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FOURIER COEFFICIENTS OF SEXTIC THETA SERIES

REINIER BROKER AND JEFF HOFFSTEIN

ABSTRACT. This article focuses on the theta series on the 6-fold cover of GLs.
We investigate the Fourier coefficients 7(r) of the theta series, and give par-
tially proven, partially conjectured values for 7(7)2, 7(7?) and 7(7*) for prime
values 7.

1. INTRODUCTION

The Jacobi theta function, defined by

9(2): i 627rin2z’

n=—oo

for z = x + iy with y > 0 is of fundamental importance in many areas of mathe-
matics. In many applications, z is set equal to 0, y is set equal ¢/2 and the relevant
property of the theta function is the transformation formula
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However, 6(z) possesses a more general transformation property. We let

To(4) ={y€SLy(Z) | v = (a z),with ¢ =0mod 4}
c

be the usual congruence subgroup. Then, for v € T'y(4) we have

0(vz) = j(7v,2)0(2),
where

iy, 2) =€t (5) Vez +d.

Here ¢ = 1 if d = 1mod4, and ¢4 = i if d = 3 mod 4, and (g) is the usual
quadratic symbol except that we multiply by —1 for ¢,d < 0. The square root
Vez + d is chosen to have argument with absolute value less than 7/2.

The theta function has a beautiful connection with Eisenstein series of half-
integral weight. One can construct such an Eisenstein series as follows:

0(2) ca (§)y
E@(z2,5) = I s = d .
(z 5) Z m(’YZ) 9(727) (c,d,):zl,czo |cz+d|25 /cz+d

c¢=0 mod 4
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This converges absolutely for Re(s) > 3/4 and, by construction, satisfies the same
transformation property as 6(z), namely

E®(yz,5) = j(7,2) E®) (2, 9).

The remarkable thing is that E()(z,s) has a simple pole at s = 3/4, and upon
taking the residue, one recovers the original theta function. In other words, the
equality

Ress:3/4E(2) (Z7 S) = CH(Z)’

holds for some non-zero constant c.

Weil made the observation that just as an automorphic form on the upper half-
plane can be interpreted as an automorphic form on the group G = GLy(R),
the functions 6(z) and E(®)(z,s) can be interpreted as functions on G, the 2-fold
metaplectic cover of G. Here, one has

G={(g,€)|lg € G,e= %1},
and multiplication is defined by

(9,09, €) = (99", ¢€'0(g,9)),

with o(g,¢’) a certain explicit 2-cocycle.

Kubota [10] defined Eisenstein series on an n-fold metaplectic cover of GLg, and
observed that these Eisenstein series have simple poles at s = 1/2 4+ 1/(2n). The
residues at this point are automorphic forms on this n-cover of GLo, and generalize
the notion of the quadratic theta function. Unlike the quadratic theta function,
however, the Fourier coefficients of the generalized theta function when n > 3 are
very mysterious, and at present are only completely understood in the case n = 3.
For n = 3, Patterson and Heath-Brown used them to prove a modified version of
Kummer’s conjecture on the equidistribution of the argument of the cubic Gauss
sum [I5]. In [I], the Fourier coefficients on the n-fold cover were used to show that
if one n-th order twist of a GLoy L-series does not vanish at the center of the critical
strip, then an infinite number of n-th order twists must also not vanish at the
center. They have, however, sufficiently many mysterious and beautiful properties
that are worth studying for their own sake. For example, we will show below that
square roots of Gauss sums appear naturally in the case n = 4 and very possibly
also in the case n = 6. There is even reason to speculate that the cube roots
of fifth order Gauss sums are present when n = 5, but for larger values of n the
characteristics and properties of the coefficients remain inscrutable for now. In this
introduction we will survey what is known and conjectured about these Fourier
coeflicients. To make the underlying structure clearer we will restrict our attention
in the introduction to the class of primes that lie outside a finite set of ‘bad primes’
and for which reciprocity operates perfectly.

Kubota’s Eisenstein series can be defined in the following way in the cases n =
3,4,6. We let (, be a primitive n-th root of unity, and put K = Q({,) with the
ring of integers Z[(,]. Let (g)n represent the n-th order residue symbol and, for

= (006 )
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with x € Cand y > 0, and k € U(2,C), o € C*, let I(z) = y. Kubota observed
that for suitable N, the n-th power reciprocity law implies that the function

wn=(3). -

from T'(N) = I'y(SL2(Z[¢,])) — C*, is a homomorphism. (The choice N = n?
works, but need not be minimal.) He used this to define the Eisenstein series

EM(z,s)= Y K(I(y2)*,
T \T'(NV)
which converges absolutely for Re(s) > 1 and satisfies the automorphic relation
E™(yz,5) = k(1) E™ (2, ).

The series E(™) (z, 8) can be expanded in a Fourier series, and the constant coefficient
is

((@ns—mn) 5 o
(r(2ns—n+1)
where (i (2ns — n) is the zeta function of the underlying field with completion (j,.

This has a simple pole when 2ns —n = 1, i.e., at s = 1/2 4+ 1/(2n). Taking the
residue at this point, Kubota defined the theta function on the n-cover of GLy by

9(")(2) = ResS:1/2+1/(2n)E(")(z, s).

Ignoring non-generic primes, the series E(”)(z, s) has a Fourier expansion of the
form

E™(z,5) = Ao(s,9) +y D Am(s)Ni/q(m)* /2 Kos1(4n|mly)e(ma).
m#0

Ao(s,y) =y> +

)

Here e(z) is an additive character with kernel the ring of integers of K. The
coeflicients are written as an arithmetic part multiplied by a K-Bessel function.
For m # 0, the arithmetic part is

gn(m, d)
(1.1) An(s) = ~ s
dz1§d ~ Vr/a(d)?
This is a Dirichlet series built from Gauss sums:
r rm
amim.d) = 3 (3) ()
r mod d
If we write the Fourier expansion of (") (z) as
0 (2) = 70 (0)y" " 4y Y T (m) Ky (dnmly),
m#0
then
Ta(m) = NK/Q(m)l/(2n)ReSQS:1+1/nAm(S).
The question facing us is the determination of the nature of the coefficients 7, (m)
for m # 0. In the remainder of this section, we normalize the Fourier expansion to

have 7,(1) = 1.
The Gauss sums factor in the following way: if d = dyds, with (d;,ds) = 1, then

d d
it =i () (%)
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Thus, if n = 2, the two quadratic symbols cancel at all but finitely many places, and
the Dirichlet series (IT]) factors into an Euler product which, up to a finite number
of factors, equals Lk (2s —1/2, x.m), the Hecke L-series associated to the quadratic
extension K (1/m). This has a pole at s = 3/4 when m is a square, explaining why
the residue of E()(z, s), which is the quadratic theta function over the field K, has
a Fourier expansion supported by the square indices.

For n > 3 the product (g—;) (g—f) is not trivial, and the Dirichlet series (L))
n

does not factor into an Euler product. This has so far made it impossible to analyze
A (s) and compute its residue directly. Patterson [I2] was able to use a converse
theorem to show that in the case n = 3 the Mellin transform of (™) (z) essentially
equaled A;(s), the conjugate of the first Fourier coefficient of E(®)(z,s5). As a
consequence, he discovered that the coefficients 73(m) satisfy a periodicity relation:

Tg(mgd) = NK/Q(m)1/27'3(d).
Also, for d cubefree, 73(d) = 0 if p? | d for any prime p, and for d squarefree,

 93)(L,d)
T3(d) = 4NK/Q(d)1/2.

Suzuki [I6] attempted to generalize Patterson’s method to n = 4, but only suc-
ceeded in obtaining partial information about the 74(m). Deligne, studying this
problem from a representation theoretic point of view, was able to explain that the
inaccessibility of the cases n > 4 was due to a phenomenon of non-uniqueness of
Whittaker models. This approach was greatly generalized in a paper of Kazhdan
and Patterson [9]. Working in the context of local Whittaker functions on the n-fold
cover of GL,, they showed that the periodicity property held in great generality.
They also showed that the theta functions were eigenfunctions of Hecke operators
and that a certain subset of the coefficients were determined by these operators. For
GLo, this subset was everything in the case n = 3, but for all n > 4 the coefficients
were only partially determined.

For each prime p there is an associated Hecke operator T),». The eigenvalue of
0™ (2) is

Apn = NK/Q(p)1/2 + NK/Q(P)A/?

To describe the effect of Tj» it will be useful to introduce the following notation.
For0<j<n-1,

Zr mod d (5)51 € (%)
Ng/q(d)t/? .
This is simply the Gauss sum with numerator m and denominator d, formed with
the j-th power of the residue symbol, and normalized to have absolute value 1 when
d is squarefree.
Applying Tpn to 0" (z) forces the following relation upon the coefficients 7, (m).
For (m,p) =1,

)‘P"Tn(mpj) = Tn(mpj-HL) + Tn(mpj_") + NK/Q (p)_l/QGj.H(m,p)Tn(mp”_Q—j).

We adopt the convention that 7,(a) vanishes unless a is an integer. The periodicity
established in this context in [8] and [9] is

Gj(m,d) =

Tp(mp") = Tn(m)NK/Q(p)l/z'
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For j =n — 1, the above becomes
(NK/Q(P)1/2 + NK/Q(P)_I/Q)Tn(mP"_l) = Tn(mpn_l)NK/Q(p)l/2a
which forces 7, (mp™"~1) = 0. For 0 < j < n — 2, we obtain
Ta(mp’) = Gji1(m, p)ry (mp" 7).

In the case n = 2, this means that we have 75(m) = 0 if m is not a square, and
T2(m?) = N /q(m)'/2, a complete description of m5(m). When n = 3, we see that
73(mp?) = 0, and

m3(mp) = Ga(m, p)T3(m).
Remembering our normalisation 73(1) = 1, this yields

73(cd®) = Ngjq(d)/*G1(1,¢),

for ¢ squarefree, and 73(m) = 0 otherwise. This is a complete description of 8(3)(z),
which agrees with that found by Patterson.
When n = 4, the first example of undetermined coefficients occurs. We see that
for (m,p) = 1, 74(mp?) = 0; also,
Ta(mp?) = G3(m, p)1a(m)

and

(1.2) Ta(mp) = Go(m,p)7a(mp).

Taking m = 1, we see that although 74 (p?) is determined, 74(p) is not. Interestingly,
as the quadratic Gauss sum is trivial in this context, we have

amn = (2) = (2),.

It follows then, from the above, that if (%) = —1, then 7y(mp) = 0. More
2
generally, if m possesses any factorization m = mimso, with (%) = —1, then
2
T4 (m) =0.

When n = 5, one finds that 75(p*) = 0, 75(p®) = G1(1,p), and that

75(p) = G2(1,P)T5(P2)-

This finally leads us to the subject of this paper. When n = 6, the Hecke relations

lmply that Tﬁ(ps) = Oa Tﬁ(p4) = G1(17p)a that

76(p) = G2(1, p)76(p°),

and that 74(p?) is related to itself via
(1.3) 76(mp?) = Ga(m, p)re (mp?).

Interestingly, the Gauss sum appearing in ([3]) is quadratic, as in (L2), suggesting
a possible parallel phenomenon occurring in the cases n = 4 and n = 6. We will
see in Section 5 that the relation 76(p*) = G1(1, p) almost holds in a more precise
setup.
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What rule or pattern, if any, governs the undetermined coefficients? One striking
observation and conjecture was made by Patterson in the case n = 4. Recall that
the first Fourier coefficient of E*)(z, s) was

o Gl(l,m)
A= 2 R g

As A (s) is a Fourier coefficient of EY)(z, s), which possesses a functional equation
as s — 1 — s, Ai(s) inherits the same functional equation. Change the variable,
rename this series as

Z Gl 1 m

Nic/q(m
and consider the Dirichlet series Dq(w) = (K(4w — 1)tp(w). This has a functional

equation as w — 1 — w, and a simple pole at w = 3/4. On the other hand, the
Dirichlet series

Dy (w) = (x (4w — ZN

is the Rankin-Selberg convolution of #(*)(z) with 1tself and can be easily seen to
have a functional equation as w — 1 — w, and a double pole at w = 3/4. Pat-
terson observed that the gamma factors occurring in the functional equations of
Dy (w)? and Do(w) were identical, and conjectured that the series D1 obtained by
conjugating the Gauss sums in D; satisfies

Di(w)’ = Da(w).

This conjectured equality can be seen to be consistent with all the information
provided by periodicity and the Hecke relations. Dividing by an extra (i (4w — 1),
the conjecture states that

2
Z T4 (m)2 Z G1 1 m
Nic/q(m)® ~ Ni/q(m
In other words, the conjecture predicts the values of 74(m) up to sign. Checking the

-
coefficients of m = p?, we see that on the left-hand side we have 74(p?)? = G1(1,p) ,
while on the right-hand side, as G1(1,p?) = 0, the only contribution comes from the

square of the m = p term, namely G;1(1,p) . Checking further, for m squarefree,
on the right-hand side we have

> GlmGhm -Gtm Y ().

m=mims m=mimsa

which does indeed vanish if m possesses any factorization m = mims, with (m2)
2

= —1. Most interestingly, looking at the prime indices, the conjecture predicts that

14(p)? = 2G1(1,p).

In [3] a conjecture was made about the n = 6 case that was weaker than the n = 4
conjecture, in that it did not quite pin down all of the coefficients. This conjecture

was that
I (3)
T6(m®) < 13(m) Gi7(1,4d)
Z Nmu *Z Nmu Z Ndv
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where the superscript (3) indicates that we are considering the cubic Gauss sum.
The left-hand side is the convolution of the theta function on the 6-cover of GL2(C)
with the theta function on the 2-cover of GLy(C). This has the effect of picking
from Fourier coefficients with square indices. The right-hand side is the product of
the Mellin transform of the theta function on the 3-cover of GLo(C), with the first
coeflicient of the cubic Eisenstein series. The two, however, are equal in this cubic
case, up to a zeta function factor. Writing m = mym3m3, with my, ms squarefree
and relatively prime, mg unrestricted we see by the periodicity properties of 74 and
the known value of 73 that after canceling a zeta factor on both sides this relation

translates to )
3

T6(mim3) > ¢a,a)\

NmyNm3® Ndw '
another curious identity involving the square of a series without an Euler prod-
uct. Note that the Gauss sums Ggg)(l, d) on the right-hand side vanish unless d is
squarefree.

Equating corresponding coefficients we have the following predicted behavior for

the coefficients 76(m?ms3):

2
mtmtm) = 650 1me 60 ) (22) Y (2
3my=didy N 173

In particular, when m; = p and my = 1, this reduces to the relation 74(p?) =
2Gg3)(1, p). This is the fundamental relation which is being tested in this paper.

We will see in Section 5 that computational evidence overwhelmingly supports
the conjecture for |p| = 7 mod 12. Indeed, our computations suggest that, apart
from a 12-th root of unity,
G (L,p)

v
We recall the conjecture from [3] was made disregarding the prime 3, so it should
come as no surprise that an additional power of 3 occurs in the actual coefficients.
We remark that care should be made in comparing the current article and [3], since
the definition of the sixth order symbol in the two articles are conjugates of each
other.

We will give a conjecture for 7(p?) for the other congruence classes of |p| in
Section 5. We give a proof of certain special cases as well. Finally, we examine the
square 7(p)? and give a conjectured value for this coefficient.

76(272) =2

Remark 1.1. The conjecture 7¢(p?) = 2G§3)(1,p) is proven in [3] in the case that the
base-field is a rational function field. The techniques used in that proof do not carry
over to the number field case we are working with in this paper. Recently, Friedberg
and Ginzburg [7] proved that the p?-coefficients are arithmetic for infinitely many
primes p. The results in [7] require selecting a certain vector in a representation
space; this is consistent with the fact that our conjectures in Section 5 require a
special set of coset representatives.

2. THETA SERIES

Throughout this section, we fix an integer n > 2. We let K = Q((,) be the
cyclotomic field obtained by adjoining a primitive n-th root of unity (,. Later on,
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we will focus on n = 6, and to make the exposition easier, we restrict ourselves to
the case that K has class number one in this article. We define the set

S = {vy with 7 | noo}

to be the places dividing n together with the infinite places. We note that since K
is totally imaginary, all infinite places are complex. The set of all finite places
dividing n is denoted by Sy. We let

Ks =[] K.
veS
be the product of the completions at all the places in S. We embed K into the
product Kg along the diagonal. Our first goal in this section is to define a Gauss
sum on the ring of S-integers Og = O[r~! | v, € Sy].

2.1 Gauss sums. For v € S, the localization K, admits a generalized Hilbert
symbol. We recall its construction here. We let L be a local field of characteristic
zero with ¢, € L, and we let M = L(V/L*). By local Artin reciprocity, we have

L* /Ny (M*) = Gal(M/L)
via the Artin map. The equality L*" = Ny, (M*) and Kummer theory give a
map
L*/L* =2 Hom(Gal(M/K), ).
Combining both displayed equations gives the Hilbert symbol
(x,y): L/L™ x L/L*™ — pn,

as (z,y) = xy((z, M/L)). Here, x, is the Kummer character of y, and (-, M/L) is
the Artin symbol. We combine the local Hilbert symbols to get a symbol on Kg
via
(,T, y)s = H (LL', y)v'
vES
For coprime a,b € Og, we let

<%>s_ H (0

vgS,v|b

be the generalized Legendre symbol. The Hilbert symbol and the Legendre symbol

satisfy a reciprocity law
a b
3, -eon()
(b>s @/ s

that will be useful for explicit computations; see Section 3. We note that the Hilbert
symbol is local and defined for all a,b € Kg, whereas the Legendre symbol is global
and more restricted.

Having defined a multiplicative character on Kg, we now proceed with defining
an additive character e. As before, we will do so by defining a local character
e, for each v € S. The desired character e is then simply the product of the
local characters. First assume that L is p-adic, i.e., a finite extension of the p-adic
field Q,. We define e, as the composition of the maps

L™ Q,—Q,z, 2 Q/z T ¢,
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Here, the map A : Q, — Q/Z satisfies

[e9) -1
MDD wp’ | = D0 wr,
j=—N j=—
i.e., it is the ‘tail’ of the p-adic extension of z, so that ker(\) = Z,. For L = C, we
put e (x) = exp(—2miTr(x)).
For a homomorphism ¢ : p,,(K) — C*, we can now define the Gauss sum

glre )= > ¢ ((%) S) e(rz/c)

x mod ¢

for r,c € Og. We will present an algorithm to compute g, (r, ¢, c) in Section 3.

2.2. Dirichlet series. The Dirichlet series we will be working with are indexed
by the group K§/(K§O%). We first explain the structure of this group.

Lemma 2.1. We have O N KZ" = OF".

Proof. Let x € O N K&". Since z is locally an n-th power, we have (z,¢)g =1
for all ¢ € Og by the properties of the Hilbert symbol. This means that (%) g =1
holds, which implies that = arises from a global n-th power. Hence, z € OF*. [

Lemma 2.2. The following equality holds:
[K%: K&Og] = n#S.
Proof. This is proven in [I3] Section 3] We give a slightly modified proof here for
convenience. By standard group theory, we have
K3 K3'03] = (K5 : K/ [03K8"  K3) = [K5 : K§'1/[05 : 05N K5,

and by Lemma 2.1 we have [O% : O N K& = [O% : OF]. Using Dirichlet’s unit
theorem, we compute this last index to be n#9. It remains to compute [K% : K.
For a finite place v, € S, we have

n2

[K”p : K”p] - p—vp(n)

by [II, Corollary I1.5.8]. We let S, be the set of infinite places in S. By the
product formula [IT, Proposition I11.1.3], we have
~1

I o= II Nomm) | =n"#,
vp €Sy Vp €S
and we conclude that we have [K% : KZ"] = n?#. The lemma follows. O

We pick a coset ) of K§/K¢". For r € Kg and s € C with Re(s) > 1/2, we
define the Dirichlet series

h(rys,m) = > gn(re,0)lels™ Ls(| - [57),
ceE(nKE"NOs) /O

where

Ls(|-13) = JT (@ = Imuls)¢u(s)-

vESy
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In the last expression, m, is a uniformizer for K,. The norm |c|s appearing in ¢
is the ‘S-norm’ |c|s = [],cglcv|o. The S-norm coincides with the regular norm
N /q for ged(c,n) = 1.

Remark 2.3. For u € O%, we have
o(r, s,un) = e(u,m)s(r, s, m).-

From Remark 2.3, we see that for understanding ¥ (r, s,n) it suffices to pick a
coset 1) for K§/(K§"O%). The following theorem describes the analytic continuation

of .

Theorem 2.4. The function ¢ defined above converges absolutely for Re(s) > 1/2.
It admits a memorphic extension to C. This extension has for Re(s) > 0 at most
a single pole at s =1/n.

Proof. See [0, Section 5]. O

The residue at s = 1/n of ¢(r, s,7) is related to the Fourier coefficient 74(r) from
the introduction in the following way. We pick a full set of coset representatives
V for K5/(K5"O%); this set has cardinality n#® by Lemma 2.2. After possibly
multiplying by some element of OF, we assume that all n = (m1,...,n%s) € V are
integral at each component.

We now look at the series

A(r,s,V) = Z’(/J(T‘,S,n) = Z gn(ngvc)‘d_s_ll/sﬂ : ‘ns-',-l).
nev ceo/0*n
c=(c1se s cug)EV

The series A has a pole at s = 1/n. By comparing the formula above with (], we
see that this is in fact the same place as the pole for A,,(s) from the introduction.

The last sum in the equation above is a sum over ideals I C Ok coprime to n
with the convention that we pick a generator c of I with ¢ € nkg" for some n € V.
The quantity

7(r, V) = Nijq(r)'*"Res 1/ A(r, 5, V)
is the main object of study in this paper. Different choices for V' yield different
Fourier coefficients 7(r, V). The introduction takes d = 1 mod N and uses 7(r) as

a shorthand notation, but there are other choices one can make. As we will see in
Section 5, selecting a convenient V' is part of our conjecture.

3. COMPUTING FOURIER COEFFICIENTS

The functions ¥(r, s,n) satisfy a functional equation in s — —s. To state the
equation, we modify v slightly and define

ns)\ /2
U(r,s,m) =y, ° (FF((S))) Y(r, s,m),

where N = [K : Q] and

N(n—-1) —1/2 dy
yr= @0 Irlg Y I Il
vESy

with d, the local difference; see below for its definition.
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Functional Equation 3.1 ([0, Section 5]). The function U satisfies a functional
equation

#S
(31) ‘I’(T,S,T%) = nN/2Gf(S) H ‘ﬂ—v|;dv/2 Zﬂj(r’ S)\I/(T', —57773‘),
vESy j=1

where {n;}; is a full set of representatives for K% /(KE O%).

Before we explain the notation in equation ([B.I) above, we note that it translates
a vector U(r,s,m;); to ¥(r, —s,n;);. This means that although we are interested in
computing a sum over all 7;, we do have to work with the individual ¥(r, s, n;)’s.
In the functional equation, we have

Gr(s)= 1 %_ns

’UESf 1- ‘7'('1)‘

The integer d, for a place v over p is related to the different of the extension
Q,(¢n)/Qp in the following way. The maximal order of Q,(¢,) equals Z,[¢,] and
we let f € Zp[z] be the minimal polynomial of (,. The different of Q,(¢,)/Qp
equals (f'(¢,)) and we have

(f'(Cn)) = (mo)®.

In particular, d, = 0 if Q,((,) is unramified.

Finally, the T};(r, s) occurring in (B are coefficients of an n#° x n#S-matrix
T(r,s). The matrix 7T is defined over Q(|m,|5 | v € Sy). We will give a method to
compute T;;(r, s) below; see formula (3.9)).

Knowing the functional equation that W(r, s,n) satisfies, the idea is to compute
its residue at s = 1/n using contour integration. A careful analysis of the proof
of functional equation ([B.I]) shows that ¥(r,s,n) only has a pole at s = 1/n in
the domain R(s) > —1/2; see [0, p. 242]. Since the function ¥(r,s,n) decays
exponentially fast for Im(s) — oo by [B, Theorem 2.4], we therefore have

1 1
82)  Resypblnom =g [ woosnds— oo [ W s
where (o) denotes the vertical line Re(s) = o > 1/2. It will be convenient for our
computations to modify ([B.2) slightly. If f is a holomorphic function such that
f(s)(T(ns)/T'(s))V/? decays exponentially for Im(s) — oo, then we also have

(3.3) f(l/n)xil/”Resszl/n\I/(r,s,n) = L/ U(r,s,m)f(s)x™°ds

21 J(o)=(=0)
for any = > 0, with (0) — (—o) the union of the two vertical lines. Not only does
B3) allow for greater flexibility in computing the two integrals by selecting an
appropriate f, but it also serves as a check on our computations by letting the
parameter x > 0 vary.

3.1. Integral with o > 0. In this subsection we explain how to approximate

1
3.4 — W(r,s, s)x™°ds
(3.4) 3 /(0_) (r,5,m)1(5)

211
nev
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for ¢ > 1/2. Using the formula for A(r,s, V), we are interested in computing the

sum
L M -5 L |ns+1 (F(ns)>N/2
2. L ke e 1 () s

In order to compute this sum, we first write Lg(]-|*T) = >, a(m)m~*. Since
Lg is basically the Dedekind zeta-function of K, the coefficients a(m) are easily
determined. Indeed, we have

(3.5) a(m) = {é(k)/k% if m = k™ and if m, =1 for v € Sy,

, otherwise,

with I(k) the number of O-ideals of norm k. We note that the coefficients a(m)
decay quite rapidly since they are only supported on n-th powers. If we now put

then the sum in (B4) is equal to

(1, 6,¢)
(3.6) Z ALY Z a(m)Fy (zy1m|cl).

cEOQ/O*M m=1
ceV

A key idea to approximating the sum above is to loop over all ideals of O that are
coprime to n. For every ideal I, we only consider the generators c that lie in V
when viewed as elements of Kg. If we can efficiently compute the function F}, then
for every such ¢, we approximate the sum > a(m)Fi(zy1m|c|) to high precision
and get the contribution coming from c¢ to the sum (B.6]).

The inclusion of the function f(s) in the integral gives us many choices for the
function Fj(x). There is a trade off in picking f so that Fy converges fast, and is
easy to evaluate. We refer to Section 4 for an example.

3.2. Integral with ¢ < 0. The main idea behind evaluating [B4]) for ¢ < 0 is
the same as for ¢ > 0. The only technical difficulty is that since ¥ does not admit
a Dirichlet expansion for o < 1/2, we will map s to —s and use the functional
equation. After replacing s by —s in expression ([B4)), we see that we have to
evaluate

1

67 -

T

G (=) (=) (1) ST —s) (5, | ds.
j=1

nev’(=7)
We note that G¢(—s)Lg(| - |"*t) = (x(ns+1) =3, b(m)m™* holds. The coeff-

cients b(m) satisfy b(m) = I(k)/k if m = k™, and b(m) = 0 otherwise. Just like in
the previous subsection, these coefficients decay rapidly. Similar to the case o > 0,

we put
T) = L L(ns) v —s)x” %ds
R =5 | (T0)  fsas

The only difference with the previous subsection is that we have to deal with the
sum Y, T;;(r,—s) of the coefficients in the j-th column of the transition matrix.
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Because each coefficient T;; lives in Q(|m,|3 | v € Sf), we can write

n#S
ZTij(r,—s): Z Cjw|m["? with || = H |7 |
i=1

weZ#5f veSy

for certain algebraic numbers c;,,. Putting everything together, we can write

3 Z/ (rys,m)f(s)z™%ds
(38) Z gn L C Z Cjw Z F2 :E y1|CH7rU|U )

"t wes?s

with yo = nN/2T], |7, d/2,

Just as for the integral with ¢ > 0, we will loop over all ideals of O that are
coprime to n and for every ideal I, we only consider the generators ¢ that lie in V'
when viewed as elements of Kg.

We observe that for each ¢ € O, we need to evaluate the function F» many more
times than F). Indeed, whereas we only need to evaluate F once for every m > 1,
we need to evaluate F3 for every w such that ¢j,, is non-zero. This means that we
need to pick our function f so that Fj is particulary easy to evaluate.

3.3. The transition matrix. We recall that for every choice V of cosets for
K%/ (K§O%), there exists a matrix

T(r,s) € Q(Iml [v € Sp)

such that W(r,s,n;),,cv satisfies the functional equation (B.I). In this subsection
we explain how to compute the coefficients of this matrix. We will only give the
results needed for actual computations, and refer to [6, Section 5] for the underlying
theory.

We fix a choice of coset representatives V. One can show that T;; satisfies

r\’ (ni, —nj)s .
T(s,m) = (—_ _)S OIS T (1 )
;

771/’7‘7 veESy

@) - 3 (n-B) T () Tl ke

h
heOs/O5" SveSy yeKr /K il

As indicated in the previous Subsection 3.2, we will view |m,|, as indeterminates
and compute the coefficients Tj; as elements of an #.S5¢-dimensional function field
over Q. To make the computations as fast as possible, we should be careful to
select the number field L over which the coefficients of T;; are defined. We will see
in the next section that we can take the Euclidean field L = Q((36) for n = 6 for
instance.

Before we detail the computation of the local Gamma function I',, we explain
an idea from [I8] to speed up the computations of all the T;;. By examining (B.9)
closely, we see that except for a factor (1;, —n;)s, it only depends on n? and n;n;.
Hence, for even n, we can save time by only computing the coefficients in ([39]) for
n? and n;.

The factor I',, occurring in ([B.9) was introduced by Tate in his thesis [I7], where
it is called p(c). We recall some of the basic theory here. We let x : K — C* be
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a quasi-character, i.e., a continuous multiplicative (but not necessarily of absolute
value 1) map. We have K} = (7,) x U, and y equals |- |* by [I7, Theorem 2.3.1],
where x is a character on the unit group U of the maximal order of K,. We
furthermore have U = g1 x U (1) with ¢ the characteristic of the residue field, and
UD =1+4p=14(m,). If X is trivial on U, we call ¥ unramified. Otherwise, since
the subgroups 1+ p” form a filtration of U, there exists a minimal f > 0 with with
X(1 +pf) = 1. In this ramified case, we call the integer f the conductor of X.

The character we are interested in for B9) is ¥ = &(y,-). We compute its
conductor in the following way. We have an isomorphism U™ /U+1) =~ O, /r,
for all n, and we first compute a set of representatives Ry for O,/(m,). We now
guess that e(y, -) is trivial on p9 for some g, like g = n. We check that our guess is
correct by computing

e(y, 1 +rmd) for all r e Ry.

If the computation above does not yield 1 for all r, then we replace g by 2g and

repeat the check until we do get 1 for all » € R;. If we do get 1 for all r, we

replace g by g — 1 and repeat the check. We continue doing the latter until we do

not get 1. The last g > 1 for which we get 1 for all r is the conductor of e(y, -). If

we have £(y, 1 +r7) = 1 for all r, then we do a last check to see if e(y, z) = 1 for all

T € pig—1. If this is the case, then e(y, -) is unramified, otherwise it has conductor 1.
In the unramified case, we have

—al = mox(m) 5
d v v dy /2 s
S
1— X(ﬂ_) ‘ﬂ-’U v Q(‘TFULU)
for x =|-|3¢(y,-)s. Here, d, is as before the local different of Q,((,)/Qp, and we
pick the totally positive square root of |m,|9”. We note that we view |m,|$ as an

indeterminate, and view the image of x in Q.
In the ramified case, we compute a set of representatives Ry for

U/(L+p7) = (U/p"),

r, (X) = X(ﬂ-v)

and compute the sum

W) = Imli/? 3 x@e, (j—ﬁ)

TER>

for x = |-|%¢(y, ). As before, we take the totally positive square root of |, |f. The
map e, is the same character as in Section 2.1, except that we identify its image
in Q. A good check for the computations is that W (x) is a root of unity. We now
have
dutf
Ly(x) = X(ﬂ'v)idviﬂﬂ'vh > W),

where we again view |7, |, as an indeterminate.

3.4. Gauss sums. The last subsection deals with the computation of the Gauss

o glred= Y ¢ ((%) S) e(rz/c)

x mod ¢

that occurs in the sums ([B.0) and ([B.8]). The following lemma reduces the compu-
tation to the case g,(1,¢,7) for a prime element m € Og.
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Lemma 3.2. Let r.c € Og be non-zero with ged(r,c) = 1. Then we have

gn(r,e,c) =¢ ((g);) gn(1,¢,0).

Let ¢1,¢o € Og be non-zero with ged(ey,co) = 1. Then we have

gn(r e, cres) = € ((2—;) S) e ((Z—i) S) gn(r,€,¢1)gn(r, €, C2).

Let m € Og be prime. Then we have
gn(rye, ) =0 for ged(rym) =1 and k> 2.

Finally, we have

k ! 0 fork#1—1,
gn(7T yE, T ) = k l .
Ng/q(m)*gn(1,€',m) otherwise,

in the relevant case €' # 1.

Proof. See [14]. O

We see from this lemma that for computing the residue of A(r,s,V) we can,
except for the case ged(r,c) # 1, restrict our attention to ¢ being squarefree. Fur-
thermore, we note that it suffices to make a list of Gauss sums g, (1, e, 7) for prime
elements 7 of norm up to some bound. In the remainder of this section we detail a
method to compute g,(1,¢,7) in many cases.

The Gauss sum g, (1,e,7) is closely related to the ‘ordinary’ Gauss sum

p—1

(3.10) 9(x) =Y _ x(@) exp(2riz/p)

=1

in case m has prime norm p. Here, x is the character ¢ ((%)S) and the 7 in the
exponential is of course the complex number m =~ 3.14. The exact relationship
between g, (1,e,7) and g(x) depends on n, we refer to Section 4 for the case n = 6.

The naive way of computing (BI0) by evaluating the sum directly takes O(p)
operations, and this run time can be a bottleneck for the computations. It is well
known that we can do much better, at least heuristically. We define the root number
Wp(x) as

90 if y(=1) =1,
WD(X)_{m/ x(=1)

ngg—ig)ia if X(_l) :_17

where we remark that the subscript D serves to distinguish Wp(x) from the root
number in Subsection 3.3. We define e € {0,1} so that x(—1) = (—1)¢ holds.
Poisson summation now gives

0 (x7 _71) =Wp(x) (%)26+1 o(x, 1),

with 8 the series

r) = S ) ()

neEZ
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introduced by Shimura; see e.g. [4, Corollary 10.2.12]. The relation above is most
useful for 7 = it with 6(%, it) # 0. For us, the choice t = 1 has always worked, and
this leads to the formula

0(x. %)
0(x. 1)
The key point is that we don’t need that many terms of 6(x, ) to use (BII) since
the theta-series decays very rapidly. For a rigorous analysis we need to take possible
rounding errors into account and we have to analyze when 0(,7) = 0. We have

not done this, and have only done the analysis without these technical difficulties.
One shows in this case that we get an approximation to g(x) by taking the first

[V plogp]

(3.11) Wp(x) =

terms of the theta-series.

We remark that only a ‘rough’ approximation to g(x) is needed. Indeed, the
n-th power of g() is known by the theorem of Eisenstein and Weil, so that we only
need to approximate g(x) with error in the argument less than 7 /n.

4. THE CASEn =26

We now restrict to n = 6, and fix K = Q((s). The extension K/Q has degree
two, and since K is norm-Euclidean, we can take S = {2,3,00}. The localiza-
tion Ko = Q2({s) is the unique unramified degree two extension of Qq, and the
localization K3 = Q3((g) is totally ramified of degree two.

It is a standard computation to compute the local unit groups Us, Us; see e.g.
[11] for an algorithm. We have

Us/US = Z)6Z x Z.)2Z x Z/6Z x Z/2Z,

and for convenience we take the same generators ay = my = 2,0 = 3 + 2(g, a3 =
5+ 3(s,tqa = 1+ 2(g as in [I8]. For the other localization, we have

Us/US = Z/6Z x Z/3Z x Z/6Z x Z/3Z
with generators 8y = 3 = 2(s — 1 = /=3, = (1 +73)2, B3 = 2,84 = 1 +73.

4.1 Hilbert symbol. In this subsection we detail the computation of the Hilbert
symbol (z,y)s on Kg = Ky x K3 x C. First, the symbol is trivial on C, so we
restrict ourselves to the non-archimedean case. The basic idea in computing (z, ),

is to write
(@9 = [] (@ v)a"
wF#v

by the product formula. Now, for v ¢ S U {m, | }, the Hilbert symbol basically
equals the power residue symbol which we can compute by Euler’s criterion; see
[2, Exercise 1]. The trouble lies in computation of (z,y),, for w € S and for w | .
We will follow an idea from [5] to make those remaining cases easy to compute as
well.

We fix a place v € {2,3}, and let z1,...,z4 be a basis for U, /US. We let w # v
be the other divisor of 6, and write x; = yi’wa?,w with y; ., € O. Without loss of
generality, we assume that z; is chosen so that y;,, has w-adic valuation 0. We
claim that we may assume that

z; = 1 mod K8
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holds. To see this, we write z; = yiﬁwagw with y; ., € O. Furthermore, we let
My € Z~o be such that U™+ C K*5 holds. Using the Chinese Remainder Theorem,
we choose z;,, € O with z; , = y;}) mod P+ and with z; ,, = 1 mod P, where
P, denotes the (O-ideal corresponding to the valuation w. In the formula, the
inverse of y; ,, is taken in the group K} /K:5. The element

Ziwdi

now has the desired property. We note that multiplication by z; ., has not changed
x; mod KS.
By construction, we have (z;,;), = 1. For a place s € S, we have

C

) = (§) br e e

with z; = m5*y; and x; = Wi(mj)uj by [2, Exercise 2]. In particular, if s(z;) =
s(z;) = 0, then we have (z;,z;)s = 1. Summarizing, we have

(4.2) (@i 2y)o = [ [ (@i 2)5"

S

where the product is over those places s ¢ S with either s(z;) # 0 or s(z;) # 0.
The symbols in ([£Z) are easily computed using (A1) and the generalized Euler

criterion: (g) is the unique 6-th root of unity with

c Ni/Q(Ps)—1
(—) =c g mod Ps.
s

For our choice of basis, we get (o, )2 = Cg” with the matrix A = (a;;) given by

)
0
3
2
0

O W W w
W O W
W w o o

For the localization at 3, we get (5;,5;)3 = Cg” with B = (b;;) given by

3 0 3 2
0 0 40
B_3200
4 0 0 0

The matrices satisfy
A=—-AT"mod6 and B=—B mod6.

This property, which follows from (z,y),(y,z), = 1, is a good check on the com-
putation.

4.2 Gauss sums. In this subsection we give the details on the computation of
g6(1,e, ) for a prime m € Og. Assume first that p = 7 € Og is an inert prime. In
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this case, we have

mllem = 2 €(I+p46y>se<x+p<6y)

x,y mod pZ

_Z <I+C6y) e<$+C6y> n
s b s

<C6y) <C6y)
el — el —|.
x#0 y mod pZ p S p

T, 2 ) (),

y mod pZ x#0 mod p

where we have made the substitution y — xy and used the equality ( )s =1in

the last line. We compute ¢ ) = exp(2mi=="2) and derive that

g6(1,e,7) ——é‘(C—G) +(p—1)5<1_2<6> _|_ (I_CGy>
P/s p S yz—2 S

1 -2

p s
Here, the sum over all y # —2 is computed by expanding the sum in the equality

- Z (),

z,y mod pZ

46y z(24y) ),
P P

:pe

and rearranging terms. We conclude that

l,e,m) = pe
9ol ) p< p —p forp=1mod4

1—2C6> _Jp  for p=3mod4,
s
holds for inert primes.

For a split prime 7 of norm p, we have
p—1

ge(l,e,m) = Z € (%) ; eXp(Q?Ti%TI"(ﬂ'))

=0

(), 166

with ¢ as in (BI0). The methods from Subsection 3.4 can be used to approximate g.
In this case, the Eisenstein-Weil theorem tells us that

1 if p=1mod4,

4.3 S=n’yp-
(4.3) g =V {3 if p=3mod 4

holds, and we only need to approximate g with enough accuracy to select the right
cubic root of the right-hand side of ([£3]).

To compute gg(7*~1, e, 7%), we need to know gg(1,e*, m) for k = 2,3,4,5. The
value for these quantities follows directly from the definition. Indeed, we have

g6(1,€%,m) =gs(1,e,m)e (= 1)S,

(Lt m)= (16 96(1,e%,m)e (F) 4,
g6(1,e%,m) = go(1, 5 ,T),
(1,2, 1) =g3(1,€2,7),
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with gs, g3 the quadratic and cubic Gauss sum respectively. For the quadratic
Gauss sum we have

g2(1,e3,7m) = e’ @)SW if |7 =1 mod 4,
€ &% (=) giy/Nkjq(m) if [r| = 3 mod 4,

and for the cubic Gauss sum we have

g3(1a62,7r) =9 (52 (_) ) .
]
This last Gauss sum can be computed as in Subsection 3.4 using the relation

g = Nk q(m)m for 7 = —1 mod 3.

4.3. Hypergeometric function. We recall that we need to evaluate the functions

(4.4) Fio(z) = zim /U (1;((688))> F(Ea)z5ds

many times. However, we have to evaluate the function F, roughly 63 = 216 times
more often than F;. Hence, we will pick the function f so that F; is especially easy
to evaluate.

Following [18], we propose to take f(s) = I'(1 + s)~!. It can be easily checked

that e s
1
FQ(I) = gexp <—\/§$T) Sin (xT)

holds. We believe that the fact that F, is numerically easy to evaluate makes up
for the fact that (@) converges slower for this f than for f = 1.

The ‘price we pay’ for the easy formula for F; is that F is harder to compute.
Using the residue theorem, one computes that

e 6

5.k 1 2N TIZ) (k + 61)2 . B
Fuw) = ; T(—k/6)2 (k; Ry (%) (li:—l—ﬁi —1)! ) with 7= o'/

i=1

holds. Some remarks about this formula are in order. First, although this series
expansion for F; converges best for small |x|, we have found that even for moder-
ately large x ~ 10° it is an efficient way to compute F;(z). However, care must be
taken to perform all computations with high precision. For x = 10°, a precision of
200 bits sufficed for us. Secondly, it is best to make a table of the quotients
121 (k + 61)°
(k4 6i—1)!
instead of computing them on the fly. The first few hundred values for i suffice. Fi-
nally, we have found that the series expansion ) .-, that occurs converges smoothly,

so that simply checking that the summand is less than some chosen bound suffices
to approximate this series by a partial sum.

4.4. Transition matrix. We use formula [3.9) to compute the coefficients c;s,.
This is relatively straightforward, albeit technical. Since mistakes are easy to make
in this part, we give some details on the computation and on checks one can do to
make sure the matrix 7" is correct.

The local differents are d3 = 1 and dy = 0. The local Gamma functions I,
have coefficients in the ring Z[(72]. It turns out that the coefficients T;; themselves
have coeflicients in Z[(36] already. Since computing ([B.3]) involves taking various
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quotients in Z[(3¢], it is important for the practical performance to view T;;(r, s) €
Z[C36]((1/3)%, (1/4)%).

Putting V' = (1/3)°, W = (1/4)®, we have found that T;; always has denom-
inator VSW?3. The coefficients ¢ju, = ¢ (w,,wy) are only non-zero for (wy,ws) €
{=5,...,4} x {=3,...,5}. An excellent check for our computations is to compute
the product

T; '(Ta S),Tij (Tv _S)'
By the functional equation ([BI), this product is a diagonal matriz. Simply by
computing a few coefficients of the product we can check if the matrix has been
computed correctly.

4.5. Computing the integrals. To compute the sums (3.6) and B.8), we loop
over all Og-ideals I and for each I, we compute a generator ¢ that is contained in V.
Using the formulas from Subsections 3.1 and 3.2 we then compute the contribution
from ¢ to the respective sums. However, since the Gauss sum gg(1, ¢, ¢) is zero for
c that are not squarefree, we can restrict our attention to squarefree ideals I and
the I that have a non-trivial ged with (7).

To simplify the exposition, we restrict to the case that r is coprime to 6. We then
have the following algorithm for approximating the Fourier coefficient 7(r,V) =

NK/Q(T)1/12RGSS=1/7L Zy]e\/ \I/(T, S, 77)
Algorithm 4.1.

Input. An element r € O that is coprime to 6, a control parameter x > 0, a bound
B > 0, a choice of representatives V', and a precision bound X.

Output. An approximation (3.6)-B.8) to 7(r, V) coming from taking all ideals of
norm up to B into account, and by performing all computations with precision X.

Step 1. Fix the embedding £({s) = exp(27i/6). Compute and store gg(1,¢,7) for
all prime ideals (7) C O with 7 < |7| < B using the method from Subsec-
tion 4.2.

Step 2. Compute and store the coefficients (c;,,) of the transition matrix using
formula 33) for all 1 < j <216 and w € Z2 N [-5,4] x [-3,5].

Step 3. Compute and store the coefficients a(m),b(m) for all m > 1 until both
a(m),b(m) < X using formula B3]).

Step 4. Set Vi < 0, Vo «+ 0. Initialize an empty list L C Og x C x Z~;. (We
will add triples (o, gs(r, €, ), Nx/q(a)) to L later.) Initialize an empty
list M C Zs; x C. (We will add values Fy(-) to M later for all norms we
encounter.)

Step 5. (Constant term) Determine j € {1,...,216} with n; = 1 € K5/K0%.
For all w = (wq,ws2) € {—5,...,4} x {-3,...,5} do the following.

(a) Set fa, < 0.

(b) For all k > 1 do the following.

(c) Compute s = Fy(y1x~1(1/4)“1(1/3)2k5)b(kC). If |s| < X, goto step
5d, else set fa ., < f2., + s and repeat for the next k.

(d) Set Vo «— Vo + f27w " Cj (w1 ,wa)-

Step 6. (Constant term) Set f; < 0. For all k£ > 1 do the following.

(a) Compute s = Fy(y12k®)a(k®). If |s| < X, goto step 6b, else set
f1 < fi1+ s and repeat for the next k.
(b) Set Vi «+ Vi + f1. Add (1,f1) to M.
Step 7. (Constant term) Add (1,1,1) to L.
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Step 8. For all primes ideals (1) C Og with |7| < B (ordered by norm) do the
following.
Step 9. For all (c, g6(r, €, ), Nk q(c)) € L do the following.
Step 10. Find k € {1,...6},j € {1,...,216} with (far ~n; € V. Set a + (¥a. Set
N +— NK/Q(aﬂ')
Step 11. Compute gg(r, &, ar) using Lemma 3.2.
Step 12. If N < B/p, add (am, g¢(r,e,am),N) to L.
Step 13. For all w = (wy,we) € {-5,...,4} x {-3,...,5} do the following.
(a) Set fa, < 0.
(b) For all k > 1 do the following.
(c) Compute s = Fy(y1271(1/4)1(1/3)“2k° N)b(k®). If |s| < X goto step
13d, else set fa., < f2., + s and repeat for the next k.
(d) Set Vo 4= Va + fau € (un,ug) 204
Step 14. If (N, x) is present in M, set fi + z. Else, for all k£ > 1 do the following.
(a) Compute s = Fl(ylxNkﬁ) (kS). If |s| < X, goto step 14b, else set
f1 < fi1+ s and repeat for the next k.
(b) Add (N, f1) to M.
Step 15. Set V; « V; + flgﬁ(r’Ts’M). Go to step 9.
Step 16. If |r| < B, go to Step 8.
Step 17. Set 7 « (Vi — 6v3Va)z/%. Set 7 « 7 - T(1/6)T(7/6)y,’ Nijq(r) /2.
Return 7.

We make some remarks about the algorithm. First, Step 1 of the algorithm is
independent of r and one should store the Gauss sums in a file once and for all if
we are computing several coefficients 7(r, V). Second, the coefficients ¢; ,, in Step
2 only depend on r € K;/K;ﬁ. Although this quotient group has size 6% = 46656,
we still store the matrix in a file. This is particularly convenient if we are running
the algorithm for various choices of z, X and L.

Since the values fi, fo that we compute get multiplied by a Gauss sum later on,
we only need to consider squarefree elements of Og. Our loop over all squarefree
elements of norm at most B is basically a variant of the sieve of Eratosthenes. The
purpose of the list M is simply to avoid some (costly) evaluations of the function Fj.

Finally, we remark that although all computations are done with precision X in
the algorithm, this does not mean that the output is correct with the same precision.
Indeed, the precision of the output depends on the combined choice of B and z as
well. 'We refer to [5] for an analysis of the convergence properties of sums (3.0)
and ([B.8).

We close this section with some remarks about our implementation of the algo-
rithm. Our implementation consists of three parts: first we compile a list of the
Gauss sums gg(1,¢,m) for all 7 with |7| < 108. We used Magma for this part and
stored the result as a large text file. The computation of the Gauss sums ran for
several days.

The second stage consists of a Magma program to compute, for a given r, the
coefficients (c;,,,) and save these coefficients in a text file. Our Magma code took
roughly 20 minutes to complete on our 2.40GHz Intel Xeon processor. We stress
that we did not attempt to optimize this part of the computation. The bottle neck
of the computation is working with power series in 2 variables over Q((35). We
believe that tailored code for power series over Q((ss) would lead to a significant
speed up of the computation of the coefficients €(c;,.).
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We found that the overhead of using a computer algebra package like Magma
or Sage was too high for the third stage, the actual computation of 7(r, V). We
implemented this part of the algorithm in C'. The evaluations of the function F
requires multi-precision arithmetic, and we used GMP and MPFR for this part.
This is the only part of the code where multi-precision is required. Although the
C-code is parallelizable in, e.g., Step 5 of the algorithm, we have not done this. Our
single-thread code has been reasonably optimized for the rest. With a bound of B =
108 for the Gauss sums and a precision bound X = 1072%, the code approximates
7(r, V) in roughly 45 minutes on the same 2.40GHz Intel Xeon processor.

Looking beyond n = 6, the next case is n = 5. Since Q({5)/Q has degree 4, the
convergence of our algorithm will be a lot slower. As a practical consequence, this
means we will need a higher bound than 108 on the norms of the 7’s we consider.
We are in the process of developing fast code to approximate coefficients of the
quintic theta series using a bound of 10'°.

5. THE CONJECTURE

The first thing we need to decide for actual computations is which set of repre-

sentatives V to use. We want to pick a set V such that the relation
r(nt) =7(x* V) =G (1,7) = 96(1,,7)
| [1/2

from the introduction is correct in the more precise setup of Section 2. The relation
above is derived in the introduction by disregarding the primes dividing 6, and if
we take those primes into account, then the relation for 7(7%, V) is more subtle; see
below. However, since one goal of this paper is to check the conjecture from [3], we
pick a set V that mimics the equality 7(7%, V) = G1(1, ) as closely as possible.

After trying several possibilities, we have found that the set

=0, fag=0
V=_neK;K$|ay=p =P =0and a; =0, ifaz
CEQ,:].7 1f()é2:1

gives the cleanest results. We note that this is the set V5 considered by Wellhausen
in his thesis [I8]. The set V' can be characterized as follows:

{xeO|ged(z,6)=1L,z~neV}={zxeO|z=ymod 12}

with y €
(5.1)
{1, 5,4+3(s,8+3(s, 14+6(s, 5+6(s, 1 +9Cs, 2+ 96, 5+ 96, 7+9(s, 10+ 9, 11+9C6}.

Our choice of V' has the following property:
Yo,w eV : (v,w) =1 or (v, —w)g = 1,

which can be proved easily. This property does not hold for the perhaps easier
choice of V' characterized by

{xeO|ged(z,6)=1,z~neV'}={z€O|z=1mod 3}.

The fact that the Hilbert symbol is particularly easy on V has consequences for
the coefficient (7%, V). The theory of Hecke operators is used in the proof of the
following lemma.
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Lemma 5.1. Let m € Og be prime with |7| =1 mod 4 and 7 = y mod 12 for some
y in set (5.1), and let V' be as above. Then we have
(7', V)

N nm Y2601
T(l,V) |7T| 96( 75577)'

Proof. The following holds for p(74,7) = Resszl/gw(ﬂ‘l, $,m):

p(r,n) = |7 /% g6(1, €% m)e((—n, 7°)s)p(1, 77 ~°);

see [9]. We sum over all 7 € V' and renormalize to 7 to obtain

T(mh, V) = x| (1% m) Y e((en7®)s)p(1, ),
n=an®e€V

where we have used the equality (—75,7%)¢ = 1 in the sum. By replacing 7 by —7
if necessary, we may assume that a € V. The lemma follows from checking that
for || = 1 mod 4 and ar € V, the equalities (o, 7°)g hold for all n € V. O

We remark that the proof hinges on the special property of V. If we change V,
then the lemma need not be true. Lemma 5.1 is as close to the relation 7(74, V) =
G(1,7) as we can get. We note though that for |7| = 3 mod 4, not all of the Hilbert
symbols (a, 7%)g are trivial. The lemma is false in this case.

To see what happens for || = 3 mod 4, we use Algorithm 4.1. We have found

that the choices
B =108, x = 1/300, X =102,

work very well. We compute and store all Gauss sums for primes up to norm 108.
This computation is highly parallelizable, and it is of great help here to have a
cluster of CPU’s available. We used the method from Subsection 3.4 to compute
the individual Gauss sums, noting that the equality

96(1; Eaf) = (_15 ﬂ-)ﬁgﬁ(lang)

saves us half the computations.

Lemma 5.1 is a very good test for the implementation, since a small mistake in the
implementation will cause the equality in Lemma 5.1 to be false. Furthermore, the
output of the algorithm should be roughly independent of . By letting x vary over
1/500,1/400,1/300,1/200,1/100, we can check that the algorithm is performing
correctly. The first quantity to compute is 7(1, V). In agreement with [I§], we find
that

7(1,V) & 0.1358547858696091.
By letting « vary and checking the independence of x in the computations, we are

confident that the expression above is correct up to 16 decimal digits. We remark
that for other choices of V, the ‘constant term’ 7(1, V') need not be real.

Conjecture 5.2. Let m € Og be prime with |7| = 3 mod 4 and © = y mod 12 for
some y in set (5.1). Then we have

(x4, V) — V2 (—1,m)egs(1,e,m)
7(1,V) V3 '
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Evidence. This conjecture is purely based on computational evidence. In fact,
since the norm of 7% grows rather quickly, we only computed a few cases. The

conjecture is correct for |w| = 7,19,31 for several decimal digits. To prove this
conjecture, one should examine the relations between the p(m%,n) for varying n
more closely. ]

We conclude that for this choice of V, the coefficients (7%, V) are almost in
agreement with the general philosophy explained in the introduction. We now move
on to the coefficients 7(72, V). In this case, the Hecke operators relate p(m?,7) to
itself. However, we can still derive the following.

Lemma 5.3. Let 1 € Og be prime with |7 = 1 mod 12, and 7 = y mod 12 for
some y in set (5.1). If we have 7(7%, V) # 0, then (;)6 =1.

Proof. The Hecke operators now give
p(r?,n) = |n| =%/ gs(1, €%, m)e(—n, ) sp(m?, mm~°);
see [9]. Analagous to the proof of Lemma 5.1 we derive that
(72, V) = |77V 2g5(1, €%, 7)1 (72, V)

holds for |7| = 1 mod 12. Furthermore, we have go(1,¢%,7) = @)6\/NK/Q(7T) in
this case. The lemma follows. O

We caution that the converse of the lemma does not hold. In our computations
we have found several cases where 7(72, V) ~ 0 even though (%) ¢ = 1. Specifically,
we conjecture that 7(72, V) = 0 for

n| = 37,313,373, 661, 769.

These five norms are the only norms less than 1300 for which (g) ¢ = 1 and
(72, V) =~ 0. We have not been able to determine a pattern in this small set

of primes.

Conjecture 5.4. Let m € Og be prime with 7| =1 mod 12, and 7 = y mod 12 for
some y in set (5.1). If 7(72, V) # 0, then we have

(72, V) 9(m) 293(1,€2,7)

V) a2
for some value g(m) € {0,...,6} satisfying g(7) + g(7) = 0 mod 6.

Evidence. The support for this conjecture is numerical. We have approximated
7(72,V) for all |r| < 1300. We list the values for g(r) below for all || < 103.

N () ™ g(m)  N(m) ™ g(m)  N(m) ™ | 9()
61 | —9C+4 | 5 433 | —24¢5 + 13| 0 853 | —27Cs +31| 1
157 | —12¢6 + 13| 2 577| 27¢6—8 | 5 877 | 3Ce+28 | 4
193 | —9¢s+16 | 1 601 | —24¢s + 25| 3 937 | 3¢¢—32 | 2
349 | -3¢ — 17| 1 613| 9¢s+19 | 2 977 | 36¢6—23 | 3
397 | 12¢6—23 | 1 673 | 21¢s—29 | 4

We have not been able to find a pattern in the exponents g(m).
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For the m2-case, it remains to consider the inert primes and the primes of norm
congruent to 7 mod 12. For an inert prime m, we remark that although |r| =
1 mod 4, the residue symbol in Lemma 5.3 is undefined and the proof therefore
does not follow through. We have the following conjecture.

Conjecture 5.5. Let 7 € Og be an inert prime with 7(7%, V) # 0, and m =
y mod 12 for some y in set (5.1). Then we have

(% V) _ 2y/]7|

FLV) T e

Evidence. We have computed the coefficients 7(72, V) for 7 = 5,11,...,89. We
have 7(72, V) ~ 0 for

7 =5,17,29,41,53,59,89

and the conjecture is true for the other cases m = 11,23,47,71,83 with several
decimal digits precision. From this data one can furthermore conjecture that
7(7%,V) = 0 for |r| = 5mod 12. Note that the prime 59 contradicts the con-
verse statement. (]

We remark that the y/|7| in Conjecture 5.5 equals the cubic Gauss sum for m,
just like in Conjecture 5.4.

Conjecture 5.6. Let m € Og be prime with |7| =7 mod 12, and 7 = y mod 12 for
some y in set (5.1). Then we have

T(7T2, V) L h(m) 293(1, EQ,f)
m(L,V) 7 B2

with h(m) € {1,3,5,7,9,11} satisfying h(r) + h(7T) = 0 mod 12.

Evidence. We have approximated the coefficients 7(72, V') for all |r| < 8000. We

list the first few values for h(m) below.

N(m) s h(m) N(m) T h(m) N(m) ’R’ h(m)
7 | 3G6—-2] 9 79 | 3¢ —10 | 7 163 | 3G +11 | 3
19 | 3¢ +2 | 11 103 | —9¢—2| 1 199 | 15¢ — 13| 11
31 | 66—1| 3 127 | 66— 13 | 7 211 | 15¢—1 | 7
43 | —6G+ 7| 1 139 | 3G —13 | 7 223 | 6¢s+11 | 3
67 | =9 +7| 9 151 | —9¢s + 14| 7 271 | =9 +19| 1

We have not been able to find a pattern in the exponents h(w). Since h(7) appears
to always be odd, we can replace the /3 in the denominator of the conjecture by

13(1+¢s) to force h() to be even and Cg(ﬂ) is then a sizth root of unity. However,
complex conjugation does not act nicely in this case. This is the reason we have
stated the conjecture with a v/3 instead of 1 + (g. ([l

We proceed with the investigation of 7(m, V). We believe that the quantity

an)

has interesting algebraic properties.
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Conjecture 5.7. Let m € Og be prime with m = y mod 12 for some y in set (5.1).
If || = 1 mod 4, then we have

(m, V)\? k() 93(1, €% ) ai(m) () ()

N’ 7 — 73 T 1 _ 3 m(m _2 3 n(m
(Fiwy) =S - a6 2 3

with k(m) € {1,...,6} satisfying k(w) + k(7)) = 0 mod 6. We have I(7) € {-1,0}.

The elements 1 — 3(s, —2 + 3(s have norm 7, and we have m(w),n(rw) € {0,2} with

the restriction that they cannot both be equal to 2. If |r| = 3 mod 4, then we have

7'(71’ V) 2 K )93(1 g2 ?) .
— ) =R T3 (1 4 3¢6) ™™ (4 — 3¢6)" )
(711,t/)) L PYE (14 3¢)™™ (4 = 3¢s)
with the same restrictions on k,l,m,n. The elements 1 + 3(g,4 — 3(s both have

norm 13.

Evidence. In the case |7| = 1 mod 4, we have computed 7(7, V) for all || < 900.
The norms where an element of norm 7 appears in 7 are

73,193,241, 349, 373,421,613,661, 709, 757, 829.
For these norms, we have [(7) = —1. The norms with [(7) = 0 are
97,229, 313,457, 577, 877.

The conjecture is on thinner ice for |7| = 1 mod 4. In this case, our implementation
is not entirely independent of the parameter = > 0, which has the practical impact
that we can only rely on very few digits. In his thesis, Wellhausen computed 7(m, V)
for all |7| < 100 and the only |7| where the element of norm 13 appears is 79. The
norms with [(7) = 0 are

19, 31.
We have not found a pattern in the exponents k(7), nor a condition when the
elements of norm 7, 13 appear. |
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