solution of (SW) satisfies 1 + η > 0; cf. [14] and the remarks in the
Introduction.

Proposition 2.2. Let (η, u) be the solution of (SW), satisfying 1 + η > 0 for
t ∈ [0, T ], r ≥ 3, and let h be sufficiently small. Then the semidiscrete ivp (2.5)-
(2.6) has a unique solution (ηh, uh) for 0 ≤ t ≤ T satisfying

(2.17) max
0≤t≤T

(
‖η(t)− ηh(t)‖+ ‖u(t)− uh(t)‖

)
≤ Chr−1.

Proof. We use the same notation as in the proof of Proposition 2.1. While the
solution of (2.5)-(2.6) exists we have

(θt, φ) + (ξx + σx, φ) + ((ηu)x − (ηhuh)x, φ) = 0, ∀φ ∈ Sh,(2.18)

(ξt, χ) + (θx + ρx, χ) + (uux − uhuhx, χ) = 0, ∀χ ∈ Sh,0.(2.19)

Taking φ = θ in (2.18) and using integration by parts we have

(2.20)
1
2

d
dt‖θ‖

2 +
(
[(1 + η)ξ]x, θ

)
= −(σx, θ)− ((ησ)x, θ)− ((uρ)x, θ)

− ((uθ)x, θ) + ((ρσ)x, θ) + ((θσ)x, θ) + ((ρξ)x, θ) + ((θξ)x, θ).

In view of (2.6), by continuity we conclude that there exists a maximal temporal
instance th > 0 such that (ηh, uh) exist and ‖ξx‖∞ ≤ 1 for t ≤ th. Suppose
that th < T . Using the approximation and inverse properties of Sh and Sh,0 and
integration by parts we may then estimate the various terms in the r.h.s. of (2.20)
for t ∈ [0, th] as follows:

|(σx, θ)| ≤ ‖σx‖‖θ‖ ≤ Chr−1‖θ‖, |((ησ)x, θ)| ≤ C‖σ‖1‖θ‖ ≤ Chr−1‖θ‖,
|((uρ)x, θ)| ≤ C‖ρ‖1‖θ‖ ≤ Chr−1‖θ‖, |((uθ)x, θ)| = 1

2 |(uxθ, θ)| ≤ C‖θ‖2,
|((ρσ)x, θ)| ≤ Ch2r−1‖θ‖, |((θσ)x, θ)| = 1

2 |(σxθ, θ)| ≤ C‖θ‖2,
|((ρξ)x, θ)| ≤ C‖ξ‖‖θ‖, |((θξ)x, θ)| = 1

2 |(ξxθ, θ)| ≤
1
2‖ξx‖∞‖θ‖2 ≤ 1

2‖θ‖
2.

Hence, we conclude from (2.20) that for t ∈ [0, th],

(2.21) 1
2

d
dt‖θ‖

2 − (γ, θx) ≤ C(hr−1‖θ‖+ ‖θ‖2 + ‖ξ‖2),

where we have put γ := (1 + η)ξ.
We turn now to (2.19), in which we set χ = P0γ = P0[(1 + η)ξ]. Then for

0 ≤ t ≤ th it holds that

(2.22)
(ξt, γ) + (θx, P0γ) =− (ρx, P0γ)− ((uσ)x, P0γ)− ((uξ)x, P0γ)

+ ((σξ)x, P0γ) + (σσx, P0γ) + (ξξx, P0γ).
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For the first two terms in the r.h.s. of (2.22) we have

|(ρx, P0γ)| ≤ ‖ρx‖‖P0γ‖ ≤ Chr−1‖γ‖ ≤ Chr−1‖ξ‖,
|((uσ)x, P0γ)| ≤ C‖σ‖1‖P0γ‖ ≤ Chr−1‖ξ‖.

Note now that

((uξ)x, P0γ) = ((uξ)x, P0γ − γ) + ((uξ)x, γ)

= ((uξ)x, P0γ − γ) + (ux(1 + η), ξ2)− 1
2

(
[(1 + η)u]x, ξ

2
)
.

We now use a well-known superapproximation property of Sh,0 (cf. [9], [8]) (which
holds for r = 2 as well) to estimate the term P0γ − γ:

(2.23) ‖P0γ − γ‖ = ‖P0[(1 + η)ξ]− (1 + η)ξ‖ ≤ Ch‖ξ‖.

Therefore, by (2.3)

|((uξ)x, P0γ)| ≤ Ch‖ξ‖1‖ξ‖+ C‖ξ‖2 ≤ C‖ξ‖2.

Similarly, using the approximation and inverse properties of Sh, Sh,0 and (2.23) we
have

|((σξ)x, P0γ)| ≤ |(σxξ, P0γ − γ)|+ |(σξx, P0γ − γ)|+ |((σξ)x, γ)|
≤ C‖σx‖∞h‖ξ‖2 + C‖σ‖∞‖ξx‖h‖ξ‖

+ C‖σx‖∞‖ξ‖2 + C‖σ‖∞‖ξx‖‖ξ‖ ≤ C‖ξ‖2,

|(σσx, P0γ)| ≤ |(σσx, P0γ − γ)|+ |(σσx, γ)|
≤ C‖σ‖∞‖σx‖h‖ξ‖+ C‖σ‖∞‖σx‖‖ξ‖ ≤ Ch2r−1‖ξ‖,

|(ξξx, P0γ)| ≤ |(ξξx, P0γ − γ)|+ |(ξξx, (1 + η)ξ)|
≤ C‖ξx‖∞h‖ξ‖2 + C‖ξx‖∞‖ξ‖2 ≤ C‖ξ‖2.

Therefore, using (2.22) we have for 0 ≤ t ≤ th,

(2.24) (ξt, (1 + η)ξ) + (θx, P0γ) ≤ C(hr−1‖ξ‖+ ‖ξ‖2).

Now adding (2.21) and (2.24) we obtain

1
2

d
dt‖θ‖

2 + (ξt, (1 + η)ξ) + (θx, P0γ − γ) ≤ C
[
hr−1(‖θ‖+ ‖ξ‖) + ‖θ‖2 + ‖ξ‖2

]
.

But (ξt, (1 + η)ξ) = 1
2

d
dt ((1 + η)ξ, ξ)− 1

2 (ηtξ, ξ). Therefore, for 0 ≤ t ≤ th,

1
2

d
dt

[
‖θ‖2 + ((1 + η)ξ, ξ)

]
≤ C

[
hr−1(‖θ‖+ ‖ξ‖) + ‖θ‖2 + ‖ξ‖2

]
,

for a constant C independent of h and th. Since 1+ η > 0, the norm ((1+ η)·, ·)1/2
is equivalent to that of L2 uniformly for t ∈ [0, T ]. Hence, Gronwall’s inequality
and (2.6) yield, for a constant C = C(T ),

(2.25) ‖θ‖+ ‖ξ‖ ≤ Chr−1 for 0 ≤ t ≤ th.

We conclude from (2.4) that ‖ξx‖∞ ≤ Chr−5/2 for 0 ≤ t ≤ th, and, since r ≥ 3, if
h is sufficiently small, we see that th is not maximal. Hence we may take th = T ,
and (2.17) follows from (2.25). �
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The proof of Proposition 2.2 needs the assumption that r ≥ 3. The following nu-
merical experiment suggests that the result holds for r = 2, i.e. for piecewise linear
continuous functions as well. Table 2.1 shows the errors and associated orders of
convergence in the L2 and L∞ norms at t = 1 of the standard Galerkin approxima-
tion with piecewise linear continuous functions of (SW) with suitable right-hand
side and initial conditions so that its exact solution is η = exp(2t)(cos(πx)+x+2),
u = exp(−xt) sin(πx). The semidiscrete ivp was integrated in time with the ‘clas-
sical’, four-stage, fourth-order explicit Runge-Kutta (RK) method, which may be
shown to be stable for systems like (SW) under a Courant-number restriction. (To
obtain the results of Table 2.1 we took a small time step, namely k = Δx/20, to
ensure that the temporal error of the discretization would be very small compared
with the spatial error, so that the errors and rates of convergence shown are essen-
tially those of the semidiscrete problem.) On the spatial interval [0, 1] we used the
quasiuniform mesh given by h2i−1 = 0.75Δx, h2i = 0.5Δx, i = 1, . . . , N/2, where
hi = xi+1 − xi and Δx = 1.6/N . The table suggests that the L2-errors for η and
u are of O(h). It also suggests that the L∞-errors are also O(h). (The H1-errors
were found to be of O(1).)

Table 2.1. Errors and orders of convergence. (SW) system, stan-
dard Galerkin semidiscretization with piecewise linear, continuous
elements on a quasiuniform mesh, t = 1.

L2 − errors L∞ − errors
N η order u order η order u order
40 0.1216 0.1749(−2) 0.2099 0.4090(−2)
80 0.5973(−1) 1.0256 0.8259(−3) 1.0825 0.1051 0.9979 0.1935(−2) 1.0798
160 0.2959(−1) 1.0133 0.4092(−3) 1.0132 0.5188(−1) 1.0185 0.1015(−2) 0.9309
320 0.1473(−1) 1.0064 0.2041(−3) 1.0035 0.2587(−1) 1.0039 0.5115(−3) 0.9887
480 0.9804(−2) 1.0040 0.1359(−3) 1.0030 0.1723(−1) 1.0024 0.3418(−3) 0.9942
640 0.7347(−2) 1.0028 0.1019(−3) 1.0009 0.1291(−1) 1.0034 0.2562(−3) 1.0020

3. Some superaccuracy properties of the L2
projection on spaces

of continuous, piecewise linear functions

In this section we will prove in a series of lemmas some superaccuracy (supercon-
vergence) properties of the L2 projection of smooth functions that satisfy suitable
boundary conditions onto spaces of piecewise linear, continuous functions defined
on a uniform mesh in [0, 1]. These properties will be used in Section 4 to establish
optimal-order L2-error estimates for the semidiscrete approximations of (SW) and
(SSW) in these finite element spaces.

For the purposes of this section (and of Section 4) for integer N ≥ 2 we let
h = 1/N , xi = (i − 1)h, i = 1, . . . , N + 1, be a uniform partition of [0, 1] and
Ii = xi+1 − xi, 1 ≤ i ≤ N . We put xi+1/2 = (xi + xi+1)/2. We also let Sh =

S0,2
h := {φ ∈ C0 : φ

∣∣
[xj ,xj+1]

∈ P1 , 1 ≤ j ≤ N} and Sh,0 = S0,2
h,0 = {φ ∈ Sh : φ(0) =

φ(1) = 0}. We equip Sh with the basis {φi}N+1
i=1 , where φi ∈ Sh and φi(xj) = δij ,

1 ≤ i, j ≤ N +1, and Sh,0 with the basis {χi}N−1
i=1 , where χi = φi+1, 1 ≤ i ≤ N −1.

We again let P , P0 be the L2 projection operators onto Sh, Sh,0, respectively.
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Lemma 3.1. Let u ∈ C4
0 , u

′′(0) = u′′(1) = 0, and σ = u−P0u. Then, there exists
a constant C = C(‖u(4)‖∞) such that

(3.1) max
1≤i≤N

∣∣∣∣
∫
Ii

σdx

∣∣∣∣ ≤ Ch5.

Proof. By the definition of P0 we have for x ∈ Ii, 2 ≤ i ≤ N − 1, σ = u − P0u =
u− (di−1χi−1 + diχi), giving for εi =

∫
Ii
σdx, 1 ≤ i ≤ N ,

εi =

∫
Ii

udx− h
2 (di−1 + di), 2 ≤ i ≤ N − 1, ε1 =

∫
I1

udx− h
2d1,(3.2)

εN =

∫
IN

udx− h
2dN−1.

Here we have denoted by d = (d1, d2, . . . , dN−1)
T the coefficients of P0u with respect

to the basis {χi}N−1
i=1 , i.e. the solution of the linear system G0d = b, where G0

ij =
(χj , χi), 1 ≤ i, j ≤ N − 1, and bi = (u, χi), 1 ≤ i ≤ N − 1. The equations of this

system may be written explicitly as G̃0d = b̃, where G̃0 is the (N − 1) × (N − 1)

tridiagonal matrix with elements G̃0
ii = 4, G̃0

ij = 1 if |i − j| = 1, and b̃i = 6bi/h,
1 ≤ i ≤ N−1. If we combine these equations with (3.2) it is straightforward to infer
that ε = (ε1, . . . , εN )T is the solution of the linear system Γε = r, where Γ is the
N ×N tridiagonal matrix with elements Γ11 = ΓNN = 3, Γii = 4, 2 ≤ i ≤ N − 1,
and Γij = 1 if |i− j| = 1, and r = (r1 . . . , rN )T is given by

(3.3)

ri =

∫
Ii−1

udx+ 4

∫
Ii

udx+

∫
Ii+1

udx− 3(bi−1 + bi), 2 ≤ i ≤ N − 1,

r1 = 3

∫
I1

udx+

∫
I2

udx−3b1, rN =

∫
IN−1

udx+ 3

∫
IN

udx− 3bN−1.

We will show that ri = O(h5), 1 ≤ i ≤ N . For r1 we have by the above that
r1 = 3

∫
I1
udx +

∫
I2
udx − 3

h

∫
I1
xudx − 3

h

∫
I2
(2h− x)udx, from which, by Taylor’s

theorem and our hypotheses on u, we obtain that r1 = O(h5). For 2 ≤ i ≤ N − 1,
we have

ri =

∫
Ii−1∪Ii∪Ii+1

udx− 3

∫
Ii−1

x− xi−1

h
udx− 3

∫
Ii+1

xi+2 − x

h
udx.

Since u ∈ C4, it follows from Simpson’s rule and Taylor’s theorem, as in the first
part of the proof of Lemma 5.7 of [2], that ri = O(h5), 2 ≤ i ≤ N − 1. Finally,
since rN = 3

∫
I1
vdx +

∫
I2
vdx − 3(v, χ1), where v(x) := u(1 − x), we see that

rN is the same as r1 with v replacing u. It follows that rN = O(h5). Note that
1
4Γε =

1
4r, where

1
4Γ = I−E, and E is an N×N matrix with ‖E‖∞ = 1/2. Hence,

‖(I − E)−1‖∞ ≤ 2, and thus max1≤i≤N |εi| ≤ 1
2 max1≤i≤N |ri| ≤ Ch5. �

Lemma 3.2. Let u ∈ C3
0 , u

′′(0) = u′′(1) = 0, and σ = u−P0u. Then, there exists
a constant C = C(‖u(3)‖∞) such that

(3.4) max
1≤i≤N

∣∣σ′(xi+1/2)
∣∣ ≤ Ch2.
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Proof. Let d = (d1, . . . , dN−1)
T be defined as in the proof of Lemma 3.1. Then

σ′(x) = u′(x)− d1
h
, x ∈ I1, σ

′(x) = u′(x)− di − di−1

h
, x ∈ Ii, 2 ≤ i ≤ N − 1,

σ′(x) = u′(x)− −dN−1

h
, x ∈ IN .

It is straightforword to check as in Lemma 3.1 that if bi = (u, χi), 1 ≤ i ≤ N − 1,
and ε′i := σ′(xi+1/2), 1 ≤ i ≤ N , then the vector ε′ = (ε′1, . . . , ε

′
N )T is the solution

of the system Aε′ = r′, where A is the N × N tridiagonal matrix with elements
A11 = ANN = 5, Aii = 4, 2 ≤ i ≤ N − 1, and Aij = 1 if |i − j| = 1, and
r′ = (r′1, . . . , r

′
N )T is given by

r′i = u′(xi−1/2) + 4u′(xi+1/2) + u′(xi+3/2)− 6(bi − bi−1)/h
2, 2 ≤ i ≤ N − 1,

r′1 = 5u′(x1+1/2) + u′(x2+1/2)− 6b1/h
2,

r′N = u′(xN−1/2) + 5u′(xN+1/2) + 6bN−1/h
2.

We will show that r′i = O(h2), 1 ≤ i ≤ N . By Taylor’s theorem and our assumptions
on u we first have b1 = 1

4

∫
I1
xudx+ 1

h

∫
I2
(2h−x)udx = h2u′(0)+O(h4). Therefore,

r′1 = 5u′(0)+u′(0)−6u′(0)+O(h2) = O(h2). For r′i , 2 ≤ i ≤ N −1, we have, since
φi = χi−1, r

′
i = u′(xi−1/2) + 4u′(xi+1/2) + u′(xi+3/2) − 6

h2

(
(u, φi+1) − (u, φi)

)
. It

then follows from the relations (5.13)-(5.17) et seq. in the proof of Lemma 5.5 of [2]
that r′i = O(h2), 2 ≤ i ≤ N − 1. Finally, since r′N = −

[
v′(x2+1/2) + 5v′(x1+1/2)−

6(v, χ1)/h
2
]
, where we have denoted v(x) := u(1−x), we see that r′N is given by −r′1

with u replaced by v. It follows that r′N = O(h2) as well. Obviously r′i = O(h2),
1 ≤ i ≤ N , implies that ε′i = O(h2) in view of the properties of the matrix A. �

Lemma 3.3. Suppose that v ∈ C2, u ∈ C4
0 , u

′′(0) = u′′(1) = 0, and σ = u− P0u.
Then there exists a constant C independent of h such that

(3.5) max
1≤i≤N

∣∣∣∣
∫
Ii

vσdx

∣∣∣∣ ≤ Ch5.

Proof. Since ‖σ‖∞ = O(h2) by (2.2b), a Taylor expansion of v gives∫
Ii

vσdx = v(xi+1/2)

∫
Ii

σdx+ v′(xi+1/2)

∫
Ii

(x− xi+1/2)σdx+O(h5).

For the second integral in the right-hand side of this relation a Taylor expansion of

σ and the fact that P0u
∣∣
Ii
∈ P1 yield

∫
Ii
(x − xi+1/2)σdx = h3

12σ
′(xi+1/2) + O(h5).

The estimate (3.5) now follows from (3.1) and (3.4). �

Lemma 3.4. Let η ∈ C4 with η′(0) = η′(1) = 0 and η′′′(0) = η′′′(1) = 0. If
ρ = η − Pη, then there exists a constant C = C(‖η(4)‖L∞) such that

(3.6) max
1≤i≤N

∣∣∣∣
∫
Ii

ρdx

∣∣∣∣ ≤ Ch5.
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Proof. The proof is similar to that of Lemma 3.1, mutatis mutandis; for full details
cf. [3]. �

Lemma 3.5. Let η ∈ C3 and ρ = η − Pη. Then, there exists a constant C =
C(‖η′′′‖∞) such that

(3.7) max
1≤i≤N

∣∣ρ′(xi+1/2)
∣∣ ≤ Ch2.

Proof. See Lemma 5.5 of [2]. �

Lemma 3.6. Let w ∈ C2, η ∈ C4 with η′(0) = η′(1) = 0, η′′′(0) = η′′′(1) = 0. If
ρ = η − Pη, there exists a constant C independent of h such that

(3.8) max
1≤i≤N

∣∣∣∣
∫
Ii

wρdx

∣∣∣∣ ≤ Ch5.

Proof. The proof is similar to that of Lemma 3.3 if (3.6) and (3.7) are taken into
account. �

Lemma 3.7. Consider the mass matrices Gij = (φj , φi), 1 ≤ i, j ≤ N + 1, and
G0

ij = (χj , χi), 1 ≤ i, j ≤ N − 1.
(i) There exist constants ci, 1 ≤ i ≤ 4, independent of h such that

c1h|β|2 ≤ 〈Gβ, β〉 ≤ c2h|β|2 ∀β ∈ R
N+1,

c3h|β|2 ≤ 〈G0β, β〉 ≤ c4h|β|2 ∀β ∈ R
N−1.

(ii) Let b ∈ R
N+1, Gβ = b, and ζ =

∑N+1
j=1 βjφj. Then ‖ζ‖ ≤ (c1h)

−1/2|b|.
If b ∈ R

N−1, G0β = b, and ζ =
∑N−1

j=1 βjχj, then ‖ζ‖ ≤ (c3h)
−1/2|b|.

Proof. The proofs of (i) and (ii) are given in Dupont, [10], when the elements of
the finite element subspace satisfy periodic boundary conditions. In our case, the
proof of (i) follows again from Gerschgorin’s lemma, and (ii) is a consequence of
(i). �

Lemma 3.8. Let w ∈ C2
0 , v ∈ C2, η ∈ C4 with η′(0) = η′(1) = 0, η′′′(0) =

η′′′(1) = 0, u ∈ C4
0 with u′′(0) = u′′(1) = 0, ρ = η − Pη, σ = u − P0u. Then, for

constants C independent of h:
(i) If ζ1 ∈ Sh,0 is defined by (ζ1, χ) = (ρ′, χ), ∀χ ∈ Sh,0, then ‖ζ1‖ ≤ Ch3.
(ii) If ζ2 ∈ Sh is defined by (ζ2, φ) = (σ′, φ), ∀φ ∈ Sh, then ‖ζ2‖ ≤ Ch3.
(iii) If ζ3 ∈ Sh is defined by (ζ3, φ) = ((wρ)′, φ), ∀φ ∈ Sh, then ‖ζ3‖ ≤ Ch3.
(iv) If ζ4 ∈ Sh is defined by (ζ4, φ) = ((vσ)′, φ), ∀φ ∈ Sh, then ‖ζ4‖ ≤ Ch3.
(v) If ζ5 ∈ Sh,0 is defined by (ζ5, χ) = ((vσ)′, χ), ∀χ ∈ Sh,0, then ‖ζ5‖ ≤ Ch3.
(vi) If ζ6 ∈ Sh,0 is defined by (ζ6, χ) = ((vρ)′, χ), ∀χ ∈ Sh,0, then ‖ζ6‖ ≤ Ch3.

Proof. (i) If bi = (ρ′, χi), 1 ≤ i ≤ N − 1, then bi = −(ρ, χ′
i), i.e. bi = − 1

h

∫
Ii
ρdx+

1
h

∫
Ii+1

ρdx, 1 ≤ i ≤ N − 1. By (3.6), |bi| ≤ Ch4. Hence |b| ≤ Ch3.5 and (i) follows

by Lemma 3.7(ii).
The proof of (ii) is similar and takes into account (3.1).
(iii) If now bi = ((wρ)′, φi), 1 ≤ i ≤ N + 1, then bi = −(wρ, φ′

i), i.e. b1 =
1
h

∫
I1
wρdx, bi = − 1

h

∫
Ii−1

wρdx+ 1
h

∫
Ii
wρdx, 2 ≤ i ≤ N , bN+1 = − 1

h

∫
IN

wρdx. By

(3.8) max1≤i≤N |bi| ≤ Ch4, so that |b| ≤ Ch3.5 and (iii) follows from Lemma 3.7(ii).
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The proofs of (iv) and (v) are similar to that of (iii) if we take into account (3.5).
Finally, if bi = ((vρ)′, χi), 1 ≤ i ≤ N − 1, then bi = −(vρ, χ′

i) = − 1
h

∫
Ii
vρdx +

1
h

∫
Ii+1

vρdx, 1 ≤ i ≤ N − 1. By (3.8), |bi| ≤ Ch4. Hence, |b| ≤ Ch3.5 and (vi)

follows from Lemma 3.7(ii). �

4. Semidiscretization with continuous, piecewise linear functions

on uniform meshes

In this section we will prove optimal-order L2-error estimates for the solutions
of the semidiscrete problems (2.5)-(2.6) and (2.7)-(2.8) that approximate the ibvp’s

(SW) and (SSW), respectively, in the spaces Sh = S0,2
h , Sh,0 = S0,2

h,0 of piecewise
linear continuous functions on a uniform spatial mesh, using the notation and results
of Section 3. The proof of optimality of the order of convergence in the error
estimates uses, in addition to the superaccuracy properties of the L2 projection,
compatibility conditions at the boundary ∂I = {0, 1} that smooth solutions of (SW)
and (SSW) satisfy.

We will assume that the ibvp (SW) has a unique solution (η, u) such that
η ∈ C(0, T ;C4), u ∈ C(0, T ;C4

0) for some 0 < T < ∞. We will also assume
that for some α > 0, min0≤x≤1(1 + η0(x)) ≥ α

2 , so that by the theory of [14],
min0≤x≤1(1 + η(x, t)) ≥ α > 0, for all t ∈ [0, T ]. In addition to the hypothesis
(η0, u0) ∈ C4 × C4

0 , we assume that η′0 ∈ C3
0 , η

′′′
0 ∈ C1

0 , u
′′
0 ∈ C2

0 . Then, from the
second p.d.e. of (SW) and the b.c. u|∂I = 0, it follows that ηx|∂I = 0 for t ∈ [0, T ].
Differentiating the first p.d.e. with respect to x and using the positivity of 1 + η
we also conclude that uxx|∂I = 0 for t ∈ [0, T ]. Finally, differentiating the second
p.d.e. twice with respect to x we see that for 0 ≤ t ≤ T , ηxxx|∂I = 0 as well. We
will make the same hypotheses, leading to the same compatibility conditions for
the solution (η, u) of (SSW), under the assumption that

min
0≤x≤1
0≤t≤T

(1 +
1

2
η(x, t)) ≥ β

for some positive constant β > 0, which may also be similarly justified; cf. the
remarks in the Introduction.

We begin with the error estimate for (SSW), which is again simpler due to the
symmetry of this system.

Theorem 4.1. Let (η, u) be the solution of (SSW) and suppose that η∈C(0, T ;C4),
u ∈ C(0, T ;C4

0), η
′
0 ∈ C3

0 , η
′′′
0 ∈ C1

0 , u
′′
0 ∈ C2

0 and

min
0≤x≤1
0≤t≤T

(1 +
1

2
η(x, t)) ≥ β > 0

for some constant β. Let xi = (i − 1)h, 1 ≤ i ≤ N + 1, Nh = 1, and (ηh, uh) be
the solution of (2.7)-(2.8) for t ∈ [0, T ] in the space of piecewise linear continuous
functions Sh × Sh,0. Then

(4.1) max
0≤t≤T

(‖η(t)− ηh(t)‖+ ‖u(t)− uh(t)‖) ≤ Ch2

and

(4.1
′
) max

0≤t≤T
(‖η(t)− ηh(t)‖∞ + ‖u(t)− uh(t)‖∞) ≤ Ch2.
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Proof. We refer to the analogous proof (Proposition 2.1) in the quasiuniform mesh
case for notation. We again let θ = Pη−ηh, ξ = P0u−uh, ρ = η−Pη, σ = u−P0u.
The identity (2.13) still holds and we write it, using integration by parts, in the
form

(4.2) 1
2

d
dt‖θ‖

2 +
(
[(1 + η

2 )ξ]x, θ
)
= 1

4 (ξxθ, θ) +A1 +A2,

where

(4.3) A1 := −(σx, θ)− 1
2 ((ησ)x, θ)−

1
2 ((uρ)x, θ),

(4.4) A2 := − 1
4 (uxθ, θ) +

1
4 (σxθ, θ) +

1
2 ((ρσ)x, θ) +

1
2 ((ρξ)x, θ).

We will estimate the terms of A1 using the superaccuracy properties of Section 3
in view of the compatibility conditions on η and u for 0 ≤ t ≤ T implied by our
hypotheses, as was previously explained.

By Lemma 3.8(ii), (iv) with v = η, and (iii) with w = u, we have |(σx, θ)| ≤
Ch3‖θ‖, |((ησ)x, θ)| ≤ Ch3‖θ‖, |((uρ)x, θ)| ≤ Ch3‖θ‖, and we conclude by (4.3)
that

(4.5) |A1| ≤ Ch3‖θ‖.
The terms of A2 are estimated as in the proof of Proposition 2.1, immediately after
(2.13), in the case r = 2. As a result we have

(4.6) |A2| ≤ C(h3‖θ‖+ ‖θ‖2 + ‖ξ‖2).
Therefore, by (4.2), (4.5), and (4.6), there holds for t ∈ [0, T ] that

(4.7) 1
2

d
dt‖θ‖

2 +
(
[(1 + η

2 )ξ]x, θ
)
≤ 1

4 (ξxθ, θ) + C(h3‖θ‖+ ‖θ‖2 + ‖ξ‖2).
In addition, the identity (2.15) still holds. Using integration by parts we write it
for t ∈ [0, T ] in the form

(4.8) 1
2

d
dt‖ξ‖

2 −
(
[(1 + η

2 )ξ]x, θ
)
= − 1

4 (ξxθ, θ) +B1 +B2,

where

(4.9) B1 := −(ρx, ξ)− 1
2 ((ηρ)x, ξ)−

3
2 ((uσ)x, ξ),

(4.10)
B2 := − 3

2 ((uξ)x, ξ) +
3
2 ((σξ)x, ξ) +

3
2 (σσx, ξ)− 1

2 (ηxθ, ξ) +
1
2 ((ρθ)x, ξ) +

1
2 (ρρx, ξ).

Using again the compatibility properties of η and u for 0 ≤ t ≤ T , by Lemma 3.8(i),
(vi) with v = η, and (v) with v = u we have |(ρx, ξ)| ≤ Ch3‖ξ‖, |((ηρ)x, ξ)| ≤
Ch3‖ξ‖, |((uσ)x, ξ)| ≤ Ch3‖ξ‖, so that by (4.9)

(4.11) |B1| ≤ Ch3‖ξ‖.
The terms of B2 are estimated again as in the proof of Proposition 2.1, after (2.15),
in the case r = 2. We have therefore

(4.12) |B2| ≤ C(h3‖ξ‖+ ‖θ‖2 + ‖ξ‖2),
and by (4.8), (4.11), and (4.12), for t ∈ [0, T ] :

(4.13) 1
2

d
dt‖ξ‖

2 −
(
[(1 + η

2 )ξ]x, θ
)
≤ − 1

4 (ξxθ, θ) + C(h3‖ξ‖+ ‖θ‖2 + ‖ξ‖2).
Adding (4.7) and (4.13) we get for t ∈ [0, T ] that

d
dt (‖θ‖

2 + ‖ξ‖2) ≤ Ch3(‖ξ‖+ ‖θ‖) + C(‖θ‖2 + ‖ξ‖2).
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Therefore, since θ(0) = 0, ξ(0) = 0, Gronwall’s lemma gives the superaccurate
estimate

(4.14) ‖θ‖+ ‖ξ‖ ≤ Ch3, 0 ≤ t ≤ T,

from which (4.1) follows. In view of (2.4) and (2.2b), (4.14) implies the L∞ estimate

(4.1
′
) as well. �

We prove now the analogous optimal-order L2-error estimate for (SW).

Theorem 4.2. Let (η, u) be the solution of (SW) and suppose that η ∈ C(0, T ;C4),
u ∈ C(0, T ;C4

0), η
′
0 ∈ C3

0 , u
′′
0 ∈ C2

0 , and min0≤x≤1
0≤t≤T

(1 + η(x, t)) ≥ α > 0 for some

positive constant α. Let xi = (i − 1)h, 1 ≤ i ≤ N + 1, Nh = 1, and (ηh, uh) be
the solution of (2.5)-(2.6) for t ∈ [0, T ] in the space of piecewise linear continuous
functions Sh × Sh,0. Then

(4.15) max
0≤t≤T

(‖η(t)− ηh(t)‖+ ‖u(t)− uh(t)‖) ≤ Ch2

and

(4.15
′
) max

0≤t≤T
(‖η(t)− ηh(t)‖∞ + ‖u(t)− uh(t)‖∞) ≤ Ch2.

Proof. We refer again to the analogous proof (Proposition 2.2) in the quasiuniform
case for notation. In particular we again let θ = Pη−ηh, ξ = P0u−uh, ρ = η−Pη,
σ = u − P0u. The identity (2.20) still holds and we write it, using integration by
parts, in the form

(4.16) 1
2

d
dt‖θ‖

2 +
(
[(1 + η)ξ]x, θ

)
= 1

2 (ξxθ, θ) +A3 +A4,

where

(4.17) A3 = −(σx, θ)− ((ησ)x, θ)− ((uρ)x, θ),

(4.18) A4 = − 1
2 (uxθ, θ) +

1
2 (σxθ, θ) + ((ρσ)x, θ) + ((ρξ)x, θ).

Using the compatibility conditions on η and u implied by our hypotheses, we have,
by Lemma 3.8 (ii), (iv) with v = η, and (iii) with w = u, that |(σx, θ)| ≤ Ch3‖θ‖,
|((ησ)x, θ)| ≤ Ch3‖θ‖, |((uρ)x, θ)| ≤ Ch3‖θ‖. Hence, by (4.17),

(4.19) |A3| ≤ Ch3‖θ‖.
The terms of A4 are estimated as in the proof of Proposition 2.2 in various inequal-
ities after (2.20), which hold for r = 2 as well. As a result, we have

(4.20) |A4| ≤ C(h3‖θ‖+ ‖θ‖2 + ‖ξ‖2).
As in Proposition 2.2, we let th be such that ‖ξx‖∞ ≤ 1 for t ≤ th and suppose that
th < T . Then we have that |(ξxθ, θ)| ≤ ‖θ‖2 and (4.16), (4.19) and (4.20) imply
that for 0 ≤ t ≤ th,

(4.21) 1
2

d
dt‖θ‖

2 − (γ, θx) ≤ C(h3‖θ‖+ ‖θ‖2 + ‖ξ‖2),
where γ = (1 + η)ξ. The identity (2.22) still holds. We write it in the form

(4.22) (ξt, γ) + (θx, P0γ) = (ξξx, P0γ) +B3 +B4,

where

(4.23) B3 = −(ρx, P0γ)− ((uσ)x, P0γ),

(4.24) B4 = −((uξ)x, P0γ) + ((σξ)x, P0γ) + (σσx, P0γ).
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By Lemma 3.8(i), and (v) with v = u, we have |(ρx, P0γ)| ≤ Ch3‖P0γ‖ ≤ Ch3‖γ‖ ≤
Ch3‖ξ‖ and |((uσ)x, P0γ)| ≤ Ch3‖P0γ‖ ≤ Ch3‖ξ‖. Therefore,
(4.25) |B3| ≤ Ch3‖ξ‖.
Now, using the superapproximation property (2.23) we have, as in the proof of
Proposition 2.2, that |((uξ)x, P0γ)| ≤ C‖ξ‖2, |((σξ)x, P0γ)| ≤ C‖ξ‖2, and
|(σσx, P0γ)| ≤ C‖σ‖∞‖σx‖‖ξ‖ ≤ Ch3‖ξ‖. (These estimates hold in the case r = 2
as well.) Hence,

(4.26) |B4| ≤ C(h3‖ξ‖+ ‖ξ‖2).
Finally, as in the proof of Proposition 2.2, we have for 0 ≤ t ≤ th that

(4.27) |(ξξx, P0γ)| ≤ C‖ξ‖2.
From (4.22), (4.25), (4.26), and (4.27) it follows that for 0 ≤ t ≤ th,

(4.28) (ξt, γ) + (θx, P0γ) ≤ C(h3‖ξ‖+ ‖ξ‖2).
From (4.21) and (4.28) we have, as in the proof of Proposition 2.2, that for 0 ≤ t
≤ th,

d
dt

[
‖θ‖2 + ((1 + η)ξ, ξ)

]
≤ C(h6 + ‖θ‖2 + ‖ξ‖2), from which, since θ(0) =

ξ(0) = 0, we see from Gronwall’s lemma that for a constant C = C(T ) it holds that

(4.29) ‖θ‖+ ‖ξ‖ ≤ Ch3, 0 ≤ t ≤ th.

Hence ‖ξx‖∞ ≤ Ch3/2 for 0 ≤ t ≤ th in view of (2.4). It follows that th is not
maximal; thus we may take th = T in (4.29). The conclusion of the theorem
follows. �

We close this section by presenting the results of some relevant numerical experi-
ments. We solve the nonhomogeneous (SSW) and (SW) with the standard Galerkin
method with piecewise linear continuous functions on a uniform mesh on [0, 1] with
h = 1/N using as exact solutions the functions η = exp(2t)(cos(πx) + x + 2)
and u = exp(−xt) sin(πx). As in Section 2, the fourth-order explicit classical RK
method is used for time stepping with k = h/10. Table 4.1 shows the L2-errors

Table 4.1. L2-errors and orders of convergence, continuous,
piecewise linear functions, uniform mesh.

L2 − errors: SW L2 − errors: SSW
N η order u order η order u order
40 0.4721(−2) 0.1859(−3) 0.2883(−2) 0.1772(−3)
80 0.1179(−2) 2.0015 0.4627(−4) 2.0064 0.7203(−3) 2.0009 0.4415(−4) 2.0049
160 0.2948(−3) 1.9998 0.1155(−4) 2.0022 0.1800(−3) 2.0006 0.1105(−4) 1.9984
320 0.7369(−4) 2.0002 0.2888(−5) 1.9998 0.4501(−4) 1.9997 0.2762(−5) 2.0003
480 0.3275(−4) 2.0001 0.1284(−5) 1.9991 0.2000(−4) 2.0005 0.1228(−5) 1.9991
640 0.1842(−4) 2.0004 0.7221(−6) 2.0007 0.1125(−4) 2.0000 0.6905(−6) 2.0013

at t = 1 and their order of convergence, which is essentially the spatial order of
convergence for this problem for both systems. As predicted by the theory of the
present section the order of convergence is equal to 2. In addition, the L∞-errors
(not shown here) converge at the same rate. It is also worth noting that for spe-
cial quasiuniform meshes, e.g. for piecewise uniform or gradually varying meshes,
numerical evidence suggests that the L2- and L∞-errors are again of O(h2). We
refer to the relevant numerical results at the end of Section 2 of [3]. In Table 4.2
we present the L2-errors for the same problems for the analogous Galerkin method
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that uses cubic splines on a uniform mesh for the spatial discretization. The conver-
gence of this scheme was not analyzed here, but its order of convergence appears to
be equal to 4, i.e. optimal in L2. (In order to render the temporal errors negligible
and essentially approximate the spatial error, we took k/h = 1/10 for (SW) and
k/h = 1/80 for (SSW) in the numerical experiment presented in this table.)

Table 4.2. L2-errors and orders of convergence, cubic splines,
uniform mesh.

L2 − errors: SW L2 − errors: SSW
N η order u order η order u order
40 0.4877(−6) 0.2307(−7) 0.3287(−6) 0.2280(−7)
80 0.2938(−7) 4.0531 0.1444(−8) 3.9979 0.1997(−7) 4.0409 0.1412(−8) 4.0132
160 0.1802(−8) 4.0272 0.9015(−10) 4.0016 0.1230(−8) 4.0211 0.8821(−10) 4.0007
320 0.1115(−9) 4.0145 0.5640(−11) 3.9986 0.7632(−10) 4.0105 0.5523(−11) 3.9974
480 0.2196(−10) 4.0073 0.1116(−11) 3.9957 0.1504(−10) 4.0058 0.1096(−11) 3.9886
600 0.8982(−11) 4.0064 0.4576(−12) 3.9952 0.6155(−11) 4.0039 0.4617(−12) 3.8742

5. Full discretization with the third-order Shu-Osher scheme

In this section we turn to temporal discretizations of the o.d.e. systems repre-
sented by the standard Galerkin semidiscretizations of (SW) and (SSW) that were
studied in Sections 2 and 4. In [9] Dupont analyzed, in the case of a system simi-
lar to (SW), the convergence of a linearized Crank-Nicolson scheme. Here we will
consider explicit Runge-Kutta schemes, and since our main focus will be on the
time-stepping aspect, we will analyze the convergence of the fully discrete schemes
in the case of semidiscretizations based on a quasiuniform spatial mesh, whose
treatment is more straightforward. Thus the expected spatial rate of convergence
in L2 (see Section 2) is of O(hr−1). We will use the notation of Section 2 letting

Sh = Sk,r
h , Sh,0 = Sk,r

h,0, r ≥ 2, on a quasiuniform mesh. For a positive integer M

we let k = T/M be the time step, put tn = nk for n = 0, 1, 2, . . . ,M , and denote
the fully discrete approximations of η(·, tn), u(·, tn), by Hn

h ∈ Sh, U
n
h ∈ Sh,0, re-

spectively, using as initial values the L2-projections H0
h = Pη0, U

0
h = P0u0 of the

initial data.
As is well known, the explicit Euler method is not suitable for discretizing in

time the o.d.e. systems generated by standard Galerkin spatial discretizations of
linear, first-order hyperbolic p.d.e.’s, since its region of absolute stability does not
include an interval of the imaginary axis. In [3] we analyzed the fully discrete
explicit Euler-standard Galerkin scheme for (SSW) and proved (for subspaces with
r ≥ 2) that if μ = k/h2, then there exists a constant C = C(μ) such that

max
0≤n≤M

(‖Hn
h − η(tn)‖+ ‖Un

h − u(tn)‖) ≤ C(k + hr−1).

(In the case of (SW) the analogous proof requires that r ≥ 3.) Thus the explicit
Euler scheme needs the restrictive mesh condition k = O(h2) for convergence. The
situation is only marginally improved in the case of second-order accurate, two-stage
explicit Runge-Kutta schemes. For example, in [3] we considered the analogous fully
discrete method for the ‘improved Euler’ scheme (the explicit midpoint method),
which for the o.d.e. y′ = f(t, y) may be written in the form

yn,1 = yn + k
2f(t

n, yn),

yn+1 = yn + kf(tn + k
2 , y

n,1).
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This scheme possesses no interval of absolute stability on the imaginary axis and is
not expected therefore to be suitable for the temporal discretization of first-order
hyperbolic problems. In [3] we proved that if μ = k/h4/3, there exists a constant
C = C(μ) such that

max
0≤n≤M

(‖Hn
h − η(tn)‖+ ‖Un

h − u(tn)‖) ≤ C(k2 + hr−1),

where (Hn
h , U

n
h ) is the fully discrete approximation of the solution (η(tn), u(tn)) of

(SSW) for r ≥ 3. (A similar result holds for (SW).) Hence this scheme requires
the, still restrictive, mesh condition k = O(h4/3) for convergence.

We now examine a practically useful method, namely a third-order accurate
explicit Runge-Kutta scheme due to Shu and Osher, [17]. Written in the standard
Butcher notation, it is a three-stage scheme corresponding to the tableau:

A τ

bT
=

0 0 0 0

1 0 0 1

1/4 1/4 0 1/2

1/6 1/6 2/3

One may simplify the scheme and write it as a two-stage method approximating
the o.d.e. y′ = f(t, y) in the form

yn,1 = yn + kf(tn, yn),

yn,2 = yn + k
4f(t

n, yn) + k
4f(t

n+1, yn,1),

yn+1 = yn + k
6f(t

n, yn) + k
6f(t

n+1, yn,1) + 2k
3 f(tn + k/2, yn,2);

this is precisely the explicit scheme (2.19) in [17]. It is easy to check that the abso-

lute stability interval of this scheme on the imaginary axis is [−
√
3,
√
3]; thus it is

suitable for integrating in time semidiscretizations of e.g. linear, first-order hyper-
bolic problems, such as the periodic initial-value problem for ut + ux = 0, under a
Courant-number restriction. It is also well known, [17], that this scheme has good
nonlinear stability properties such as the TVD property and has been extensively
used as a time-stepping scheme for the numerical approximation of hyperbolic sys-
tems in conservation law form with finite volume or DG spatial discretizations. In
the rest of this section we will use it to discretize in time the semidiscrete (SW)
initial-value problem (2.5)-(2.6). (Its application to (SSW) is analyzed in [3].)

We first define the fully discrete Shu-Osher scheme. Using the notation of Section

2, we let Sh = Sk,r
h , Sh,0 = Sk,r

h,0 for r ≥ 3. Let (η(t), u(t)), 0 ≤ t ≤ T , be the solution

of (SW). We denote H(t) = Pη(t), U(t) = P0u(t), H
n = H(tn), Un = U(tn), and

define

Φ = U +HU , Φn = Φ(tn),(5.1)

F = Hx + UUx , Fn = F (tn).(5.2)

The Shu-Osher time-stepping scheme for the semidiscrete problem (2.5)-(2.6) is the

following: We seek Hn
h ∈ Sh, U

n
h ∈ Sh,0 for 0 ≤ n ≤ M and Hn,1

h , Hn,2
h ∈ Sh, U

n,1
h ,
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Un,2
h ∈ Sh,0 for 0 ≤ n ≤ M − 1 such that for 0 ≤ n ≤ M − 1,

(5.3)

Hn,1
h −Hn

h + kPΦn
hx = 0,

Un,1
h − Un

h + kP0F
n
h = 0,

Hn,2
h −Hn

h + k
4
PΦn

hx + k
4
PΦn,1

hx = 0,

Un,2
h − Un

h + k
4
P0F

n
h + k

4
P0F

n,1
h = 0,

Hn+1
h −Hn

h + k
6
PΦn

hx + k
6
PΦn,1

hx + 2k
3
PΦn,2

hx = 0,

Un+1
h − Un

h + k
6
P0F

n
h + k

6
P0F

n,1
h + 2k

3
P0F

n,2
h = 0,

and H0
h = ηh(0) = Pη0, U

0
h = uh(0) = P0u0, where

Φn
h = Un

h +Hn
hU

n
h ,(5.4)

Fn
h = Hn

hx + Un
hU

n
hx,(5.5)

and for j = 1, 2,

Φn,j
h = Un,j

h +Hn,j
h Un,j

h ,(5.6)

Fn,j
h = Hn,j

hx + Un,j
h Un,j

hx .(5.7)

For the purposes of the error analysis of the fully discrete scheme (5.3) we first
prove two preliminary lemmas.

Lemma 5.1. Let H = Pη. Then there exist constants C such that
(i)

(5.8) ‖P0[(1 +H)ξ]− (1 +H)ξ‖ ≤ Ch‖ξ‖, ∀ξ ∈ Sh,0,

(ii) and for f ∈ L2,

(5.9) ((1 +H)ξ, P0f) = ((1 +H)ξ, f) + b(ξ, f) , ξ ∈ Sh,0 ,

where |b(ξ, f)| ≤ Ch‖ξ‖‖f‖.

Proof. (i) We have

P0[(1 +H)ξ]− (1 +H)ξ = P0[(H − η)ξ] + P0[(1 + η)ξ]− (1 + η)ξ − (H − η)ξ.

Hence by (2.2a) and the superapproximation property (2.23) (which holds for any
ξ ∈ Sh,0) we obtain

‖P0[(1 +H)ξ]− (1 +H)ξ‖ ≤ C(‖H − η‖∞‖ξ‖+ h‖ξ‖),
and therefore (5.8) follows from (2.2b).

(ii) Since for ξ ∈ Sh,0, b(ξ, f) = (P0[(1+H)ξ]− (1+H)ξ, f), it follows from (5.8)
that |b(ξ, f)| ≤ Ch‖ξ‖‖f‖. �

Lemma 5.2. Let η be the first component of the solution of (SW) for which we
suppose that 1 + η ≥ α > 0 for t ∈ [0, T ]. Let H = Pη. If η ∈ W r

∞, then for h
small enough it holds that 1+H ≥ α/2, for 0 ≤ t ≤ T . In addition, if f ∈ L2, then

(5.10)
α

2
‖f‖2 ≤

(
(1 +H)f, f

)
≤ C ′‖f‖2 ,

for some constant C ′ that depends on η.

Proof. From (2.2b) we have 1+η−C1h
r ≤ 1+H ≤ 1+η+C1h

r, for some constant
C1. Therefore, if h ≤ (α/(2C1))

1/r, then α/2 ≤ 1+H ≤ C ′, and (5.10) follows. �
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For the purposes of the error analysis we define ‘intermediate’ stages V n,j ∈ Sh,
Wn,j ∈ Sh,0 for j = 1, 2 and 0 ≤ n ≤ M − 1, starting from Hn and Un, as follows:

V n,1 −Hn + kPΦn
x = 0,(5.11)

Wn,1 − Un + kP0F
n = 0,(5.12)

V n,2 −Hn + k
4PΦn

x + k
4PΦn,1

x = 0,(5.13)

Wn,2 − Un + k
4P0F

n + k
4P0F

n,1 = 0,(5.14)

where, for j = 1, 2,

Φn,j = Wn,j + V n,jWn,j ,(5.15)

Fn,j = V n,j
x +Wn,jWn,j

x .(5.16)

We are now in a position to estimate the continuous time truncation errors using
L2 projections.

Lemma 5.3. Let (η, u) be the solution of (SW) on [0, T ]. If H(t) = Pη(t), U(t) =
P0u(t), and ψ = ψ(t) ∈ Sh, ζ = ζ(t) ∈ Sh,0 are such that

Ht + PΦx = ψ,(5.17)

Ut + P0F = ζ,(5.18)

for 0 ≤ t ≤ T , then there exists a constant C such that for j = 0, 1, 2, it holds that

max
0≤t≤T

(
‖∂j

tψ‖+ ‖∂j
t ζ‖

)
≤ Chr−1.

Proof. Subtracting both sides of the equations Pηt+Pux+P (ηu)x = 0, Ht+PUx+
P (HU)x = ψ, and putting ρ = η−H, σ = u−U , we have Pσx+P (ηu−HU)x = −ψ.
Since ηu−HU = ησ+uρ−ρσ, it follows that Pσx+P (ησ)x+P (uρ)x−P (ρσ)x = −ψ,
and, as a consequence of the approximation properties of Sh and Sh,0, for j = 0, 1, 2,

‖∂j
tψ‖ ≤ Chr−1. Subtracting now both sides of the equations P0ut + P0ηx +

P0(uux) = 0, Ut + P0Hx + P0(UUx) = ζ, we obtain P0ρx + P0(uux − UUx) = −ζ.
Since uux − UUx = (uσ)x − σσx, it follows that P0ρx + P0(uσ)x − P0(σσx) = −ζ,

and, as in the ψ case, we see that for j = 0, 1, 2, ‖∂j
t ζ‖ ≤ Chr−1. �

We now prove consistency estimates for the scheme (5.3).

Lemma 5.4. Let λ = k/h. If

δn1 = Hn+1 −Hn + k
6PΦn

x + k
6PΦn,1

x + 2k
3 PΦn,2

x ,(5.19)

δn2 = Un+1 − Un + k
6P0F

n + k
6P0F

n,1 + 2k
3 P0F

n,2,(5.20)

then there exists a constant Cλ which is a polynomial of λ with positive coefficients
such that

max
0≤n≤M−1

(‖δn1 ‖+ ‖δn2 ‖) ≤ Cλk(k
3 + hr−1).

Proof. From (5.11), (5.17) and (5.12), (5.18) we see that V n,1 = Hn + kHn
t − kψn,

Wn,1 = Un+kUn
t −kζn, and hence that V n,1Wn,1 = HnUn+k(HU)nt +k2Hn

t U
n
t +

vn1 , where, by (2.2a) and the approximation properties of Sh it holds that ‖vn1 ‖ ≤
Ckhr−1, ‖vn1 ‖1 ≤ Cλh

r−1. Thus

(5.21) Φn,1 = Wn,1 + V n,1Wn,1 = Φn + kΦn
t + k2Hn

t U
n
t + vn2 ,

with
‖vn2 ‖ ≤ Ckhr−1 , ‖vn2 ‖1 ≤ Cλh

r−1.
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Also, since Wn,1Wn,1
x = UnUn

x + k(UUx)
n
t + k2Un

t U
n
tx + ωn

2 , with ‖ωn
2 ‖ ≤ Cλh

r−1,
k‖ωn

2 ‖1 ≤ Ck3 + Cλh
r−1, we have

(5.22) Fn,1 = Fn + kFn
t + k2Un

t U
n
tx + ωn

3 ,

with ‖ωn
3 ‖ ≤ Cλh

r−1, k‖ωn
3 ‖1 ≤ Ck3 + Cλh

r−1. Now

V n,2 = Hn + k
2H

n
t − k

2ψ
n + k2

4 Hn
tt − k2

4 ψn
t − k3

4 P (Hn
t U

n
t )x − k

4Pvn2x,

and finally

(5.23) V n,2 = Hn + k
2H

n
t + k2

4 Hn
tt + ψn

1 ,

with

‖ψn
1 ‖ ≤ Ck3 + Cλh

r−1, ‖ψn
1 ‖1 ≤ Ck3 + Cλh

r−1,

where we used the stability of the L2 projection in the H1 norm (cf. [19]) and
the inverse and approximation properties of Sh. Now Wn,2 = Un + k

2U
n
t − k

2 ζ
n +

k2

4 Un
tt − k2

4 ζnt − k3

4 P0(U
n
t U

n
tx)− k

4P0ω
n
3 , and therefore

(5.24) Wn,2 = Un + k
2U

n
t + k2

4 Un
tt + ζn1 ,

with ‖ζn1 ‖ ≤ Ck3+Cλkh
r−1, ‖ζn1 ‖1 ≤ Ck3+Cλh

r−1, where we took into account the
approximation and inverse properties of Sh,0 and the stability of the L2 projection

in H1. It follows that V n,2Wn,2 = HnUn + k
2 (HU)nt + k2

4 (HU)ntt − k2

4 Hn
t U

n
t + vn3 ,

with ‖vn3 ‖ ≤ Ck3 + Cλkh
r−1, ‖vn3 ‖1 ≤ Ck3 + Cλh

r−1. Thus

(5.25) Φn,2 = Φn + k
2Φ

n
t + k2

4 Φn
tt − k2

4 Hn
t U

n
t + vn4 ,

with ‖vn4 ‖ ≤ Ck3 + Cλkh
r−1, ‖vn4 ‖1 ≤ Ck3 + Cλh

r−1. From (5.21), (5.25) we

conclude that 1
6Φ

n + 1
6Φ

n,1 + 2
3Φ

n,2 = Φn + k
2Φ

n
t + k2

6 Φn
tt +

1
6v

n
2 + 2

3v
n
4 . Hence

δn1 = Hn+1 −Hn + kPΦn
x +

k2

2 PΦn
tx+

k3

6 PΦn
ttx +

k
2Pvn2x +

2k
3 Pvn4x = Hn+1 −Hn −

kHn
t − k2

2 Hn
tt − k3

6 Hn
ttt + αn, with ‖αn‖ ≤ Ckhr−1 +Cλkh

r−1 +Cλk(k
3 + hr−1) ≤

Cλk(k
3 + hr−1). Therefore

‖δn1 ‖ ≤ Ck(k3 + Cλh
r−1).

From (5.24) we obtain Wn,2Wn,2
x = UnUn

x + k
2 (UUx)

n
t +

k2

4 (UUx)
n
tt− k2

4 Un
t U

n
tx+ωn

5 ,

with ‖ωn
5 ‖ ≤ Ck3+Cλh

r−1. Thus, using (5.23), Fn,2 = Fn+ k
2F

n
t + k2

4 Fn
tt +ψn

1x−
k2

4 Un
t U

n
tx + ωn

5 , i.e.

(5.26) Fn,2 = Fn + k
2F

n
t + k2

4 Fn
tt − k2

4 Un
t U

n
tx + ωn

6 ,

where ‖ωn
6 ‖ ≤ Ck3 + Cλh

r−1. From (5.22), (5.26) we now obtain 1
6F

n + 1
6F

n,1 +
2
3F

n,2 = Fn + k
2F

n
t + k2

6 Fn
tt +

1
6ω

n
3 + 2

3ω
n
6 , and therefore δn2 = Un+1 −Un − kUn

t −
k2

2 Un
tt − k3

6 Un
ttt + kβn, where ‖βn‖ ≤ Ckhr−1 + Ck3 + Cλh

r−1 ≤ Ck3 + Cλh
r−1.

Hence ‖δn2 ‖ ≤ Ck(k3 + Cλh
r−1). From this and the analogous estimate for δn1 the

result of the lemma follows. �

We now proceed with the proof of convergence of the scheme.

Proposition 5.1. Let (Hn
h , U

n
h ) be the solution of (5.3) and (η, u) the solution of

(SW) for which we suppose that 1 + η ≥ α > 0 for t ∈ [0, T ]. Let h be sufficiently
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small. Then if λ = k/h, there exists a constant λ0 and a constant C independent
of k, h such that for λ ≤ λ0,

max
0≤n≤M

(‖η(tn)−Hn
h ‖+ ‖u(tn)− Un

h ‖) ≤ C(k3 + hr−1).

Proof. It suffices to show that

max
0≤n≤M

(‖Hn −Hn
h ‖+ ‖Un − Un

h ‖) ≤ C(k3 + hr−1).

We let

εn = Hn −Hn
h , en = Un − Un

h , εn,j = V n,j −Hn,j
h , en,j = Wn,j − Un,j

h , j = 1, 2.

Then from (5.3), (5.11)-(5.14) if follows that

εn,1 = εn − kP (Φn − Φn
h)x,(5.27)

en,1 = en − kP0(F
n − Fn

h ),(5.28)

εn,2 = εn − k
4P (Φn − Φn

h)x − k
4P (Φn,1 − Φn,1

h )x,(5.29)

en,2 = en − k
4P0(F

n − Fn
h )− k

4P0(F
n,1 − Fn,1

h ),(5.30)

so that from the last two equations of (5.3) and also from (5.19), (5.20) we have

εn+1 = εn − k
6P (Φn − Φn

h)x − k
6P (Φn,1 − Φn,1

h )x − 2k
3 P (Φn,2 − Φn,2

h )x + δn1 ,

(5.31)

en+1 = en − k
6P0(F

n − Fn
h )− k

6P0(F
n,1 − Fn,1

h )− 2k
3 P0(F

n,2 − Fn,2
h ) + δn2 .

(5.32)

From (5.1), (5.4) it follows that Φn−Φn
h = en+(HnUn−Hn

hU
n
h ), and since HnUn−

Hn
hU

n
h = Hnen + Unεn − εnen, we see that Φn − Φn

h = (1 +Hn)en + Unεn − εnen

or

(5.33) Φn − Φn
h = ρn + ρn1 ,

where

(5.34) ρn = (1 +Hn)en + Unεn

and ρn1 = −εnen. Hence

‖ρn‖ ≤ C(‖εn‖+ ‖en‖),(5.35)

‖ρnx‖ ≤ C
h (‖ε

n‖+ ‖en‖).(5.36)

Now let 0 ≤ n∗ ≤ M − 1 be the maximal integer for which ‖εn‖1,∞ + ‖en‖1,∞ ≤ 1,
0 ≤ n ≤ n∗. Then, for 0 ≤ n ≤ n∗,

‖ρnx‖∞ ≤ C , ‖ρn1x‖∞ ≤ 1 ,(5.37)

‖ρn1x‖ ≤ ‖εn‖+ ‖en‖.(5.38)

Now, from (5.37) and (5.33) εn,1 = εn − kPρnx − kPρn1x, and by (5.37), for 0 ≤ n ≤
n∗, we have

‖εn,1‖ ≤ Cλ(‖εn‖+ ‖en‖),(5.39)

‖εn,1‖1,∞ ≤ Cλ,(5.40)
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where we used the inverse properties of Sh and the stability of P in the L∞ norm.
Since now Fn −Fn

h = εnx +UnUn
x −Un

hU
n
hx and UnUn

x −Un
hU

n
hx = (Unen)x − enenx ,

we will have Fn − Fn
h = εnx + (Unen)x − enenx or

(5.41) Fn − Fn
h = rnx + rn1 ,

where

(5.42) rn = εn + Unen, rn1 = −enenx ,

with

‖rn‖ ≤ C(‖εn‖+ ‖en‖),(5.43)

‖rnx‖ ≤ C
h (‖ε

n‖+ ‖en‖),(5.44)

and, for 0 ≤ n ≤ n∗,

‖rnx‖∞ ≤ C , ‖rn1 ‖∞ ≤ 1,(5.45)

‖rn1 ‖ ≤ ‖en‖.(5.46)

From (5.28), (5.41) it follows that en,1 = en − kP0r
n
x − kP0r

n
1 , and therefore, for

0 ≤ n ≤ n∗,

‖en,1‖ ≤ Cλ(‖εn‖+ ‖en‖),(5.47)

‖en,1‖1,∞ ≤ Cλ.(5.48)

Now, from (5.15), (5.6) (for j = 1) we obtain Φn,1 − Φn,1
h = en,1 + V n,1en,1 +

Wn,1εn,1 − εn,1en,1, and V n,1en,1 = Hnen − kHnP0r
n
x − kHnP0r

n
1 − kPΦn

x · en,1,
Wn,1εn,1 = Unεn − kUnPρnx − kUnPρn1x − kP0F

n · εn,1. Thus, Φn,1 − Φn,1
h =

(en +Hnen +Unεn)− k(P0r
n
x +HnP0r

n
x +UnPρnx)− kP0r

n
1 − k(UnPρn1x +P0F

n ·
εn,1 +HnP0r

n
1 + PΦn

x · en,1)− εn,1en,1 or

(5.49) Φn,1 − Φn,1
h = ρn − kfn + ρn,11 ,

where

(5.50) fn = (1 +Hn)P0r
n
x + UnPρnx

and ρn,11 = −kP0r
n
1 − k(UnPρn1x + P0F

n · εn,1 +HnP0r
n
1 + PΦn

x · en,1)− εn,1en,1.
From the inverse properties of Sh, Sh,0 the estimates (5.46), (5.38), the stability of
the L2 projection in the L∞ norm, the fact that ‖Fn‖∞ ≤ C, and that ‖Φn

x‖ ≤ C,
and the inequalities (5.47), (5.40), (5.48) and (5.45), (5.37), we obtain

‖ρn,11x ‖ ≤ Cλ(‖εn‖+ ‖en‖),(5.51)

‖ρn,11x ‖∞ ≤ Cλ.(5.52)

In addition, from the inverse properties of Sh, Sh,0 and (5.37), (5.36), (5.45) we see
that

‖fn
x ‖ ≤ C

h2 (‖εn‖+ ‖en‖),(5.53)

‖fn
x ‖∞ ≤ C

h .(5.54)

Now, from (5.29), (5.33), (5.49) if follows that εn,2 = εn − k
2Pρnx + k2

4 Pfn
x −

k
4 (Pρn1x + Pρn,11x ). Hence, from (5.36), (5.53), (5.38), (5.51), (5.37), (5.54) (5.52),
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and the inverse properties of Sh, we obtain, for 0 ≤ n ≤ n∗,

‖εn,2‖ ≤ Cλ(‖εn‖+ ‖en‖),(5.55)

‖εn,2‖1,∞ ≤ Cλ.(5.56)

We also have Fn,1 − Fn,1
h = εn,1x + (Wn,1en,1)x − en,1en,1x and Wn,1en,1 = Unen −

kUnP0r
n
x − kUnP0r

n
1 − kP0F

n · en,1. Hence, Fn,1 − Fn,1
h = (εn + Unen)x−

k(Pρnx + UnP0r
n
x )x − k(Pρn1x + UnP0r

n
1 + P0F

n · en,1)x − en,1en,1x , i.e.

(5.57) Fn,1 − Fn,1
h = rnx − kgnx + rn,11 ,

where

(5.58) gn = Pρnx + UnP0r
n
x

and rn,11 = −k(Pρn1x+UnP0r
n
1 +P0F

n ·en,1)x−en,1en,1x . From the inverse properties
of Sh, Sh,0, (5.40), (5.48), (5.37), (5.39), (5.46), (5.47), (5.40), (5.45), we obtain,
for 0 ≤ n ≤ n∗,

‖rn,11 ‖ ≤ Cλ(‖εn‖+ ‖en‖),(5.59)

‖rn,11 ‖∞ ≤ Cλ.(5.60)

In addition, from the inverse properties of Sh, Sh,0, (5.36), (5.44) and (5.37), (5.45),
we obtain, for 0 ≤ n ≤ n∗,

‖gnx‖ ≤ C
h2 (‖εn‖+ ‖en‖),(5.61)

‖gnx‖∞ ≤ C
h .(5.62)

Now from (5.30), (5.41), (5.57), it follows that en,2 = en − k
2P0r

n
x + k2

4 P0g
n
x −

k
4 (P0r

n
1 + P0r

n,1
1 ). Hence, from (5.44), (5.58), (5.46), (5.59), the inverse properties

of Sh,0, and (5.45), (5.62), (5.60), we obtain, for 0 ≤ n ≤ n∗,

‖en,2‖ ≤ Cλ(‖εn‖+ ‖en‖),(5.63)

‖en,2‖1,∞ ≤ Cλ.(5.64)

In order to derive expressions for Φn − Φn
h, F

n − Fn
h , we note from (5.13), (5.14)

that Hn−V n,2 = k
4 (PΦn

x +PΦn,1
x ), Un−Wn,2 = k

4 (P0F
n+P0F

n,1), and therefore

‖Hn − V n,2‖∞ ≤ Cλk , ‖Hn − V n,2‖1,∞ ≤ Cλ,(5.65)

‖Un −Wn,2‖∞ ≤ Cλk , ‖Un −Wn,2‖1,∞ ≤ Cλ.(5.66)

We now have Φn,2 − Φn,2
h = en,2 + V n,2en,2 +Wn,2εn,2 − εn,2en,2 and V n,2en,2 =

Hnen− k
2H

nP0r
n
x + k2

4 HnP0g
n
x − k

4H
nP0(r

n
1 + rn,11 )− (Hn−V n,2)en,2, Wn,2εn,2 =

Unεn − k
2U

nPρnx + k2

4 UnPfn
x − k

4U
nP (ρn1x + ρn,11x ) − (Un − Wn,2)εn,2. Hence,

according to (5.34), (5.50),

Φn,2 − Φn,2
h = ρn − k

2f
n + k2

4 [(1 +Hn)P0g
n
x + UnPfn

x ]

− k
4 [(1 +Hn)P0(r

n
1 + rn,11 ) + UnP (ρn1x + ρn,11x )]

− (Hn − V n,2)en,2 − (Un −Wn,2)εn,2 − εn,2en,2,

i.e.

(5.67) Φn,2 − Φn,2
h = ρn − k

2f
n + k2

4 [(1 +Hn)P0g
n
x + UnPfn

x ] + ρn,21 ,
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where

ρn,21 = −k
4 [(1 +Hn)P0(r

n
1 + rn,11 ) + UnP (ρn1x + ρn,11x )]

− (Hn − V n,2)en,2 − (Un −Wn,2)εn,2 − εn,2en,2.

From the inverse properties of Sh, Sh,0 and (5.46), (5.59), (5.38), (5.51), (5.65),
(5.63), (5.66), (5.55), (5.56), (5.64), we obtain for 0 ≤ n ≤ n∗,

(5.68) ‖ρn,21x ‖ ≤ Cλ(‖εn‖+ ‖en‖).
From (5.31) and (5.33), (5.49), (5.67) we see that

(5.69) εn+1 = εn − kPρnx + k2

2 Pfn
x − k3

6 P [(1 +Hn)P0g
n
x + UnPfn

x ]x + k
6ω

n + δn1 ,

where ωn = −P (ρn1x + ρn,11x + 4ρn,21x ), for which it holds that

(5.70) ‖ωn‖ ≤ Cλ(‖εn‖+ ‖en‖),

for 0 ≤ n ≤ n∗, by (5.38), (5.51), (5.68). Also, Fn,2 − Fn,2
h = εn,2x + (Wn,2en,2)x −

en,2en,2x and Wn,2en,2 = Unen − k
2U

nP0r
n
x + k2

4 UnP0g
n
x − k

4U
nP0(r

n
1 + rn,11 )−

(Un −Wn,2)en,2. Hence, from (5.42), (5.58) it follows that

Fn,2 − Fn,2
h = rnx − k

2 g
n
x + k2

4 [Pfn
x + UnP0g

n
x ]x

− k
4 [P (ρn1x + ρn,11x ) + UnP0(r

n
1 + rn,11 )]x

− [(Un −Wn,2)en,2]x − en,2en,2x

or

(5.71) Fn,2 − Fn,2
h = rnx − k

2 g
n
x + k2

4 [Pfn
x + UnP0g

n
x ]x + rn,21 ,

where

rn,21 = −k
4 [P (ρn1x + ρn,11x ) + UnP0(r

n
1 + rn,11 )]x − [(Un −Wn,2)en,2]x − en,2en,2x .

From the inverse properties of Sh, Sh,0, (5.38), (5.51), (5.46), (5.59), (5.55), (5.66),
(5.55), (5.63), (5.38), we have, for 0 ≤ n ≤ n∗,

(5.72) ‖rn,21 ‖ ≤ Cλ(‖εn‖+ ‖en‖).
Also, from (5.32) and (5.41), (5.51), (5.71) we see that

(5.73) en+1 = en − kP0r
n
x + k2

2 P0g
n
x − k3

6 P0[Pfn
x + UnP0g

n
x ]x + k

6w
n + δn2 ,

where wn = −P0(r
n
1 + rn,11 + 4rn,21 ) satisfies

(5.74) ‖wn‖ ≤ Cλ(‖εn‖+ ‖en‖),
for 0 ≤ n ≤ n∗, in view of (5.36), (5.59), (5.72). We now write (5.69), (5.73) in the
form

εn+1 = γn + k
6ω

n + δn1 ,(5.75)

en+1 = σn + k
6w

n + δn2 ,(5.76)

where γn = εn − kPρnx + k2

2 Pfn
x − k3

6 P f̃n
x , σ

n = en − kP0r
n
x + k2

2 P0g
n
x − k3

6 P0g̃
n
x ,

and

f̃n = (1 +Hn)P0g
n
x + UnPfn

x ,(5.77)

g̃n = Pfn
x + UnP0g

n
x .(5.78)
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Therefore we have the identity

(5.79)
‖γn‖2 + ((1 +Hn)σn, σn) = ‖εn‖2 + ((1 +Hn)en, en) + kan1

+ k2an2 + k3an3 + k4an4 + k5an5 + k6an6 .

We next compute and estimate the coefficients anj , 1 ≤ j ≤ 6. For an1 we obtain
an1 = −2(εn, Pρnx)− 2((1 +Hn)en, P0r

n
x ). It follows from Lemma 5.1(ii) that an1 =

2(εnx , ρ
n) − 2((1 + Hn)en, rnx ) + b(en, rnx ), where |b(en, rnx )| ≤ Ch‖en‖‖rnx‖. Using

now the definitions of ρn, rn in (5.34), (5.42), we see that an1 = −(Un
x ε

n, εn) −
2((1 + Hn)en, Un

x e
n) + ([(1 + Hn)Un]xe

n, en) + b(en, rnx ). Therefore, using (5.44)
we conclude that

(5.80) |an1 | ≤ C(‖εn‖2 + ‖en‖2).
For an2 we obtain an2 = (εn, Pfn

x )+((1+Hn)en, P0g
n
x )+‖Pρnx‖2+((1+Hn)P0r

n
x ,

P0r
n
x ), so that according to Lemma 5.1(ii), an2 = (εn, Pfn

x ) + ((1 + Hn)en, gnx ) +
‖Pρnx‖2 + ((1 + Hn)P0r

n
x , r

n
x ) + an21, where an21 = b(en, gnx ) + b(P0r

n
x , r

n
x ). Using

now the definitions of fn and rn from (5.50) and (5.42) we have (εn, Pfn
x ) =

−(rnx , (1 +Hn)P0r
n
x ) + ((Unen)x, (1 +Hn)P0r

n
x )− ((Unεn)x, Pρnx) + (Un

x ε
n, Pρnx).

Hence, by the definition of ρn, (5.34),

(5.81)
(εn, Pfn

x ) = −(rnx , (1 +Hn)P0r
n
x ) + ((Unen)x, (1 +Hn)P0r

n
x )

− (ρnx , Pρnx) +
(
[(1 +Hn)en]x, Pρnx

)
+ (Un

x ε
n, Pρnx).

In addition, using the definition of gn in (5.58) we see that ((1 + Hn)en, gnx ) =
−
(
[(1 +Hn)en]x, Pρnx

)
−

(
[(1 +Hn)en]x, U

nP0r
n
x

)
. From this and (5.81) we have

finally an2 = ((1 + Hn)Un
x e

n, P0r
n
x ) − (Hn

xU
nen, P0r

n
x ) + (Un

x ε
n, Pρnx) + an21, and

therefore, from (5.36), (5.44), Lemma 5.1(ii), and (5.61), we see that

(5.82) |an2 | ≤
C

h
(‖εn‖2 + ‖en‖2),

for 0 ≤ n ≤ n∗. For an3 we have an3 = − 1
3 (ε

n, P f̃n
x ) − 1

3 ((1 + Hn)en, P0g̃
n
x ) −

(Pρnx, Pfn
x )−((1+Hn)P0r

n
x , P0g

n
x ), whence, taking also into account Lemma 5.1(ii),

(5.83) an3 = − 1
3 (ε

n, f̃n
x )− 1

3 ((1+Hn)en, g̃nx )−(Pρnx, f
n
x )−((1+Hn)P0r

n
x , g

n
x )+an31,

where

(5.84) an31 = − 1
3b(e

n, P0g̃
n
x )− b(P0r

n
x , g

n
x ).

Now, it follows by the definition of f̃n, (5.77), that (εn, f̃n
x ) = −((1+Hn)εnx , P0g

n
x )−

((Unεn)x, Pfn
x ) + (Un

x ε
n, Pfn

x ), and, by the definition of g̃n, (5.78), that

((1 +Hn)en, g̃nx ) = −
(
[(1 +Hn)en]x, Pfn

x

)
− ((1 +Hn)(Unen)x, P0g

n
x )

+ ((1 +Hn)Un
x e

n, P0g
n
x )− (Hn

xU
nen, P0g

n
x ).

So, by the definitions of ρn, rn, (5.34), (5.42), (εn, f̃n
x ) + ((1 + Hn)en, g̃nx ) =

−(ρnx , Pfn
x )− ((1 +Hn)rnx , P0g

n
x ) + an32, where

(5.85) an32 = (Un
x ε

n, Pfn
x ) + ((1 +Hn)Un

x e
n, P0g

n
x )− (Hn

xU
nen, P0g

n
x ).

Again using Lemma 5.1(ii) we see that ((1+Hn)rnx , P0g
n
x ) = ((1+Hn)P0r

n
x , g

n
x ) +

b(P0r
n
x , g

n
x ) − b(P0g

n
x , r

n
x ). Thus (εn, f̃n

x ) + ((1 + Hn)en, g̃nx ) = − (ρnx , Pfn
x ) −

((1 +Hn)P0r
n
x , g

n
x ) + an33, where

(5.86) an33 = an32 − b(P0r
n
x , g

n
x ) + b(P0g

n
x , r

n
x ).
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Hence, from (5.83), an3 = − 2
3 (Pρnx , f

n
x )− 2

3 ((1 +Hn)P0r
n
x , g

n
x ) + an34, where

(5.87) an34 = an31 − 1
3a

n
33.

Using the definition of fn, gn, we have

(Pρnx, f
n
x ) =

(
Pρnx , [(1 +Hn)P0r

n
x ]x + (UnPρnx)x

)
, ((1 +Hn)P0r

n
x , g

n
x )

= −
(
[(1 +Hn)P0r

n
x ]x, Pρnx + UnP0r

n
x

)
.

Hence

(Pρnx, f
n
x ) + ((1 +Hn)P0r

n
x , g

n
x )

= 1
2 (U

n
x Pρnx, Pρnx)− (Hn

xU
nP0r

n
x , P0r

n
x ) +

1
2

(
[(1 +Hn)Un]xP0r

n
x , P0r

n
x

)
.

So,

an3 = − 1
3 (U

n
x Pρnx , Pρnx)+

2
3 (H

n
xU

nP0r
n
x , P0r

n
x )− 1

3

(
[(1+Hn)Un]xP0r

n
x , P0r

n
x

)
+an34,

and by (5.36), (5.44) we obtain |an3 | ≤ C
h2 (‖εn‖2 + ‖en‖2) + |an34|. Now, by (5.84),

Lemma 5.1(ii), and (5.78), (5.53), (5.61), (5.44) we have |an31| ≤ C
h2 (‖εn‖2+‖en‖2).

In addition, from (5.85), and (5.53), (5.61) we see that |an32| ≤ C
h2 (‖εn‖2 + ‖en‖2).

From this estimate and (5.86), Lemma 5.1(ii), (5.44), (5.61) we obtain |an33| ≤
C
h2 (‖εn‖2 + ‖en‖2). Thus, using (5.87), it follows that |an34| ≤ C

h2 (‖εn‖2 + ‖en‖2)
and finally, for 0 ≤ n ≤ n∗, that

(5.88) |an3 | ≤
C

h2
(‖εn‖2 + ‖en‖2).

For an4 we have an4 = 1
3 (Pρnx, P f̃n

x ) +
1
3

(
(1 + Hn)P0r

n
x , P0g̃

n
x

)
+ 1

4‖Pfn
x ‖2+

1
4 ((1 + Hn)P0g

n
x , P0g

n
x ). We note that (Pρnx, P f̃n

x ) +
(
(1 + Hn)P0r

n
x , P0g̃

n
x

)
=

(Pρnx, f̃
n
x ) + ((1+Hn)P0r

n
x , g̃

n
x ) + b(P0r

n
x , g̃

n
x ). Now using the definitions of f̃n, g̃n,

(5.77), (5.78) we see that (Pρnx, f̃
n
x ) + ((1 +Hn)P0r

n
x , g̃

n
x ) = −(Un(Pρnx)x, Pfn

x )−(
[(1 + Hn)P0r

n
x ]x, Pfn

x

)
−

(
(1 + Hn)(Pρnx)x, P0g

n
x

)
−

(
Un[(1 + Hn)P0r

n
x ]x, P0g

n
x

)
,

so that (Pρnx , f̃
n
x ) + ((1 + Hn)P0r

n
x , g̃

n
x ) = −

(
[UnPρnx + (1 + Hn)P0r

n
x ]x, Pfn

x

)
−(

(1 +Hn)[Pρnx + UnP0r
n
x ]x, P0g

n
x

)
+ an41, where

(5.89) an41 = (Un
x Pρnx , Pfn

x ) + ((1 +Hn)Un
x P0r

n
x , P0g

n
x )− (Hn

xU
nP0r

n
x , P0g

n
x ).

Using the definitions of fn, gn we have (Pρnx , f̃
n
x )+((1+Hn)P0r

n
x , g̃

n
x ) = −(fn

x , Pfn
x )

−((1 + Hn)gnx , P0g
n
x ) + an41, and since, by Lemma 5.1(ii) ((1 + Hn)gnx , P0g

n
x ) =

((1 +Hn)P0g
n
x , g

n
x ) = ((1 +Hn)P0g

n
x , P0g

n
x ) − b(P0g

n
x , g

n
x ), we obtain (Pρnx , f̃

n
x ) +

((1+Hn)P0r
n
x , g̃

n
x ) = −(fn

x , Pfn
x )−((1+Hn)P0g

n
x , P0g

n
x )+an41+b(P0g

n
x , g

n
x ). Hence

(5.90) an4 = − 1
12

[
‖Pfn

x ‖2 + ((1 +Hn)P0g
n
x , P0g

n
x )
]
+ an42,

where an42 = 1
3a

n
41+

1
3b(P0g

n
x , g

n
x ). Therefore, by (5.89), (5.36), (5.53), (5.44), (5.61)

and Lemma 5.1(ii), we see, for 0 ≤ n ≤ n∗, that

(5.91) |an42| ≤
C

h3
(‖εn‖2 + ‖en‖2).

For an5 it holds that an5 = − 1
6 (Pfn

x , P f̃n
x )− 1

6 ((1+Hn)P0g
n
x , P0g̃

n
x ). Since (Pfn

x ,

P f̃n
x )+ ((1+Hn)P0g

n
x , P0g̃

n
x ) = (Pfn

x , f̃
n
x )+ ((1+Hn)P0g

n
x , g̃

n
x )+ b(P0g

n
x , g̃

n
x ), and



1172 D. C. ANTONOPOULOS AND V. A. DOUGALIS

(Pfn
x , f̃

n
x ) + ((1 +Hn)P0g

n
x , g̃

n
x ) =

1
2 (U

n
x Pfn

x , Pfn
x ) +

1
2

(
(1 +Hn)Un

x P0g
n
x , P0g

n
x

)
−

1
2 (H

n
xU

nP0g
n
x , P0g

n
x ), we conclude that

an5 = − 1
12 (U

n
x Pfn

x , Pfn
x )− 1

12

(
(1 +Hn)Un

x P0g
n
x , P0g

n
x

)
+ 1

12 (H
n
xU

nP0g
n
x , P0g

n
x )

− 1
6b(P0g

n
x , g̃

n
x ).

Hence, from (5.53), (5.61), Lemma 5.1(ii), and (5.78) we obtain, for 0 ≤ n ≤ n∗,

(5.92) |an5 | ≤
C

h4
(‖εn‖2 + ‖en‖2).

For an6 we have an6 = 1
36‖P f̃n

x ‖2 + 1
36

(
(1 + Hn)P0g̃

n
x , P0g̃

n
x

)
. Since f̃n

x =

[(1 + Hn)P0g
n
x ]x + (UnPfn

x )x, we see that ‖f̃n
x ‖ ≤ C

h (‖P0g
n
x‖ + ‖Pfn

x ‖). Simi-

larly, since g̃nx = (Pfn
x )x + (UnP0g

n
x )x, we obtain ‖g̃nx‖ ≤ C

h (‖Pfn
x ‖ + ‖P0g

n
x‖).

Therefore, according to Lemma 5.2,

|an6 | ≤
C

h2
(‖Pfn

x ‖2 + ‖P0g
n
x‖2) ≤

C

h2

(
‖Pfn

x ‖2 +
2

α
((1 +Hn)P0g

n
x , P0g

n
x )
)
.

Hence it holds that

(5.93) |an6 | ≤
C̃0

h2

(
‖Pfn

x ‖2 + ((1 +Hn)P0g
n
x , P0g

n
x )
)
,

for 0 ≤ n ≤ n∗ and for some constant C̃0 = C̃0(u, η) independent of h and k. Hence,
by (5.79), (5.80), (5.82), (5.88), (5.89)-(5.93), and taking into account Lemma

5.2, we have ‖γn‖2 + ((1 + Hn)σn, σn) ≤ (1 + C̃λk)
(
‖εn‖2 + ((1 + Hn)en, en)

)
+

k4(C̃0λ
2 − 1

12 )
(
‖Pfn

x ‖2 + ((1 + Hn)P0g
n
x , P0g

n
x )
)
, and, therefore, for λ ≤ λ0 =√

1/(12C̃0) it holds that

(5.94) ‖γn‖2 + ((1 +Hn)σn, σn) ≤ (1 + C̃λk)
(
‖εn‖2 + ((1 +Hn)en, en)

)
.

Hence, according to Lemma 5.2, for some constant C̃ independent of h and k, there
holds

(5.95) ‖γn‖+ ‖σn‖ ≤ C̃
(
‖εn‖+ ((1 +Hn)en, en)1/2

)
,

for 0 ≤ n ≤ n∗. Now

(5.96) ‖εn+1‖2 + ((1+Hn+1)en+1, en+1) = ‖εn+1‖2 + ((1+Hn)en+1, en+1) + βn
1 ,

where βn
1 = ((Hn+1 −Hn)en+1, en+1), while, from (5.75), (5.76) we see that

(5.97)
‖εn+1‖2 + ((1 +Hn)en+1, en+1)

= ‖γn‖2 + ((1 +Hn)σn, σn) + 1
3β

n
2 + 2βn

3 + βn
4 + 1

36β
n
5 ,

where the terms βn
2 = k[(γn, ωn)+((1+Hn)σn, wn)+(ωn, δn1 )+((1+Hn)wn, δn2 )],

βn
3 = (γn, δn1 )+ ((1+Hn)σn, δn2 ), β

n
4 = ‖δn1 ‖2+((1+Hn)δn2 , δ

n
2 ), β

n
5 = k2(‖ωn‖2+

‖wn‖2) will be estimated in the sequel. For βn
2 we have |βn

2 | ≤ Ck(‖γn‖‖ωn‖ +
‖σn‖‖wn‖ + ‖ωn‖‖δn1 ‖ + ‖wn‖‖δn2 ‖). Hence, from (5.95), (5.70), (5.74), Lemma

5.3 and Lemma 5.2 we obtain |βn
2 | ≤ Ck

(
‖εn‖2 + ((1 +Hn)en, en)

)
+ Ck2

(
‖εn‖+(

(1 +Hn)en, en
)1/2)

(k3 + hr−1), and therefore

(5.98) |βn
2 | ≤ Ck

(
‖εn‖2 + ((1 +Hn)en, en)

)
+ k3(k3 + hr−1)2.
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Furthermore,

|βn
3 | ≤ C(‖γn‖‖δn1 ‖+ ‖σn‖‖δn2 ‖) ≤ Ck(k3 + hr−1)

(
‖εn‖+

(
(1 +Hn)en, en

)1/2)
,

from which

(5.99) |βn
3 | ≤ Ck

(
‖εn‖2 + ((1 +Hn)en, en)

)
+ Ck(k3 + hr−1)2.

Also,

(5.100) |βn
4 | ≤ Ck(k3 + hr−1)2

and

(5.101) |βn
5 | ≤ Ck2(‖εn‖2 + ((1 +Hn)en, en)).

Now, from (5.76) we see that ‖en+1‖2 = ‖σn‖2+ k
3 [(σ

n, wn)+(wn, δn2 )]+
k2

36‖wn‖2+
‖δn2 ‖2 + (σn, δn2 ), and, therefore, from (5.95), (5.74), Lemma 5.3 and Lemma 5.2
‖en+1‖2 ≤ C

(
‖εn‖2 + ((1 + Hn)en, en)

)
+ Ck2(k3 + hr−1)2. Thus |βn

1 | =

|((Hn+1 − Hn)en+1, en+1)| ≤ Ck
(
‖εn‖2 + ((1 + Hn)en, en)

)
+ Ck(k3 + hr−1)2.

From this estimate and (5.97)-(5.101), we obtain in (5.96), taking into account
(5.94) also, ‖εn+1‖2+((1+Hn+1)en+1, en+1) ≤ (1+Ck)

(
‖εn‖2+((1+Hn)en, en)

)
+Ck(k3 + hr−1)2. Hence, from Gronwall’s lemma we obtain ‖εn‖2+
((1+Hn)en, en) ≤ C(‖ε0‖2+((1+H0)e0, e0))+C(k3+hr−1)2, for 0 ≤ n ≤ n∗+1,
or according to Lemma 5.2, ‖εn‖2 + ‖en‖2 ≤ C(‖ε0‖2 + ‖e0‖2) + C(k3 + hr−1)2.
Therefore

‖εn‖+ ‖en‖ ≤ C(k3 + hr−1),

for 0 ≤ n ≤ n∗ +1. Using the inverse properties of the spaces Sh, Sh,0 and the fact
that r ≥ 3 we conclude that n∗ is not maximal. Hence we may go up to n∗ = M−1,
and the conclusion of the proposition follows. �

We close this section by presenting the results of a relevant numerical experi-
ment. We solve the nonhomogeneous SW system with exact solutions given by the
functions η(x, t) = exp(2t)(cos(πx)+x+2), u(x, t) = exp(xt)(sin(πx)+5x2(x−1)),
for 0 ≤ x ≤ 1, t ≥ 0, using cubic splines on a uniform mesh on [0, 1] with h = 1/N
for the spatial discretization and the Shu-Osher scheme with k = h/10 for time step-
ping. (It was determined experimentally that the maximum value of the Courant-
number for stability was about 0.115 for this problem.) Table 5.1 shows the L2-,
L∞- and H1-errors and associated rates of convergence for this problem at T = 0.5
as N is increased. The rate of convergence in L2 stabilizes to about 3 for both
components of the solution, which is the expected temporal rate, as the experimen-
tal spatial rate is 4 in view of the numerical results in Table 4.2. The L∞-errors
converge at a rate which appears to be equal to 3 again (we expect a O(k3 + h4)
behaviour), and so do the H1-errors as well, for which the expected error is of
O(k3 + h3).

6. Remarks

6.1. Periodic boundary conditions. In this section we consider the periodic
initial-value problem for the usual and the symmetric shallow-water systems, which
we discretize using the standard Galerkin method with periodic splines of order
r ≥ 2 on a uniform mesh. Using suitable quasiinterpolants of smooth periodic
functions in the space of periodic splines (cf. [20]), we prove optimal-order L2-error
estimates for the semidiscrete approximations of both systems. A similar error
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Table 5.1. L2-, L∞-, and H1-errors and orders of convergence,
cubic splines on a uniform mesh with h = 1/N and Shu-Osher time
stepping with k = h/10, (SW).

L2-errors

N η order u order
40 0.1578(−6) 0.7319(−7)
80 0.1202(−7) 3.7146 0.5452(−8) 3.7468
160 0.1123(−8) 3.4200 0.5015(−9) 3.4425
320 0.1255(−9) 3.1616 0.5562(−10) 3.1726
480 0.3626(−10) 3.0621 0.1606(−10) 3.0637
640 0.1519(−10) 3.0244 0.6732(−11) 3.0223

L∞-errors

N η order u order
40 0.3656(−6) 0.1664(−6)
80 0.2886(−7) 3.6631 0.1273(−7) 3.7084
160 0.2541(−8) 3.5056 0.1143(−8) 3.4773
320 0.2498(−9) 3.3466 0.1175(−9) 3.2821
480 0.6788(−10) 3.2134 0.3239(−10) 3.1781
640 0.2764(−10) 3.1232 0.1320(−10) 3.1202

H1-errors

N η order u order
40 0.2502(−4) 0.1708(−4)
80 0.3068(−5) 3.0277 0.2143(−5) 2.9946
160 0.3797(−6) 3.0144 0.2685(−6) 2.9966
320 0.4719(−7) 3.0083 0.3361(−7) 2.9980
480 0.1396(−7) 3.0039 0.9965(−8) 2.9984
640 0.5888(−8) 3.0008 0.4206(−8) 2.9983

analysis in the case of Boussinesq (i.e. dispersive) systems was done in [4]. For the
purposes of the present subsection we shall denote, for integer k ≥ 0, by Hk

per the

usual, L2-based, real Sobolev space of periodic functions on [0, 1] with associated
norm ‖ · ‖k, and by Ck

per the space of periodic functions in Ck[0, 1].
We consider the periodic initial-value problem for the shallow water systems. In

the case of the usual system we seek η = η(x, t), u = u(x, t), 1-periodic in x for all
t ∈ [0, T ], such that

ηt + ux + (ηu)x = 0,

ut + ηx + uux = 0,
x ∈ [0, 1], t ∈ [0, T ],(SWper)

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ [0, 1],

where η0, u0 are given smooth 1-periodic functions. The analogous problem for the
symmetric system is

ηt + ux + 1
2 (ηu)x = 0,

ut + ηx + 3
2uux + 1

2ηηx = 0,
x ∈ [0, 1], t ∈ [0, T ],(SSWper)

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ [0, 1],

where again η(·, t), u(·, t) are 1-periodic for 0 ≤ t ≤ T and η0, u0 are given smooth
1-periodic functions. We shall assume that (SWper) has a unique smooth enough
solution on [0, T ] and that there exists a positive α such that 1 + η(x, t) ≥ α > 0
for x ∈ [0, 1], t ∈ [0, T ]. Similarly, it will be assumed that (SSWper) has a unique
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smooth enough solution for 0 ≤ t ≤ T . For a theory of local existence-uniqueness
of solutions of (SWper) we refer the reader to [15].

Let N be a positive integer, h = 1/N , and xj = jh, 0 ≤ j ≤ N . For integer
r ≥ 2 let Sh be the N -dimensional space of smooth 1-periodic splines, i.e. Sh =
{φ ∈ Cr−2

per [0, 1] : φ
∣∣
[xj ,xj+1]

∈ Pr−1 , 1 ≤ j ≤ N − 1}. It is well known that Sh has

the approximation property that given w ∈ Hs
per, where 1 ≤ s ≤ r, there exists a

χ ∈ Sh such that

(6.1)
s−1∑
j=0

hj‖w − χ‖j ≤ Chs‖w‖s, 1 ≤ s ≤ r,

where C is a constant independent of h and w. In addition, the inverse inequalities
(2.3) and (2.4) hold in the present framework as well. Following Thomée and
Wendroff, [20], one may construct a basis {φ}Nj=1 of Sh, with supp(φj) = O(h), such
that for a sufficiently smooth 1-periodic function w, the associated quasiinterpolant

Qhw =
∑N

j=1 w(xj)φj satisfies

(6.2) ‖w −Qhw‖ ≤ Chr‖w(r)‖.
In addition, it follows from [20] that the basis {φ}Nj=1 may be chosen so that the
following properties hold:

(i) If ψ ∈ Sh, then

(6.3) ‖ψ‖ ≤ Ch−1 max
1≤i≤N

|(ψ, φi)|.

(ii) Let w be a sufficiently smooth 1-periodic function and ν, κ integers such
that 0 ≤ ν, κ ≤ r − 1. Then

(6.4)
(
(Qhw)

(ν), φ
(κ)
i

)
= (−1)κhw(ν+κ)(xi) +O(h2r+j−ν−κ), 1 ≤ i ≤ N,

where j = 1 if ν + κ is even, and j = 2 if ν + κ is odd.
(iii) Let f , g be sufficiently smooth 1-periodic functions and ν and κ as in (ii)

above. Let

βi =
(
f(Qhg)

(ν), φ
(κ)
i

)
− (−1)κ

(
Qh[(fg

(ν))(κ)], φi

)
, 1 ≤ i ≤ N.

Then

(6.5) max
1≤i≤N

|βi| = O(h2r+j−ν−κ),

where j is as in (ii).
The semidiscretizations of the two systems are defined as follows. In the case of

(SWper) we seek ηh, uh : [0, T ] → Sh satisfying

(6.6)
(ηht, φ) + (uhx, φ) + ((ηhuh)x, φ) = 0, ∀φ ∈ Sh, 0 ≤ t ≤ T,

(uht, χ) + (ηhx, χ) + (uhuhx, χ) = 0, ∀χ ∈ Sh, 0 ≤ t ≤ T,

ηh(0) = η0,h, uh(0) = u0,h,

where η0,h, u0,h ∈ Sh are any approximations of η0, u0 in Sh satisfying
‖η0,h − η0‖+ ‖u0,h − u0‖ = O(hr). The analogous semidiscrete ivp for (SSWper) is

(6.7)
(ηht, φ) + (uhx, φ) +

1
2 ((ηhuh)x, φ) = 0, ∀φ ∈ Sh, 0 ≤ t ≤ T,

(uht, χ) + (ηhx, χ) +
1
2 (ηhηhx, χ) +

3
2 (uhuhx, χ) = 0, ∀χ ∈ Sh, 0 ≤ t ≤ T,

ηh(0) = η0,h, uh(0) = u0,h,
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with η0,h, u0,h as above. It is clear that (6.6) has a unique solution locally in time;
and due to the conservation property (2.10), which holds for solutions of (6.7) as
well, (6.7) has a unique solution in any temporal interval [0, T ].

The error analysis in the case of (SSWper) is straightforward due to the symmetry
of the system. We first estimate a truncation error for the system (6.7) defined for
all t ∈ [0, T ] in terms of the quasiinterpolants of η and u.

Lemma 6.1. Let (η, u) be the solution of (SSWper) and H = Qhη, U = Qhu.
Define ψ and ζ ∈ Sh so that for 0 ≤ t ≤ T ,

(Ht, φ) + (Ut, φ) +
1
2 ((HU)x, φ) = (ψ, φ), ∀φ ∈ Sh,(6.8)

(Ut, χ) + (Ht, χ) +
1
2 (HHx, χ) +

3
2 (UUx, χ) = (ζ, χ), ∀χ ∈ Sh.(6.9)

Then, there is a constant C independent of h such that

(6.10) ‖ψ(t)‖+ ‖ζ(t)‖ ≤ Chr, 0 ≤ t ≤ T.

Proof. Applying (6.4) and (6.8) and using the first p.d.e. of (SSWper) yields for
1 ≤ i ≤ N , t ∈ [0, T ] (ψ, φi) = h(ηt + ux)(xi, t) +

1
2 ((HU)x, φi) + O(h2r+1) =

1
2

(
[(HU) − Qh(ηu)]x, φi

)
+ O(h2r+1). Since HU − Qh(ηu) = ηu − εu − eη + εe −

Qh(ηu), where ε := η − H, e := u − U , we have, using (6.5), for 1 ≤ i ≤ N ,
(ψ, φi) =

1
2

(
(εe)x, φi

)
− 1

2

(
(ηu)x − Qh[(ηu)x], φi

)
+ O(h2r+1). Therefore, by (6.3)

we obtain, using (6.1) and (6.2), ‖ψ‖ ≤ C‖ε‖1‖e‖1 +O(hr) ≤ Chr. The analogous
estimate for ‖ζ‖ follows along similar lines. �

We now proceed to prove an optimal-order L2-error estimate for the solution of
(6.7).

Proposition 6.1. Let (η, u), (ηh, uh) be the solutions of (SSWper), (6.7), respec-
tively. Then

(6.11) max
0≤t≤T

(‖η − ηh‖+ ‖u− uh‖) ≤ Chr.

Proof. Let θ := H − ηh = Qhη− ηh and ξ := U −uh = Qhu−uh. Then, from (6.7)
and (6.8), (6.9) we have for t ∈ [0, T ],

(θt, φ) + (ξx, φ) +
1
2

(
(Hξ + Uθ − θξ)x, φ

)
= (ψ, φ), ∀φ ∈ Sh,

(6.12)

(ξt, χ) + (θx, χ) +
1
2

(
(Hθ)x − θθx, χ

)
+ 3

2

(
(Uξ)x − ξξx, χ

)
= (ζ, χ), ∀χ ∈ Sh.

(6.13)

Taking φ = θ in (6.12), χ = ξ in (6.13), adding the resulting equations, and using
periodicity we obtain for 0 ≤ t ≤ T ,

(6.14) 1
2

d
dt (‖θ‖

2 + ‖ξ‖2) + 1
2 (Hxθ, ξ) +

1
4 (Uxθ, θ) +

3
4 (Uxξ, ξ) = (ψ, θ) + (ζ, χ).

From (6.2) and the inverse inequalities we have for 0 ≤ t ≤ T , ‖Hx‖∞ ≤ C,
‖Ux‖∞ ≤ C, where C is independent of h. Therefore it follows from (6.10) and
(6.14) that for 0 ≤ t ≤ T , 1

2
d
dt (‖θ‖2+‖ξ‖2) ≤ C(‖θ‖2+‖ξ‖2+h2r). An application

of Gronwall’s lemma, (6.2), and our choice of η0,h and u0,h now yield the desired
estimate (6.11). �



ERROR ESTIMATES FOR THE SHALLOW WATER EQUATIONS 1177

We now estimate the errors of the semidiscrerization of (SWper). As before we
may prove

Lemma 6.2. Let (η, u) be the solution of (SWper) and H = Qhη, U = Qhu.
Define ψ, ζ ∈ Sh so that for t ∈ [0, T ],

(Ht, φ) + (Ux, φ) + ((HU)x, φ) = (ψ, φ), ∀φ ∈ Sh,(6.15)

(Ut, χ) + (Hx, χ) + (UUx, χ) = (ζ, χ), ∀χ ∈ Sh.(6.16)

Then, for some constant C independent of h, we have

(6.17) ‖ψ(t)‖+ ‖ζ(t)‖ ≤ Chr, 0 ≤ t ≤ T.

The proof of the main error estimate for (SWper) is not as straightforward as
that of the symmetric system but goes through if we use ideas from the proof of
Proposition 2.2.

Proposition 6.2. Let (η, u) be the solution of (SWper). Then, for h sufficiently
small, (6.6) has a unique solution (ηh, uh) for 0 ≤ t ≤ T , satisfying

(6.18) max
0≤t≤T

(‖η − ηh‖+ ‖u− uh‖) ≤ Chr.

Proof. We let again θ := H − ηh = Qhη − ηh and ξ := U − uh = Qhu− uh. Then,
from (6.6) and (6.15)-(6.16), we have, while the solution of (6.6) exists,

(θt, φ) + (ξx, φ) + ((Hξ + Uθ − θξ)x, φ) = (ψ, φ), ∀φ ∈ Sh,(6.19)

(ξt, χ) + (θx, χ) + ((Uξ)x − ξξx, χ) = (ζ, χ), ∀χ ∈ Sh.(6.20)

Putting φ = θ in (6.19) and using periodicity we have

(6.21) 1
2

d
dt‖θ‖

2 + (ξx, θ) + ((Hξ)x, θ) +
1
2 (Uxθ, θ)− 1

2 (ξxθ, θ) = (ψ, θ).

Now, using the inverse inequalities and (6.2) we see that
(6.22)
((Hξ)x, θ) = ((ηξ)x, θ) + ((H − η)xξ, θ) + ((H − η)ξx, θ) ≤ ((ηξ)x, θ) + C‖ξ‖‖θ‖.
Let th > 0 denote a maximal value of t such that (ηh, uh) exists and ‖ξx‖∞ ≤ 1 for
0 ≤ t ≤ th, and suppose that th < T . From (6.21), (6.22) and (6.17) we conclude
then that

(6.23) 1
2

d
dt‖θ‖

2 − (θx, γ) ≤ C(hr‖θ‖+ ‖ξ‖‖θ‖), 0 ≤ t ≤ th,

where γ := (1 + η)ξ. We now put in (6.20) χ = Pγ = P [(1 + η)ξ], where P is the
L2-projection on Sh, and obtain for 0 ≤ t ≤ th,

(6.24) (ξt, (1 + η)ξ) + (θx, Pγ) = −((Uξ)x − ξξx, Pγ) + (ζ, Pγ).

Now, using periodicity, we have ((Uξ)x, Pγ) = (Uξx, Pγ − γ) + (Uxξ, Pγ − γ) +
(Uxξ, (1 + η)ξ)−

(
(U(1 + η))x, ξ

2
)
. Using again the superapproximation property

(2.23), which holds in the space of periodic splines as well, the fact that ‖U‖1,∞ ≤ C,
and inverse properties, we obtain from the above

(6.25) ((Uξ)x, Pγ) ≤ C‖ξ‖2.
Using, in addition, the fact that ‖ξx‖∞ ≤ 1 in [0, th], we also have

(6.26) (ξξx, Pγ) = (ξξx, Pγ − γ) + (ξξx, γ) ≤ C‖ξ‖2.
Therefore, by (6.16), (6.25), (6.26), and (6.24) we have

(6.27) (ξt, (1 + η)ξ) + (θx, Pγ) ≤ C(hr‖ξ‖+ ‖ξ‖2), 0 ≤ t ≤ th.
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Adding (6.23) and (6.27) we see that 1
2

d
dt‖θ‖2 + (ξt, (1 + η)ξ) + (θx, Pγ − γ) ≤

C
(
hr(‖ξ‖ + ‖θ‖) + ‖ξ‖2 + ‖θ‖2

)
. As in the proof of Proposition 2.2 we have,

mutatis mutandis, that ‖θ(t)‖ + ‖ξ(t)‖ ≤ Chr, 0 ≤ t ≤ th, for a constant C
independent of h. It follows that ‖ξx‖∞ ≤ Chr−3/2, i.e. that th is not maximal
if h is chosen sufficiently small. The result of the proposition now follows in the
standard manner. �

6.2. Comparison of SW and SSW for small-amplitude solutions. As is well
known, the system of shallow water equations (which has been written thus far in
terms of nondimensional, unscaled variables) is derived from the 2D Euler equations
for surface water waves in the long-wave regime, i.e. when σ := h0

λ  1, where h0

is the depth of the horizontal channel and λ is a typical wavelength. Under the
additional assumption that the wave amplitude is small, i.e. when ε := α

h0
 1,

one may formally derive (cf. [13], [5]) from the Euler equations one of the original
versions of a Boussinesq system written in nondimensional, scaled variables in the
form

ηt + ux + ε(ηu)x + σ2

3 uxxx = O(εσ2, σ4),

ut + ηx + εuux = O(εσ2, σ4),

where u denotes the horizontal velocity at the free surface and η is the displacement
of the free surface from its rest position. (Here x ∈ R is proportional to length along
the channel and t ≥ 0 is proportional to time.) If we assume that the dispersive
effects are small, in the sense that ε ∼ σ, we obtain ηt + ux + ε(ηu)x = O(ε2),
ut + ηx + εuux = O(ε3), from which, replacing the right-hand side by zero, we get
the system

ηt + ux + ε(ηu)x = 0,(6.28)

ut + ηx + εuux = 0,(6.29)

a scaled version of the shallow water equations valid for small-amplitude waves in
the regime ε ∼ σ  1.

Making in (6.28)-(6.29) the nonlinear change of variable v = u(1 + ε
2η) used in

[6] in the context of dispersive waves, we obtain that ηt + vx + ε
2 (ηv)x = O(ε2),

vt + ηx + ε
2ηηx + 3ε

2 vvx = O(ε2), i.e. that (η, v) satisfies a scaled version of the
symmetric shallow water equations which is formally equivalent as a model up to
O(ε2) terms to the scaled shallow water system.

Now let (ηs, us) denote the solution of the Cauchy problem for the symmetric
system

ηst + us
x + ε

2 (η
sus)x = 0,(6.30)

us
t + ηsx + ε

2η
sηsx + 3ε

2 u
sus

x = 0,(6.31)

for x ∈ R, t ≥ 0, with initial data

(6.32) ηs(x, 0) = ηs0(x), us(x, 0) = us
0(x), x ∈ R,

and consider the Cauchy problem for the system (6.28)-(6.29) with initial conditions

(6.33) η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ R.
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Using the theory of local existence for initial-value problems for quasilinear hyper-
bolic systems, [12], [18], and examining the proofs of Proposition 4 and Corollary
2 of [6], we may conclude that the results of [6] hold also in the nondispersive case,
and specifically for the initial-value problems (6.28), (6.29), (6.33) and (6.30)-(6.32).

In particular, if (ηs0, u
s
0) ∈

(
H
(R)

)2
for some � > 3/2, there exists T0 > 0 indepen-

dent of ε and a unique solution (ηs, us) ∈ C
(
[0, T0

ε ]; (H
(R))2
)
of (6.30)-(6.32). In

addition, ‖(ηs, us)‖
Wk,∞

(
0,

T0

ε ;(H�−k(R))2
) ≤ C0 for some constant C0 independent

of ε and for all k such that �−k > 3/2. An entirely analogous result (with different
constants T ′

0 and C ′
0) holds for the solutions (η, u) of the initial-value problem for

the shallow water system (6.28), (6.29), (6.33). Under these hypotheses and if

(6.34) ηs0 = η0, us
0 = u0(1 +

ε
2η0),

and T = min(T0, T
′
0), there exists ε0 > 0 such that for 0 < ε < ε0,

(6.35) ‖η − ηs‖L∞(0,t;H�(R)) + ‖u− (1− ε
2η

s)us‖L∞(0,t;H�(R)) ≤ Cε2t,

for all t ∈ [0, Tε ] and some constant C independent of ε. If therefore the initial data
in (6.32) and (6.33) are related by (6.34), the solutions (η, u) and (ηs, us) of the
two systems (transformed as in (6.35)) differ by an amount of at most O(ε2t) for t
up to O(T/ε). (Note that initially smooth solutions of both systems are expected
in general to develop singularities after times of O(1/ε).)

We will now investigate by computational means whether an estimate of the
form (6.35) holds also in the case of initial-boundary-value problems for the two
systems when they are posed on a finite interval, say on [0, 1], with the velocity
variable equal to zero at the endpoints. We consider therefore the ibvp’s (SWε)
consisting of (6.28) and (6.29) for x ∈ [0, 1], t ≥ 0, initial conditions of the form
(6.33) for x ∈ [0, 1] and boundary conditions u(0, t) = u(1, t) = 0 for t ≥ 0, and
the analogous problem (SSWε) consisting of (6.30)-(6.32) for x ∈ [0, 1], t ≥ 0,
and boundary conditions us(0, t) = us(1, t) = 0, t ≥ 0. (Note that the change of
variables us = u(1 + ε

2η) preserves the homogeneous boundary conditions on the
velocity.) We solve both problems numerically using cubic splines on a uniform
mesh in space coupled with the third-order Shu-Osher temporal discretization with
h = 10−3, k = 10−3, taking as initial conditions for (SWε) the functions η0(x) = 1,
u0(x) = x(x− 1), x ∈ [0, 1], and for (SSWε) η

s
0 = η0, u

s
0 = u0(1 +

ε
2η0). In Figure

6.1 we plot as functions of t the quantities

L2 − error := ‖η − ηs‖+ ‖u− us(1− ε
2η

s)‖,
H1 − error := ‖η − ηs‖1 + ‖u− us(1− ε

2η
s)‖1,

where (η, u) and (ηs, us) are the numerical approximations of the solutions of (SWε)
and (SSWε), respectively, evolving from the stated initial conditions for various
values of ε. For values of ε up to 10−3 the temporal profile is practically linear up
to about t = 300, and the same is observed for ε = 10−2 up to about t = 100 for the
L2-error. In the case ε = 10−2, note the change of scale in the t-axis in the figure: a
singularity starts developing after about t = 120 (when tε = O(1)). In Table 6.1 we
present the values of the L2- and H1-errors from the same computations at t = 50,
100, 200, 300 as functions of diminishing ε in the range where the models are valid,
i.e. before singularities emerge. The computed numerical orders of convergence in
ε for each fixed t are practically equal to 2.
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Figure 6.1. L2 and H1 norms of the differences
(
η − ηs, u − us

(1− ε
2η

s)
)
, (“L2-, H1-errors”) as functions of t for ε = 10−4, 10−3,

10−2.
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Table 6.1. Data of Figure 6.1. L2- and H1-errors at t = 50, 100,
200, 300 as functions of ε, and order of convergence as ε → 0.

time = 50 time = 100 time = 200 time = 300

ε L2-error order L2-error order L2-error order L2-error order

10−2 5.7064(−04) 1.3102(−03)

10−3 4.9362(−06) 2.0630 9.8992(−06) 2.1217 2.0206(−05) 3.1706(−05)

10−4 4.9224(−08) 2.0012 9.8437(−08) 2.0024 1.9688(−07) 2.0113 2.9536(−07) 2.0308

10−5 4.9214(−10) 2.0001 9.8415(−10) 2.0001 1.9682(−09) 2.0001 2.9523(−09) 2.0002

time = 50 time = 100 time = 200 time = 300

ε H1-error order H1-error order H1-error order H1-error order

10−2 2.9087(−03) 1.9463(−02)

10−3 2.1336(−05) 2.1346 4.2709(−05) 2.6587 8.6497(−05) 1.3853(−04)

10−4 2.1254(−07) 2.0017 4.2482(−07) 2.0023 8.4936(−07) 2.0079 1.2740(−06) 2.0364

10−5 2.1305(−09) 2.0000 4.2485(−09) 2.0000 8.4888(−09) 2.0003 1.2725(−08) 2.0005

Acknowledgments

The authors would like to thank Professor David Lannes for his advice on the
theoretical results of Section 6.2 and Professors Ch. Makridakis and T. Katsaounis
for helpful discussions. The second author also acknowledges travel support from
the grant MTM2010-195 10, MCIN (Spain).

References

[1] D. C. Antonopoulos and V. A. Dougalis, Error estimates for Galerkin approximations
of the “classical” Boussinesq system, Math. Comp. 82 (2013), no. 282, 689–717, DOI
10.1090/S0025-5718-2012-02663-9. MR3008835

[2] D. C. Antonopoulos and V. A. Dougalis, Notes on error estimates for Galerkin approxima-
tions of the ‘classical’ Boussinesq system and related hyperbolic problems, arXiv:1008.4248,
2010.

[3] D. C. Antonopoulos and V. A. Dougalis, Notes on error estimates for the standard Galerkin-
finite element method for the shallow water equations, arXiv:1403.5699, 2014.

[4] D. C. Antonopoulos, V. A. Dougalis and D. E. Mitsotakis, Galerkin approximations of peri-
odic solutions of Boussinesq systems, Bull. Greek Math. Soc. 57(2010), 13–30.

[5] J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-
amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory,
J. Nonlinear Sci. 12 (2002), no. 4, 283–318, DOI 10.1007/s00332-002-0466-4. MR1915939
(2003k:35193)

[6] J. L. Bona, T. Colin, and D. Lannes, Long wave approximations for water waves, Arch.
Ration. Mech. Anal. 178 (2005), no. 3, 373–410, DOI 10.1007/s00205-005-0378-1. MR2196497
(2007a:76012)

[7] E. Burman, A. Ern, and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements
with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48
(2010), no. 6, 2019–2042, DOI 10.1137/090757940. MR2740540 (2012a:65231)

[8] J. Douglas Jr., T. Dupont, and L. Wahlbin, Optimal L∞ error estimates for Galerkin ap-
proximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975),
475–483. MR0371077 (51 #7298)

[9] T. Dupont, Galerkin methods for modeling gas pipelines, Constructive and computational
methods for differential and integral equations (Sympos., Indiana Univ., Bloomington, Ind.,
1974), Lecture Notes in Math., Vol. 430, Springer, Berlin, 1974, pp. 112–130. MR0502035
(58 #19223)

[10] T. Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal.
10 (1973), 890–899. MR0349046 (50 #1540)

http://www.ams.org/mathscinet-getitem?mr=3008835
http://www.ams.org/mathscinet-getitem?mr=1915939
http://www.ams.org/mathscinet-getitem?mr=1915939
http://www.ams.org/mathscinet-getitem?mr=2196497
http://www.ams.org/mathscinet-getitem?mr=2196497
http://www.ams.org/mathscinet-getitem?mr=2740540
http://www.ams.org/mathscinet-getitem?mr=2740540
http://www.ams.org/mathscinet-getitem?mr=0371077
http://www.ams.org/mathscinet-getitem?mr=0371077
http://www.ams.org/mathscinet-getitem?mr=0502035
http://www.ams.org/mathscinet-getitem?mr=0502035
http://www.ams.org/mathscinet-getitem?mr=0349046
http://www.ams.org/mathscinet-getitem?mr=0349046


1182 D. C. ANTONOPOULOS AND V. A. DOUGALIS

[11] Q. Lin, Full convergence for hyperbolic finite elements, Discontinuous Galerkin methods
(Newport, RI, 1999), Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 167–
177, DOI 10.1007/978-3-642-59721-3 12. MR1842172 (2002d:65102)

[12] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Vari-
ables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR748308
(85e:35077)

[13] D. H. Peregrine, Equations for water waves and the approximation behind them, in Waves

on Beaches and Resulting Sediment Transport, R. E. Meyer, ed., Academic Press, New York,
1972, pp. 95–121.

[14] M. Petcu and R. Temam, The one dimensional shallow water equations with Dirichlet bound-
ary conditions on the velocity, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), no. 1, 209–222,
DOI 10.3934/dcdss.2011.4.209. MR2746402 (2012b:35194)

[15] J. M. Rakotoson, R. Temam, and J. Tribbia, Remarks on the nonviscous shallow water equa-
tions, Indiana Univ. Math. J. 57 (2008), no. 6, 2969–2998, DOI 10.1512/iumj.2008.57.3699.
MR2483008 (2010b:35412)

[16] R. Schreiber, Finite element methods of high-order accuracy for singular two-point boundary
value problems with nonsmooth solutions, SIAM J. Numer. Anal. 17 (1980), no. 4, 547–566,
DOI 10.1137/0717047. MR584730 (82b:65139)

[17] C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-
capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439–471, DOI 10.1016/0021-
9991(88)90177-5. MR954915 (89g:65113)

[18] M. E. Taylor, Partial Differential Equations III. Nonlinear Equations, 2nd ed., Applied Math-
ematical Sciences, vol. 117, Springer, New York, 2011. MR2744149 (2011m:35003)

[19] V. Thomée and L. B. Wahlbin, Maximum-norm stability and error estimates in Galerkin
methods for parabolic equations in one space variable, Numer. Math. 41 (1983), no. 3, 345–
371, DOI 10.1007/BF01418330. MR712117 (85f:65099)

[20] V. Thomée and B. Wendroff, Convergence estimates for Galerkin methods for variable co-
efficient initial value problems, SIAM J. Numer. Anal. 11 (1974), 1059–1068. MR0371088
(51 #7309)

[21] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-

Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR0483954 (58 #3905)
[22] L. Ying, A second order explicit finite element scheme to multi-dimensional conservation laws

and its convergence, Sci. China Ser. A 43 (2000), no. 9, 945–957, DOI 10.1007/BF02879800.
MR1804046 (2001k:65154)

[23] A. H. Zhou and Q. Lin, Optimal and superconvergence estimates of the finite element method
for a scalar hyperbolic equation, Acta Math. Sci. (English Ed.) 14 (1994), no. 1, 90–94.
MR1280088 (95c:65161)

[24] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous
Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2,
641–666 (electronic), DOI 10.1137/S0036142902404182. MR2084230 (2005h:65149)

[25] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous
Galerkin method for symmetrizable systems of conservation laws, SIAM J. Numer. Anal. 44
(2006), no. 4, 1703–1720 (electronic), DOI 10.1137/040620382. MR2257123 (2008f:65162)

[26] Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order ex-
plicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Nu-
mer. Anal. 48 (2010), no. 3, 1038–1063, DOI 10.1137/090771363. MR2669400 (2011g:65205)

Department of Mathematics, University of Athens, 15784 Zographou, Greece — and

— Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion,

Greece

E-mail address: antonod@math.uoa.gr

Department of Mathematics, University of Athens, 15784 Zographou, Greece — and

— Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion,

Greece

E-mail address: doug@math.uoa.gr

http://www.ams.org/mathscinet-getitem?mr=1842172
http://www.ams.org/mathscinet-getitem?mr=1842172
http://www.ams.org/mathscinet-getitem?mr=748308
http://www.ams.org/mathscinet-getitem?mr=748308
http://www.ams.org/mathscinet-getitem?mr=2746402
http://www.ams.org/mathscinet-getitem?mr=2746402
http://www.ams.org/mathscinet-getitem?mr=2483008
http://www.ams.org/mathscinet-getitem?mr=2483008
http://www.ams.org/mathscinet-getitem?mr=584730
http://www.ams.org/mathscinet-getitem?mr=584730
http://www.ams.org/mathscinet-getitem?mr=954915
http://www.ams.org/mathscinet-getitem?mr=954915
http://www.ams.org/mathscinet-getitem?mr=2744149
http://www.ams.org/mathscinet-getitem?mr=2744149
http://www.ams.org/mathscinet-getitem?mr=712117
http://www.ams.org/mathscinet-getitem?mr=712117
http://www.ams.org/mathscinet-getitem?mr=0371088
http://www.ams.org/mathscinet-getitem?mr=0371088
http://www.ams.org/mathscinet-getitem?mr=0483954
http://www.ams.org/mathscinet-getitem?mr=0483954
http://www.ams.org/mathscinet-getitem?mr=1804046
http://www.ams.org/mathscinet-getitem?mr=1804046
http://www.ams.org/mathscinet-getitem?mr=1280088
http://www.ams.org/mathscinet-getitem?mr=1280088
http://www.ams.org/mathscinet-getitem?mr=2084230
http://www.ams.org/mathscinet-getitem?mr=2084230
http://www.ams.org/mathscinet-getitem?mr=2257123
http://www.ams.org/mathscinet-getitem?mr=2257123
http://www.ams.org/mathscinet-getitem?mr=2669400
http://www.ams.org/mathscinet-getitem?mr=2669400

	1. Introduction
	2. Semidiscretization on quasiuniform meshes
	3. Some superaccuracy properties of the 𝐿² projection on spaces  of continuous, piecewise linear functions
	4. Semidiscretization with continuous, piecewise linear functions  on uniform meshes
	5. Full discretization with the third-order Shu-Osher scheme
	6. Remarks
	6.1. Periodic boundary conditions
	6.2. Comparison of SW and SSW for small-amplitude solutions

	Acknowledgments
	References

