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Abstract 

Deep	generative	models	can	be	trained	to	represent	the	joint	distribution	of	data,	such	as	

measurements	of	single	nucleotide	polymorphisms	(SNPs)	from	several	individuals.	

Subsequently,	synthetic	observations	are	obtained	by	drawing	from	this	distribution.	This	

has	been	shown	to	be	useful	for	several	tasks,	such	as	removal	of	noise,	imputation,	for	

better	understanding	underlying	patterns,	or	even	exchanging	data	under	privacy	

constraints.	Yet,	it	is	still	unclear	how	well	these	approaches	work	with	limited	sample	size.	

We	investigate	such	settings	specibically	for	binary	data,	e.g.,	as	relevant	when	considering	

SNP	measurements,	and	evaluate	three	frequently	employed	generative	modeling	

approaches,	variational	autoencoders	(VAEs),	deep	Boltzmann	machines	(DBMs)	and	

generative	adversarial	networks	(GANs).	This	includes	conditional	approaches,	such	as	

when	considering	gene	expression	conditional	on	SNPs.	Recovery	of	pair-wise	odds	ratios	is	

considered	as	a	primary	performance	criterion.	For	simulated	as	well	as	real	SNP	data,	we	

observe	that	DBMs	generally	can	recover	structure	for	up	to	100	variables	with	as	little	as	

500	observations,	with	a	tendency	of	over-estimating	odds	ratios	when	not	carefully	tuned.	

VAEs	generally	get	the	direction	and	relative	strength	of	pairwise	relations	right,	yet	with	

considerable	under-estimation	of	odds	ratios.	GANs	provide	stable	results	only	with	larger	

sample	sizes	and	strong	pair-wise	relations	in	the	data.	Taken	together,	DBMs	and	VAEs	(in	

contrast	to	GANs)	appear	to	be	well	suited	for	binary	omics	data,	even	at	rather	small	

sample	sizes.	This	opens	the	way	for	many	potential	applications	where	synthetic	

observations	from	omics	data	might	be	useful.	

General Background 

Tabular	categorical	data	occur	frequently	in	biomedical	research.	Examples	are	single	

nucleotide	polymorphism	(SNP)	data,	where	a	large	number	of	SNPs	is	measured	for	each	of	

a	number	of	individuals.	While	such	measurements	typically	are	linked	to	a	phenotype	or	an	

outcome,	such	as	survival,	the	structure	of	the	data	itself,	such	as	the	co-occurrence	of	SNPs	

also	is	of	interest.	Deep	generative	models	build	on	neural	network	architectures	and	can	

learn	the	corresponding	joint	distribution	of	such	data.	Popular	examples	are	deep	
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Boltzmann	machines	(DBMs,	[1]),	variational	autoencoders	(VAEs,	[2])	and	generative	

adversarial	networks	(GANs,	[3]).	

There	are	many	successful	biomedical	applications	based	on	learning	the	joint	distribution	

of	data.	For	example	in	[4],	the	authors	demonstrated	how	GANs	can	be	employed	to	

simulate	biomedical	data	to	facilitate	data	analysis	under	privacy	restrictions.	Using	GANs,	

Yelmen	et	al.	[5]	generated	artibicial	chromosomes	from	real	SNP	data.	Lopez	et	al.	[6]	

employed	VAEs	for	learning	a	low	dimensional	representation	of	gene	expression	in	single	

cells	and	in	[7],	the	authors	performed	drug	response	prediction	with	VAEs.	DBMs	have	

been	successfully	applied	in	learning	the	joint	distribution	of	SNP	data	[8].	

After	training,	the	above	described	models	can	generate	synthetic	observations	with	similar	

properties	as	observed	in	the	data	used	for	training.	This	property	has,	e.g.,	been	used	for	

denoising	single	cell	gene	expression	data	[9].	Another	major	challenge	that	can	be	

addressed	by	deep	generative	models	is	data	privacy	[10].	Specibically,	deep	generative	

methods	have	been	proposed	to	generate	synthetic	observations	from	the	learnt	joint	

distribution	of	the	data	[11],	[4].	These	synthetic	observations	might	then	be	securely	

shared.	

A	potential	major	hurdle	in	all	these	promising	use	cases	for	deep	generative	models	is	

limited	sample	size,	as	deep	learning	techniques	frequently	have	been	developed	with	large	

sample	sizes	in	mind.	It	is	still	unclear	whether	reasonable	performance	can	be	expected	

when	the	number	of	measured	features	is	relatively	large	compared	to	the	number	of	

observations.	Therefore	we	systematically	evaluate	the	performance	of	the	above	

mentioned	deep	generative	approaches,	DBMs,	VAEs	and	GANs,	with	a	specibic	focus	on	

binary	data,	e.g.,	as	relevant	for	SNP	data.	We	consider	simulated	data	as	well	as	SNP	data	

from	the	1000	genomes	project	[12],	to	compare	the	approaches.	The	results	of	this	

investigation	should	then	provide	guidance	for	selecting	the	appropriate	approach	for	a	

specibic	available	sample	size.	

While	it	is	generally	considered	difbicult	to	judge	the	quality	of	synthetic	data	with	a	high	

number	of	dimensions	in	terms	of	their	distance	to	the	training	data	[13],	we	employ	simple	

summary	statistics,	specibically	odds	ratios	(ORs)	to	investigate	the	distribution	of	pair-wise	

correlations.	Compared	to	a	measure	for	overall	similarity,	like	the	Euclidean	distance	
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between	two	data-points,	this	measure	is	more	robust	and	easier	to	interpret	while	giving	

an	estimate	for	the	lower-bound	of	the	similarity	of	the	joint-distributions	of	generated,	

synthetic	data	and	the	training	data.	

Since	deep	generative	approaches	also	can	model	the	conditional	distributions	of	different	

data	modalities,	e.g.	for	gene	expression	conditional	on	SNP	data	[14],	we	also	evaluate	such	

conditional	approaches,	specibically	conditional	GANs	(cGANs;	[15]),	and	compare	these	

with	DBMs	which	natively	allow	to	model	conditional	distributions.	

In	the	following,	we	provide	a	brief	overview	of	deep	generative	approaches,	before	

evaluating	their	performance	birst	with	a	single	data-type	(simulated	and	real	SNP	data)	and	

then	with	simulated	data	from	a	conditional	scenario.	We	close	with	general	

recommendations	for	the	use	of	deep	generative	approaches	with	rather	small	sample	size.	

To	facilitate	subsequent	use	of	the	approaches	in	such	settings,	a	Jupyter	notebook	with	

further	examples	is	provided	as	a	supplement.	

Deep genera5ve models 

All	investigated	deep	generative	models	do	more	or	less	build	on	the	concept	of	artibicial	

neural	networks	(ANN).	The	name	is	derived	from	the	analogy	to	neurons	in	living	

organisms.	Neurons,	hereafter	called	units,	transduce	a	signal	to	other	cells	when	a	certain	

signal	threshold	is	reached.	The	strength	of	the	signal	in	one	cell	is	modeled	as	a	linear	

combination	of	the	signals	from	all	connected	units.	In	ANNs	this	linear	combination	is	

usually	transformed	using	a	non-linear	activation	function	such	as	the	sigmoid	function,	

keeping	differentiability	for	means	of	numerical	optimization.	Having	many	of	these	linear	

combinations	with	subsequent	non-linear	transformations	in	parallel,	allows	to	model	

complex,	non-linear	dependencies	in	the	data.	VAEs	and	GANs	incorporate	feed-forward	

neural	network	where	units	are	arranged	in	fully	connected	layers	of	hidden	units	with	

directed	connections.	The	modeled	networks	thus	have	an	input	layer	and	an	output	layer	

with	a	directed	signal	path	without	loops.	Having	an	unambiguous	mapping	from	input	to	

output,	the	feed-forward	neural	network	is	modeled	as	a	parameterized	function.	The	

parameters	correspond	to	the	connection	weights	between	layers.	
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Let	 	be	the	set	of	parameters	describing	the	interconnection	of	

units	for	a	feed-forward	neural	network	with	one	hidden	layer.	Matrices	 	contain	the	

weights	of	the	interconnections	between	layers	and	vectors	the	bias	terms	 .	Given	a	vector	

	as	input	and	a	non-linear	activation	function	 ,	the	output	 	is	then	calculated	as	

	

	

Figure	1:	(A)	Experimental	design	used	to	compare	VAEs,	DBMs	and	GANs.	A	data-set	of	

tabular	binary	data	(empirical	data)	is	sub-sampled	and	used	to	train	a	deep	generative	

model.	The	performance	of	the	three	deep	generative	approaches	is	then	judged	by	comparing	

pairwise	odds	ratios	computed	from	the	empirical	data	and	the	synthetic	data,	drawn	from	the	

trained	models.	(B)	Schematic	architecture	of	the	deep	generative	approaches	(h	=	hidden	

layer,	enc	=	encoder,	dec	=	decoder,	gen	=	generator,	disc	=	discriminator).	Solid	circles	indicate	

deterministic	units	and	dashed	circles	indicate	stochastic	units.	(C)	Exemplary	data	and	odds	

ratios.	There	are	three	different	groups	of	variables.	Odds	ratios	within	and	between	groups	

are	considered,	resulting	in	four	blocks	of	odds	ratios.	Odds	ratios	are	shown	log	transformed.	

Red	indicates	positive	log	odds	ratios	while	blue	indicates	negative	log	odds	ratios.	

θ = (W (1), W (2), b(1), b(2))

W

b

x f y

y = f (W (2) f (W (1)x + b(1)) + b(2)) .  (1)
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Varia5onal autoencoder (VAEs) 

Autoencoders	are	feed-forward	neural	networks	that	have	a	reconstruction	 	of	the	input	 	

as	output.	The	parameters	are	optimized	with	respect	to	this	reconstruction.	A	rather	small	

number	of	hidden	units	in	an	intermediate	layer	acts	as	a	bottleneck	that	enforces	reduction	

to	the	most	important	properties	of	the	data.	This	approach	therefore	learns	a	lower	

dimensional	representation	(encoding)	of	the	data,	from	which	the	model	can	reconstruct	

(decode)	the	original	data.	If	the	distribution	of	encodings	is	known	and	the	autoencoder	

generalizes	the	original	data	distribution	well,	one	could	explore	the	modeled	distribution	

by	drawing	from	the	encodings.	However,	the	true	underlying	distribution	is	unknown	and	

cannot	be	inferred	from	the	training	data.	However,	if	we	attempt	to	approximate	the	latent	

distribution	of	encodings	by	variational	inference	techniques,	we	arrive	at	a	variational	

autoencoder	(VAE)	[2]	(see	Figure	1,	Panel	B).	Here	the	low	dimensional	intermediate	layer	

comprises	stochastic,	units	( ).	

Let	 	denote	the	approximation	of	the	conditional	distribution	of	the	latent	representation	

given	the	input,	implemented	via	the	encoding	neural	network	and	 	the	distribution	

corresponding	to	the	observed	data,	e.g.	implemented	for	the	conditional	distribution	given	

the	latent	representation	by	the	decoding	neural	network.	During	optimization,	we	

maximize	the	likelihood	of	 	individual	data-points,	given	as	

	

Since	we	specify	an	approximate	(prior)	distribution	for	the	latent	representation	in	a	

variational	inference	framework,	we	can	only	maximize	the	likelihood	up	to	the	lower	

bound	 ,	given	as	

	

During	training,	the	birst	right-hand	term	penalizes	the	deviation	of	the	distribution	of	the	

latent	encodings	from	the	prior	distribution,	as	indicated	by	the	Kullback-Leibler	divergence	

x̂ x

z

qϕ

pθ

N

logpθ(x(1), . . . , x(N )) =
N

∑
i=1

logpθ(x(i)) .  (2)

ℒ(θ, ϕ; x(i))

ℒ(θ, ϕ; x(i)) = − DKL(qϕ(z |x(i)) pθ(z)) + 𝔼qϕ(z|x(i))
[logpθ(x(i) |z)] .  (3)
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( ),	while	the	second	terms	indicates,	how	well	the	input	can	be	reconstructed,	given	the	

latent	encodings.	

With	the	assumptions	of	having	normally-distributed	encodings	 	and	a	Bernoulli-

distributed	output	layer,	the	lower	bound,	shown	in	Equation	3,	is	given	by	

	

	and	 	relate	to	the	mean	and	standard	deviation	of	the	normal	distribution,	from	which	

the	encodings	are	drawn.	 	and	 	result	from	propagating	the	input	 	through	the	

neural	network	to	the	units	 	and	 	(see	Figure	1,	Panel	B).	 	is	drawn	according	to	

.	 	denotes	the	dimensionality	of	the	latent	encodings	and	 	is	the	number	of	

encodings,	drawn	to	approximate	the	expectation.	

Drawing	from	the	modeled	distribution,	i.e.	generating	synthetic	observations,	now	is	

straightforward	by	drawing	from	the	normal	distribution	prior	and	propagating	the	result	

through	the	decoding	network.	The	role	of	the	decoder	will	later	also	be	referred	to	as	a	

“generative	function”.	

Genera5ve Adversarial Networks (GANs) 

As	described	for	the	VAEs,	a	generative	function	can	be	used	to	transform	realizations	 	

coming	from	some	source	distribution	to	realizations	 	of	a	distribution	that	matches	the	

distribution	of	the	training	data	 .	While	this	source	distribution	is	motivated	by	variational	

inference	in	VAEs,	generative	adversarial	networks	(GANs)	use	an	informative	source	

distribution.	In	addition	to	the	generating	function,	which	should	transform	samples	from	

the	source	distribution	into	samples	resembling	the	original	data	at	hand,	a	second	feed-

forward	neural	network,	the	discriminator,	is	trained	as	an	adversary	that	discriminates	

between	original	data	( )	and	samples	stemming	from	the	generator	( )	(see	Figure	1,	Panel	

B).	The	corresponding	loss	function	can	be	used	to	optimize	both	the	discriminator	and	the	

generator.	As	the	performance	of	the	discriminator	increases,	the	generator	is	optimized	so	

that	it	will	continuously	fool	the	discriminator.	This	back	and	forth	is	implemented	in	the	

DKL

z

1
2

J

∑
j=1

(1 + log((σ(i)
j )2) − (μ(i)

j )2 − (σ(i)
j )2) +

1
L

L

∑
l=1

logpθ(x(i) |z(i,l)) .  (4)

μ σ

μ(i) σ(i) x(i)

μ σ z(i,l)

𝒩(μ, σ) J L

z

x̂

x

x x̂
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training	process	as	a	min-max	game,	optimizing	one	network	while	the	other	serves	the	

gradient	that	is	used	for	optimization.	

Let	 	denote	the	generator,	 	the	discriminator,	 	the	empirical	distribution	over	

the	data	and	 	the	source	distribution	from	which	 	is	drawn.	The	min-max	game	between	 	

and	 	can	then	be	stated	as	

	

After	training,	synthetic	observations	can	be	generated	by	initializing	 	to	a	random	state	

and	propagating	the	information	through	the	generator	network.	In	the	binary	example,	the	

resulting	real	valued	activations	are	then	transformed	to	binary	values	( )	by	employing	a	

hard	threshold	at	 .	

GANs	can	also	be	used	in	a	conditional	setting,	where	the	model	generates	data	based	on	a	

random	vector	and	a	given	condition	 ,	resulting	in	cGANs.	For	example,	 	could	incorporate	

SNP	information	when	synthetic	gene	expression	data	should	be	generated	conditional	on	

SNP	status.	The	additional	conditional	information	is	provided	to	the	generator	and	the	

discriminator	during	training.	

During	sampling,	 	is	presented	together	with	a	random	vector	 ,	yielding	generated	data,	

that	mimics	the	distribution	of	the	training	data	respecting	the	condition	 	(for	further	

applications,	e.g.	see	[16]	and[17]).	

Deep Boltzmann Machines (DBMs) 

While	VAEs	and	GANs	incorporate	feed-forward	networks,	which	are	used	to	transform	

random	variables,	into	realistic	synthetic	observations,	and	intermediate	hidden	layers	only	

specify	the	transformation,	in	deep	Boltzmann	machines,	all	hidden	units	(as	well	as	the	

observation	level,	called	visible	units)	are	considered	to	be	random	variables.	In	our	context	

of	binary	data,	the	units	can	take	on	two	states,	zero	and	one.	Connections	between	units	

are	not	directed	and	the	input	( )	layer	at	the	same	time	also	is	the	output	layer	(	 )	(see	

gθ dϕ pdata(x)

pz z g

d

min
gθ

 max
dϕ

V(dϕ, gθ) = 𝔼x∼pdata(x)[log(dϕ(x))] + 𝔼z∼pz(z)[log(1 − dϕ(gθ(z)))] .  (5)

z

x̂

0.5

c c

c z

c

x x̂
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Figure	1,	Panel	B).	Latent	variables,	arranged	in	hidden	layers	( ),	can	capture	non-linear	

dependencies	between	the	observed	variables,	similar	to	VAEs	and	GANs.	

Deep	Boltzmann	machines	are	derived	from	Boltzmann	machines	[18]	which	are	closely	

related	to	an	energy	model	of	particles	explored	in	physics,	where	a	likely	conbiguration	of	

particles	should	result	in	a	low	energy	and	vice	versa.	For	a	DBM	with	two	hidden	layers	

and	parameters	 ,	we	have	the	energy	function	

	

which	indicates	the	energy	for	a	conbiguration	of	the	states	of	hidden	and	observed	nodes.	

By	normalizing	through	the	partition	function	 ,	the	energy	is	transformed	into	a	

probability	as	

	

	here	is	the	sum	over	all	possible	conbigurations	of	the	states	in	observed	and	hidden	units:	

	

In	the	training	procedure	the	likelihood	of	the	training	data	 ,	given	as	

	

is	maximized.	After	training,	given	a	random	initialization	of	the	model	parameters,	we	can	

run	a	Markov	chain	between	 	and	in	this	example	 	and	 .	When	we	arrive	at	an	

equilibrium	after	a	binite	number	of	steps,	where	the	Markov	chain	converges,	we	retrieve	a	

synthetic	observation	 	from	the	model.	This	procedure	is	also	called	Gibbs-sampling.	

As	it	is	difbicult	to	jointly	optimize	the	states	of	all	latent	and	observed	variables	in	a	DBM	

with	multiple	hidden	layers,	parameters	of	DBMs	typically	are	optimized	in	a	two-step	

technique	[1].	In	a	birst	step,	shallow	DBMs,	comprising	only	two	layers,	also	called	

h

θ = (W (1), W (2), b(0), b(1), b(2))

E(x, h(1), h(2), θ ) = − (xTW (1)h(1) + h(1)TW (2)h(2) + xT b(0) + h(1)T b(1) + h(2)T b(2))  (6)

Z

p(x, h(1), h(2), θ ) =
1

Z(θ )
exp( − E(x, h(1), h(2), θ )) .  (7)

Z

Z(θ ) = ∑
x

∑
h(1)

∑
h(2)

exp( − E(x, h(1), h(2); θ )) .  (8)

x

pθ(x) =
1

Z(θ ) ∑
h(1)

∑
h(2)

exp( − E(x, h(1), h(2); θ )),  (9)

x h(1) h(2)

x̂
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restricted	Boltzmann	machines	(RBMs,	[19])	are	consecutively	trained.	In	a	second	step,	the	

parameters	of	a	stack	of	RBMs	are	jointly	optimized.	

DBMs	also	can	provide	information	on	conditional	distributions.	During	training,	the	

conditional	input	is	provided	in	distinct	additional	units	in	the	visible	layer,	i.e.	 ,	

with	 	being	the	variables	whose	conditional	distribution	is	to	be	learned	and	 	being	the	

condition.	The	DBM	then	will	be	trained	to	learn	the	joint	distribution	of	 .	When	sampling	

from	the	trained	DBM,	samples	from	the	conditional	distribution	 	are	obtained	by	

bixing	the	visible	units	that	correspond	to	the	condition	during	the	Gibbs-sampling	

procedure,	meaning	that	after	each	step	 	of	the	Markov	chain,	in	the	given	sample,	 ,	

consisting	of	 	and	 ,	 	is	set	back	to	the	condition	 .	

Material and Methods 

Simulated SNP Data 

We	birst	evaluate	the	performance	of	the	three	deep	generative	approaches	based	on	binary	

simulated	data	which	roughly	reblect	the	structure	of	SNP	haplotypes.	A	haplotype	consists	

of	 	SNPs	and	the	two	states	correspond	to	the	major	and	minor	alleles	respectively.	In	the	

conditional	simulation	setting,	we	investigate	 	SNPs	which	can	affect	the	(dichotomized)	

expression	of	 	out	of	 	genes,	totaling	to	 	variables.	

In	the	non-conditional	setting,	there	are	two	types	of	individuals	occurring	by	equal	chance	

of	 .	In	the	birst	type,	the	birst	bive	features	take	on	the	value	 	with	a	probability	of	 	

and	the	features	six	to	bifty	with	a	probability	of	 .	In	the	second	type,	the	variables	6	to	10	

take	on	the	value	 	with	a	probability	of	 	while	this	probability	is	 	for	the	remaining	

variables.	In	our	interpretation,	the	chance	of	 	represents	a	signal,	while	 	is	a	

uniformly	distributed	noise.	An	example	for	the	structure	of	the	data	is	shown	in	Panel	C	of	

Figure	1.	When	computing	pair-wise	odds	ratios	from	the	above	described	data,	four	blocks	

of	odds	ratios	emerge.	Within	block	1	and	2,	there	is	an	on	average	positive	log	odds	ratio	of	

,	in	block	3	there	is	an	on	average	negative	log	odds	ratio	of	 	and	in	block	4	the	log	

odds	ratio	is	around	 ,	corresponding	to	the	absence	of	any	structure	(see	Figure	1,	Panel	C).	
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Given	a	data-set	of	 	simulated	haplotypes	comprising	 	SNPs,	sub-samples	of	 ,	

	and	 	observations	are	drawn	and	employed	to	train	a	generative	model.	

Afterwards	 	samples	are	drawn	from	trained	models	to	compute	log	odds	ratios	(see	

Figure	1,	Panel	A).	The	whole	procedure	is	repeated	 	times	and	averaged	results	are	

considered.	

In	the	conditional	setting,	there	also	are	two	types	of	individuals	for	the	SNP	data,	occurring	

with	equal	chance	of	 .	In	a	non-information	carrying	mode,	a	SNP	variable	is	simulated	

with	a	chance	of	 	to	take	on	the	value	 .	The	corresponding	gene	expression	data	is	

independently	simulated	with	variables	having	a	chance	of	 	to	take	on	the	value	 .	This	

type	can	be	interpreted	as	random	non-interacting	noise	between	the	SNP	and	gene	

expression	data	and	results	in	no	association	between	the	variables,	corresponding	to	a	log	

odds	ratio	of	 .	The	second	type	of	individuals	for	the	SNP	data,	denoted	as	information	

inducing	mode,	induces	an	association	between	the	10	SNPs	and	the	genes	one	to	ten.	 	

is	capable	to	induce	high	or	low	expression	in	 ,	 	in	 	and	so	on.	The	

information	inducing	mode	again	has	two	types	of	individuals	occurring	with	equal	chance	

of	 .	In	the	birst	type,	each	SNP	takes	on	the	value	of	 	with	a	probability	of	 ,	in	the	

second	type,	a	SNP	takes	on	the	value	of	 	with	a	probability	of	 .	Both	times,	the	

probability	of	a	gene	to	be	highly	expressed,	i.e.	having	a	value	of	 	is	

.	This	means	that	in	the	information	inducing	type,	a	

dependency	between	the	SNP	data	and	the	gene	expression	data	is	induced,	in	contrast	to	

the	non-information	inducing	type.	On	average,	the	log	odds	ratio	between	SNPs	and	gene	

expression	is	 .	An	example	for	the	conditional	data	is	shown	in	Supplementary	Figure	1.	

1000 genomes SNP data 

Single	nucleotide	polymorphisms	(SNPs)	in	the	HLA-B	gene	locus	were	debined	by	the	NCBI	

1000	genomes	browser,	using	the	GRCh37.p13	genome	version.	Phased	haplotypes	were	

retrieved	from	phased	1000	genomes	data	as	provided	for	the	IMPUTE	software	(https://

mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html).	In	total	5008	haplotypes	are	

analyzed,	belonging	to	2504	individuals.	All	variants	with	a	minor	allele	frequency	(MAF)	

below	0.05	and	above	0.2	were	discarded,	resulting	in	110	SNPs	that	are	investigated.	
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Training of deep genera5ve models 

We	intend	to	compare	the	three	deep	generative	modeling	approaches	“out	of	the	box”,	

meaning	in	a	default	conbiguration.	Therefore	we	employ	simple	parameter	settings	for	the	

three	deep	architectures	using	only	one	to	two	latent	layers.	As	we	are	modeling	Bernoulli	

distributed,	binary	data,	we	use	the	sigmoid	function	as	activation	function	for	the	units	

modeling	the	observed	variables.	For	the	latent	variables,	we	employ	sigmoid	activation	

functions	in	the	DBM,	the	Tangens	hyperbolicus	(tanh)	in	the	VAE	and	the	leaky	rectibied	

linear	unit	(ReLu)	in	the	GAN.	VAEs,	GANs	and	cGANs	can	be	trained	by	backpropagation	of	

errors,	so	there	is	a	multitude	of	frameworks	available	such	as	TensorFlow	[20].	We	employ	

the	Flux	package	[21]	written	for	the	Julia	programming	language	[22]	to	bit	these	

approaches	using	the	parameter	settings	as	described	in	the	supplementary	information.	

In	contrast,	the	training	procedure	of	DBMs	differs	fundamentally	from	the	latter.	Here	

Markov	chain	Monte	Carlo	(MCMC)	techniques	are	employed	to	estimate	the	states	of	latent	

and	observed	variables	and	these	techniques	cannot	easily	be	implemented	using	the	

aforementioned	frameworks.	In	addition,	the	training	procedure	of	DBMs	involves	two	

steps,	a	layer-wise	pre-training	and	a	bine-tuning	step.	In	the	pre-training	step,	the	weights	

between	two	adjacent	layers	are	initialized	to	meaningful	values	and	in	the	bine-tuning	step,	

all	weights	are	jointly	bine-tuned.	In	general	we	follow	the	procedure	as	described	in	[8].	In	

order	to	compare	the	DBM	with	the	GAN	and	VAE,	we	perform	layer-wise	pre-training	until	

we	observe	a	minimum	for	the	reconstruction	error.	The	results	for	different	training	status	

during	the	joint	rebinement	of	the	parameters	are	then	compared	with	the	results	from	GAN	

and	VAE.	Hyper-parameter	settings	are	shown	in	the	supplement.	We	bit	DBMs	with	the	

BoltzmannMachines	package	[23]	provided	for	the	Julia	programming	language.	

Sampling from deep genera5ve approaches 

We	generate	synthetic	observations	by	initializing	the	stochastic	variables	in	the	models	to	

random	states	and	then	propagating	the	information	through	the	decoder	network	(VAE),	or	

the	generator	network	(GAN).	In	the	DBM	we	run	a	Gibbs	chain	for	100	steps.	Since	in	the	

VAE	and	the	GAN	the	output	layer	( )	consists	of	deterministic	units,	a	hard	threshold	is	x̂
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applied	at	 	to	transform	the	real	valued	output	of	the	employed	sigmoid	activation	

function	to	a	binary	output.	

Evalua5on of deep genera5ve approaches 

Evaluation	of	deep	generative	models	is	an	active	bield	of	research	and	still	lacks	broadly	

applicable	solutions	[13].	While	all	models	might	be	investigated	based	on	the	loss	which	is	

optimized	during	training,	this	kind	of	measure	is	not	useful	for	comparing	different	

generative	approaches.	

As	an	alternative,	we	propose	to	employ	summary	statistics	raised	over	the	generated	

synthetic	observations.	In	particular	in	medical	research,	where	privacy	issues	impose	

regulations	on	data	processing	and	publication,	the	use	of	summary	statistics	has	proven	to	

be	effective	[24].	

Specibically,	we	propose	to	use	odds	ratios	(see	[25]),	calculated	between	the	features	in	the	

data.	Odds	ratios	indicate	the	degree	of	co-occurrence	of	binary	features	based	on	

frequencies	in	a	cross	table.	If	some	of	the	cells	in	the	cross	table	happen	to	be	zero,	they	are	

replaced	by	the	value	 	for	computational	reasons.	

Calculating	odds	ratios	between	all	 	features	in	the	data	results	in	a	symmetric	matrix	

.	For	convenience	of	calculation	and	interpretation,	all	computed	odds	

ratios	are	transformed	by	the	logarithm	(log)	function.	The	advantage	of	logarithmic	odds	

ratios	is	that	their	distribution	is	roughly	symmetric	[25]	which	simplibies	further	analyses.	

For	the	experiments	with	simulated	data,	the	 	matrix	is	computed	from	 	data-sets,	

each	comprising	 	synthetic	observations	sampled	from	the	generative	models.	For	each	

data-set	the	logarithmic	pair-wise	odds	ratios	are	computed,	resulting	in	the	matrices	

.	The	binal	statistic,	shown	in	the	bigures	is	the	mean	over	each	of	the	

entries	in	the	 	matrices,	resulting	in	a	matrix	 	of	means	with	

.	
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In	the	conditional	setting,	where	we	aim	at	generating	the	(binary)	expression	status	of	

genes	based	on	SNP	data,	 	represents	a	SNP	and	 	represents	a	gene.	

In	the	application	with	real	SNP	data,	the	focus	is	less	on	quantifying	the	performance	for	a	

single	variable,	i.e.	a	SNP,	but	we	are	rather	interested	in	the	overall	performance.	

Consequently,	the	performance	of	the	generative	models	is	judged	by	a	measure	which	

quantibies	the	overall	deviation	from	the	empirical	data.	Specibically	the	mean	squared	error	

(MSE)	of	the	difference	between	all	pair-wise	log	odds	ratios	computed	from	the	synthetic	

data	(samples)	and	test	data,	not	used	for	training,	is	employed.	

Results 

Non-condi5onal seJng - simulated data 

In	the	following	we	investigate,	how	strong	log-odds	ratios	in	the	blocks	1,	3	and	4	of	the	

simulation	design	deviate	from	the	log	odds	ratios	in	the	training	data	and	in	the	total	data-

set	that	was	sub-sampled	(see	Figure	1).	

At	a	training	data	size	of	 	observations,	we	observe	that	there	is	already	a	large	amount	

of	error	in	the	sub-sample	used	for	training,	relative	to	the	full	data-set	(Figure	2	and	

Supplementary	Figure	2,	upper	row,	green	dots	vs.	green	line).	Specibically,	log	odds	ratios	

computed	from	the	training	data,	are	on	average	far	less	extreme	compared	to	the	true	log	

odds	ratios	in	the	full	data-set.	At	this	sample	size,	the	performance	of	the	three	approaches	

differs	considerably.	While	the	log	odds	ratios	learned	by	the	VAE	matches	the	log	odds	

ratios	in	the	training	data	well,	there	is	a	large	spread	in	the	log	odds	ratios	learned	by	the	

DBM.	However,	when	investigating	the	log	odds	ratios	in	block	4,	i.e.	between	variables	

without	any	dependency,	we	observe	that	the	VAE	does	generally	under-estimate	the	log	

odds	ratios,	while	the	DBM	accurately	learns	the	distribution	of	log	odds	ratios	in	this	block	

(Supplementary	Figure	3).	In	contrast,	the	GAN	is	not	able	to	pick	up	a	signal,	especially	in	

the	information	carrying	blocks	1	and	3.	

With	increasing	training	data	size,	the	log	odds	ratios	computed	from	the	training	data	

match	the	true	log	odds	ratio	better	(Figure	2,	middle	and	lower	row).	At	a	training	data	size	

of	 	observations,	the	VAE	displays	more	stable	results	over	the	inspected	epochs	during	
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training,	while	the	strength	of	the	log	odds	ratios	are	still	under-estimated	in	the	non-

information	carrying	block	4	(Supplementary	Figure	3).	In	contrast	to	the	small	training	

data	set	of	 	observations,	this	under-estimation	is	now	also	observable	for	the	

information	carrying	blocks	1	and	3	(Figure	2,	Supplementary	Figure	2).	We	do	not	observe	

a	clear	reduction	of	the	under-estimation	of	the	average	log	odds	ratios	between	using	 	

and	 	observations	for	training.	In	contrast	to	the	VAE,	the	DBM	rather	over-estimates	

the	log	odds	ratios	in	the	information	carrying	blocks	1	and	3	(Figure	2	and	Supplementary	

Figure	2).	Here,	we	also	do	not	observe	a	clear	improvement	from	 	to	 	

observations.	The	GAN	does	only	learn	the	log	odds	ratios	in	the	information	carrying	block	

1	with	a	performance	that	is	comparable	with	the	DBM	at	a	training	data	size	of	 	

observations	(Figure	2).	In	block	3	the	performance	is	worse	(Supplementary	Figure	2).	In	

addition,	the	range	of	the	log	odds	ratios	is	largely	over-estimated	in	the	non-information	

carrying	block	4	(Supplementary	Figure	3).	

In	order	to	investigate	how	much	the	results	differ,	when	employing	different	training	data,	

we	also	investigate	the	performance	using	three	additional	sets	of	 	simulated	

observations.	At	 	sub-sampled	observations,	used	for	training,	we	observe	stable	

results	for	the	VAE	and	DBM	over	the	investigated	four	data-sets,	while	the	performance	of	

the	GAN	is	more	dependent	on	the	particular	data-set	(Supplementary	Figure	4).	

The	behavior	described	above	is	also	visually	observable	in	the	synthetic	observations,	

generated	from	the	models.	At	all	sample	sizes,	the	simulated	pattern	in	the	training	data	

(Figure	1,	Panel	C)	is	not	visually	apparent	in	the	observations	drawn	from	the	VAE.	In	

contrast,	the	DBM	and	the	GAN	(at	 	training	examples)	are	able	to	generate	data	that	

resembles	the	empirical	training	data	(Figure	3).	
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Figure	2:	Log	odds	ratios	learned	by	the	VAE,	DBM	and	GAN	approaches	from	simulated	data.	

VAEs,	DBMs	and	GANs	are	trained	on	 ,	 	and	 	observations	of	simulated	SNP	

haplotypes	in	50	SNPs.	Log	odds	ratios	between	positively	correlated	SNPs	(block	1,	see	Figure	

1)	are	calculated	 	times	during	training.	Each	dot	represents	the	average	of	the	log	odds	

ratios	between	two	SNPs	computed	from	synthetic	observations,	sampled	from	200	generative	

models	that	were	trained	on	different	random	sub-sets.	The	green	line	indicates	the	value	of	

the	theoretical	truth	according	to	the	data	generation	procedure	and	the	green	dots	indicate	

the	actual	values	for	the	log	odds	ratios	computed	from	the	training	set.	Red	arrows	indicate	

values	that	are	higher	/	lower	than	a	log	odds	ratio	of	1.5	/	-1.5.	
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Figure	3:	Exemplary	synthetic	observations	sampled	from	deep	generative	approaches.	

Random	examples	of	100	synthetic	observations	generated	by	trained	VAEs,	DBMs	and	GANs	

are	shown.	The	generative	models	were	trained	on	sub-sets	comprising	 ,	 	and	 	

simulated	observations.	We	always	used	the	last	state	in	the	training	process,	meaning	the	

samples	correspond	to	models	that	were	investigated	at	step	20	during	the	training	process	

(see	Figure	2).	Synthetic	observations	are	clustered	based	on	their	overall	similarity.	Black	

indicates	a	1	while	white	indicates	a	0.	
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Non-condi5onal seJng - SNP data from HLA-B locus 

In	order	to	evaluate	how	well	the	investigated	methods	learn	the	joint	distribution	of	SNPs	

in	real	data,	we	investigate	haplotypes	in	the	HLA-B	gene	locus	which	is	involved	in	immune	

responses	(https://ghr.nlm.nih.gov/gene/HLA-B).	We	use	the	1000	genomes	data	[12],	

comprising	5008	haplotypes	and	inspect	haplotypes	of	110	SNPs	(see	Supplementary	

Figure	5	for	haplotypes	and	pair-wise	log	odds	ratios).	As	for	the	simulated	data,	we	test,	

how	well	the	approaches	capture	the	pair-wise	log	odds	ratios,	i.e.	the	linkage	

disequillibrium	(LD)	pattern,	found	in	the	HLA-B	locus.	To	investigate	the	performance,	

conditional	on	the	size	of	the	training	data,	we	investigate	the	performance	on	subsets	of	

500,	1000	or	2000	randomly	selected	haplotypes.	Since	we	aim	at	mimicking	a	real	

biomedical	application,	we	do	not	investigate	the	learning	of	log	odds	ratios	over	multiple	

epochs	but	instead	tune	the	number	of	training	epochs	conditional	on	the	random	

initialization	of	the	network	parameters.	To	that	end	we	train	the	models	for	several	epochs	

(exact	numbers	are	provided	in	the	supplementary	material),	draw	1000	samples,	

i.e.	synthetic	data	from	the	trained	models,	20	times	during	training	and	compute	the	pair-

wise	log	odds	ratios	for	the	drawn	samples	and	test	data,	not	used	for	training	(36.8%	of	the	

5008	haplotypes).	We	then	investigate	the	mean	squared	error	(MSE),	i.e.	the	aggregated	

difference	between	the	log	odds	ratios	in	the	test	data	and	the	sampled,	synthetic	data,	and	

here	report	the	results	from	the	epoch	with	lowest	MSE.	

Compared	to	the	VAE	and	DBM,	the	GAN	performs	worse	in	capturing	the	rather	complex	

structure	in	the	HLA-B	locus.	This	is	reblected	in	a	comparably	worse	MSE	(Figure	4),	

observable	on	the	level	of	individual	log	odds	ratios	(Figure	5)	and	sampled	haplotypes	

(Supplementary	Figure	6),	especially	at	the	lower	sample	sizes	of	 	and	 	haplotypes.	

Even	at	 	haplotypes	used	to	train	the	GAN,	a	large	amount	of	log	odds	ratios	are	not	

well	learned.	

In	contrast,	the	VAE	and	the	DBM	perform	much	better.	However,	as	observed	for	the	

simulated	non-conditional	data,	the	VAE	strongly	under-estimates	the	log	odds	ratios	and	

shows	no	large	improvement	with	an	increased	amount	of	training	data.	The	DBM	benebits	

from	increased	training	data	size	and	overall	delivers	the	best	results	on	the	level	of	MSE	
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(Figure	4)	and	the	visually	graded	log	odds	ratio	pattern	(Figure	5)	as	well	as	the	generated	

synthetic	haplotypes	(Supplementary	Figure	6).	

	

Figure	4:	Differences	between	log	odds	ratios	computed	from	synthetic	data	and	log	odds	

ratios	computed	from	real	HLA-B	data.	Figure	shows	the	mean	squared	error	(MSE)	between	

pair-wise	log	odds	ratios	computed	from	synthetic	observations,	sampled	from	VAEs,	DBMs	

and	GANs	trained	with	 ,	 	and	 	haplotypes	(samples)	and	log	odds	ratios	

computed	from	36.8%	of	the	5008	haplotypes,	not	used	for	training	(test).	The	shown	

variation	is	due	to	10	randomly	drawn	sub-sets	from	in	total	5008	available	haplotypes	and	

different	random	initializations	of	the	model	parameters.	
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Figure	5:	Learned	pair-wise	log	odds	ratios	in	the	HLA-B	data.	Figure	shows	pair-wise	log	odds	

ratios	computed	from	1000	synthetic	observations,	sampled	from	VAEs,	DBMs	and	GANs	

trained	with	 ,	 	and	 	haplotypes.	Log	odds	ratios	computed	from	36.8%	of	the	

5008	real	haplotypes,	not	used	for	training,	are	shown	in	the	lower	triangular	of	each	log	odds	

ratio	matrix	for	sake	of	comparison.	Red	indicates	positive	log	odds	ratios	while	blue	indicates	

negative	log	odds	ratios.	
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Condi5onal seJng - Simulated data 

We	investigate	how	well	GANs,	specibically	cGANs,	and	DBMs	can	infer	the	binary	expression	

level	of	genes,	conditional	on	the	allelic	variants	of	SNPs,	where	one	allele	affects	a	gene	to	

be	highly	expressed	and	vice	versa.	

Similar	to	the	non-conditional	setting,	we	again	train	DBMs	and	cGANs	with	sub-samples	of	

in	total	 	observations	and	investigate	the	log	odds	ratios.	As	described	in	the	

methods	section	and	shown	on	Supplementary	Figure	1,	we	investigate	the	log	odds	ratios	

in	an	information	carrying	block,	where	there	is	a	dependency	between	the	SNP	status	and	

gene	expression	signal	and	in	a	non-information	carrying	block,	lacking	the	dependency.	In	

contrast	to	the	non-conditional	setting,	the	blocks	do	here	relate	to	sub-sets	of	observations.	

In	50%	of	the	observations,	there	is	a	dependency	between	the	birst	10	gene	expression	

signals	and	the	SNP	status	while	this	signal	is	absent	in	the	remainder.	

As	in	the	non-conditional	experiments,	the	cGAN	has	problems	in	picking	up	the	signal	in	

the	information	carrying	block	with	lower	amount	of	training	data	(Figure	6).	However,	

with	increased	sample	size,	the	results	largely	improve.	The	cGAN	learns	the	distribution	of	

log	odds	ratios	in	the	non-information	carrying	block	well	(Supplementary	Figure	7).	Still,	

the	synthetic	observations,	sampled	from	the	DBM,	do	better	reblect	the	correlation	

between	SNP	status	and	gene	expression	levels.	This	is	also	visible	on	the	level	of	samples	of	

the	gene	expression	data	conditional	on	the	SNPs	(Figure	7).	While	both	architectures	tend	

to	capture	the	signal	well	from	 	training	observations	onwards,	cGAN	tends	to	learn	

artifacts	in	the	noise	variables	(see	Figure	7).	

In	contrast	to	the	non-conditional	simulated	scenario	(Supplementary	Figure	4),	we	observe	

no	variability	in	the	modeling	performance	for	different	data-sets	in	the	conditional	setting	

(Supplementary	Figure	8).	
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Figure	6:	Log	odds	ratios	between	genes	and	the	states	of	SNPs	in	the	information	carrying	

block,	computed	during	the	training	of	DBMs	and	cGANs.	DBMs	and	cGANs	were	trained	on	

,	 	and	 	observations	of	simulated	binary	gene	expression	data,	comprising	the	

expression	level	of	50	genes.	The	same	number	of	observations	is	provided	for	simulated	SNP	

haplotype	data,	comprising	10	SNPs.	Log	odds	ratios	between	SNPs	and	the	affected	genes,	

i.e.	between	 	and	 ,	 	and	 	and	so	on,	are	calculated	 	times	during	

training.	The	green	line	shows	the	value	of	the	theoretical	truth	according	to	the	data	

generation	procedure	and	the	last	entry	of	green	dots	shows	the	actual	values	of	the	training	

set.	
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Figure	7:	Synthetic	gene	expression	observations,	sampled	from	trained	DBMs	and	cGANs.	

DBMs	and	cGANs	were	trained	on	 ,	 	and	 	observations	of	simulated	binary	gene	

expression	data,	comprising	the	expression	level	of	50	genes.	The	same	number	of	observations	

is	provided	for	simulated	SNP	haplotype	data,	comprising	10	SNPs.	Synthetic	observations	are	

generated	by	sampling	the	states	of	visual	units	representing	the	gene	expression	data,	

conditional	on	the	states	of	the	SNPs	(DBM)	or	by	propagating	the	activity	of	10	randomly	

initialized	noise	variables	together	with	the	states	of	the	10	SNPs	to	the	generator	network	

and	sampling	from	the	units,	representing	the	observed	variables	(cGAN).	Synthetic	

observations	are	grouped	based	on	their	overall	similarity	by	k-means	clustering.	Black	

indicates	a	1	while	white	indicates	a	0.	
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Discussion and Conclusions 

We	evaluated	how	well	the	joint	distribution	of	binary	data	can	be	learnt	by	frequently	

employed	deep	generative	modeling	approaches,	specibically	VAEs,	DBMs	and	GANs.	We	

compared	the	approaches	with	a	robust	external	measure,	specibically	the	difference	

between	the	pair-wise	log	odds	ratios	computed	from	the	empirical	data,	and	the	pair-wise	

log	odds	ratios	computed	from	synthetic	data,	sampled	from	the	models.	We	investigated	

the	performance	of	the	approaches	with	simulated	data	as	well	as	real	SNP	data.	

We	observe,	that	DBMs	generally	learn	the	joint	distribution	of	the	simulated	and	real	data	

well.	While	VAEs	capture	a	signal	even	at	a	very	small	sample	size,	they	fail	in	generating	

data	that	are	visually	similar	to	the	training	data.	This	is	most	likely	due	to	their	under-

estimation	of	the	strength	of	the	signal	in	the	data.	Finally,	given	the	investigated	data,	GANs	

are	only	capable	to	learn	rather	simple	patterns	at	a	rather	large	number	of	observations,	

used	for	training.	We	observe	generally	better	results	for	the	GAN	in	the	conditional	setting	

(cGAN).	An	explanation	is,	that	the	training	objective	is	simplibied	by	providing	more	

information	during	training.	This	should	result	in	a	reduced	parameter	space	which	has	to	

be	explored.	Another	explanation	is,	that	the	signal	was	stronger	in	this	scenario,	compared	

with	the	non-conditional	investigation.	

There	are	two	potential	reasons,	why	DBMs	perform	better	compared	to	GANs	at	rather	

small	sample	sizes	and,	compared	to	VAEs,	generally	better	learn	the	magnitude	of	the	

signal.	First,	compared	to	DBMs,	VAEs	and	GANs	require	to	learn	more	parameters	since	

they	rely	on	feed-forward	networks	(see	Figure	1).	The	second	reason	is	related	to	the	

regularization	which	is	applied	during	parameter	optimization.	In	the	VAE,	we	regularize	

the	parameter	updates	by	the	Kullback-Leibler	divergence	between	the	Gaussian	prior	and	

the	learnt	latent	posterior	distribution.	Here	we	have	to	a	priori	debine	the	family	of	the	

distribution	we	assume	for	approximating	the	latent	representation.	Although	being	a	

reasonable	choice	in	many	applications,	the	employed	normal	distribution	might	not	be	

appropriate	for	binary	SNP	data.	In	the	DBM,	on	the	other	hand,	we	directly	model	the	

distribution	of	an	observed	binary	variable,	conditional	on	the	distribution	of	other	binary	

variables.	Here	the	regularization	is	implicitly	achieved	by	sampling	from	the	joint	

distribution	of	observed	and	latent	variables	during	training.	In	fact,	it	is	known	that	MCMC	
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techniques,	as	employed	in	the	DBM,	can	generate	asymptotically	exact	samples	in	contrast	

to	variational	techniques,	as	employed	in	the	VAE	[26].	In	contrast,	in	the	GAN,	we	do	not	

have	an	intrinsic	regularizer	as	in	the	DBM	or	the	VAE.	Instead	regularizers	and	other	

hyper-parameters	have	to	be	carefully	selected	and	this	is	not	trivial,	resulting	in	a	

performance,	highly	dependent	on	the	employed	method	used	for	regularization	[27].	

The	focus	of	this	work	is	on	the	comparison	of	the	three	approaches	in	a	small	data	setting	

close	to	real-life	applications.	We	intended	to	simulate	the	scenario,	in	which	a	data	scientist	

would	try	out	the	approaches	using	default	settings,	as	it	is	usually	the	case	with	other	

applied	biostatistics	/	bioinformatics	methods.	Consequently,	all	models	were	implemented	

“out	of	the	box”.	We	intended	to	avoid	intensive	hyper-parameter	tuning	and	employed	

rather	simple	neural	network	architectures.	Thus	results	therefore	might	not	show	the	full	

potential	of	the	models.	However,	due	to	the	poor	performance	of	the	GAN,	we	investigated	

several	variants	of	GANs	such	as	the	Wasserstein	GAN	[28]	but	this	did	not	result	in	

considerably	better	performance.	

With	respect	to	our	evaluation	criterion,	the	pair-wise	log	odds	ratio,	one	might	argue,	a	

limitation	of	our	measure	is,	that	more	complex	properties	of	the	distributions	are	not	

captured.	However	we	think	that	the	pair-wise	statistics	do	at	least	provide	a	lower	bound	

for	the	quality	of	the	learnt	distribution,	i.e.	an	approach	that	does	not	perform	well	here	

also	won’t	capture	more	complex	structure.	In	fact,	already	this	rather	simple	measure	was	

generally	in	concordance	with	the	subjective	visual	quality	of	samples.	For	instance	the	

under-estimation	of	log	odds	ratios	by	the	VAE	(Figure	2)	was	also	clearly	observable	in	

terms	of	an	absence	of	visually	clearly	identibiable	patterns	in	the	synthetic	data	(Figure	3).	

Thus,	the	results	provide	also	more	general	guidance	of	the	use	of	deep	generative	

approaches	with	categorical	omics	data.	
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7.	Rampášek	L,	Hidru	D,	Smirnov	P,	et	al.	Dr.	VAE:	Improving	drug	response	prediction	via	

modeling	of	drug	perturbation	effects.	Bioinformatics	2019;	35:3743–3751	

8.	Hess	M,	Lenz	S,	Blätte	TJ,	et	al.	Partitioned	learning	of	deep	Boltzmann	machines	for	SNP	

data.	Bioinformatics	2017;	33:3173–3180	

9.	Eraslan	G,	Simon	LM,	Mircea	M,	et	al.	Single-cell	RNA-Seq	denoising	using	a	deep	count	

autoencoder.	Nature	communications	2019;	10:1–14	

10.	Eraslan	G,	Avsec	Zx ,	Gagneur	J,	et	al.	Deep	learning:	New	computational	modelling	

techniques	for	genomics.	Nature	Reviews	Genetics	2019;	20:389–403	

11.	Choi	E,	Biswal	S,	Malin	B,	et	al.	Generating	multi-label	discrete	patient	records	using	

generative	adversarial	networks.	arXiv	preprint	arXiv:1703.06490	2017;		

12.	Sudmant	PH,	Rausch	T,	Gardner	EJ,	et	al.	An	integrated	map	of	structural	variation	in	

2,504	human	genomes.	Nature	2015;	526:75	

13.	Theis	L,	Oord	A	van	den,	Bethge	M.	A	note	on	the	evaluation	of	generative	models.	arXiv	

preprint	arXiv:1511.01844	2015;		

14.	Wang	X,	Ghasedi	Dizaji	K,	Huang	H.	Conditional	generative	adversarial	network	for	gene	

expression	inference.	Bioinformatics	2018;	34:i603–i611	

27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147058


15.	Isola	P,	Zhu	J-Y,	Zhou	T,	et	al.	Image-to-image	translation	with	conditional	adversarial	

networks.	Proceedings	of	the	ieee	conference	on	computer	vision	and	pattern	recognition	

2017;	1125–1134	

16.	Mirza	M,	Osindero	S.	Conditional	generative	adversarial	nets.	arXiv	preprint	

arXiv:1411.1784	2014;		

17.	Gauthier	J.	Conditional	generative	adversarial	nets	for	convolutional	face	generation.	

Class	Project	for	Stanford	CS231N:	Convolutional	Neural	Networks	for	Visual	Recognition,	

Winter	semester	2014;	2014:2	

18.	Ackley	DH,	Hinton	GE,	Sejnowski	TJ.	A	learning	algorithm	for	Boltzmann	machines.	

Cognitive	science	1985;	9:147–169	

19.	Salakhutdinov	R,	Mnih	A,	Hinton	G.	Restricted	Boltzmann	machines	for	collaborative	

biltering.	Proceedings	of	the	24th	international	conference	on	machine	learning	2007;	791–

798	

20.	Abadi	M,	Barham	P,	Chen	J,	et	al.	TensorFlow:	A	system	for	large-scale	machine	learning.	

12th	 usenix 	symposium	on	operating	systems	design	and	implementation	( osdi 	16)	

2016;	265–283	

21.	Innes	M.	Flux:	Elegant	machine	learning	with	Julia.	Journal	of	Open	Source	Software	

2018;	3:602	

22.	Bezanson	J,	Edelman	A,	Karpinski	S,	et	al.	Julia:	A	fresh	approach	to	numerical	

computing.	SIAM	review	2017;	59:65–98	

23.	Lenz	S,	Hess	M,	Binder	H.	Unsupervised	deep	learning	on	biomedical	data	with	

BoltzmannMachines.jl.	bioRxiv	2019;	578252	

24.	Snoke	J,	Raab	GM,	Nowok	B,	et	al.	General	and	specibic	utility	measures	for	synthetic	

data.	Journal	of	the	Royal	Statistical	Society:	Series	A	(Statistics	in	Society)	2018;	181:663–

688	

25.	Bland	JM,	Altman	DG.	The	odds	ratio.	BMJ	2000;	320:1468	

26.	Blei	DM,	Kucukelbir	A,	McAuliffe	JD.	Variational	inference:	A	review	for	statisticians.	

Journal	of	the	American	statistical	Association	2017;	112:859–877	

27.	Lucic	M,	Kurach	K,	Michalski	M,	et	al.	Are	GANs	created	equal?	A	large-scale	study.	

Advances	in	neural	information	processing	systems	2018;	700–709	

{ } { }

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147058


28.	Arjovsky	M,	Chintala	S,	Bottou	L.	Wasserstein	GAN.	arXiv	preprint	arXiv:1701.07875	

2017;	

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147058

	Abstract
	General Background
	Deep generative models
	Variational autoencoder (VAEs)
	Generative Adversarial Networks (GANs)
	Deep Boltzmann Machines (DBMs)

	Material and Methods
	Simulated SNP Data
	1000 genomes SNP data
	Training of deep generative models
	Sampling from deep generative approaches
	Evaluation of deep generative approaches

	Results
	Non-conditional setting - simulated data
	Non-conditional setting - SNP data from HLA-B locus
	Conditional setting - Simulated data

	Discussion and Conclusions
	Funding
	Bibliography

