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Metagenomics data provides rich information for the detection of foodborne pathogens from

food and environmental samples that are mixed with complex background bacteria strains.

While pathogen detection from metagenomic sequencing data has become an activity of in-

creasing interest, shotgun sequencing of uncultured food samples typically produces data

that contains reads from many different organisms, making accurate strain typing a chal-

lenging task. Particularly, as many pathogens may contain a common set of genes that are

highly similar to those from normal bacteria in food samples, traditional strain-level abun-

dance profiling approaches do not perform well at detecting pathogens of very low abun-

dance levels. To overcome this limitation, we propose an abundance correction method based

on species-specific genomic regions to achieve high sensitivity and high specificity in target

pathogen detection at low abundance.
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1 Introduction

Foodborne diseases present a notable threaten to global food safety and public health in both de-

veloped and developing countries. Every year, food contaminated with pathogens cause approxi-

mately 48 million people diseases, 128,000 hospitalizations and 3,000 deaths in the U.S.A. (www.

producesafetyproject.org). The total economic burden may exceed $152 billion per year, including

$39 billion due to the contamination of fresh and processed food1. Globally, nearly a quarter of the

population is at high risk for foodborne diseases nowadays2.

Generally, foodborne diseases are associated with the consumption of raw or undercooked

food contaminated with pathogens or their toxins. In clinical decision-making associated with

foodborne diseases, the delay in diagnosis often leads to delayed treatment or inappropriate an-

tibiotic use. In large-scale foodborne disease outbreaks, delay in detecting the specific pathogenic

sources could result in an increase in the incidence and spread of disease through communities

and increased mortality rates. Therefore, the ability to rapidly and accurately identify foodborne

pathogens is essential to ensure food supply safety and to minimize the impact of foodborne ill-

nesses on public health.

Conventionally, culture-based methods have been used for routine clinical diagnostic and

detection of foodborne pathogens where microorganisms are cultured on agar plates, followed by

standard biochemical identifications using plating techniques, bioluminescence, flow cytometry,

MALDI mass spectroscopy, DEFT, and impedimetric immunoassays, etc3, 4. Those methods are

known to be time-consuming and laborious. Culture-based methods require two to three days for
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initial identification and more than a week for confirmation of the pathogen species in the cultured

samples5. In addition, since successful detection of pathogens using culture-based methods de-

pends on the ability of the target microorganisms to grow in the culture media, sensitivity of these

methods may be limited as false negative results could occur when viable but non-culturable cells

are present6. For these reasons, traditional culture-based methods are increasingly being perceived

as insufficient to meet the demands of rapid food testing and significant efforts have been invested

in developing methods that are able to identify the source of foodborne diseases more accurately,

more rapidly, and at lower-cost.

To speed up the pathogen detection procedure, culture-independent approaches based on

quantitative polymerase chain reaction (PCR) amplification have been developed7. Compared

to culture-based methods, PCR is faster and is able to provide real-time detection of foodborne

pathogens and toxins with high sensitivity and selectivity even in the absence of a selective en-

richment medium8. However, as PCR-based methods depend heavily on the amplification of

preselected target-specific sequences, it is challenging for these methods to balance between the

coverage and resolution in a single panel for closely related organisms isolated from food or envi-

ronmental samples, which can be crucial to identify the right clusters for action.

With the progress of the next generation sequencing (NGS) technology and its decreasing

cost, shotgun metagenomics sequencing has been rapidly adopted as the ultimate tool for microbial

profiling9, 10. By performing genome sequencing on genetic material directly collected from food

or environmental samples, shotgun sequencing serves as an essential tool to gain full understanding
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on what pathogens are present and how they impact the food samples or environments around them,

and provides the potential to deliver pathogen detection results at unprecedented speed, sensitivity

and resolution.

Despite the unique advantages of high-throughput metagenomic sequencing technologies,

exploring these new data for rapid species identification and strain attribution remains a big chal-

lenge due to the large volume of data produced from the sequencing machines. In addition, the

taxonomic diversity within the same species and the genomic similarity among different species

further complicate the problem. Numerous metagenomic algorithms have been developed to tackle

the data processing challenges of metagenomic NGS data. Among them, k-mer based algorithms,

e.g., Kraken11, KrakenUniq12, Seed-Kraken13, CLARK14 and One Codex15, were proposed, which

compare k-mers of metagenomic reads with those of organisms representing a wide range of clades

to achieve fast and accurate taxonomic classification. Other than k-mers, clade-specific marker

genes-based algorithms such as MetaPhlAn216 and AMPHORA217 were developed, where taxo-

nomic classification is inferred from phylogenetic distances to these marker genes. Finally, read

mapping-based approaches, including MEGAN18, Kaiju19, PathoScope20 and Sigma21, infer the

taxonomic composition of a sample by aligning metagenomic reads against a known database of

reference genomes. To provide accurate discrimination between closely related strains of the same

species in metagenomic samples, statistical models are typically involved in these approaches to

assign or reassign a metagenomic read to its most likely originating genome if it could be aligned

to multiple genomes.
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In spite of the progress in metagenomic data processing algorithms, there is still much room

for improvements toward the application of metagenomic sequencing in fast detection of target

pathogenic microbes at low abundance, where false positives due to genomic similarity among

strains of dominant and nondominant species remain a substantial challenge to existing algorithms.

In this paper, we present Snipe (SeNsItive Pathogen dEtection), a pipeline for improving the ability

of existing strain-typing tools to detect common pathogens from contaminated food samples at

low abundances. Snipe is based on the concept of species-specific regions (SSRs), which are

unique genomic segments that can only be found in the genomes from specific species22. In this

pipeline, the abundance of pathogens at strain level is first estimated through a read mapping-

based approach, such as Pathoscope, to map the raw metagenomic reads to a reference database

that contains the genomes of a set of selected pathogens of interest. After that, the raw reads

are further aligned to a panel of SSRs of the target pathogens, and the a posteriori probability of

whether a particular strain is present in the test sample is calculated based on the observed number

of the reads aligned to its respective SSR. The estimated abundance is then statistically rectified

based on the a posteriori probability. In this way, false positives due to reads misaligned to strains

absent in the samples are strongly suppressed, leading to better pathogen detection performance at

low abundance levels.

We compared the performance of the Snipe pipeline when it is integrated with PathoScope223

with three other strain-typing tools including PathoScope2, Kraken224, and Sigma21 using both

simulated and real-world metagenomic data with pathogen spike-in. The proposed approach out-

performed other methods in terms of sensitivity to the target pathogens under a preset false dis-
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covery rate (FDR) at both species and strain levels. Importantly, with the proposed SSR-based

abundance correction method, the proposed approach can detect target pathogen at a relative abun-

dance of 0.01% or less whereas all other methods tested fail at this abundance level. An early

version of this approach25 was used by us in participating the precisionFDA CFSAN Pathogen

Detection Challenge organized by the Food and Drug Administration Center for Food Safety and

Applied Nutrition (FDA CFSAN). The goal of the challenge is to identify and type low abundance

Salmonella in naturally and in silico contaminated samples. Our submission took the lead in strain

identification performance and received the highest scores in seven out of eight evaluation tests in

this challenge (https://precision.fda.gov/challenges/2/view/results).

2 Materials and Methods

Overview Snipe is designed to enable highly sensitive detection of a predefined set of target

pathogens from shotgun metagenomic samples (Fig. 3). To achieve this goal, the Snipe pipeline

starts with a traditional strain profiling tool such as PathoScope2 to obtain a preliminary abundance

estimation of the target pathogens at both species and strain levels. After that, the metagenomic

reads are further aligned to the SSRs of different species, and the numbers of reads aligned to

SSRs of each species are input to a Bayesian framework to determine the a posteriori probabilities

of the presence of target pathogen species in the metagenomic sample. Finally, the preliminary

abundance estimations are rectified based on the a posteriori probabilities (Methods). Through

this process, erroneous high abundance estimations of nonexisting species in the original sample

due to misassigned metagenomic reads will be suppressed, leading to better pathogen detection
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results.

Genome database construction. We created a reference database containing 2,951 complete

genomes of ten selected target pathogen species, which were downloaded from NCBI RefSeq26

(retrieved in February 2020; total fasta file size 12 GB). The numbers of genomes for these ten

species downloaded from NCBI database were 1028, 836, 534, 201, 174, 63, 55, 29, 18 and 13,

respectively (Supplementary Fig. S1). This reference database was used in Snipe, PathoScope2,

Sigma, and Kraken2 in our evaluation. The Snipe’s ‘bowtie2-build’ module, PathoScope2’s ‘Path-

oMap’ module, the Kraken2’s ‘kraken2-build’ module, and Sigma’s ‘sigma-index-genomes’ mod-

ule were used for indexing the reference genomes for these four methods, respectively, all using

default parameters.

Furthermore, as PathoScope2 supports the usage of a filter database to remove reads from

uninterested strains in the strain profiling process, we constructed a filter database for PathoScope2,

which included approximately 13,481 bacterial genomes that were not from the 10 target species

obtained from NCBI RefSeq (retrieved in February 2020; total fasta file size 51 GB).

Generate species-specific genomic regions. The SSRs were identified for each target pathogen

species using the following filtering process22. Briefly, for each target species, the completed

genomes were fragmented into 1000 bp segments using Panseq27, which were subsequently clus-

tered using cd-hit v.4.628 to remove potential duplicates and paralogs using a 90% sequence iden-

tity threshold. For genomic segments that remained after deduplication, we used the online NCBI

BLAST29 tool to check if it is species-specific or if there exist similar sequences from other species.
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We first used megablast30 with “highly similar sequences” optimization, and searched the ge-

nomic segment with bacteria (taxid 2) but excluded the target species itself. We then discarded

genomic segments which have no less than 80% identity to bacteria genomes excluding the target

species. The second round of filtering was performed using the NCBI blastn tool with “some-

what similar sequences” optimization. The expected threshold was set to 0.001 and the word size

was set to eleven to tradeoff between query sensitivity and speed. Again, the remaining genomic

segments were searched against bacteria while excluded the target species itself. Genomic seg-

ments that have no less than 80% identity to bacteria genomes excluding the target species were

discarded. The third round is similar to the second one, except that we only excluded the sub-

species (if subspecies exist) of the target pathogen when using blastn. This further enhances the

specificity of the selected regions at subspecies level. For each species, the identified SSRs were

used as contigs to construct a pseudo SSR genome which was further used as the reference genome

for SSR read identification in Snipe.

Abundance estimation with SSR-based rectification. For abundance rectification, the metage-

nomic reads are first aligned to the SSRs using Bowtie2 (v2.3.4.3) with default settings. Note that

end-to-end alignment is performed by default in Bowtie2 (--ma 0). The sum of the numbers

of reads aligned to each SSR with editing distance less than or equal to 2 is recorded as the total

number of SSR reads. To increase the specificity of the algorithm, only reads with read length

larger than or equal to 50 basepairs (bp) are counted.

We followed the Bayesian inference to calculate the a posteriori probability of alternative to
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null hypothesis (H1) that the target pathogen is present in the metagenomic sample based on the

total number of observed reads aligned to SSRs. Formally, the a posteriori probability of H1 can

be calculated as:

P (H1|r) =
P (r|H1)P (H1)

P (r|H1)P (H1) + P (r|H0)P (H0)
, (2.1)

where r is the number of reads aligned to SSRs, P (r|H1) denotes the probability of observed r

SSRs reads givenH1. H0 is the null hypothesis that the target pathogen is not present in the sample,

and P (r|H0) is thus the probability that all the reads that mapped to SSRs are misalignments due

to mistakes such as sequencing error. P (H0) and P (H1) denote the a priori probabilities of both

hypotheses.

If we further assume that each read from the metagenomic sample is an independent trial

with probabilities p0 and p1 to be aligned to SSRs under hypothesis H0 and H1 respectively, the

conditional probabilities P (r|H0) and P (r|H1) are binominal with parameters p0 and p1. In this

case we have:

P (H1|r) =
pr1(1− p1)n−rP (H1)

pr1(1− p1)n−rP (H1) + pr0(1− p0)n−rP (H0)

=
1

1 +
(

P0

P1

)r (
1−P0

1−P1

)n−r
P (H0)
P (H1)

=
1

1 + Lprλ(n, r)
,

(2.2)

where n is the total number of reads from the sample, L , P (H0)/P (H1) is the likelihood ratio

of the a priori probabilities P (H0) and P (H1), p , p0/p1, and

λ(n, r) ,

(
1− p0
1− p1

)n−r

. (2.3)
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After that, the relative abundance estimations αi of strain i is rectified with the a posteriori

probability P (H1|r) of the target species of strain i, resulting in the SSRs adjusted abundance

estimation α′i as:

α′i = P (H1|r)αi. (2.4)

As αi = 0 under the null hypothesis, α′i is thus the expected abundance after adjusted for additional

observation of reads aligned to SSRs. In our experiment, we selected p0 = 5e − 10 and p1 =

2.2e− 5, which gave reasonable performance in our tests.

Evaluation datasets. To create the in silico simulated metagenomics datasets for evaluation, we

first identified a set of highly confusing microbials that were closely similar to but were not from

the target pathogens. To this end, we randomly selected a reference genome from each target

pathogen species, and then generated a set of 0.1 million paired-end reads of 150 bp from it using

wgsim31 with 0.1% of mutation rate and 15% of indel fraction. The simulated reads were mapped

to a subset of the NCBI’s nucleotide database (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nt.gz) using

Kallisto32 to identify microbials that are highly similar to the selected pathogen. The top 57 most

similar microbials to different target pathogen species were then combined to form a set of highly

confusing background microbials. We then randomly selected a collection of ten strains from this

combined set as the background strains. Similarly, we randomly selected a collection of ten strains,

one from each target pathogen species, as the foreground strains.

Once the foreground and background strains were selected, we generated paired-end raw

reads of 150 bp from their reference genomes using wgsim with 0.1% of mutation rate and 15%
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of indel fraction, and mixed the generated reads according to the desired spike-in abundance levels

(0.01% - 10%) and sequencing depths (15 Mb to 1,500 Mb) to create the simulated metagenomic

data. Here, the spike-in abundance level is defined as the ratio of the number of reads from the

target pathogen to the total number of reads. Note that all the ten background strains were used

in generating the metagenomic samples with equal abundance percentages. The strain and species

composition in each in silico mixed metagenomic data was shown in Supplementary Fig. S11.

Finally, the metagenomic raw read data used in the precisionFDA CFSAN Pathogen Detec-

tion Challenge were downloaded from (https://precision.fda.gov/challenges/2/view). The quality

of the downloaded data was assessed using fastp (v.0.19.4; http://opengene.org/fastp/fastp), and

the reads were trimmed with fastp options (-f 15 -F 15) and (--cut by quality 3) to

remove low quality nucleotide bases at both ends of the reads.

Comparison to existing strain-typing tools. We compared the Snipe pipeline to PathoScope223,

Kraken224, and Sigma21. PathoScope2 is a complete bioinformatics framework for quantifying

the proportions of reads from individual microbial strains present in metagenomic sequencing

data from environmental or clinical samples. A penalized statistical mixture model reassigns all

ambiguous reads to the most probable source genome in the library. Sigma uses a short-read align-

ment algorithm, Bowtie233, to align all metagenomic reads to every reference genome. Kraken2,

a newer version of Kraken, is a taxonomic classification system that relies on exact matches of

k-mers to the lowest common ancestor (LCA) of all genomes to achieve high accuracy and fast

classification speeds. Default settings as suggested by the respective user manuals were applied
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when using these tools in our experiment. Abundance estimates for PathoScope2, Kraken2 and

Sigma were computed from the proportion of individual reads to the total number of reads in the

sample. For Snipe, the initial strain abundances were estimated using PathoScope2 with the same

settings, which were further rectified based on SSR alignment results as described previously to

obtain the final abundance estimation. The maximum abundances of all the strains from a particu-

lar species was taken as the estimated abundance of that species. The same reference database as

described previously was used in all tools in the experiment.

We compared the performance of different tools at both strain and species levels. Here,

“strain-level” accuracy is technically defined as correct pathogen identification at genome resolu-

tion. A particular pathogen detection is counted as correct at strain-level resolution if and only

if the estimated abundance of its correct genome-of-origin, which is known a priori for simulated

data or provided by data owners for external validation data, is above the detection cutoff threshold.

Similarly, “species-level” accuracy is defined as correct pathogen identification at species node. A

particular pathogen detection is counted as correct at species-level resolution if and only if the

estimated abundances of one or more genomes attached to the same species node in the NCBI

taxonomy as the correct genome-of-origin are above the detection cutoff threshold.

3 Result

SSR of common foodborne pathogens. We examined the pan-genomes of ten common food-

borne pathogen species34 (Supplementary Fig. S1) and identified genomic regions of 1000 bp that
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are unique to each specific species as its SSRs (Methods). The number of SSRs of different species

vary from the highest 2377 SSRs in Clostridium perfringens to the lowest 98 SSRs in Escherichia

coli (Fig. 1a). Considering the SSR coverage ratio, which refers to the ratio between the total length

of SSRs in a species and its median reference genome length, Escherichia coli has the lowest SSR

coverage ratio with only 1.91% of its whole genome being unique and Clostridium perfringens has

the highest coverage ratio (69.65%). The coverage ratios of SSRs range from 3.1% to 27.76% for

the other species.

To further understand the distribution of SSRs within each species, we analyzed the distribu-

tion of SSRs among different strains of that species. Fig. 1b shows the rather steep distributions of

SSRs among different strain genomes from the same pathogen species. For most species, a signif-

icant portion of genomes contain 90% or more SSRs of the total SSRs of that species, and only a

small number of genomes contain significantly less SSRs than other genomes. The only exception

is Escherichia coli, where only a small number of genomes contain significantly more SSRs com-

pared to the remaining genomes. We further analyzed the phylogeny of each species based on the

presence or absence of SSRs in individual strain genomes. Fig. 1c shows the distribution of SSRs

in 4939 genomes from different serovar types of Salmonella enterica as an example. The genomes

for most of the serovar types in Salmonella enterica contain a significant number of SSRs. Strains

containing small numbers of SSRs can be found mostly in the cluster located in the middle part

of the figure. The corresponding serotypes of those strains are either not available or unknown,

suggesting the possibilities of database labeling errors or incomplete genomes for those genomes.

Similar results can be observed in the distribution of SSRs in other species as well (Supplementary
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Fig. S2 to Fig. S10).

Pathogen detection at extremely low abundance levels with SSR-based abundance rectifica-

tion. First, we evaluated the ability of existing strain profiling tools to identify target pathogens

at low abundance from metagenomics data. To this end, we used ten simulated raw metage-

nomics sequencing data spiked with a different known foodborne pathogen at relative abundance

of 0.01% (Methods). We then studied the number of reads being correctly attributed to the spike-in

pathogens at strain and species levels for three existing tools, namely, PathoScope2, Sigma, and

Kraken2. A database of 2,951 complete genomes, including genomes of the spike-in pathogens,

was used as the reference strain database in all tools (Methods).

All the three tools were able to assign reads to the correct spike-in pathogen at species level

at this low abundance (Fig. 2). PathoScope2 achieved the highest sensitivity and assigned more

reads compared to Kraken2 and Sigma. At the strain level, PathoScope2 assigned reads to the

correct spike-in pathogen strain in eight out of the ten samples, while Sigma only assigned reads to

the correct spike-in pathogen strain in two samples. However, for all the three tools, a significant

amount of reads were mistakenly assigned to decoy genomes that were not present in the metage-

nomic data (Fig. 2). In fact, in most cases, the highest read count from decoy genomes was even

significantly higher than that of the correct spike-in pathogen. Therefore, it is very challenging for

those tools to correctly identify the spike-in pathogens at low abundance levels due to high amount

of false positive read assignments.

We further performed a posteriori probabilities assisted abundance rectification (Methods)
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on results from Pathoscope2 (the Snipe pipeline). It can be seen that the rectification step success-

fully reduced the number of misassigned reads while kept the number of correctly assigned reads

intact in most cases (Fig. 2), indicating a better chance to correctly identify the target pathogens

for strain-typing tools with the proposed abundance rectification method.

Performance evaluation on simulated metagenomic datasets. To further evaluate the pathogen

detection performance of Snipe, we created a set of 200 simulated metagenomic samples with

spike-in’s from ten common foodborne pathogen species at different relative abundance levels and

sequencing depths (Methods). We then profiled these samples with PathoScope2, Kraken2, Sigma

and Snipe, and evaluated their sensitivity in terms of correctly identifying the spike-in pathogens at

both species and strain levels. A pathogen was considered to be positively identified if its estimated

abundance is above the cutoff threshold, which was determined individually for each method based

on the estimated abundances of decoy species/strains on the simulated dataset such that the FDR

on simulated dataset is lower than a preset threshold.

We compared the performance of Snipe versus other microbial profiling tools in identifying

the spike-in target pathogens at different relative spike-in abundance, ranging from 0.01% to 10%

(Fig. 4a). The result demonstrated superior sensitivity performance of Snipe at both species and

strain levels. Particularly, at the lowest abundance level of 0.01%, all the other methods failed to

identify almost all the spike-in pathogens, while Snipe was still able to correctly identify all the

spike-in pathogens at species level. In addition, for 60% of the simulated samples, Snipe correctly

identified the strains of the spike-in samples at the sequencing depth of 1,500 Mb. Note that as
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the number of reads captured by SSRs is proportional to the total number of reads of the spike-

in pathogens, the sensitivity performance of Snipe is dependent on the sequencing depth of the

metagenomic samples. As we reduced the sequencing depth to 15 Mb, the sensitivity of Snipe

reduced to 50% and 10% at species and strain levels, respectively. Furthermore, we noticed that

the sensitivity performance of Snipe saturated at a sequencing depth of 150 Mb. Other strain pro-

filing methods, such as PathoScope2, also benefit from increasing sequencing depth, but to a lesser

extent. At the highest spike-in abundance level of 10%, all the methods except Kraken2 correctly

identified all the spike-in pathogens at both species and strain levels, even at the lowest sequencing

depth of 15 Mb. We further broke down the pathogen identification results from different tools

according to different species (Fig. 4b-c). The most challenging species for Snipe in strain identi-

fication were Listeria monocytogenes and Escherichia coli, where correct strain identification was

achieved only at spike-in abundance of 1% or higher. For other species, Snipe showed excellent

performance even at the lowest spike-in abundance (0.01%).

As Snipe depends on reads from SSRs for target identification, we asked whether the cover-

age ratio of SSRs with respect to the whole genome size of a species affects the pathogen identifi-

cation capability of Snipe at low abundance. To this end, we plotted the sensitivity of Snipe with

respect to the coverage ratio of SSRs of different species (Fig. 5), which shows strong associations

between them when both the spike-in abundance and the total number of reads are low. In such

case, Clostridium perfringens, which has the highest coverage ratio of SSRs, also achieves the

highest sensitivity among all species. On the other hand, Escherichia coli and Listeria monocyto-

genes, which have SSRs coverage ratio of 1.91% and 5.28% respectively, are among the species

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.05.06.080580doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080580
http://creativecommons.org/licenses/by-nc-nd/4.0/


that showed worst sensitivity. This result is as expected because a larger ratio indicates that the

species is more distinguishable from other species, and hence easier to detect at low abundance.

Demonstration of Snipe on FDA pathogen dataset. We further assessed the performance of

Snipe on 24 samples of the precisionFDA-provided dataset available from the Pathogen Chal-

lenge (https://precision.fda.gov/challenges/2/). Among the 13 positive samples, five samples were

created synthetically by adding Salmonella reads to culture-negative samples and eight were real-

life samples contaminated with Salmonella. The cutoff values of all tools for detection were se-

lected based on an FDR smaller or equal 10% on our simulated set.

The identification results are shown in Fig. 6. It can be seen that Snipe successfully iden-

tified eleven positive samples at species level, and correctly identified seven positive samples at

strain level. Kraken2 achieved the second-best sensitivity performance on this dataset, and cor-

rectly identified eleven out of 13 samples at species level. Unfortunately, it failed to provide

any strain-level information on those positive samples. Sigma showed the worst performance

and only identified eight out of 13 samples at species level. PathoScope2 also correctly identi-

fied seven positive samples at strain level. However, it missed three cultured-positive samples at

species level. Interestingly, for sample C24 which has a relatively high Salmonella enterica abun-

dance as indicated by its high number of SSR reads, all the four tools identified the target strain

as Levine 15 instead of the groundtruth MOD1 SALC 120 strain although both strains exist in

the reference database. Similarly, sample C08 was identified as FL FLDACS-98213 by Patho-

Scope2, Sigma, and Snipe, instead of its groundtruth MOD1 SALC 120 strain. Further analysis
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showed that the MOD1 SALC 120 and the Levine 15 strains have an average nucleotide identity35

(ANI) of 99.98% between their genomes, and the MOD1 SALC 120 and the FL FLDACS-98213

strains have an ANI of 98.32%. Moreover, using Bowtie2 as aligner, we found that 642,709 reads

from C24 were uniquely aligned to Levine 15, while only 5,258 reads were uniquely aligned to

MOD1 SALC 120. For C08, 430,752 reads were uniquely aligned to FL FLDACS-98213, and

only 59 reads were uniquely aligned to MOD1 SALC 120. Therefore, it is possible that either

these two samples were mislabeled, or both strains co-existed in the original samples.

In the eleven negative samples from this dataset, Snipe labeled only one sample (C06) as

Salmonella enterica positive, which was less than PathoScope2 (four samples) and Kraken2 (ten

sample). Sample C06 contains certain amount of SSR reads of Salmonella enterica. Manual

inspection using Blast confirmed that those reads are highly specific to Salmonella enterica, indi-

cating that C06 may indeed has a very low abundance of Salmonella enterica. Only one sample

(C15) was correctly classified by all the four tools as Salmonella enterica negative.

Computing time. We evaluated the run time performance of different tools using three different

metagenomic samples of 0.1, 1 and 10 million reads (Fig. 7). For all methods, the experiment was

implemented on an Intel® Xeon(R) workstation with 40 CPU threads and 64 GB RAM. All tools

were tested with their default parameters and 32 CPU threads. For fairness, the same reference

database was used in all tools. Kraken2 is the fastest among all tools due to its direct mapping

from k-mers to the LCA of the genomes11. Compared to Kraken2, PathoScope2 and Sigma were

much slower as substantial CPU time was used to assign reads to genomes in the reference database
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through read alignment and statistical inference, which were computationally intensive but neces-

sary if one wishes to attribute each metagenomic read to its organism of origin at strain level.

Compared to other methods, Snipe pipeline adds an additional overhead of aligning reads to the

SSRs for abundance rectification using Bowtie2. Nevertheless, as the sizes of SSRs are signifi-

cantly smaller compared to those of the full genomes in the reference database, the overhead is

small.

4 Discussion

We presented a highly efficient and sensitive computational approach for detecting pathogens from

metagenomics data at very low abundance levels, where the associations of metagenomic reads

with target pathogens are difficult to be discovered due to reads misaligned to microbial strains

that are not present in the sample. Snipe effectively suppresses a significant portion of such noise

by rectifying the abundance estimations of target pathogens with their a posteriori probabilities

inferred from the number of reads captured in genome regions that are unique to these targets,

thus significantly increases the pathogen detection sensitivity without compromising the specificity

performance.

Note that Snipe, to some extent, resembles the concept of other nucleic acid detection based

methods, where specific nucleic acid targets are amplified or enriched by technologies such as

PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplifica-

tion (LAMP) or oligonucleotide DNA microarray for time-efficient and sensitive pathogen de-
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tection at low abundance7. Here, instead of restricting the detection to a list of limited number

of specific targets, we extensively analyzed the available pan-genomes from GenBank databases

maintained by the National Center for Biotechnology Information (NCBI) to identify a compre-

hensive set of specific genome regions of the target pathogens, which are then used in combina-

tion with shotgun metagenomic sequencing to enable unbiased detection of a broad spectrum of

pathogens at strain-level resolution and extremely low abundance levels. Thus, Snipe combines

the merits of both untargeted metagenomic NGS with target-based approaches to deliver the sensi-

tivity, resolution and coverage that are not simultaneously achievable for conventional approaches.

The proposed approach has limitations. First, the detection sensitivity of Snipe is bounded

by the availability of SSR reads from the metagenomic data. As the distribution of number of SSRs

of different strains from a same species can be highly unbalanced, e.g., in E. Coli, Snipe may be

biased towards strains with large number of SSRs. However, as illustrated in our experiments, such

unbalance is diminishing at high sequencing depth when a sufficient number of SSR reads from

target pathogens are available in the metagenomic sample. Another limitation of the proposed ap-

proach, as other mapping-based profiling approaches, is that previously uncharacterized pathogens

are difficult to detect. In addition, the specificity of Snipe may be affected by the database bias issue

as some genomic regions may be wrongly identified as SSRs if they highly overlapped with those

from underrepresented species in the current NCBI database. With the rapidly increasing number

of reference genomes being generated each year, including those from difficult-to-grow species

by using new cultivation methods, single-cell sequencing approaches or metagenomic assembly36,

successful application of the proposed approach in both clinical and laboratory setups is guaranteed
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for an increasing number of pathogens with highly diversified reference genomes available.

We demonstrated the excellent computational performance of Snipe on a set of foodborne

pathogens for both in silico mixed samples and real-life metagenomic samples. We anticipate that

this approach would complement existing strain-typing tools to extend their operability on target

pathogens at extremely low abundance levels with the novel concept of SSR-based abundance rec-

tification. This approach can be extended to include other types of pathogen or other application

scenarios such as infectious disease control, analysis of unpurified environmental samples for bio-

forensics and etc. Extending the Snipe pipeline to support broader applications thus remains an

important direction for future development.

Data availability. Publicly available datasets were analyzed in this study. This data can be found

from https://precision.fda.gov/challenges/2/view.

Code availability. The code is available at https://github.com/xmuyulab/Snipe.
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FIGURE LEGENDS

Fig. 1 | SSR of target pathogen species. a, The number of SSRs identified in ten species. Blue

line describes the coverage ratio of SSRs with respect to median total genome length. Yellow bar

shows the number of SSRs for each species. b, Comparison and analysis of the number of SSRs

for ten common foodborne pathogen species. Each dot represents a single genome, sorted by the

number of SSRs identified from that genome. c, The phylogeny based on the presence/absence of

1000 bp SSRs among the entire pan-genome of Salmonella enterica. The matrix on the right of

the phylogeny shows the SSRs of Salmonella enterica of individual strains. Yellow represents the

presence of a region, while blue represents the absence of a region.

Fig. 2 | Read assignment of low abundance spike-in pathogen. Number of raw metagenomic

reads assigned to the reference genomes of the correct spike-in pathogens by PathoScope2, Sigma,

Kraken2 and Snipe on simulated metagenomic data with pathogen spike-in at relative abundance

level of 0.01% (sequencing depth = 1,500 Mb). Blue bars indicate the number of reads assigned to

the correct genome of spike-in strain (top) or species (bottom) and green bars indicate the numbers

of reads assigned to strain or species not present in the simulated data (decoy strain/species) with

the highest numbers of assigned reads. Number of assigned reads from Snipe were rectified by

the a posteriori probabilities of the presence of target species calculated based on the number of
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SSR-aligned reads.

Fig. 3 | Snipe pipeline. Snipe for ultra sensitive pathogen detection. First, raw metagenomic reads

are input to a strain-typing tool such as PathoScope2 to obtain a preliminary abundance estimation

of target pathogens in the reference database. Then, the raw metagenomic reads are aligned to

SSRs by Bowtie2 to obtain the number of SSR-aligned reads of different species, which are further

used to calculate the a posteriori probabilities of the presence of different target pathogen species

in the metagenomic sample. Finally, the preliminary abundance estimations from PathoScope2

were rectified by the a posteriori probabilities to obtained the final abundance estimation of target

pathogens at both species and strain levels.

Fig. 4 | Low abundance pathogen detection enabled by SSR-based rectification. a, Pathogen

detection sensitivity of different strain profiling tools for four spike-in abundance from 0.01% to

10% at different sequencing depth from 15 Mb to 1,500 Mb. Center line is the averaged sensitivity

over ten target pathogen species under test, and lower and upper whiskers indicate 95% confidence

interval. b-c, Comparison of pathogen identification results of Snipe, PathoScope2, Sigma, and

Kraken2 from 200 simulated data at 5 different abundance levels from 10% to 0.01% at species

(b) and strain (c) levels. Yellow square means that the method successfully identifies the target

pathogen from the simulated sample data, while blue square means otherwise.

Fig. 5 | The relationship between pathogen detection sensitivity and the number of SSRs of

the target pathogen. The coverage ratio (%) denotes the ratio between the total length of SSRs

and the median total length of the reference genome of the target pathogen.
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Fig. 6 |Comparison of four methods on PrecisionFDA CFSAN Pathogen Detection Challenge

samples. SSR read denotes the number of reads that were aligned to SSRs of Salmonella enterica

by Bowtie2 with editing distance smaller than or equal to three. For each method, in cell, “T”

(True) represents Salmonella enterica was identified with estimated abundnace higher than the

cutoff value determined to satisfy FDR ≤ 10% on our simulation dataset for each method, and “F”

(False) represents otherwise, i.e., either that Salmonella enterica is not identified by the profiling

tool, or the estimated abundance is below the cutoff value. Furthermore, for culture-positive or

synthetic samples, “T” in parenthese indicates that the groundtruth strain as provided by FDA was

identified with estimated abundance higher than the cutoff value, and “F” indicates otherwise.

Fig. 7 | Run time performance of four tools (Bowtie2, Kraken2, PathoScope2, and Sigma).

Run time performance was evaluated on the simulated metagenomic datasets at different sequenc-

ing depth of 15 Mb - 1,500 Mb. Note that the run time of Snipe is the total run time of Bowtie2 for

read alignment to SSRs and PathoScope2 for initial strain abundance estimation.
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Sample Description Scientific name Serovar Strain Sample size SSR reads Snipe PathoScope2 Sigma Kraken2
C03 Synthetic Salmonella enterica Montevideo FDA00004113 2,060,126 578 T (T) T (T) F (F) F (F)
C04 Synthetic Salmonella enterica I 4,[5],12:i:- FDA00003138 2,639,954 8371 T (T) T (T) T (T) T (F)
C11 Synthetic Salmonella enterica Bareilly MDP-12-00022 3,707,354 1233 T (T) T (T) F (F) T (F)
C13 Synthetic Salmonella enterica Anatum FDA00007885 696,733 3592 T (T) T (T) T (T) T (F)
C19 Synthetic Salmonella enterica Lomalinda FL_FLDACS-96213 2,514,987 6014 T (T) T (T) T (T) T (F)
C01 Positive Salmonella enterica Tennessee MOD1_SALC_61 13,766,368 159 T (F) F (F) T (F) T (F)
C05 Positive Salmonella enterica Tennessee MOD1_SALC_61 2,042,225 155 T (T) T (T) F (F) T (F)
C07 Positive Salmonella enterica Newport MOD1_SALC_52 5,606,880 5068 T (T) T (F) T (T) T (F)
C08 Positive Salmonella enterica Newport MOD1_SALC_120 2,542,509 539 T (T) T (F) T (F) F (F)
C14 Positive Salmonella enterica Newport MOD1_SALC_48 5,640,522 16044 T (T) T (T) T (F) T (F)
C18 Positive Salmonella enterica Saintpaul MOD1_SALC_126 3,666,664 2 F (F) F (F) F (F) T (F)
C21 Positive Salmonella enterica Saintpaul MOD1_SALC_126 4,152,483 0 F (F) F (F) F (F) T (F)
C24 Positive Salmonella enterica Newport MOD1_SALC_120 6,672,708 65680 T (T) T (F) T (T) T (F)
Number of TP (FDR=10%) 11 (10) 10 (7) 8 (5) 11 (0)
C02 Negative None None None 4,140,720 8 F T F T
C06 Negative None None None 2,837,723 57 T T F T
C09 Negative None None None 3,308,326 0 F F F T
C10 Negative None None None 1,354,712 2 F T F T
C12 Negative None None None 2,168,047 0 F T F T
C15 Negative None None None 468,456 0 F F F F
C16 Negative None None None 2,136,454 6 F F F T
C17 Negative None None None 2,699,330 8 T F F T
C20 Negative None None None 2,196,633 0 F F F T
C22 Negative None None None 3,359,490 2 F F F T
C23 Negative None None None 1,161,648 0 F F F T
Number of FP (FDR=10%) 2 4 0 10
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