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Abstract 

 Motif identification is among the most classical and essential computational tasks 

for bioinformatics and genomics. Here we propose a novel convolution-based model, 

Variable CNN (vCNN), for effective motif identification in high-throughput omics 

data based on dynamic learning of kernel length. Multiple empirical evaluations well 

demonstrate vCNN's superior performance in not only identification performance but 

also hyperparameter robustness. All source code and data are freely available on 

GitHub (https://github.com/gao-lab/vCNN) for academic usage. 
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Introduction 

Recurring sequence motifs (Achar and Sætrom, 2015; Kulakovskiy and Makeev, 

2013) have been well demonstrated to exert or regulate important biological 

functions, such as protein binding (Stormo, 2015), transcription initiation (Kadonaga, 

2012), alternative splicing (Blencowe, 2000), subcellular localization (Zhang, et al., 

2014), translation control (Zucchelli, et al., 2015), and microRNA targeting (Thomson 

and Dinger, 2016). Effectively and efficiently identifying these motifs in massive 

omics data is a critical first step for follow-up investigations. 

 

Various computational tools have been developed to identify sequence motifs via 

word-based and profile-based models (Das and Dai, 2007; Lihu and Holban, 2015; 

Liu, et al., 2018; Tran and Huang, 2014; Zambelli, et al., 2013). Word-based tools 

start with a fixed-length and conservative segment and then perform a global search 

and comparison on each nucleotide; such tools include DREME (Bailey, 2011), 

Fmotif (Jia, et al., 2014), RSAT peak motifs (Thomas-Chollier, et al., 2012), 

SIOMICS (Ding, et al., 2015; Ding, et al., 2014), and Discover (Maaskola and 

Rajewsky, 2014). While these tools can theoretically approach the globally optimal 

solution, they suffer from high computational complexity when applied to data with 

complex motifs or large-scale datasets (Das and Dai, 2007). Profile-based tools 

attempt to find representative motifs by heuristically fine-tuning a series of possible 

motifs, either generated from a subset of input data or randomly chosen (Ikebata and 

Yoshida, 2015; Kulakovskiy, et al., 2010; Sharov and Ko, 2009) (Bailey, et al., 2006; 

Machanick and Bailey, 2011), leading to a faster (but probably sub-optimal) motif 

calling. 

 

Several convolutional neural network (CNN)-based tools have been proposed recently 

as a more scalable approach for identifying motifs. Alipanahi et al. developed 

DeepBind to identify protein binding motifs from large-scale ChIP-Seq datasets 

(Alipanahi, et al., 2015) by treating each convolutional kernel as an individual motif 

scanner and discriminating motif-containing sequences from others based on the 
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output of all kernels. Most, if not all, subsequent CNN-based models have followed 

DeepBind's kernel-as-motif-scanner strategy, and these models have been used to 

handle input datasets of enormous volumes in various settings (Angermueller, et al., 

2017; Kelley, et al., 2018; Wang, et al., 2018; Zhang, et al., 2018; Zhou, et al., 2018). 

However, the inherent fixed-kernel design of CNNs also hinders effective 

identification (Han, et al., 2018; Yin and Schütze, 2016; Zhang, et al., 2018) for bona 

fide sequence patterns, which are usually of various lengths and unknown a priori and 

often function combinatorically (Lambert, et al., 2018; Reiter, et al., 2017). 

 

Here, we propose a novel neural network architecture called Variable CNN (vCNN), 

which learns the kernel length directly from the data. Evaluations based on both 

simulations and real-world datasets show that vCNN outperforms canonical CNNs 

not only accuracy of motif identification but also in model (hyper)parameter 

robustness, making it an ideal option for the ab initio discovery of motifs from high-

throughput datasets. All source codes are publicly available on GitHub 

(https://github.com/gao-lab/vCNN ). 
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Methods 

Design and implementation 

vCNN (Fig. 1A) is designed to be equipped with a trainable “mask” to 

adaptively tune the effective length of the kernel during training. Specifically, the 

“mask” for the z-th kernel ��, �����
� �: � ������

�,�, ��
�,���, is a matrix with the same 

shape (i.e., �� � 4, where �� is the kernel length) as this kernel (Fig. 1B), and the 

mask boundaries are parameterized by two scalars, ��
�,0 and ��

�,1: 

�� �	��
�,�, ��

�,�
� �
, �� � �

������������
	,� � �

�����������
	,� � 1     (5) 

As the above equation implies, when i falls outside the boundaries (i.e., 

� � ��
�,0  or � � ��

�,1 ), the value of �� �	��
�,0, ��

�,1
� 	�, 
�  diminishes to zero; the 

subsequent masking operation �����
� � � ��  (where � is the Hadamard product) (Fig. 

1C) will then effectively replace all kernel elements outside the boundaries with zero, 

producing a masked kernel that can be used as an ordinary kernel in a classical 

convolutional layer (Fig. 1D). 

To make ��
�,0 and ��

�,1 converge faster during training, we combine the binary 

cross-entropy (BCE) loss with a sum of masked Shannon losses (MSLs) across all 

kernel masks. Below, we provide a detailed explanation of how this works. We have 

the following total loss ��
�: 

     ��
� � BCE � � · ∑ ������ , �	
� ��  

� ∑ ��
 ����

^ � �1 � �
� ��� �1 � �


^   �


� � � · ∑�����	

� � · !�"�� �

#$%&'$��(�    (6) 

 

where !�"�� ) ∑ ��∑ ��"��	�, 
��
�
� �������"��	�, 
����

�
�  is the sum of the Shannon 

entropy across all nucleotide positions of "� , the position weight matrix (PWM) 

learned by the z-th kernel. For precision, we set �� �  "���, * � 2� following the 

exact kernel-to-PWM transformation specified by Ding et al. (Ding, et al., 2018). 
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One can then immediately deduce the formula for updating the left boundary 

��
�,0�t � 1� at time step t via gradient descent with learning rate r (r>0): 

��
�,���� � ��

�,��� � 1� � � · �����
���

�,��� � 1� 

� ��
�,��� � 1� � � · ����

���
�,��� � 1� � � · � !����, ��

� �� � 1��
���

�,��� � 1�  

� ��
�,��� � 1� � � · ����

���
�,��� � 1�

� � # $	
�	���
�
	,�

��	��

�1 � $	
�	���
�
	,�

��	����
��	�

���

2�&	����, 2�

�

� �'�$(')*+� 

 Similarly, for the right boundary ��
�,1�� � 1�, we have: 

��
�,���� � ��

�,��� � 1� � � · �����
���

�,��� � 1� 

� ��
�,��� � 1� � � · ����

���
�,��� � 1�

� � # $
�	��	
�
	,�

��	��

�1 � $
�	��	
�
	,�

��	����
��	�

���

2�&	����, 2�

�

� �'�$(')*+� 

The Shannon entropies of all kernel positions far from the mask boundaries 

(��
�,0, ��

�,1 ) contribute little to the final derivatives. Therefore, if most boundary-

flanking kernel positions have a low Shannon entropy( i.e., a high information 

content; defined by &	����, 2�

�

� �'�$(')*+ , 0), then the masked Shannon loss 

(MSL) will help push the boundaries outwards (i.e., 
������� ,��

� ������

���
�,�

���1�
� 0  and 

������,��
� ������

���
�,�

���1�
- 0) during gradient descent, just as if the current mask is too narrow 

to span all informative positions. Likewise, if most boundary-flanking kernel 

positions have a high Shannon entropy, or a low information content (i.e. a low 

information content; defined by &	����, 2�

�

� �'�$(')*+ . 0), then the MSL will 

help push the boundaries inwards (i.e., 
������� ,��

� ������

���
�,�

���1�
- 0 and 

������,��
� ������

���
�,�

���1�
�

0), just as if the current mask is too broad to exclude some noisy, noninformative 

positions. We empirically set the threshold to 1.2, the value of Shannon entropy when 

one of Prob(A), Prob(C), Prob(G) and Prob(T) is around 0.74 and the rest three are 

identical to each other. 
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To speed up computation in practice, we approximate the sum by ignoring most 

small, outside-mask kernel positions and retaining only those terms with 

 or . 

 

 

Fig. 1. The design of vCNN. (A) shows the structure diagram of our vCNN-based 

model, which consists of a vCNN layer, a global max-pooling layer and a multilayer 

perceptron. (B-D) show the design of the vCNN layer. The original kernel is first 

“masked” by a mask matrix (B) using the Hadamard product (C), and then it is treated 

as an ordinary kernel to convolve the input sequence (D). 

Benchmark 

In each iteration of benchmarking a certain case, we (1) simulated a particular pair of 

training and validation datasets (see below for more details); (2) used the training 

dataset to train first a vCNN-based model with certain hyperparameter settings and 

then a classical CNN-based model with a model structure identical to that of the 

vCNN-based model, except that the kernel length of the convolutional layer cannot be 

dynamically adjusted; and (3) obtained the AUC values of these two models on the 

validation dataset. Iterating over all possible hyperparameter settings yielded a series 

of AUC values for both the vCNN-based model and the CNN-based model for the 

case at hand. 
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Each positive sequence in the training and validation datasets is a random sequence 

with a “signal sequence” inserted at a random location, and each negative sequence is 

a fully random sequence. The “signal sequence” is a sequence fragment generated 

from one of the motifs for the current case (Table 1). For the cases of 2, 4, 6 and 8 

motifs, new motifs were introduced incrementally (i.e., all motifs in “2 motifs” were 

also included in “4 motifs”, all motifs in “4 motifs” were also included in “6 motifs”, 

and all motifs in “6 motifs” were also included in “8 motifs”). 

Dataset name 2 motifs 4 motifs 6 motifs 8 motifs 

Motif 

composition 

MA0234.1 
(length=6),  
MA0963.1 

(length=8) 

MA0234.1 
(length=6),  
MA0963.1 
(length=8),  
MA0626.1 

(length=10), 

MA0667.1 

(length=10) 

MA0234.1 
(length=6),  
MA0963.1 
(length=8),  
MA0626.1 
(length=10),  
MA0667.1 
(length=10),  
MA1146.1 
(length=15),  
MA1147.1 

(length=15) 

MA0234.1 
(length=6),  
MA0963.1 
(length=8),  
MA0626.1 
(length=10),  
MA0667.1 
(length=10),  
MA1146.1 
(length=15),  
MA1147.1 
(length=15),  
MA0009.2 
(length=16),  
MA0470.1 

(length=11) 

Dataset name TwoDiffMotif1 TwoDiffMotif2 TwoDiffMotif3 

Motif composition MA0138.2 
(length=21),  
MA0157.2 

(length=8) 

MA1046.1 
(length=9),  
MA1148.1 

(length=18) 

MA0326.1 
(length=8),  
MA0556.1 

(length=15) 

 

Table 1. Motifs used to generate each dataset. All motifs were derived from JASPAR 

(Khan, et al., 2017). 

 

To further demonstrate the performance of vCNN in the real world, we downloaded 

690 ENCODE ChIP-Seq-based training and test datasets representing the DNA 

binding profile of various transcription factors and other DNA-binding proteins from 

http://cnn.csail.mit.edu/motif_discovery/. For direct comparison between vCNN and 

the CNNs of DeepBind and Zeng et al.’s model (Zeng, et al., 2016), vCNN-based 

models were implemented by replacing the convolutional layer of each model 
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considered for comparison with a vCNN layer only (with exactly the same 

hyperparameters for the number of kernels and the initial kernel length). The 

remaining details of the training procedure followed those of the corresponding CNN 

models (Alipanahi, et al., 2015; Zeng, et al., 2016). 

 

We followed the protocol proposed by Zhang et al. (Zhang, et al., 2015) to assess the 

accuracy of the extracted representative motifs based on the ENCODE CTCF ChIP-

Seq datasets (ENCODE Project Consortium, 2012). In brief, for each motif discovery 

tool and each ChIP-Seq dataset, we located the motif-containing sequence fragments 

for candidate motifs discovered by this tool, checked whether they overlapped with 

the ChIP-Seq peaks, and reported the ratio of overlapping fragments to all fragments 

as the accuracy of the tool on this dataset (see Supplementary Fig. 2 for more details). 

Results 

vCNN-based models effectively identify motifs 

We first present direct comparisons between vCNN-based and CNN-based models 

based on multiple simulated datasets (see the Methods for more details). It is clear 

that a vCNN-based model performs better when more motifs are introduced (2 motifs 

to 8 motifs in Fig. 2A) and with increased heterogeneity of the motif length (2 motifs 

v.s. TwoDiffMotif1/2/3 in Fig. 2A); notably, this superior performance of vCNN-

based models applies to most datasets (rather than being a biased observation due to 

extremely large performance differences on only a few datasets) because we 

computed the AUC difference for each dataset separately, suggesting that vCNN’s 

superiority over the classical CNN approach is independent of specific datasets. In 

addition, the vCNN-based models show a smaller mean standard error of the AUC 

(5.98E-03) than the CNN-based models (5.87E-02) among different parameter 

initializations, suggesting that vCNN also shows better robustness (Fig. 2B).  

 

A 
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B 

        
 

 
Fig. 2. vCNN-based models outperform classical CNN-based models for motifs of 

different lengths. The distribution of the vCNN-based models’ AUC minus the CNN-

based models’ AUC is shown in (A), and the value above each bar of the plot is the p-

value of the Wilcoxon rank sum test (the null hypothesis is that the AUC of the CNN-

based model is equal to or higher than that of the vCNN-based model). Three cases 

with two JASPAR motifs with much larger length differences than the 2 motifs case 

are shown in (B), along with the p-values of the Wilcoxon rank sum test with the null 

hypothesis that the AUC of the CNN-based model is equal to or larger than that of the 

vCNN-based model. The kernel lengths were drawn from the set {6, 8, 10, 12, 14, 16, 

18, 20}, the numbers of kernels were drawn from the set {64, 96, 128}, and each 

model structure was tested on 16 random seeds. 
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These findings further compel us to suspect that vCNN-based models will perform 

better than CNN-based models on real-world cases with combinatorial regulation. To 

test this suspicion, we compared a vCNN-based model with the DeepBind model 

(Alipanahi, et al., 2015) on 690 ENCODE ChIP-Seq datasets. The vCNN-based 

model showed a significantly improved performance (Fig. 3; Wilcoxon rank sum test, 

p =1.4e-13,  single-tailed, with mean AUC 0.894 vs. 0.8298); notably, the AUC 

improved when switching from the CNN-based model to the vCNN-based model on 

680 datasets, and on 73 datasets, this improvement is from less than 0.6 to above 0.8 

(Fig. 3, points in red square). We also compared a vCNN-based model with the 

improved network implemented by Zeng (Zeng, et al., 2016). The results show that 

the vCNN-based model achieves overall better performance than the optimized CNN-

based model (Wilcoxon rank sum test, p = 0.017, single-tailed; see Supplementary 

Fig. 3 for more details). 

 

 
Fig. 3. vCNN-based models outperform DeepBind models (Alipanahi, et al., 2015) on 

690 real-world ENCODE ChIP-Seq datasets. The points on the black line represent 

equal AUC values for both models. The points highlighted by the square in the figure 

represent datasets for which the vCNN-based model improved the AUC from less 

than 0.6 for the DeepBind model to above 0.8. The hyperparameter space is as 

follows: the kernel lengths were drawn from the set {10, 17, 24}, the numbers of 

kernels were drawn from the set {96, 128}, and each model structure was tested on 8 

random seeds. 
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vCNN-based models discover motifs from real-world 

sequences more accurately and faster 

 

We further evaluated vCNN-based models’ performance for ab initio motif discovery. 

In brief, for a particular trained vCNN-based model, we first selected kernels with 

dense layer weights higher than a predetermined baseline (defined as mean minus 

standard deviation of all dense layer weights) and then extracted and aligned the 

kernels’ corresponding segments to compute the representative PWM (Fig. 4A). We 

then compared the accuracy of the recovery of ChIP-Seq peaks (see the Methods for 

details) by the vCNN-based motif discovery and other motif discovery tools across all 

these ChIP-Seq (ENCODE Project Consortium, 2012) datasets. 

 

As shown in Fig. 4B, the vCNN-based models outperform DREME (Bailey, 2011) on 

all datasets, CisFinder (Sharov and Ko, 2009) on 95 datasets and MEME-ChIP 

(Machanick and Bailey, 2011) on 87 datasets (out of 100 CTCF datasets within the 

Chip-Seq cohort); this finding also holds when each motif was considered separately 

(Fig. 4B), indicating that the superior performance of vCNN holds for most of these 

datasets. In addition, vCNN runs much faster on large datasets (46,726 sequences; see 

Fig. 4C). 
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A 

 

B  

   

C 

  

 
Fig. 4. vCNN helps discover motifs more accurately and faster. (A) shows the process 

of calling a representative motif from a trained vCNN model. (B) shows the 

difference in accuracy, defined as the accuracy of vCNN-based motif discovery minus 

the accuracy of the motif discovery algorithm shown on the x-axis on the same 

dataset. MEME (Bailey, et al., 2006) failed to complete within a reasonable time 

(~50% datasets remained unfinished even after running for 1.5 weeks with 2,000 

cores, amounting to 504,000 CPU hours) for these datasets, and its results are thus not 

listed here. (C) shows the time cost of each motif discovery algorithm as a function of 

millions of base pairs in the test dataset. 
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Discussion 

Kernel length affects the performance of convolution-based 

models 

While such an effect has been suspected for a long time, no previous study has 

systematically investigated whether (and how) kernel length affects convolution-

based models’ performance, especially when the underlying signals are of mixed 

lengths (Lambert, et al., 2018; Reiter, et al., 2017). In computer vision, researchers 

have empirically noticed that different kernel lengths in CNNs lead to differences in 

performance; for example, Han (Han, et al., 2018) reported that when a CNN is 

applied for facial action unit recognition (FAUR), changes in the CNN’s kernel size 

will affect the performance of the model. Moreover, Han’s results show that for 

FAUR, the optimal kernel size is different on different datasets, and there is no overall 

tendency for either a large or small kernel size to be preferred. Thus, Inception model 

(Szegedy, et al., 2015) tries to combine multiple kernels with different sizes for 

boosting global performance for various computation vision tasks (Ioffe and Szegedy, 

2015; Szegedy, et al., 2016).  

 

In addition to empirical assessments, we can further theoretically model the 

relationship between kernel length ���� and model performance using a probability-

based scoring function (Fig. 5A; see the Supplementary Notes for the full 

mathematical treatment). Basically, for each combination of (1) a real motif �, (2) 

the proportion (������) of the kernel contributed by this real motif (where the kernel is 

defined as ������ �  � � �1 � ������� 	 
 , with 
  being a random matrix 

representing noise), and (3) �� , this scoring function computes the expected 

probability across all possible kernels that the kernel’s convolution with an arbitrary 

�-containing sequence will take its maximal value at the position at which the motif 

is inserted. A high score for a certain �� indicates that kernels of this length can easily 
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distinguish � -containing sequences from other sequences, thus leading to good 

performance of the final CNN model. The results of applying this scoring function to 

various cases (Fig. 5B-G) clearly demonstrate that the scoring function helps to 

quantify the “goodness” of a particular ��  for identifying a given motif under a 

particular ������. 

 

A 

�.�%&���|"����� ,0� ) 1��"	���� � 1��"%�*�2
 - 2�|3,0�� 

B 

  

C 

 

D  
 

  

E 
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F  
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H  

 

I 

 

 
Fig. 5. Theoretical modeling of the kernel in terms of the underlying real motif helps 

to evaluate the “goodness” of a particular kernel length for identifying the real motif. 

(A-C) We have developed a scoring function (A) for calculating the kernel length and 

have tested it on two example motifs, one of which (B) is shorter and more conserved 

than the other (C). (D-I) The kernel length does affect the model performance, 

although in a rather complicated way even in such a simplistic setting: for the first, 

shorter motif, the kernel length with the largest score depends on ������ (D and F), 

while for the second, longer motif, the kernel length with the largest score is 23 (i.e., 

the motif length) for most ������  values if we ignore the differences arising from 

numerical error (E and G). Similarly, we observe a complicated relationship between 

the kernel length and the average AUC value of a CNN model in practice (H and I). 
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vCNN enables the implementation of a model with a 

dynamic kernel length 

The high scalability of CNN-based models is critical for massive omics data. 

However, 

the inherent fixed-kernel design of canonical CNNs hinders effective identification 

(Han, et al., 2018; Yin and Schütze, 2016; Zhang, et al., 2018) for bona fide sequence 

patterns, which are usually of various lengths and unknown a priori and often 

function combinatorically (Lambert, et al., 2018; Reiter, et al., 2017). 

 

Inspired by the theoretical model described above, we designed and implemented a 

novel convolutional model, vCNN, which adaptively tunes the kernel lengths at run 

time without losing scalability (Supplementary Fig. 1). In addition to the performance 

improvement it offers, vCNN’s capability of run-time length tuning could drastically 

mitigate the time cost relative to the time required for canonical CNN hyperparameter 

optimization. 

 

To facilitate its application in various fields, we have implemented vCNN as a new 

type of convolutional layer in Keras (https://github.com/gao-lab/vCNN) so that users 

can easily replace existing convolutional layers with vCNN layers (and optionally 

initialize them with the pretrained kernels of those convolutional layers) to test 

whether the resulting model performs better. 

 

 

Further work 

We note that the current theoretical analysis reported above relies on prior knowledge 

of the real motif �, which may not be feasible to obtain for real-world datasets. A 

possible workaround is to estimate the empirical null distribution of P���� over a set of 

randomly initialized PWMs and kernels and then derive the expectation of P����  over 

the given dataset. 
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Moreover, although current motifs in CNN-based models are automatically 

represented by PWMs, this might be an oversimplified representation of the genuine 

motifs, which may allow insertions and deletions within motifs (e.g., the HMM motifs 

from Pfam (El-Gebali, et al., 2018) and Rfam (Kalvari, et al., 2017)). While RNN 

models are expected to be able to learn such motifs (Liu, 2017; Liza and Grzes, 2019; 

Min, et al., 2019; Vazhayil and KP, 2018), the interpretation of such models is still 

challenging. 
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