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Abstract 49 

Molecular classification of glioblastoma has enabled a deeper understanding of the 50 

disease. The four-subtype model (including Proneural, Classical, Mesenchymal and 51 

Neural) has been replaced by a model that discards the Neural subtype, found to be 52 

associated with samples with a high content of normal tissue. These samples can be 53 

misclassified preventing biological and clinical insights into the different tumor subtypes 54 

from coming to light.  55 

In this work, we present a model that tackles both the molecular classification of 56 

samples and discrimination of those with a high content of normal cells. 57 

We performed a transcriptomic in silico analysis on GBM samples (n = 810) and tested 58 

different criteria to optimize the number of genes needed for molecular classification. 59 

We used gene expression of normal brain samples (n = 555) to design an additional gene 60 

signature to detect samples with a high normal tissue content. Microdissection samples 61 

of different structures within GBM (n = 122) have been used to validate the final model. 62 

Finally, the model was tested in a cohort of 43 patients and confirmed by histology. 63 

Based on the expression of 20 genes, our model is able to discriminate samples with a 64 

high content of normal tissue and to classify the remaining ones. We have shown that 65 

taking into consideration normal cells can prevent errors in the classification and the 66 

subsequent misinterpretation of the results. Moreover, considering only samples with a 67 

low content of normal cells, we found an association between the complexity of the 68 

samples and survival for the three molecular subtypes. 69 
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Introduction 70 

Glioblastoma (GBM) is the most lethal brain tumor with a median overall survival (OS) 71 

of 15 months and incidence rate of 3-4 new diagnosed cases per 100,000 population 72 

[1,2].  73 

In the last decade, there has been increasing interest in the molecular classification of 74 

GBM [3]. In 2010, a four-subtype classification model (Proneural (PN), Classical (CL), 75 

Mesenchymal (ME) and Neural (NE)) was proposed, based on the expression levels of 76 

840 genes [4]. This classification has widely been used to analyze differences in 77 

treatment response patterns of different GBM subgroups [5,6]. 78 

However, when an unsupervised clustering of the samples was performed against 79 

tumoral-related genes, a three cluster GBM classification was obtained by analyzing the 80 

expression of 150 genes [7]. Notably, each cluster was strongly associated with one 81 

group of the four-subtype model, except for the NE subtype. One possibility is that this 82 

subtype includes samples with a high content of normal cells. In fact, at the infiltrative 83 

margins of GBM, normal cells have been found to far outnumber tumoral ones and the 84 

NE subtype is associated with this region [8]. 85 

This abundance of normal cells is a problem for transcriptional classification of samples, 86 

as long as RNA expression levels are affected by tumor purity [9]. The content of normal 87 

cells in a sample affects transcriptional classification, complexity of the sample 88 

measured by the simplicity score [7] and intratumoral heterogeneity, among others. 89 

Different algorithms can calculate a purity score of tumor samples from CNV data [10] 90 

or from gene expression signatures [11]. However, few models are able to tackle both 91 

the molecular classification of GBM and the tumor purity of the sample.  92 
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In the present work, we develop a model that classifies GBM samples as PN, CL or ME 93 

and provides us with information about the abundance of normal cells in the samples 94 

based on the expression of 20 genes. This model not only integrates the molecular and 95 

purity classification of the samples but does so in a cost-effective way. 96 

Materials and methods 97 

Gene expression data processing and normalization 98 

GBM IDH wt cohort (IDHWT) 99 

Gene expression data from GBM patients with known IDH status were collected from 100 

TCGA [12], GlioVis [13] and from the Gene Expression Omnibus. Affymetrix data sets 101 

were normalized using robust multi-array average normalization (RMA) followed by 102 

quantile normalization as implemented in the ‘affy’ package for R/Bioconductor [14]. 103 

Affymetrix data sets consisted in TCGA (n = 528) [12], GSE4271 (n = 76) [15] and 104 

GSE36245 (n = 46) [16]. Additionally, RNA-seq data were downloaded from GSE48865 105 

(n = 100) [17] and GSE121720 (n = 60). Collected RNA-seq had been mapped to the hg19 106 

human genome and log transformed.  Because data sets were generated on different 107 

platforms and by different labs, we used ComBat to address the strong batch effects 108 

expected from such variable data sources [18]. We applied aggregation workflow, as 109 

described elsewhere [19], to select the probe set that represents each gene in each data 110 

set. Once different data sets had been aggregated, IDH wt and CIMP- samples were 111 

filtered obtaining a final cohort of 551 samples. Where the CIMP status was unknown, 112 

this was determined by the support vector machine, using the TCGA cohort as training 113 

data set [13]. The final cohort was divided in a training cohort (n = 367) and a validation 114 

cohort (n = 184). 115 
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Histology cohort (HIS) 116 

Solid surgical tissue samples were obtained from patients operated in HM Hospitales, 117 

Madrid, Spain; Hospital General Universitario Gregorio Marañon, Madrid, Spain and 118 

Hospital Universitario la Fe, Valencia, Spain. A total of 43 GBM IDH wt patients were 119 

analyzed by qRT-PCR. 120 

NormalBrain cohort (NB) 121 

Normalized microarray (custom-designed Agilent 8x60K) gene expression from 6 human 122 

brains were downloaded from the ALLEN Human Brain Atlas (http://human.brain-123 

map.org/static/download). One hundred samples of cerebral cortex were randomly 124 

selected from each brain. Outliers were removed using principal component analysis 125 

(PCA), which consisted in considering the first two principal components and marking all 126 

the samples with a distance greater than 2.5 as outliers. After outlier removal, to avoid 127 

batch effects we applied ComBat [18] to the NTB cohort using the TCGA cohort 128 

(including 10 normal samples) as a reference. Finally, the NTB cohort was divided into 129 

NTB-training (n = 370) and NTB-validation (n = 185). 130 

Ivy GAP cohort (IVYGAP) 131 

The Ivy Glioblastoma Atlas Project (Ivy GAP) analyzed the transcriptome of different 132 

anatomical structures from 10 different tumors [20]. The normalized read counts of 133 

these 122 samples were downloaded from the Ivy GAP portal 134 

(http://glioblastoma.alleninstitute.org/static/download.html)  and log transformed.  135 

Differentially expressed genes 136 

Differentially expressed genes were identified using the R/Bioconductor package 137 

‘multtest’ [21] with 5000 bootstrap iterations and using FDR as method to control type 138 

one error rate. The significance level was set to 0.05. 139 

http://human.brain-map.org/static/download
http://human.brain-map.org/static/download
http://glioblastoma.alleninstitute.org/static/download.html
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Reduction of the number of genes in the gene signature 140 

The 50-gene signatures proposed elsewhere [7] were used for the subtype classification 141 

of the IDHWT training set in PN, CL or ME. These results were used as a reference in the 142 

following analysis. Afterwards, the gene signature of each subtype was reduced, one 143 

gene at a time, to a 2-gene signature. For each step, 1000 different combinations of 144 

signature genes were randomly generated and used for the subtype classification of the 145 

training cohort. The overlap of these classifications with the 50-gene signature 146 

classification was estimated, as well as the accuracy and precision achieved by the 147 

reduced gene signatures for each subtype.  148 

Along with the randomly selected genes, three different criteria were used to rank genes 149 

inside each of the three gene-signatures, keeping the top ranked genes in each step of 150 

gene removal. These criteria were difference and relative difference in gene expression 151 

and statistical significance, measured by the value of the statistic,  obtained when 152 

comparing the expression levels between subtypes. The overlap of the classification 153 

obtained from these criteria was compared to that obtained from the randomly selected 154 

gene signatures for each size of gene signature. 155 

Molecular classification 156 

Two methods for the classification of GBM samples have been used through this work: 157 

Single sample gene set enrichment analysis (ssGSEA) 158 

Single sample gene set enrichment analysis defines an enrichment score for a gene 159 

signature, in this case representative of a subtype, for each sample within a dataset. The 160 

process starts with the rank-normalization and rank-order of gene expression for a given 161 

sample. A statistic is then calculated from the difference between the cumulative 162 

empirical distribution functions (ECDF) of the gene signature and the remaining genes 163 
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[7]. A null distribution of the enrichment scores for each signature is obtained as follows. 164 

A large number of virtual samples (> 10,000) are generated assigning to each gene the 165 

expression level of the same gene in a randomly selected sample in the dataset. Null 166 

distributions are used to give an empirical p value to the enrichment scores obtained for 167 

each sample in the dataset [7]. A given sample is classified with the subtype with the 168 

lowest empirical p value. 169 

Centroid-based classification 170 

Verhaak’s classification is based on a 210 gene signature for each of the four subtypes 171 

[4]. ClaNC software [22] was used to assign a category to the training samples based on 172 

Verhaak’s gene signature. 173 

CNA and mutations from the TCGA cohort 174 

CNA and mutational information about samples from the TCGA cohort were 175 

downloaded from the TCGA repository using TCGAbiolinks package from Bioconductor 176 

[23]. 177 

Survival analysis 178 

The optimal cutoff of the simplicity score for the survival analysis was determined by the 179 

get.cutoff() function described elsewhere [24]. The method used for the cutoff 180 

optimization was survival significance, were a Cox proportional hazard model is fitted to 181 

the dichotomized simplicity score and the survival variable. The point with the most 182 

significant split (measured by the log rank test) is defined as the optimal cutoff. 183 

Histology 184 

Six tissue microarrays (TMAs) were constructed from 32 Formalin Fixed Paraffin 185 

Embedded (FFPE) tissues using an arraying instrument (GALILEO CK 3500). From each 186 

tissue block a total of three tissue cores were made with a diameter of 0.6-1 mm. Then, 187 
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TMA blocks were cut at 4 µm and stained with hematoxylin & eosin (H&E). The H&E 188 

stained tissue blocks were evaluated by a pathologist for tumoral cells density, 189 

abundance of pathogenic blood vessels and presence of necrosis.  190 

RNA isolation and qRT-PCR 191 

Total RNA was isolated using RNeasy Mini or Micro kit (QIAGEN) following the 192 

manufacturer’s recommendations. cDNA synthesis (High-Capacity cDNA Reverse 193 

Transcription Kit; Applied BioSystems) was performed from one µg of RNA. An optical 194 

384-well plate equipped with an ABI PRISM 7900 HT sequence detection system 195 

(Applied Biosystems) was used for the performance of qRT-PCR reactions using SYBR 196 

Green. Two housekeeping genes were used to normalize data, the primers used for each 197 

gene can be seen in Supplementary Table S1. Because the ssGSEA classification is based 198 

on the ranking of genes rather than on absolute expression, we used the Ct value of the 199 

genes, which were scaled within the same sample: 200 

𝑍 =
𝑟𝑖 − 1

𝑛𝑔𝑒𝑛𝑒𝑠 − 1
 201 

Statistical analysis 202 

All the statistical analyses have been performed using R software. The statistical tests 203 

applied are indicated in the text. When relevant, p values were adjusted using Benjamin 204 

and Hochberg method. 205 

Results 206 

Transcriptomic data aggregation 207 

As explained in the Materials and Methods, the initial cohort, comprised of 810 patients, 208 

was filtered to discard IDH mt or GCIMP+ patients, which are already known to have 209 

favorable clinical outcomes [25,26]. A total of 86 patients were IDH mutant and 163 210 
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were IDH unknown. It is worth mentioning that IDH status of Phillips’ cohort 211 

(GSE121720) were obtained elsewhere [27]. After filtering, a final cohort of 551 IDH wt 212 

/ GCIMP- patients was obtained and divided, randomly, into two cohorts: IDHWT training 213 

cohort (n = 367) and IDHWT validation cohort (n = 184), as shown in Figure 1A. 214 

5-Genes signature for molecular Glioma subtypes.  215 

The IDHWT training cohort was classified into PN, CL and ME as proposed elsewhere [7]. 216 

The simplicity score proposed in the cited work was estimated. This gives a value 217 

between 0 and 1, with high values corresponding to samples activating a single subtype 218 

and low values for samples activating multiple subtypes. Afterwards, to performed a 219 

clean comparison between subtypes, samples with a simplicity score higher than 0.95 220 

(n = 121) were selected and a differential expression analysis was performed between 221 

subtypes for the 150 genes involved in the classification process. Because the genes for 222 

the original classification were selected on the basis of differences in gene expression 223 

between groups [7], we used the results of the previous analysis to rank the gene 224 

signatures according to differences and relative difference in mean expressionand 225 

statistical significance between subtypes.  226 

The three rank criteria were used separately to remove the last gene from the gene 227 

signature of each subtype at a time.The reduced gene signatures were used to classify 228 

the IDHWT training cohort and the overlap with the original classification was estimated. 229 

Additionally, 1,000 randomly ranked gene lists were generated and used to evaluate the 230 

overlap with the original classification, in order to generate a null distribution for each 231 

size of the gene signature. 232 

To delucidate if the above mentioned rank criteria generate reduced gene signatures 233 

with better performance than random, we used the overlap mean and standard 234 
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deviation obtained from the null distribution to scale the results obtained with the three 235 

different ranking criteria (see Figure 1B and SI Appendix Figure S1). Colored symbols 236 

represent the scaled overlap of the difference in mean ranking criterion and dashed line 237 

represent the mean Z-score obtained for each criterion. It can be appreciated that 238 

differences in means criterion reach higher Z-scores for different gene signature sizes 239 

than the other two criteria. It is worth mentioning that with just 5 genes per subtype an 240 

overlap higher than 90% is obtained and that when the number of genes is reduced to 241 

2 the overlap is still higher than 80%, with Z-scores higher than 2 in both cases (Figure 242 

1B). Comparing the classification by subtype, using 5 genes per subtype the true positive 243 

ratio (TPR) reached values higher than 90% for the CL and ME subtypes, and as high as 244 

83% for the PN subtype. On the other hand, the true negative ratio (TNR) reached values 245 

higher than 93% for the three subtypes (SI Appendix Figure S2A-C). 246 

Considering these results, we decided to reduce the number of genes per subtype to the 247 

minimum for which an overlap with the original classification of at least 90% is achieved. 248 

Therefore, we used the difference in means expression rank criteria to reduce the gene 249 

signature of each subtype to 5 genes. At this point, we now have a 15 gene signature 250 

that classifies samples into 3 subtypes (5-gene signatures for each subtype). This gene 251 

signature seems to preserve an overlap close to 90% with the original signature of 150 252 

genes (50-gene signature for each subtype) and requires 1/10th of the molecular 253 

information used by the previous method. 254 

Prediction of samples with high content of normaltissue 255 

As mentioned above, the classification proposed by Wang et al. [7] stratifies samples 256 

into 3 subtypes with a high correspondence with 3 of the 4 subtypes previously 257 

proposed by Verhaak et al. [4]. The remaining subtype, called Neural (NE), was 258 



12 
 

hypothesized to include samples with a high content of normal tissue [7]. Under this 259 

assumption, we asked ourselves whether the presence of normal tissue could affect the 260 

classification of the samples. Therefore, we used the centroid-based classification, 261 

proposed by Verhaak et al. [4], to classify the training cohort and study the distribution 262 

of the simplicity score, obtained as proposed by Wang et al. [7], in the four subtypes. 263 

Figure 1C shows that the NE subtype is enriched for lower simplicity scores (Wilcoxon 264 

test, p <= 0.001). Because the simplicity score is based on the distances to the dominant 265 

subtype and between non-dominant subtypes [7], a low value can be obtained either if 266 

a non-dominant subtype is close to the dominant one, indicative of a complex sample; 267 

or if the dominant subtype is weakly activated, which may occur when the expression 268 

levels of the tumoral cells are masked by a high content of normal cells [9]. 269 

We started to search for genes of the NE signature that were overexpressed in the NE 270 

subtype compared with the non-neural samples, with a simplicity score higher than 0.95. 271 

This analysis gave 46 overexpressed genes (see Supplementary Table S2). We then used 272 

the NTB-training cohort (see Material and Methods) and analyzed the differential 273 

expression of the 46 overexpressed genes between normal tissue and non-neural 274 

samples with high simplicity scores (ss > 0.95). The analysis resulted in 35 overexpressed 275 

genes in normal tissue (Supplementary Table S2). We then selected the top 5 of these 276 

genes in relation to differences in mean expression and formed a fourth gene signature 277 

(CCK, CRYM, SERPINI1, KCNK1 and GPR22). We used Enrichr [28,29] to analyze which 278 

tissues were enriched in this new gene signature. From the ARCHS4 Tissues library six 279 

different structures, all of them from brain, were significantly enriched (p value < 1e-4, 280 

q value < 0.001) (see Supplementary Table S3). This new gene signature was added to 281 
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the previously reduced gene signatures (Figure 1A) with the intention of detecting 282 

samples with a high content of normal tissue.  283 

We used our 20-gene based signature to classify the samples into the different subtypes, 284 

or as normal tissue abundant (NT). Figure 1D shows the distribution of the simplicity 285 

scores from Wang’s classification, for the different subtypes obtained with the reduced 286 

gene signature. It can be observed that the NT is enriched for lower simplicity scores 287 

(Wilcoxon test, p < 1e-4) as was also found for the NE subtype (Figure 1C). Although the 288 

result is similar to that obtained for the NE subtype, we still need to prove that samples 289 

classified as NT have a high content of normal brain cells. In parallel, it is worth proving 290 

that the addition of a fourth subtype did not alter the overlap when compared with the 291 

50-gene signature classification. 292 

Validation of the model 293 

We performed splitting iteration 1000 times to generate different validation cohorts. 294 

Each of these cohorts were used to study the overlap between the classification 295 

performed by the reduced gene signature and the original gene signature (Figure 2A). If 296 

the samples classified as NT are not considered, a mean overlap of 89 % and 2% standard 297 

deviation are achieved.  298 

When the results were analyzed by subtype, we found that our classification model, with 299 

5-gene signatures, is an excellent predictor of the results that would be obtained by the 300 

50-gene signature model as can be appreciated in the ROC space shown in Figure 2B. 301 

For all the subtypes, the model reaches a high sensitivity: 0.94 ± 0.04, 0.89 ± 0.04 and 302 

0.87 ± 0.03 for PN, CL and ME respectively, and high specificity: 0.95 ± 0.02, 0.94 ± 0.02 303 

and 0.95 ± 0.02 for PN, CL and ME respectively. As a measurement of the accuracy for 304 

each subtype we estimate the F1-score, with values of 0.90 ± 0.03, 0.89 ± 0.03 and 0.89 305 
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± 0.02 for PN, CL and ME respectively. In synthesis, the results presented here show that 306 

a significant reduction in the number of genes used for the classification does not 307 

dramatically affect the performance of the classification.  308 

To confirm that the reduced gene signature gives valuable information we used the 309 

TCGA cohort, for which genomic data is available, to study the incidence of genomic 310 

alterations in the different subtypes. Figure 2C shows that the characteristic genomic 311 

alterations for each subtype are still found when samples are classified using the 312 

reduced gene signature. 313 

Wang et al. [7] found that the ME subtype shows a reduced OS for single subtype 314 

activated samples, that is, samples with a simplicity score higher than 0.99 (~20% of the 315 

samples). We observed that the simplicity score calculated from the empirical p values 316 

obtained from our model was lower than that obtained from Wang’s model. Only four 317 

samples had a simplicity score higher than 0.99. However, if we select the top 20% of 318 

the simplicity scores of the samples the same result is obtained as shown in Figure 2D 319 

(log rank test, p = 0.03).   320 

NT associates with abundance in normal brain cells  321 

Once the reduced gene signatures have been proven to be a good predictor of the 322 

original classification, it is time to address whether or not NT is identifying samples with 323 

a high content of normal cells. We used the ABSOLUTE method [10], which gives a 324 

tumoral purity score based on copy number variation data to study tumoral purity of 325 

the samples in the different subtypes. The TCGA cohort was used for this analysis as it is 326 

the only one for which CNV data were available. Additionally, we used the ESTIMATE 327 

method [11], which gives a tumoral purity score based on the enrichment scores 328 

obtained for an immunological and a stromal gene signature, for the same purpose. 329 
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Figure 3A shows the ABSOLUTE and ESTIMATE purity scores obtained for the TCGA 330 

cohort. As reported previously [7], PN and CL subtypes showed higher scores than ME 331 

for both algorithms (Wilcoxon test, p < 1e-15). This result was shown to be due to the 332 

higher infiltration of immunological cells occurring in ME tumors [7]. Our results showed 333 

that PN and CL subtypes also obtained a higher ABSOLUTE purity score than NT 334 

(Wilcoxon test, p = 1e-5) indicating a higher content of normal brain cells in NT samples. 335 

However, no significant differences were observed for the ESTIMATE purity score. 336 

Therefore, there was no increase in the amount of immunological or stromal cells. This 337 

result was confirmed by repeating the analysis for the IDHWT validation cohort. The 338 

results can be seen in Figure 3B, with no significant differences between PN and CL 339 

subtypes compared with NT, although the ME subtype shows significantly lower values 340 

(Wilcoxon test, p = 1.9e-14).  341 

These results are in line with the hypothesis that NT are samples with a high content of 342 

normal cells. This hypothesis is also supported by the classification performed on the 343 

NTB-validation cohort. Of the 185 normal cortex samples, 184 (99.5 %) were classified 344 

as NT and only 1 sample was classified as tumoral, in this case PN.  345 

To test NT in a cancer context we used the IVYGAP cohort, which consists of different 346 

tumoral structures obtained from GBM biopsies subjected to laser microdissection. 347 

Briefly, the IVYGAP cohort is composed of five different structures as defined elsewhere 348 

(http://help.brain-map.org/display/glioblastoma/Documentation): cellular tumor (CT) 349 

has the most core tumor with a tumor cell to non-tumor cell ratio between 100/1 and 350 

500/1, microvascular proliferation (MVP) are regions characterized by two or more 351 

vessels sharing common vessel walls, pseudopalisading cells around necrosis (PAN), 352 

which are generally found in the core tumor, infiltrating tumor (IT) that corresponds to 353 

http://help.brain-map.org/display/glioblastoma/Documentation
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the intermediate region between the cellular tumor and the leading edge and has a 354 

tumor cell to non-tumor cell ratio of 10-20/100; and the leading edge (LE) that is the 355 

boundary of the tumor with a tumor cell to non-tumor cell ratio of 1-3/100. We classified 356 

the 122 samples of the IVYGAP cohort using the original 50-gene signatures and the 357 

reduced 5-gene signatures. The fraction of each subtype by structure is shown in Figure 358 

3C. Interestingly, all the LE structures were classified as NT as well as almost 75% of the 359 

IT samples. Most of these structures were classified as PN or CL by the 50-gene 360 

signatures. Besides, only one CT sample was classified as NT showing that the gene-361 

signature detects samples with a high content of normal cells with high precision. It is 362 

worth mentioning that for CT, MVP and PAN structures, the results were highly 363 

coincident between the 5-gene and 50-gene signatures, with CT corresponding mainly 364 

to CL or PN and PAN and MVP mostly to ME, as reported elsewhere [20]. 365 

We used the results of the 50-gene signatures to obtain the simplicity scores of each 366 

sample. Figure 3D shows that LE is significantly enriched for lower simplicity scores in 367 

comparison to the other structures (Wilcoxon test, p < 0.02). This result confirms that 368 

the presence of a high content of normal cells in a sample can affect interpretation of 369 

the results.  370 

The ssGSEA classification system performed a random permutation of the experimental 371 

data to generate a null distribution, obtaining a p value for the association of a sample 372 

to each subtype. Figure 3E shows the p value for NT obtained from samples of different 373 

structures. LE, the structure with the lowest content of tumoral cells, has significantly 374 

lower p values (Wilcoxon test, p < 1e-7). The p values increase slightly for IT and show 375 

median values close to 0.8 for structures found in the core tumor. Therefore, the 376 
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association with the NT subtype increases with the content of normal brain cells in the 377 

sample. 378 

Two pathologists independently classified the HIS cohort according to: tumoral cell 379 

density, abundance of pathogenic blood vessels and presence of necrosis. 380 

Simultaneously, we used the expression levels obtained by qRT-PCR to classify the same 381 

cohort (Supplementary Table S4). Comparing the results, we found that of the 7 samples 382 

classified as infiltrating tumor by the pathologists, 5 (71%) were now classified as NT. 383 

The specificity of the NT class was 82%. We also observed that samples classified as CL 384 

and PN were indistinguishable in relation to the histological parameters. However, 385 

samples with an absence of pathogenic blood vessels and necrosis were mostly not 386 

classified as ME (80%). Figure 3F shows representative H&E stained histological images 387 

for each subtype. 388 

Taken together, these results show that samples classified as NT have a lower tumoral 389 

cell density which is not due to immune cell infiltration, and that NT associates with 390 

samples or tumor regions with low cellularity. 391 

Survival analysis 392 

To study the clinical relevance of the simplicity score obtained by our model, we 393 

classified all the samples from the IDHWT cohort and discarded those that fell into the 394 

NT group.  We, then, evaluated the optimal cutoff for the simplicity score considering 395 

the hazard ratio for each subtype using the get.cutoff() function described elsewhere 396 

[24]. Results can be seen in Supplementary Figure S3. Using the corresponding cutoff to 397 

divide samples into the PN and CL subtypes we observed a significantly higher survival 398 

for the simpler samples. The difference in median survival was found to be around 8 399 

months in the PN subtype (HR = 0.54, 95% CI 0.32 – 0.93, log rank p-value = 0.02, Figure 400 
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4A) and 15.6 months for the CL subtype (HR = 0.38, 95%CI 0.21 – 0.7, log rank p-value = 401 

0.001, Figure 4B). The opposite was observed for the ME subtype in that the simpler 402 

samples presented a poorer survival, with a difference in median survival of 2 months 403 

(HR = 2.18, 95% CI 1.23 – 3.88, log rank p-value = 0.007, Figure 4C).  404 

Discussion 405 

We developed a model based on the expression of 20 genes for the molecular 406 

classification of GBM samples. This model can detect samples with a high content of 407 

normal tissue, classifying them as NT, and also classifies the samples into PN, CL or ME. 408 

Although it uses only 5 genes per subtype, our model showed an overlap of 87% with 409 

the 50 gene per subtype model proposed elsewhere [7]. It also detects the main 410 

characteristic genetic alterations of the different subtypes [4,25] and the difference in 411 

OS compared with subtypes for simpler samples [7]. These results show that molecular 412 

classification of GBM can be performed in a cost-effective way and we hope that this 413 

model will encourage researchers and physicians to use this classification method more 414 

frequently in the future.  415 

The NT gene signature shows 71% sensitivity and 82% specificity in the HIS cohort. On 416 

the other hand, for microdissected samples of specific tumoral regions, where the 417 

above-mentioned variability is absent, we found that NT classification is strongly 418 

associated with samples from the boundary region of the tumor (83.7% sensitivity, 419 

98.7% specificity). This result is consistent with the association found between this 420 

region and the NE subtype [8,20]. It is noteworthy that the strength of the association 421 

between the different tumoral structures and NT, measured as an empirical p value, 422 

increases with the percent of normal cells. It remains to be tested whether or not the 423 
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empirical p value of NT can be used as an estimator of the percentage of normal brain 424 

cells in the sample. Further analyses are required to establish this.  425 

We observed that NT samples are associated with low simplicity scores. Simplicity score 426 

was proposed as an estimate of the complexity of the GBM sample [7], where a low 427 

simplicity score indicates that the samples do not present a unique predominant 428 

subtype. Our results show that samples with a high content of normal cells can lead to 429 

an erroneous classification of a sample, considering it as one with high tumoral 430 

complexity, when actually it corresponds to a sample with low tumor purity. In fact, 431 

single cell RNA-seq analyses reveal that the subtype of a bulk tissue sample coincides 432 

with the subtype of the dominant cell population in the sample [30,31]. Moreover, it is 433 

important to know if the sample used for RNA extraction comes from the boundary of 434 

the tumor, because a low tumoral purity can alter gene expression measurements [9].  435 

The incorporation of NT as a quality parameter of samples that are going to be classified 436 

brings important clinical and biological advantages, as discussed below. From a clinical 437 

point of view, Gill et al. suggested that the boundary of the tumor has to be classified as 438 

this is the tumoral region which cannot usually be resected [8]. The model we propose 439 

here not only classifies the infiltrating tumor mainly as NT, but also indicates the 440 

molecular subtype of the tumor as the second dominant group in that sample, which in 441 

88% of the cases matches the molecular subtype of the cellular tumor. Therefore, when 442 

the piece of tissue used for molecular classification comes from the infiltrating tumor, 443 

our model can detect the molecular subtype of the tumor at that time. However, if the 444 

sample has a high content in normal cells and is classified as NT, parameters like the 445 

simplicity score should not be taken into consideration and special care should be taken 446 

in the interpretation of experiments like gene expression measurements.  447 
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It is also relevant that when different cellular tumor sections of the same patients were 448 

analyzed we found that they were either PN or CL for all sections from the same patient. 449 

Puchalski et al. maintained that CT were PN, CL or NE [20]. Their results agree with ours 450 

if we consider NE to not be a real subtype.  As reported in the cited work, we found that 451 

microvascular proliferation regions and regions around necrosis were mainly ME. In the 452 

same line, the ME subtype was reported to express markers of hypoxia and 453 

microvascularity [32].  454 

We can, therefore, regard GBM as a PN or CL tumor that evolves to ME in response to 455 

different inputs, i.e. hypoxia [32]. Initially, the mesenchymal transition occurs in small 456 

regions of the tumor, but these grow and eventually become the predominant subtype 457 

(see SI Appendix Figure S4). This hypothesis is in line with our survival results. We 458 

observed that complex samples, those with no clear dominant subtype, showed a worse 459 

survival for PN and CL tumors; that is, when the ME regions of the tumor begin to grow 460 

the complexity of the tumor increases with the corresponding survival consequence. 461 

However, complex samples showed longer survivals for ME tumors, that is, a complex 462 

ME sample is the continuation of the evolution of complex PN or CL samples, but when 463 

the tumor becomes mainly ME it shifts to a low complexity ME sample with a worse 464 

survival. Further analyses are needed to confirm this hypothesis. 465 

Sottoriva et al. reported the intratumoral heterogeneity of GBM after observing that 6 466 

out of 10 patients present regions of the same tumor with 2 or 3 different molecular 467 

subtypes [33] Nevertheless, recovering the idea that NE is not actually a tumor subtype, 468 

their results will be transformed into 5 out of 10 patients with 2 different molecular 469 

subtypes: 2 cases with ME and PN and 3 cases with ME and CL. The proposed hypothesis 470 

is in line with the shift of the ME subtype upon glioma recurrence [7,15]. Several works 471 
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have studied the PN-ME transition [34,35] but there is no evidence for a CL-ME 472 

transition.  473 

We believe that our classification model, which takes into consideration tumor samples 474 

with a high content of normal tissue, will help to provide clinical insight into the different 475 

molecular subtypes of GBM and to better understand their biology.  476 

Conclusions 477 

In summary, we have developed a model which tackles both the classification of GBM 478 

samples into PN, CL or ME, and the detection of a high content of normal cells in a 479 

sample. The model shows an overlap of over 85% with the one proposed by Wang et al. 480 

and only requires the expression levels of 20 genes, making it a cost-effective alternative 481 

to other molecular classification models. The ability of our model to detect samples with 482 

high content of normal cells has been tested on microdissected regions of different GBM 483 

biopsies as well as on bulk tumor samples, contrasting the model results with the 484 

histological examination by two experts.  We show the importance of determining the 485 

content of normal cells in GBM samples. Otherwise, normal tissue expression patterns 486 

can mask the expression patterns of other tumor types in the samples. This can lead to 487 

a misinterpretation of the results as we show with the simplicity score but can also affect 488 

the conclusions of tumor heterogeneity studies, among others. 489 

Key points 490 

• In this work, we present a cost-effective model based on the expression of 20 491 

genes, which can classify GBM samples into Proneural, Classical and 492 

Mesenchymal subtypes. 493 
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• The model incorporates a quality parameter that detects samples with a high 494 

content of normal tissue, preventing errors in the classification and 495 

interpretation of the results in clinical practice.  496 

• Our results show that considering the abundance of normal cells in a sample can 497 

shed light on the interpretation of survival, tumor evolution or tumor 498 

heterogeneity.  499 

• As the expression of 20 genes can be measured by qRT-PCR we believe that a 500 

greater volume of GBM samples will be classified and reported in the future. 501 
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Figure legends 612 

Figure 1 (at Results/Transcriptomic data aggregation) 613 

Figure1: A) Schematic representation of the process followed to generate the new 614 

model including data aggregation, reduction in the number of genes per gene signature 615 

and the incorporation of a fourth gene signature to detect samples with a high content 616 

of normal tissue. B) Z-score and overlap achieved when reducing the number of genes 617 

per subtype for the rank criterion based on differences in mean expression (red). Mean 618 

and standard deviation  (black) used to obtain the Z-score belong to the null distribution, 619 

obtained from the results of a thousand randomly ordered genes. C) Comparison of the 620 

distribution of the simplicity score for the four subtypes obtained from Verhaak’s 621 

classification [4]. P values are obtained from the comparison to the neural (NE) subtype 622 

using Wilcoxon test. D) Comparison of the distribution of the simplicity score for the four 623 

subtypes obtained by our model. P values are obtained from the comparison to the high 624 

content in normal cells (NT) group using Wilcoxon test. 625 

Figure 2 (at Results/ Validation of the model) 626 

Figure 2: A) Comparison of the classification obtained by Wang’s [7] model and from our 627 

model. B) ROC space showing the sensitivity and specificity obtained by our model for 628 

each subtype using Wang’s model as gold standard. Error bars represent the standard 629 

deviation. Values in parenthesis correspond to the F1 score of each subtype. C) 630 

Frequency of somatic genomic alterations for each subtype. Significance values were 631 
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obtained applying the Chi-squared test. D) Survival curves between subtypes for 632 

samples with the top 20% simplicity score.  633 

Figure 3 (at Results/ NT associates with abundance in normal cells) 634 

Figure 3: A) Tumor purity of TCGA-IDH-WT samples determined by ABSOLUTE and 635 

ESTIMATE, respectively. The difference in tumor purity between subtypes was evaluated 636 

by the Wilcoxon test. B) Tumor purity of the validation cohort determined by ESTIMATE. 637 

The difference in tumor purity between subtypes was evaluated by the Wilcoxon test. 638 

C) Frequency of the molecular classification for samples obtained by microdissection 639 

from different tumor structures. The results from Wang’s classification are shown in gray 640 

and the results from our model in red. D) Simplicity score obtained by Wang’s model for 641 

the different tumor structures. P values are obtained for the comparison of each 642 

structure against the leading edge evaluated by Wilcoxon test. E) Empirical p values 643 

associated with the NT group obtained for the different tumor structures. P values are 644 

obtained for the comparison of each structure against the leading edge evaluated by 645 

Wilcoxon test. F) Representative H&E stained histological images for samples that 646 

belong to each molecular subgroup as classified by our model. Scale bars represent 200 647 

m. 648 

Figure 4 (at Results/Survival analysis) 649 

Figure 4: Survival curves between optimal cut-off of the simplicity score within proneural 650 

(A), classical (B) and mesenchymal (C) samples. 651 

Supplementary material legends 652 

Table S1 653 

Table S1: Primers used for qRT-PCR. 654 
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Table S2 655 

Table S2: Differentially expression analysis of the NE genes for the NE vs non-NE 656 

subtypes and for tumor vs non-tumor tissue. 657 

Table S3 658 

Table S3: Results obtained from the enrichment analysis of the 5 gene signature for NT 659 

against tissue databases using Enrichr. 660 

Table S4 661 

Table S4: Histological examination of the TMAs from tissue samples and the 662 

classification obtained by the model based on qRT-PCR measurements. 663 

Figure S1 664 

Figure S1: Z-score and overlap achieved when reducing the number of genes per subtype 665 

for the rank criterion based on  relative differences in mean expression (A) and on the 666 

statistic obtained from the differential expression analysis (B). Mean and standard 667 

deviation (black) used to obtain the Z-score belong to the null distribution, obtained 668 

from the results of a thousand randomly ordered genes. 669 

Figure S2 670 

Figure S2: True positive rate and true negative rate obtained from different gene 671 

signature sizes for proneural (A), classical (B) and mesenchymal (C) subtypes using Wang 672 

et al. model as gold standard of the molecular classification. Black dots represent the 673 

mean and standard deviation of 1,000 randomly ranked gene lists. Three different 674 

criteria to rank the genes were used: mean differences (red dots), fold change (blue 675 

dots) and statistical significance of the mean differences (green dots). 676 
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Figure S3 677 

Figure S3: Hazard ratio optimal cutoff selection of the simplicity score for proneural (A), 678 

classical (B) and mesenchymal (C). Continuous line represents the hazard ratio and 679 

dashed lines the 95% confidence interval. 680 

Figure S4 681 

Figure S4: Schematic model of the evolution of a GBM tumor from a cellular tumor 682 

(proneural or classical) to a mesenchymal tumor. 683 

Methods S1 684 

Methods S1: Blocks of code used for the development of the model. 685 

  686 
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Figure 1 687 

  688 
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Figure 2 689 
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Figure 3 692 
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Figure 4 694 

 695 
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Table S1 697 

 698 

  699 

Human primers Forward 5´------3´ Reverse 5´------3´ 

GPR17 GGGCTTGTGATGGCTACAAT CTGCCTTCAGGGTCTTTCTG 

CA10 ATCCCACCTCAGTGAAATGC TCATGAAGAAAGGGCCAATC 

UGT8 TACTCTCCCACCAGGAGCTG CCTTTTAACGGCAACATCGT 

HRASLS TCTTCTCATTCCTGGGCTTG TTCCTCCTCCCAAATTCCTT 

RAB33A GGAAGGTGCAGAAACTGGAG GGAAACAAGCAGGTGTCAG 

ELOVL2 TCTTACCAAAGTGCGTTCCA CTCCCTCCTTGCCATACAGA 

MLC1 CGTAACAGCAGGAGCATGG TCTGGTCAGGTCCAGAGAGC 

SLC4A4 TCAAGACACAGACACGCACA GGGACTCTGTCTGGAGGTCA 

CDH4 GGACACCTGTCACCCTGAGT GAGAGTGTCCTGGGGTTTGA 

FGFR3 TGCCCCTCAGAGACTGAAAT TCCGTTGTACCAGCCTTTTC 

LUM TGGAGCCAAATGTTATGCAG GAAAGGCCGCTGTACCATAA 

PI3 GCAAGAGCCAGTCAAAGGTC TTCTTGATTCCTGGGCAGTC 

SLPI CATATGGAGGAGGCTCTGGA TCTTGAAAGCCTGCTGTGTG 

CYP1B1 CTCCTGTGGAAGGCAGAGAA TCCCCAACTCTTGTCACCTC 

NNMT ACCTTGCAGTGCCTCACTTT CAAGCAATCTGTCTGCCTCA 

CCK TACATGGGCTGGATGGATTT GTGAGGTGTGTGGTTGCACT 

CRYM GAATGGCAGTGGAAGACACA GGGACTGGACTCCCTCATTT 

SERPINI1 GACGAGTCATGCATCCTGAA CCAGTTGCAAACATAATGTGC 

KCNK1 CTGCAAACCATTGAGCGTAG TGGGGTCACAGCTTCTTTGT 

GPR22 CTCCCATTCTGGAAATCAACA GCCAAGTCCCAACACAATTT 
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Table S2 700 

 701 

  702 

 NEURAL VS NON-NEURAL BRAIN VS TUMOR 

Gene 
Difference in 

mean expression 
Adjusted p value 

Difference mean 
expression 

Adjusted p-value 

CCK 1,449 4,0E-04 6,128 < 1E-04 

CRYM 1,306 2,8E-03 5,6 < 1E-04 

SERPINI1 1,166 2,0E-03 4,521 < 1E-04 

KCNK1 0,895 4,4E-02 4,43 < 1E-04 

GPR22 0,461 6,4E-03 4,032 < 1E-04 

HPCAL4 0,516 1,4E-02 3,797 < 1E-04 

CPNE6 0,342 5,6E-03 3,13 < 1E-04 

CA4 0,534 4,4E-03 2,421 < 1E-04 

UROS 0,441 1,7E-02 2,067 < 1E-04 

KCNJ3 0,184 4,0E-04 2 < 1E-04 

DHRS9 1,183 < 1E-04 1,93 < 1E-04 

MDH1 0,345 4,0E-04 1,771 < 1E-04 

ANXA3 0,94 4,0E-04 1,583 < 1E-04 

CRYZL1 0,518 < 1E-04 1,311 < 1E-04 

MGST3 0,48 < 1E-04 1,234 < 1E-04 

SNCG 0,184 4,0E-04 1,173 < 1E-04 

ACYP2 0,669 < 1E-04 1,168 < 1E-04 

YPEL5 0,451 < 1E-04 1,161 < 1E-04 

CLCA4 0,422 4,6E-02 1,052 < 1E-04 

PEX11B 0,248 1,2E-02 0,947 < 1E-04 

ADD3 0,655 < 1E-04 0,918 < 1E-04 

MYBPC1 1,431 4,0E-04 0,884 < 1E-04 

CASQ1 0,4 6,4E-03 0,884 < 1E-04 

SEPW1 0,39 1,6E-03 0,851 < 1E-04 

CRBN 0,388 2,0E-03 0,666 < 1E-04 

ANXA7 0,578 < 1E-04 0,654 < 1E-04 

TMEM144 0,513 1,7E-02 0,59 < 1E-04 

TCEAL1 0,394 4,0E-04 0,547 < 1E-04 

COX5B 0,346 3,2E-03 0,547 < 1E-04 

TTC1 0,3 4,0E-04 0,533 < 1E-04 

GUK1 0,381 < 1E-04 0,528 < 1E-04 

PEX19 0,245 1,9E-02 0,373 < 1E-04 

IMPA1 0,369 2,2E-02 0,32 < 1E-04 

RBKS 0,699 < 1E-04 0,258 7,2E-03 

MAT2B 0,421 < 1E-04 0,204 7,2E-03 

CRYL1 0,703 4,0E-04 NS NS 

SEPP1 0,701 < 1E-04 NS NS 

MRPL49 0,532 < 1E-04 NS NS 

LYRM1 0,503 2,4E-03 NS NS 

TSNAX 0,447 4,0E-04 NS NS 

ATP5L 0,366 < 1E-04 NS NS 

AKR7A3 0,345 6,4E-03 NS NS 

SNX11 0,336 4,0E-04 NS NS 

CCDC121 0,334 2,4E-03 NS NS 

ATP5F1 0,223 1,3E-02 NS NS 

NSL1 0,206 4,4E-02 NS NS 

 



37 
 

Table S3 703 

 704 

  705 

Index Name P-value 
Adjusted  

p-value 

Odds  

Ratio 

Combined 

score 

1 BRAIN (BULK) 0.00002074 0.002240 8.64 93.12 

2 CEREBRAL CORTEX 0.00002074 0.001120 8.64 93.12 

3 CINGULATE GYRUS 0.00002074 0.0007467 8.64 93.12 

4 DENTATE GRANULE CELL 0.00002074 0.0005600 8.64 93.12 

5 DORSAL STRIATUM 0.00002074 0.0004480 8.64 93.12 

6 SUPERIOR FRONTAL GYRUS 0.00002074 0.0003734 8.64 93.12 

7 ATRIUM 0.01294 0.1997 5.18 22.52 

8 HEART (BULK TISSUE) 0.01294 0.1747 5.18 22.52 

9 PREFRONTAL CORTEX 0.01294 0.1553 5.18 22.52 

10 VENTRICLE 0.01294 0.1398 5.18 22.52 
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Table S4 706 

  707 

Sample Cellularity 
Pathogenic 

blood vessels 
Necrosis 

Molecular 
classification 

S1 MODERATE / MODERATE YES / YES NO / NO ME 

S2 LOW / LOW YES / YES YES / NO CL 

S3 MODERATE / HIGH YES / YES NO / NO ME 

S4 LOW / LOW NO / NO NO / NO NT 

S5 MODERATE / MODERATE YES / YES YES / NO ME 

S6 LOW / LOW YES / YES YES / NO ME 

S7 HIGH / HIGH YES / YES NO / NO ME 

S8 MODERATE / MODERATE YES / YES YES / NO ME 

S9 LOW / LOW NO / NO NO / NO PN 

S10 MODERATE / MODERATE YES / YES YES / NO ME 

S11 LOW / LOW YES / YES NO / NO NT 

S12 LOW / LOW YES / YES YES / NO CL 

S13 MODERATE / MODERATE YES / NO YES / NO CL 

S14 MODERATE / MODERATE YES / YES YES / NO ME 

S15 LOW / LOW NO / NO NO / NO PN 

S16 HIGH / MODERATE YES / YES YES / NO ME 

S17 HIGH / HIGH NO / NO NO / NO PN 

S18 MODERATE / MODERATE YES / NO NO / NO ME 

S19 LOW / LOW NO / NO NO / NO NT 

S20 LOW / LOW NO / NO NO / NO NT 

S21 LOW / HIGH YES / YES YES / NO NT 

S22 MODERATE / MODERATE NO / NO NO / NO ME 

S23 HIGH / HIGH YES / NO NO / NO NT 

S24 HIGH / HIGH YES / YES NO / NO ME 

S25 HIGH / HIGH YES / NO NO / NO ME 

S26 LOW / LOW NO / NO NO / NO NT 

S27 HIGH / HIGH NO / NO NO / NO CL 

S28 MODERATE / MODERATE YES / NO YES / YES NT 

S29 HIGH / MODERATE YES / NO YES / NO ME 

S30 LOW / HIGH NO / NO YES / NO PN 

S31 HIGH / MODERATE YES / YES YES / YES CL 

S32 HIGH / MODERATE YES / NO YES / NO CL 

S33 LOW / MODERATE NO / NO NO / NO NT 

S34 HIGH / MODERATE YES / YES NO / YES CL 
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Figure S1 708 

 709 
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Figure S2 711 

 712 
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Figure S3 714 

 715 
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Figure S4 717 
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