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Abstract

Artificial intelligence (AI) has been transforming the practice of drug discovery

in the past decade. Various AI techniques have been used in many drug discovery

applications, such as virtual screening and drug design. In this survey, we first give an

overview on drug discovery and discuss related applications, which can be reduced to

two major tasks, i.e., molecular property prediction and molecule generation. We then

present common data resources, molecule representations and benchmark platforms.

As a major part of the survey, AI techniques are dissected into model architectures

and learning paradigms. To reflect the technical development of AI in drug discovery

over the years, the surveyed works are organized chronologically. We expect that this

survey provides a comprehensive review on AI in drug discovery. We also provide a

GitHub repository with a collection of papers (and codes, if applicable) as a learning

resource, which is regularly updated.
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Introduction

Drug discovery is well known as an expensive, time-consuming process, with low success

rates. On average, developing a new drug costs 2.6 billion US dollars1 and can take more

than 10 years. Moreover, the success rate of launching a drug to market from Phase I

clinical trial is daunting, less than 10%.2 In the past decade, the practice of drug discovery

has been undergoing radical transformations driven by the rapid development in artificial

intelligence (AI).3–7 Popular applications of AI in drug discovery include virtual screening,8

de novo drug design,9 retrosynthesis and reaction prediction,10 and de novo protein design,11

among others, which can be reduced to two categories, i.e., predictive and generative tasks.

To power these AI applications, a wide range of AI techniques are involved, with model

architectures evolving from traditional machine learning models to deep neural networks,

such as convolutional neural networks, recurrent neural networks, graph neural networks and

transformers, etc. Learning paradigms also shift from supervised learning to self-supervised

learning and reinforcement learning.

In this survey, we focus on the applications and techniques of AI-driven discovery on

small-molecule drugs. Biologics (e.g. antibodies, vaccines) are not covered. We first provide

an overview of key applications in drug discovery and point out a collection of previously

published perspectives, reviews, and surveys. We then introduce common data resources and

representations of small molecules. We also discuss existing benchmark platforms for both

molecular property prediction and molecule generation. With knowledge on data and repre-

sentations, the related techniques, including model architectures and learning paradigms, will

be elaborated. Finally, we discuss existing challenges and highlight some future directions.

By assembling a Github repository 1 with the surveyed papers (and codes, if applicable), we

expect this survey not only provides a comprehensive overview of AI in drug discovery but

also serves as a learning resource for researchers interested in the interdisciplinary field.

1https://github.com/dengjianyuan/Survey_AI_Drug_Discovery
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Drug Discovery Overview

In this section, we first go over the definitions of key concepts in drug discovery, mainly

on the screening and design of small molecules. Note that AI-powered drug repositioning,

which repurposes existing drugs or drug combinations for new indications, is not included.

Besides, target identification, exploiting -omics data for its druggability, is also out of the

scope and thus not discussed. Rather, we refer the readers to previous publications on drug

repositioning12,13 and -omics data for target identification.14

Drug discovery 15 is a project motivated by the situation when there are no drugs for a

disease or when existing drugs have limited efficacy and/or severe toxicity. At the earliest

stage, an underlying hypothesis needs to be developed that activation or inhibition of a

target (e.g., an enzyme, a receptor, an ion channel, etc) results in therapeutic effects for the

disease, which involves target identification and target validation. For the selected target,

intensive assays will be performed to find the hits and subsequently the leads (i.e., drug

candidates), which involves hit discovery, hit-to-lead phase and lead optimization. The drug

candidates then enter preclinical studies and clinical trials. If successful, the drug candidate

can be launched into market as a medical product to treat the disease.

To accelerate the small-molecule drug discovery, high-throughput screening (HTS) 16,17

has been proposed to increase the discovery efficiency since the 1980s, which is a hit-finding

approach underpinned by development in automation and the availability of large chemical

libraries. A prominent outcome of HTS is the large-scale structure-activity relationship

(SAR) datasets, which contribute to the chemical databases such as PubChem18 and ZINC.19

Various computational techniques have been developed to search the chemical libraries for

potentially active molecules to be tested in subsequent in vitro and in vivo assays,20 which is

also known as virtual screening (VS). In other words, VS is to identify active molecules using

computational approaches, based on knowledge about the target (structure-based VS ) or

known active ligands (ligand-based VS ) to increase the odds of identifying active molecules.21

For the concept of active molecules, as mentioned above, activation or inhibition of a target
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is the underlying hypothesis to treat a disease, which corresponds to two major classes of

drugs with regard to the mechanism of action (MoA), i.e., agonists and antagonists .22 An

agonist is a molecule which activates the target to exert a biologic response as its endogenous

ligand. On the contrary, an antagonist is a molecule which binds to the target to block the

response. Based on more specific effects and mechanisms, agonists can further be classified

as partial agonists, inverse agonists, biased agonists. Antagonists include competitive and

non-competitive antagonists. To quantify the activity, various assays have been developed

to measure affinity (or potency) and efficacy. Affinity is the fraction or extent to which a

molecule binds to a target at a given concentration whereas potency is the necessary amount

of a molecule to produce an effect of a given magnitude, inversely proportional to the affinity.

Efficacy, on the other hand, describes the effect size, such as inhibition of an enzyme to 60%.

Common activity measures are summarized in Table 1.

Table 1: Common Measures of Molecule Activity

Measures Definition
Kd Equilibrium dissociation constant
Km Michaelis constant
Ki Inhibition constant
IC50 Half maximal inhibitory concentration
EC50 Half maximal effective concentration

Nevertheless, sufficient activity is not the only criterion for an ideal drug candidate, which

only makes it a ligand. Binding specificity is another concern.23 Most often, a molecule can

bind to multiple targets and unexpected side effects may arise due to binding promiscuity.

Thus, high selectivity is another desired feature. In fact, drug candidates should also sat-

isfy a combination of criteria,24 with optimal physicochemical (water solubility, acid-base

dissociation constant, lipophilicity, permeability), pharmacokinetic (absorption, distribution,

metabolism, excretion), and pharmacodynamic (activity, selectivity) properties. Other prop-

erties considered during compound synthesis include the Synthetic Accessibility Score (SAS)

and the Quantitative Estimation of Drug-likeness (QED). SAS is a heuristic score of how hard

(10) or easy (1) it is to synthesize a given molecule based on a combination of the molecular
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fragments’ contributions. QED is an estimate (0-1) on how likely a molecule is a viable drug

candidate. At its core, drug discovery is a multi-objective optimization problem.25 Usually,

for each property of interest, a predictive model is built to map the molecular structure to

the property value with either classification or regression, which is broadly referred to as

quantitative structure-activity relationship (QSAR) modeling.26 A more intriguing prospect

from QSAR is that these models can be exploited inversely to reveal the structural features

underlying the optimal properties to guide drug design from scratch, also known as de novo

drug design.

Rather than merely screening existing chemical libraries,27 drug design takes a step

further to explore the vast chemical space, i.e., the space encompassing all possible small

molecules28 which has an estimated size around 1030 − 1060.29 In drug design, there is a

design-make-test-analysis (DMTA) cycle, which consists of iterative organic synthesis and

property assays.3 To efficiently navigate the chemical space, quantitative drug design has

been proposed since late 1970s.30 Essentially, drug design epitomizes in two questions:31 1)

“Can molecular properties be deduced from molecular structures?” and 2) “Which structural

features are relevant for certain molecular properties?” The former one also underlies the

core assumption of VS and the latter is what QSAR tries to answer. In this sense, drug

design can be viewed as an extension to VS, and involves both molecular property prediction

and molecule generation, which are the major tasks in current AI-driven drug discovery.

Summary of Existing Reviews

Next, we briefly discuss existing reviews on AI-driven discovery by dividing them into three

categories: 1) “General drug discovery review”, 2) “Drug discovery in the AI-era”, and 3)

“Rethinking AI-driven drug discovery”.
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General Drug Discovery Reviews

Many existing papers have covered the general aspects of drug discovery3,15 and related

concepts, such as chemical space,28 VS and HTS,21,32,33 optimal properties for drug can-

didates,24 QSAR,26,34 target prediction,35 and computer-aided drug design.27 Besides, one

prominent challenge in drug discovery is that molecular properties can be highly sensitive

to minor structural changes. This is also known as the activity cliffs (ACs), where pairs

of structurally similar molecules exhibit significantly different activities.36–38 We strongly

recommend the readers (especially those new to drug discovery) refer to these reviews for a

better understanding on drug discovery and recognition of potential pitfalls.

Drug Discovery in the AI Era

AI has been widely applied in drug discovery. Since the early 2000s, machine learning

models, such as random forest (RF), have been exploited for VS and QSAR.39,40 In 2012,

AlexNet41 marked the advent of the deep learning era.42 Shortly after in the 2012 Merck

Kaggle competition, deep neural networks (DNN) outperformed the standard RF model in

predicting molecular activities.39 More recently, the success of AI techniques in computer

vision and natural language processing has shed more light into drug discovery4,6,43,44 and

led to the burgeoning field of deep learning in chemistry.5 In 2019, potent inhibitors of dis-

coidin domain receptor 1 (DDR1) were discovered in 21 days by researchers from Insilico

Medicine.45 In 2020, a novel antibiotic candidate against antibiotic-resistant bacteria, halicin,

was identified by researchers from MIT.46 Note that AI can be applied at different stages in

drug discovery, from target identification and validation to drug response determination.6

Lead identification, the focus of this survey, involves two fundamental tasks, i.e., molecular

property prediction and molecule generation. Molecular property prediction, at the core of

VS, is to predict the property value of a molecule given its structure or learned represen-

tation,47 which can be served for various purposes, such as drug-target interaction (DTI)

prediction,35 toxicity prediction48 and drug-induced liver injury (DILI) prediction,49 among
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others. Molecule generation, underlying drug design, involves two levels of tasks: 1) realistic

molecule generation, i.e., generating molecules within constraints imposed by the chemical

rules, and 2) goal-directed molecule generation, i.e., generating chemically valid molecules

with desired properties.50,51

Rethinking AI-driven Drug Discovery

Despite the promise of AI in drug discovery, pitfalls still exist, which have been widely

discussed.8,9,31,52–55 As opined by Bender et al,53,54 “a method cannot save an unsuitable

representation which cannot remedy irrelevant data for an ill thought-through question”. To

circumvent potential hypes and unrealistic expectations thereof, there is indeed a necessity to

take into consideration the hypotheses, the data, the representations, the models, the learning

paradigms and moreover, these components as a whole, for any AI-driven application in drug

discovery.

Structure of the Survey

Given the necessity of a clear understanding on both drug discovery applications and AI

techniques, this survey starts from general aspects in drug discovery and then moves on to AI-

driven drug discovery, covering data resources, molecule representations, model architectures,

and learning paradigms. The organization of this survey is depicted in Fig 1.

Notably, current literature on the AI techniques is often fragmented. More often than not,

the rationale behind the choice of a technique is simply because it has not been previously

investigated.51 To gain more insights into the strengths and weaknesses of these AI tech-

niques, we focus on the model architectures and learning paradigms. We also try to present

the surveyed works chronologically so as to reflect the technical development over the years.

Finally, we highlight existing challenges and future directions (see Section “Discussion”).
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Figure 1: Applications and Techniques of AI in Drug Discovery. The applications of AI
in small-molecule drug discovery include virtual screening, quantitative structure-activity
relationship and drug design, which can be reduced to two major tasks: molecular prop-
erty prediction and molecule generation. Small molecules can be represented by fixed fin-
gerprints, molecular graphs, simplified molecular input entry system (SMILES) strings, and
images. Various model architectures have been applied on each representation format, includ-
ing convolutional neural networks (CNN), recurrent neural networks (RNN), graph neural
networks (GNN), variational autoencoders (VAE), generative adversarial networks (GAN),
normalizing flow models and transformers. Still, challenges exist for the low-data molecu-
lar property prediction and goal-directed molecule generation. To tackle these challenges,
different learning paradigms have been proposed, such as self-supervised learning for the
pretraining-finetuning practice and reinforcement learning for navigating the chemical space
search. Other paradigms surveyed here also include few-shot learning, metric learning, meta
learning and active learning.

Data, Representation and Benchmark Platforms

In this section, we first discuss the publicly available data resources. Then, we discuss how

small molecules can be represented in machine-readable formats. Lastly, we summarize cur-

rent benchmark platforms for both molecular property prediction and molecule generation.

Public Data Resources

With the improvements in HTS and related assays, data on molecular activity and related

properties are ever increasing, which contribute to various public data resources. These

resources typically provide information on molecular structures, molecular properties and

target information,56 as discussed below.
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PubChem 57 was launched by the National Institutes of Health in 2004. With a collection

of chemical information from 750 data sources, PubChem is the largest chemical database. As

of August 2020, PubChem contains 111 million unique chemical structures with 271 million

activity data points from 1.2 million biological assays experiments. PubChem provides direct

download as well as web interfaces for online queries. Notably, PubChem is non-curated56

and the bioactivity datasets from PubChem can be highly imbalanced.58 Researchers may

curate the data on their own. For example, Chithrananda et al59 recently released a curated

dataset of 77 million SMILES strings from PubChem. ChEMBL,60 maintained by the Euro-

pean Molecular Biology Laboratory, is another large-scale chemical database. For example,

in ChEMBL22 (version 22), there are more than 1.6 million distinct chemical structures with

over 14 million activity values. Moreover, ChEMBL is manually curated in a comprehen-

sive manner.56 ChEMBL provides downloads in a variety of formats (e.g., Oracle, MySQL

or PostgreSQL database) and also allows web application program interface (API) for data

retrieval in XML or JSON format.61 Notably, based on ChEMBL, Mayr et al62 extracted

a large-scale benchmark dataset for target prediction. ZINC,19 developed by the Irwin and

Shoichet Laboratories in UCSF, contains a suite of molecules, annotated ligands and targets

as well as the purchasability for over 120 million “drug-like” compounds. ZINC supports

direct download from the website and also provides an API for retrieving data. Notably,

some subsets of the ZINC database are more commonly used, such as the ZINC-250k63 and

the ZINC Clean Leads collections.64

In addition to the aforementioned large-scale databases, there are also other data reposito-

ries,65 such as PDBbind, BindingDB, DUD, DUD-E, MUV, STITCH, GLL&GDD, NRLiST

BDB, KEGG, among others. Besides databases mainly derived from preclinical studies, there

are also public data resources for the marketed drugs and their effects in human subjects,

such as the datasets for adverse drug reactions (ADR) (e.g., DrugBank, SIDER, OFFSIDES

and TWO-SIDES) and the datasets for DILI ( e.g., DILIrank).66
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Small Molecule Representations

Molecules are often depicted as Kekulé diagrams with bonds and atoms (Fig 2A). Over the

years, machine-readable representations have been developed to enable rapid computation,

querying and storage of the molecules.67 Molecules can be represented by the fixed molecu-

lar descriptors, which are further categorized by its dimensionality.56 Specifically, there are

0D descriptors for molecules, such as molecular weight (MW), atom number, and atom-

type count. 0D descriptors can be directly derived from the empirical formula and barely

provide information on how atoms are connected. For example, the empirical formula of

alanine, C3H7NO2, can also represent lactamide.67 To highlight different functional groups,

descriptors incorporating more structural information have been proposed, such as finger-

prints (Fig 2B). Fingerprints are binary vectors with each dimension in the vector indicating

the presence or absence of a particular substructure. Among them, there are 1D descriptors

to represent the substituent atoms, chemical bonds, structural fragments, and functional

groups. There are also 2D descriptors to represent the atom connectivity and molecular

topology, such as 1) Keyed fingerprints - molecular access system (MACCS) keys, 2) Path-

based fingerprints - DayLight fingerprints and 3) Circular fingerprints - extended connectivity

fingerprints (ECFPs) based on the Morgan algorithm.68 Furthermore, 3D descriptors have

also been developed to encode 3D-structural information like the steric properties, surface

area, volume and binding site properties, among others.

Molecular descriptors have greatly boosted the application of computational methods,

including machine learning models, in drug discovery.69,70 Nevertheless, these descriptors

are fixed and not learnable towards improving model performance. With the advent of the

AI era, various deep learning models have paved the way for end-to-end (E2E) predictions,

where molecules can be embedded into a continuous latent space without hand-crafted rules.

Among them, two major representation formats are molecular graphs and the simplified

molecular input entry system (SMILES) strings.67
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Figure 2: Illustration of Small Molecule Representations.

Molecular Graphs

The idea of graph representation is intuitive, where atoms are typically mapped to nodes

and bonds to edges. Formally, a graph is defined as G = (V,E), a set of of nodes (atoms)

V and a set of edges (bonds) E, where (vi, vj) ∈ E indicates a bond between atoms vi and

vj.
67 The attributes of atoms are represented by a node feature matrix X and each node

v can be represented by an initial vector xv and a hidden vector hv ∈ RD. Similarly, the

attributes of bonds can also be represented by an edge feature matrix. Note that both node

and edge feature matrices do not directly encode connections. Instead, an adjacency matrix

A keeps track of the pairwise connection status. The element of A, aij, if equals to 1, means

that there is a bond connecting node vi and vj; otherwise, if aij equals to 0, these two nodes

are not connected by a bond. Usually, the edge feature matrix and the adjacency matrix are

combined to form an adjacency tensor (Fig 2C). Common node and edge features71,72 are

summarized in Table 2.

One advantage of the graph representations is that they carry more structural infor-

mation. Besides, molecular graphs as well as the subgraphs can be directly mapped to a

chemical (sub-)structure and thus are highly interpretable.73 One drawback of the graph
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Table 2: Common Node and Edge Features in Molecular Graphs

Type Feature Notes
Node Atom type Element type
Node Formal charge Assigned charges
Node Implicit Hs Number of bonded hydrogens
Node Chirality R or S configuration
Node Hybridization Orbital hybridization: spx, spxdy

Node Aromaticity Aromatic atom or not
Edge Bond type Single, double, triple or aromatic
Edge Conjugated Conjugated or not
Edge Stereoisomers cis (Z) or trans (E)

representation, however, is that these matrices require a large amount of disk space for stor-

age and significant memory during computation, which may slow down the efficiency during

molecule generation.67

SMILES Strings

To accommodate the storage and computation efficiency, molecules are also commonly repre-

sented by the SMILES strings.74 In SMILES, an atom is represented by the atomic symbols;

for two-character symbols, the second letter will be represented in lower case. Elements in

the organic subset, namely B, C, N, O, P, S, F, Cl, Br and I, can be written without brackets

whereas for those not included, brackets should be applied with the attached hydrogens and

formal charges written inside, such as [Fe2+]. The lower-case letters represent the atoms in

aromatic rings; for instance, C is used for the normal carbon and c is used for the aromatic

carbon. For bonds, there are single, double, triple and aromatic bonds, represented by the

symbols -, =, # and :, respectively, where single bonds and aromatic bonds are usually

omitted. For the branches in a molecule, they are denoted by enclosures in parentheses. To

represent the cyclic structure, a single or aromatic bond is first broken down in the ring and

then the bonds are numbered in any order with the ring-opening bonds by a digit following

the atomic symbol at each ring. Notably one molecule may correspond to multiple SMILES

strings.67 To avoid conflicts, canonicalization methods75 have been introduced to ensure only
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one unique SMILES string is designated for the same molecule.

Usually the SMILES string are converted into one-hot vectors before fed into the machine

learning models (Fig 2D).76 Comparing to the graph representation, SMILES string is less

computationally expensive. However, since SMILES strings do not directly encode the atomic

connection, there can be a loss of the structural information.77 Besides, due to the internal

syntax of the SMILES (e.g., ring opening and closure, atom valency), using this linear

notations for molecule generation is prone to generate invalid molecules.78,79

Other Representations

Molecules can also be represented by more sophisticated 3D-atomic coordinates, commonly

seen in structure-based VS or QSAR studies.80–83 Molecular topology, such as bond lengths,

bond angles and torsional angles, can also be incorporated.84 Some works have already

exploited the 3D-representation to generate molecules.85,86 In addition to the raw 3D co-

ordinates, well-established 3D properties, which capture the molecular conformation, can

also be readily utilized for prediction tasks.87 Furthermore, with the advances of computer

vision, images of molecular structures (Fig 2A) emerge as another modality to represent

molecules.88–92

Benchmark Platforms

To evaluate the performance of molecular property prediction and molecule generation, there

are several benchmark platforms, which are discussed below.

As a major benchmark dataset platform for molecular property prediction, MoleculeNet

was released by Wu et al in 2018,93 which includes a set of datasets along with an open-source

DeepChem package.94 The benchmark datasets cover four categories: 1) Quantum mechan-

ics (QM7, QM7b, QM8, QM9), 2) Physical chemistry (ESOL, FreeSolv, Lipophilicity), 3)

Biophysics (PCBA, MUV, HIV, PDDBind, BACE), and 4) Physiology (BBBP, Tox21, Tox-

Cast, SIDER, ClinTox), involving single task or multi tasks. Notably, for molecular property
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prediction, datasets can be highly imbalanced. Thus, when choosing evaluation metrics (Ta-

ble 3), positive rates should be considered. For instance, AUPRC is favored over AUROC

in case of a low positive rate (e.g. less than 2%).93 With regard to the datset splitting,

in addition to the common random split, MoleculeNet also provides other splitting ways,

namely, scaffold split, stratified split and time split for different datasets. In other words,

for each dataset, the recommended split way varies. For example, for the BACE dataset,

since it is for a single target, the scaffold splitting is more suitable, whereas for the PDBind

dataset, since the data collection is over a long period, time splitting is recommended to

better reflect the actual drug discovery effort over the years.

One limitation of MoleculeNet, however, is that it does not provide explicit training,

validation and test folds for the datasets.95 To improve reproducibility, the ChemBench

package from MolMapNet96 was released recently. MolMapNet also expands the Molecu-

leNet by adding pharmacokinetics-related datasets, such as PubChem CYP inhibition and

liver microsomal clearance data. In addition to the benchmark datasets, Chemprop,71 for

benchmarking the learned molecular representations, was proposed in 2019, which system-

atically compared the fixed molecular descriptors (e.g. ECFPs) and the learned molecular

representations for molecular property prediction. In Chemprop, models were benchmarked

extensively on 19 public and 16 proprietary industrial datasets. As a side note, Chemprop

is related to the discovery of halicin.46

As for benchmarking the molecule generation models, Olivecrona et al97 developed REIN-

VENT in 2017, which is a sequence-based generative model utilizing SMILES strings. REIN-

VENT can be used to execute a range of tasks, such as generating analogues to a query struc-

ture and generating ligands for a given target. In 2020, Blaschke et al98 proposed the updated

version, REINVENT 2.0, as a production-ready tool for drug design. For benchmarking

molecule generation utilizing molecular graphs, Mercado et al72 proposed GraphINVENT

in 2020. To standardize the assessment for molecule generation, an evaluation framework

GuacaMol99 was proposed in 2019, which set a suite of tasks for distribution learning and
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goal-directed design. More specifically, the generative model is examined on whether it can

reproduce the property distribution of training sets (usually for VS purpose100), and find

the optimal molecule (for multi-objective optimization). A more recent evaluation platform

MOSES was released by Polykovskiy et al in 2020,64 which compiles a list of metrics (Table 3

2) for detecting common issues in generative models, such as overfitting and mode collapse.

Table 3: Commonly Used Evaluation Metrics

Application Task Metric Purpose
Virtual screening Molecular property prediction Recall@k Retrieval
Virtual screening Molecular property prediction Precision@k Retrieval
Virtual screening Molecular property prediction AP@k Retrieval
QSAR Molecular property prediction Accuracy Classification
QSAR Molecular property prediction Recall Classification
QSAR Molecular property prediction Precision Classification
QSAR Molecular property prediction AUROC Classification
QSAR Molecular property prediction AUPRC Classification
QSAR Molecular property prediction MAE Regression
QSAR Molecular property prediction RMSE Regression
Drug design Molecule generation Validity Distribution learning
Drug design Molecule generation Unique@k Distribution learning
Drug design Molecule generation Novelty Distribution learning
Drug design Molecule generation Diversity Distribution learning
Drug design Molecule generation FCD Distribution learning
Drug design Molecule generation KL divergence Distribution learning
Drug design Molecule generation Scaffold similarity Goal-directed design
Drug design Molecule generation Rediscovery Goal-directed design

For instance, validity measures how well a model explicitly captures the chemical rules,

such as valency; uniqueness and diversity examine whether the generative model collapses to

producing only a limited set of molecules; novelty indicates whether the model is overfitted

to just memorize the training examples. Furthermore, Fréchet ChemNet Distance (FCD) is a

measure of how close the distributions of the generated set are to the distribution of molecules

in the training set. A low FCD value corresponds to similar molecule distributions. Kullback-

2QSAR: quantitative structure-activity relationship; Recall@k: recall among top k molecules; Preci-
sion@k: precision among top k molecules; AP@k: average precision among top k molecules; AUROC:
area under the receiver-operating characteristic curve; AUPRC: area under the precision-recall curve; MAE:
mean absolute error; RMSE: rooted mean square error; Unique@k: uniqueness of the first k valid (generated)
molecules; FCD: Fréchet ChemNet Distance; KL divergence: Kullback-Leibler divergence.
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Leibler (KL) divergence measures the difference between two probability distributions. When

the KL divergence value is small, the generated molecules can well approximate the targeted

property in the training set. For goal-directed design, it relies on a formalism where molecules

are scored individually based on each pre-defined criterion, such as containing a specific sub-

structure, having certain physicochemical properties or exhibiting similarity or dissimilarity

to certain molecules. Consequently, similarity and rediscovery are usually used for evaluation

purpose. Specifically, rediscovery assesses if the generative model is able to rediscover a

given molecule and similarity evaluates whether the model can generate molecules similar or

dissimilar to a given molecule.

Model Architectures

Prior to the “deep learning” era, traditional machine learning models were widely used in

VS.40 Pertinent tasks include predictions of drug likeliness,101,102 physicochemical proper-

ties,103,104 pharmacokinetic parameters105–108 and pharmacodynamic properties.109,110 There

are score-based classification models, support vector machines (SVM)111 and K nearest neigh-

bors (KNN) and probability-based classification models, random forest (RF),112 naive bayes

(NB), and logistic regression (LR). Despite the success of traditional machine learning mod-

els, deep neural networks (DNNs) have outperformed them in a variety of tasks.62,113

Convolutional Neural Networks

Convolutional neural networks (CNNs) are mainly used in computer vision to process pixels

of data in images.114 In CNNs, there are convolution layers and pooling (i.e. subsampling)

layers (Fig 3). On top of these convolution layers and pooling layers, a vector representation

is learned by concatenating the feature maps for a final prediction. CNNs share parameters

across the filters, which largely reduces the number of parameters to be learned, thereby

decreasing memory consumption and increasing computation speed.

16



Convolution
y

Pooling

Pooled 
Feature MapsInput Image Feature Maps

Concatenation

Learned 
Vector

Figure 3: Illustration of Convolutional Neural Networks.

In drug discovery, CNNs can be applied to elucidate the bioactivity profiles based on

microscopy images.115,116 Moreover, CNNs are also used for molecular property predic-

tion.117,118 In 2015, Duvenaud et al118 applied CNNs on circular fingerprints, a refinement

of the ECFPs,119 to create a differentiable fingerprint, which is among the first efforts us-

ing data-driven representation learning for molecular property prediction, instead of fixed

chemical descriptors. This work has greatly motivated learning molecular representations.

In addition to fingerprints, CNNs can also effectively extract features directly from the

images of molecular structure. For instance, Chemception120 is trained on the 2D-structural

images to predict free energy of solvation and inhibition of HIV replication. Later, Fernández

et al88 developed Toxic Colors, a framework for toxicity classification with the images as in-

put. Cortes-Ciriano et al90 further extended existing CNNs architectures (e.g. AlexNet,41

DenseNet-201,121 ResNet152122 and VGG-19123) to Kekulé structure images for molecular

property prediction, also known as KekuleScope. The experimental results of KekuleScope

showed that CNNs on images as input can achieve comparable performance to RF and DNNs

on ECFPs. Meyer et al89 also predicted the MeSH-therapeutic-use classes based on com-

pound images, which outperformed previous predictions based on transcriptomic data. More

recently, Rifaioglu et al91 proposed a large-scale DTI prediction system, DEEPScreen. In-

deed, molecular property prediction with images as input are closely related to the progress

in computer vision, which also prompts automatic extraction of chemical structures from

literature and patents.92,124 The chemical structure recognition model can be further inte-
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grated with models in natural language processing, such as DECIMER125 and DECIMER

1.0,92 which are able to translate the bitmap images of a molecule into a SMILES string, as

an image captioning task.126

Recurrent Neural Networks

Recurrent neural networks (RNNs) are mainly used for processing sequential data.114 RNNs

allow the connection among neurons in the same hidden layer to form a directed cycle

(Fig 4A), thereby enabling the use of sequential input, such as language modeling127 and

music generation.128 If unfolded in time steps, RNNs can be seen as a very deep feed-forward

networks where all layers sharing the same weights. However, the long-term dependency of

RNNs makes it difficult to learn the parameters due to the gradient explosion or vanish-

ing problem.114 As a result, long short-term memory (LSTM)129 and gated recurrent unit

(GRU),130 two variants of the vanilla RNN, have been developed to augment the network

with a memory module. Different from CNNs’ operation on images, RNNs mainly take the

SMILES strings as input for molecular property prediction and molecule generation. As

discussed in Section “Small Molecule Representation”, the characters in a SMILES string

are firstly converted into one-hot vectors (Fig 2) and then sequentially fed into RNNs, with

a hidden vector to be updated at each step. For molecular property prediction, RNNs gen-

erate a final output after all steps are taken. For example, SMILES2Vec131 uses RNNs to

learn features from SMILES and predicts a wide range of chemical properties. Mayr et al62

proposed SmilesLSTM to perform DTI prediction, which outperformed traditional machine

learning models.

RNNs can also be applied for molecule generation, similar to language models for text gen-

eration.97,100,132 More specifically, RNNs generate output at each step in an auto-regressive

manner (Fig 4B), where the output is dependent on the input from previous steps. Based on

the input from the current step and prior steps, RNNs output a probability distribution over

all possible tokens, from which a token is sampled as the output of the current step and will
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Figure 4: Illustration of Recurrent Neural Networks.

be used to predict the next token. However, due to the syntax of the “SMILES language”

such as the ring opening-closure and the matched brackets, regular RNNs, including LSTM

and GRU, cannot capture the algorithmic patterns of the sequence well owing to their in-

ability to count.79 As a result, the generated SMILES strings very often violate the chemical

rules and become invalid. Thus, a memory-augmented version, Stack-RNN,79,133 was devel-

oped to alleviate the validity issue for SMILES-based molecule generation. Another solution

for this problem is to adopt bidirectional RNNs, such as the bidirectional LSTM.134,135

In addition to the SMILES strings, RNNs can also be applied on molecular graphs for

generation purpose.136–139 For example, You et al136 proposed GraphRNN to generate molec-

ular graphs in an autoregressive manner, decomposing it as a process into generating a se-

quence of node and edge formations conditioned on the graph structure generated so far.

Nonetheless, generating molecular graphs with RNNs requires a full trajectory of the graph

generation, which tends to forget the states of initial generation steps quickly. Later You et

al proposed GCPN and140 designed the graph generation procedure as a Markov Decision

Process (MDP), which only needs the intermediate state to generate the graph. Notably,

RNNs can also be components of more complicated generative models, such as variational

autoencoders78,141 and generative adversarial networks.142,143
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Graph Neural Networks

CNNs and RNNs are usually applied on data represented in the Euclidean space. In recent

years, graph neural networks (GNNs) are gaining popularity to model data represented in

graphs with a set of nodes and edges.144 GNNs can handle node-level (e.g., node classifica-

tion), edge-level (e.g., link prediction) and graph-level (e.g., graph regression) tasks, with

neighborhood aggregation, pooling and readout operations. Small molecules, when repre-

sented as molecular graphs (Fig 2C), are naturally appealing to the application of GNNs for

both molecular property prediction and molecule generation tasks (see Section “Molecular

Graphs)”.

Two major types of GNNs are convolutional GNNs (ConvGNNs) and recurrent GNNs.144

In the recurrent GNNs, node representation is learned via some recurrent neural architec-

tures, such as the graph gated neural network (GGNN).145 On the other hand, ConvGNNs

generalize the convolution operation from grid data to graph data and can stack multiple

graph convolutional layers to extract high-level node representations. ConvGNNs play a

central role in building up many other complex GNNs, which can be further categorized into

two subtypes: 1) Spectral-based: ChebNet,146 graph convolutional network (GraphConv)147

and 2) Spatial-based: message passing neural networks (MPNN),148 GraphSAGE,149 graph

attention network (GAT),150 graph isomorphism network (GIN).151

In drug discovery, GNNs are often exploited for molecular property prediction (Fig 5A).

For instance, Kearnes et al152 developed Weave to perform graph convolutions on molecular

graphs for representation learning, where the graph convolutions, nonetheless, did not out-

perform the fingerprint-based models back in 2016. Later, Gilmer et al148 proposed MPNN

as a unified framework for quantum chemical properties prediction. MPNN has two phases

in the forward pass, namely, message passing and readout. During message passing, for each

atom, feature vectors from its neighbors are propagated into a message vector wherein the

hidden vector for the atom is updated by the message vector. A readout function is used to

aggregate the feature vectors into a graph feature vector, which is then passed to a fully con-
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Figure 5: Illustrations of Graph Neural Networks.

nected layer for downstream predictions. Yang et al71 then expanded MPNN into directed

MPNN (D-MPNN), which uses messages associated with directed edges (bonds) instead of

nodes (atoms) used in MPNN, thereby preventing repeated message passing from the same

node. Notably, Yang et al71 also introduced a practice to concatenate the 200 global molec-

ular features calculated by RDKit153 with the learned features by D-MPNN for downstream

predictions, also adopted in later works.63 Xiong et al77 integrated graph attention mecha-

nism into GNNs and developed Attentive FP, which is able capture topologically adjacent

atoms’ interactions for improved molecular property prediction. More recently, Withnall

et al154 also made augmentations to the MPNN and proposed attention MPNN (AMPNN)

and edge memory neural network (EMNN) for physicochemical property prediction. So far,

GNNs have been widely applied for molecular property prediction. More examples include

as SchNet,155 PotentialNet,156 and DimeNet,157 among others.62,158–165 Moreover, subgraphs

can directly map to molecular substructures, which also improves interpretability.77,166–168

Partly encouraged by the superior performance of GNNs for molecular property predic-

tion, GNNs are also exploited for molecule generation (Fig 5B). As mentioned above, RNNs
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can be used to generate molecular graphs, which, nevertheless, needs to store a full trajec-

tory for the graph generation process and tends to forget initial states.140 In 2018, Li et

al138 developed a conditional graph generator, MolMP, which does not involve atom-level

recurrent units. MolMP models the graph generation as a MDP problem, where the action

to grow graph only depends on its current state. There are three actions in total - append,

connect and terminate, the sampling process of which is parameterized by a neural network.

Experimental results show that MolMP outperforms SMILES-based molecule generation in

a variety of evaluation metrics, especially the validity. GNNs-based molecule generation can

be used in common drug design applications such as designing molecules with certain scaf-

folds, presumably due to more straightforward mapping to chemical substructure with the

graph representation. Furthermore, since molecule generation is usually driven by certain

desired properties, reinforcement learning (see Section “Learning Paradigms”), therefore,

is often integrated with GNNs for goal-directed drug design. Examples include GCPN,140

MolDQN,169 DeepGraphMolGen,170 and MNCE-RL.171 For more practical issues on GNNs

for molecule generation, such as generation schemes (single-shot vs iterative) and computa-

tion, we refer the readers to the guide by Mercado et al.51

Variational Autoencoders

Variational autoencoders (VAEs), a class of powerful probablistic generative models, were

first introduced by Kingma et al172 in 2013. VAEs, consisting of an encoder E and a decoder

D. The encoder maps high-dimensional data into a low-dimensional, continuous latent space

(Fig 6). Compared to common autoencoders, the latent space is regularized to be organized,

ideally, through the KL divergence. In addition to reconstruction, VAEs approximate a

probability distribution, which can be sampled for generation purpose. Thus, given input

x, the parameters of VAEs are optimized by minimizing the reconstruction loss and the KL

divergence:173

||x−D(E(x))||2 +KL
(
N(µx, σx), N(0, 1)

)
, (1)
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which is equivalent to maximize the evidence lower bound (ELBO). In Equation 1, N(0, 1)

denotes the unit normal distribution; µx and σx are learnable parameters, representing mean

and variance of a Gaussian distribution.

Encoder
p(z|x)

x

Decoder
p(x|z)

x'Latent Space
Gaussian Assumption

Molecules with Targeted Properties

Sampling

Figure 6: Illustration of Variational Autoencoders.

VAEs can be applied on SMILES strings for molecule generation. For example, Gómez-

Bombarelli et al78 developed a VAE model for automatic molecule design, where a pair of

deep neural networks (i.e. an encoder and a decoder) is trained as an autoencoder to convert

the input SMILES strings into a continuous vector representation. To train the autoencoder,

a reconstruction loss is adopted in attempt to reproduce the original SMILES string. How-

ever, the ultimate goal is not to merely reconstruct the input. Rather, the autoencoder

aims to learn a compact representation for the molecules. Thus, a constraint is applied in

the autoencoder by jointly training a physical property regression model to organize the

VAE’s latent space subjected to the property value, which can be used to sample molecules

towards the desired property value. Partly due to the syntax of SMILES, the latent space

learned by the autoencoder can be sparse and contain large “dead areas”, which correspond

to invalid molecules. Therefore, VAEs with a focus on the syntax for valid molecule genera-

tion are proposed later, such as GrammarVAE174 and syntax-directed VAE.175 Other related

works also include semi-supervised VAE (SSVAE) for continuous output,176 conditional VAE

(CVAE),177 constrained graph VAE (CGVAE),178 NeVAE,179 GTM VAE141 and CogMol.180

A variant of the VAE is the adversarial autoencoder (AAE),181 which replaces the KL diver-

gence with an adversarial objective. More specifically, the Gaussian distribution assumption
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as a prior on the latent representations for KL-divergence computation is replaced by other

priors, i.e., an additional discriminator is added to force the encoder generates latent repre-

sentations in a specific distribution (e.g. a uniform distribution). AAEs can also be used for

molecule generation,182–184 which can improve reconstruction and the validity of generated

molecules.

VAEs can also be applied on the graph representations for generation purpose. In

2018, Simonovsky et al185 proposed a VAE framework (GraphVAE) to generate molecular

graphs.Their main idea is to output a probabilistic fully-connected graph and use a standard

graph matching algorithm to align it to the ground truth. Jin et al186 developed the junction

tree VAE (JT-VAE). In JT-VAE, a molecular graph is first mapped into a junction tree via

a tree decomposition algorithm and the junction tree then undergoes the VAE’s encoding-

decoding process. The learned latent space of the junction tree can be used to search for

substructures, which then assemble into molecules with specific properties. A prominent

merit of JT-VAE is that the validity of all generated molecules can be guaranteed. Ma et

al187 also proposed a regularization framework for VAEs (Regularized VAE) that regular-

ize the output distribution of the decoder, thereby improving the validity. Later, Kajino

et al188 developed molecular hypergraph grammar VAE (MHG-VAE), where a molecular

graph is described as a hypergraph and the grammar VAE174 is trained by inputting the

grammar for sequence production of the hypergraph. In 2019, Kwon et al189 developed a

non-autoregressive graph VAE and incorporated three additional learning objectives into the

model, namely, approximate graph matching, reinforcement learning, and auxiliary property

prediction, which is able to generate valid and diverse molecular graphs with various con-

straints. Moreover, graph-based VAEs can also embrace a strategy for drug design with the

ability to retain a particular scaffold (i.e., substructure), such as the ScaffoldVAE.190

One drawback of VAEs, nonetheless, is that the set of substructures by partitioning

molecules can be quite large. Consequently, the iterative prediction of which substructure to

add can be inaccurate, especially for infrequent substructures. To address this challenge, Fu
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et al191 proposed a novel strategy, CORE, by combining scaffolding tree generation and ad-

versarial training. Besides, the computational cost increasing with the number of nodes in a

graph is another major challenge here, limiting the application to larger molecules. In 2020,

Kwon et al192 proposed a compressed graph representation to alleviate computational com-

plexity while maintaining the validity and diversity of generated molecules. More recently,

Jin et al193 developed hierarchical graph VAE (HierVAE) which can employ larger and more

flexible graph motifs as building blocks for molecules. More specifically, the encoder pro-

duces a multi-resolution representation for each molecule in a fine-to-coarse fashion, from

atoms to connected motifs while the autoregressive coarse-to-fine decoder adds one motif at

a time. Notably, HierVAE can even be used to generate polymers.

Generative Adversarial Networks

Generative Adversarial Networks (GANs), developed by Goodfellow et al194 in 2014, have

made remarkable achievements in generating realistic synthetic samples. GANs consist of a

generative model G, and a discriminative model D (Fig 7). The generator aims to gener-

ate new data points from a random distribution whereas the discriminator aims to classify

whether the generated samples are from the training data distribution or from the generator.

GANs can be trained by the min-max loss, which alternatively optimizes the generator and

the discriminator using a min-max objective:

min
G

max
D
L(G,D) = Ex∼px [log(D(x))] + Ez∼pz [log(1−D(G(z)))], (2)

where px and pz denote the distribution of the real data x and the noise prior z.

GANs can be applied to SMILES strings for molecule generation. In 2017, Guimaraes et

al142 developed objective-reinforced GANs (ORGAN), built upon SeqGAN,195 to generate

molecules in SMILES strings while also optimizing several domain-specific metrics. The gen-

erator is based on LSTM, which is modeled as a stochastic policy in a reinforcement learning
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Figure 7: Illustration of Generative Adversarial Networks.

setting (more details in Section “Learning Paradigms”), whereas the Wasserstein loss is

used train the discriminator (a CNN model). Experimental results showed that the gener-

ated molecules exhibit drug-like structures as well as improvement in the evaluation metrics.

Shortly after, an objective-reinforced GANs for inverse-design chemistry (ORGANIC)143 was

developed based upon ORGAN. ORGANIC can generate molecules with biased distribution

towards certain attributes for both drug discovery and material design. In 2018, Putin et

al196 presented a reinforced adversarial neural computer (RANC) framework, which also

combines GANs and RL. The generator of the RANC framework is a differentiable neural

computer (DNC) with an explicit memory bank, instead of the LSTM model in ORGANIC

and ORGAN. This is because the generation of discrete data using RNNs, particularly,

LSTM with maximum likelihood estimation, can suffer from the so-called “exposure bias”,

i.e., missing salient features of the data. RANC outperforms ORGANIC, as measured by

several metrics: number of unique structures, passing medicinal chemistry filters (MCFs),

Muegge criteria and high QED scores. RANC is able to generate molecules that match the

distributions of the key chemical features/descriptors (e.g., MW, logP) and lengths of the

SMILES strings from the training set.

GANs can also be applied on molecular graphs for molecule generation. In 2018, De Cao

et al197 developed MolGAN, an implicit, likelihood-free generative model for small molecular

graph generation, which circumvents the expensive graph matching procedures.185 Moreover,
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they adapted the GANs to enable direct operation on molecular graphs. RL is also integrated

to encourage the generation of molecules towards desired properties. Experimental results on

the QM9 dataset showed that MolGAN is able to generate nearly 100% valid molecules, which

outperforms ORGAN in validity. One drawback of MolGAN is its susceptibility to mode

collapse, i.e., repeated samples being generated multiple times, leading to low uniqueness.198

Normalizing Flow Models

In addition to the RNNs, VAEs and GANs, another major class of generative models is

the normalizing flow models.199 Representative works include the Non-linear Independent

Component Estimation model (NICE),200 the Real-valued Non-Volume Preserving model

(RealNVP),201 and the Glow model, among others. In NICE, Dinh et al200 introduced

tractable calculation for reversible transformations, which are also known as the affine cou-

pling layers underlying the flow models. The basic idea of flow models is to learn an invertible

mapping between complex distributions and simple prior distributions (Fig 8). By exploiting

exact and tractable likelihood estimation for training, flow models enable efficient one-shot

inference and 100% reconstruction of the training data.51
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Figure 8: Illustrations of Flow Models.

In drug discovery, flow models have been applied to generate molecules, mainly on molec-

ular graphs. In 2019, Madhawa et al202 developed GraphNVP, the first flow model for molec-

ular graph generation. In GraphNVP, the graph generation is decomposed into two steps,
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i.e., generation of an adjacency tensor and generation of node attributes, which yields the

exact likelihood maximization on the graph with two reversible flows. GraphNVP is able to

generate valid molecules with minimal duplicates. The learned latent space can be further

exploited to generate molecules with desired properties. Honda et al203 also developed an

invertible flow model for molecular graph generation based on residual flows, also known as

graph residual flow (GRF), which enables more flexible and complex non-linear mappings

than the traditional coupling flows. Experimental results showed that GRF can achieve

comparable performance with GraphNVP, while having much less parameters to learn. No-

tably, GraphNVP202 and GRF203 generate molecular graphs in a single-shot manner,51 which

may lead to low validity, nevertheless. Consequently, a sequential iterative graph generation

manner is proposed for flow models. For example, GraphAF,204 an autoregressive flow-based

model, adopts an iterative sampling process to leverage chemical domain knowledge, such as

valency checking in each step. With the integration of chemical rules, GraphAF is able to

generate molecules of 100% validity. Moreover, its training process is significantly faster than

GCPN.140 GraphAF can be further finetuned with RL, which achieves better performance

on molecular property optimization compared to JT-VAE186 and GCPN.140 MoFlow, later

developed by Zang et al,205 applies a validity correction to the generated graph, which not

only enables efficient molecular graph generation in a single-shot manner, but also guarantees

the chemical validity. The continuous latent space learned via encoding the molecular graphs

can be further used to generate novel and optimized molecules during the decoding process

towards desired properties. More recently, Luo et al206 developed GraphDF, which, on the

contrary, aims to learn a discrete latent representation with the flow models and capture

the original discrete distribution of the discrete graph structures without adding real-valued

noise. For molecule generation, GraphDF sequentially samples the discrete latent variables

and maps them to new nodes and edges via invertible transforms. The discrete transforms

can circumvent the cost of computation while also achieving state-of-the-art performance in

random molecule generation, property optimization and constrained optimization tasks.
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For the flow-based generative models, the most prominent feature is that they are able

to exactly reconstruct all the input data without duplicates due to the precise likelihood

maximization, which can be an important complement for molecule generation. In particular,

when the molecular property is highly sensitive to minor structural changes, i.e., activity

cliffs,36,37 a replacement of a specific atom (node) might be needed. In other words, flow

models can offer more precise modifications on existing molecular structures.

Transformers

RNNs have been widely applied to handle sequential input. However, RNNs can suffer from

the gradients explosion or the vanishing problem.114 In 2017, a seminal work “Attention is

all you need” proposed a novel transformer architecture, built with the self-attention mecha-

nism.207 Transformers have now become the de facto standard in powerful language models,

such as GPT,208 BERT,209 GPT-2,210 RoBERTa,211 and GPT-3,212 and even in advanced

computer vision models, such as DETR213 and Vision Transformer.214 Unlike RNNs, trans-

formers forfeit recurrent connections. By adopting positional embedding, transformers are

even better at dealing with long sequences.207
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Figure 9: Illustrations of Self-Supervised Learning with Transformers.

Not unexpectedly, transformers are being actively applied in drug discovery. Notably,
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transformers enable effective self-supervised pretraining, such as masked language model-

ing (Fig 9A). In 2019, Wang et al215 developed SMILES-BERT, which consists of several

transformer encoder layers, to improve molecular property prediction. SMILES-BERT is

first pretrained on a large-scale corpus of SMILES strings via a SMILES recovery task and

then fine-tuned on the downstream prediction tasks. Later, Honda et al216 proposed to

learn molecular representations through pretraining a sequence-to-sequence language model,

which is termed as the SMILES Transformer. Chithrananda et al59 also developed Chem-

BERTa, built upon the RoBERTa model211 for molecular property prediction. More recently,

Fabian et al95 applied the architecture of BERT209 to learn molecular representations, also

referred to as MolBERT. When pretrained with masked language modeling and other tasks,

MolBERT achieves improved performance for molecular property prediction compared to the

fixed fingerprints. Moreover, transformers can also be applied on molecular graphs, especially

considering that the transformer encoder can be viewed as a GAT variant.150 For example,

Rong et al63 developed a novel framework, GROVER, to learn graph representations with

the message passing transformer. By designing self-supervised contextual property predic-

tion and graph-level motif prediction tasks (Fig 9B), GROVER is pretrained on 10 million

unlabeled molecules and achieves state-of-the-art performance on 11 benchmark datasets.

In addition to molecular property prediction, transformers can also be exploited for

molecule generation, such as MoleculeChef,217 which can generate the reactants for a given

product, similar to machine translation. More recently, transformers are also exploited for

protein-specific molecule generation,218 where the input is the amino acid sequence of the

target protein and the output are ligands in the SMILES representation.

Learning Paradigms

Drug discovery, despite the light shed by AI, still faces major challenges. For molecular prop-

erty prediction, labeled data points are at the core of machine learning models. Nonetheless,
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in real-world settings, generating labeled data points in wet lab can be very expensive. Con-

sequently, the datasets for model training are usually limited in size, exhibit high sparsity,

and can be heavily biased and noisy, which is also termed as the low-data drug discovery

problem.158,165 For molecule generation, although existing generative models, such as VAEs,

can be used to generate molecules towards desired properties, the mechanism by mapping

from the points in the latent space to real molecules which are most proximal can limit the

exploration of the chemical space, leading to low novelty and diversity.78 To address these

challenges, various learning paradigms have been proposed. In this survey, we mainly focus

on self-supervised learning and reinforcement learning to address molecular property predic-

tion and molecule generation, respectively. Other learning paradigms are also discussed.

Self-Supervised Learning

The performance of deep neural networks, especially supervised learning, hinges on a large

labeled dataset. Nevertheless, supervised learning is meeting its bottleneck due to its heavy

reliance on expensive manually-labeled data.219 In real-world problems such as molecular

property prediction, the labeled data is often limited, sparse and biased, which leads to low

generalizalibility of models. Self-supervised learning is promising paradigm and has achieved

state-of-the-art performance in learning with limited labels, as adopted in the aforementioned

language models, for instance, BERT.209 Notably, self-supervised learning should be distin-

guished from unsupervised learning. Unsupervised learning focuses on detecting patterns

in data without labels, such as clustering, whereas self-supervised learning aims to recover

the data. More specifically, it can be classified into two main types, i.e., generative and

contrastive self-supervised learning.

For the generative self-supervised learning, a canonical task is the masked language mod-

eling, as proposed in BERT,209 where the model is trained to predict the masked tokens,

thereby recovering the original input. Model parameterization is usually implemented by

optimizing the cross-entropy loss between the output and the masked tokens in the in-
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put. Representative works of self-supervised learning in drug discovery are discussed in Sec-

tion “Transformers” (e.g., MolBERT95 and GROVER63). Notably, self-supervised pretrain-

ing can avoid the negative transfer caused by supervised pretraining - transfer of knowledge

from pretraining harms model generalization, as shown by Hu et al.163 Besides, contrastive

learning is another type of self-supervised learning. More specifically, contrastive learning

aims to learn latent representations through contrasting data pairs (positive vs negative),

where the positive and negative examples are constructed by augmenting the unlabeled

samples in a self-supervised manner. Recently, contrastive learning has been employed to

address the low-data drug discovery problem. For instance, Wang et al220 proposed molecular

contrastive learning of representations (MolCLR) on molecular graphs for molecular prop-

erty prediction. Three molecular graph augmentation ways are used, i.e., atom masking,

bond deletion, and subgraph removal. Through a contrastive loss, MolCLR learns molec-

ular representations by contrasting positive vs negative molecules, where molecular graph

pairs augmented from the same molecule are treated as the positive and the others denoted

as negative. Experimental results show that MolCLR can effectively transfer the learned

representations to downstream tasks and achieve state-of-the-art performance in molecular

property prediction.

In addition to self-supervised learning, other learning paradigms have also been exploited

to address the low-data drug discovery challenge. For example, meta learning 221 aims to

learn a learner to be adapted to new tasks. In a study by Nguyen et al,165 the meta-learning

initializations outperform multi-task pretraining baselines on 16 out of 20 in-distribution

tasks and all out-of-distribution tasks. A member of the meta-learning family is few-shot

learning ,222 the core idea of which is to generalize with a few examples. For instance, Altae

Tran et al158 proposed a one-shot learning framework for activity classification, which lowers

the amount of data required for predictions. Intuitively, through learning a distance metric,

molecules can be embedded into the latent space in a more organized way. Thus, when

new molecules come, their embeddings can be compared to the exiting labeled molecules for
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more accurate prediction. Closely to this idea, another paradigm is metric learning ,223,224

which mainly deals with data with mixed distribution due to the activity cliffs.38 Metric

learning has been widely applied in computer vision,224,225 especially in situations where

the similarity or distance must be computed for clustering or nearest neighbor classification

purpose. At its core, a distance metric (e.g., cosine distance) is to be learned, based on

which the learned latent representations of the input data can be separated according to

their labels. In a recent work by Na et al,226 a generalized deep metric learning (GeDML)

framework is proposed, which alleviates the structure-property mismatch problem through

better separating molecules in the latent space. The representations learned via metric

learning are also conducive for goal-directed molecule generation, i.e., search in the chemical

space. For example, Koge et al227 proposed a molecular embedding framework by combining

VAEs and metric learning. The idea is to make the molecules’ embedding in the latent space

consistent with their properties, thereby enabling efficient search during molecule generation.

Reinforcement Learning

With improved performance on molecular property prediction, another challenge still poses

for molecule generation, i.e., how to design molecules with the desired properties? As men-

tioned in Section “Model Architectures”, VAEs and flow models can be used to generate

molecules with preferred properties by sampling from a learned latent space. However, the

latent space can be highly dimensional and the objective functions defined in the latent space

is usually non-convex, making it difficult to optimize the properties of generated molecules.169

Consequently, reinforcement learning (RL) is often used as the alternative to navigate the

chemical space, which mainly deals with how an agent should take actions in a certain state

so as to maximize a reward or return.228 RL algorithms can be classified into 1) value-based

(e.g., Q-learning), 2) policy-based (e.g., policy gradient) and 3) hybrid (e.g., actor-critic).229

In drug discovery, the DMTA cycle (see Section “Drug Discovery Overview”) under-

lying drug design,3 i.e., goal-directed molecule generation, can be potentially automated
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by RL through connecting the generative model (i.e., the agent for molecule generation)

and the predictive model (i.e., assigning rewards based on the predicted property values).

For example, Zhou et al169 adopted value-based, double Q-learning (DQN)230 to optimize

the generated molecules. Other related works mainly adopt the policy-gradient algorithm,

REINFORCE,231 as an estimator of the gradient, such as ORGAN,142 REINVENT,97 and

ORGANIC.143 Another policy-gradient algorithm, proximal policy optimization (PPO),232

is also gaining popularity recently, which is improved from the trust region policy optimi-

sation (TRPO).233 TRPO employs a trust region so that optimizations are restricted to a

region where the approximation of the true cost function holds, thereby preventing policies

updated too wildly and lowering the chance of a catastrophically “bad” update.229 However,

TRPO requires the calculation of second-order gradients, being computationally expensive.

PPO, on the contrary, only requires first-order gradients and can retain the performance of

TRPO, exhibiting low sample complexity. Studies adopting PPO for de novo drug design

include the work by Neil et al,132 GCPN,140 DeepGraphMolGen170 and MNCE-RL.171

Nevertheless, policy-gradient algorithms usually exhibit high variance since the gradi-

ent estimation can be noisy.229 To reduce the variance, an improved class of algorithms is

the hybrid actor-critic method, which combines policy-gradient methods with learned value

functions. For example, off-policy deterministic policy gradient (DPG) extends the stan-

dard policy gradients for stochastic policies to deterministic policies, which only integrates

over the state space instead of both state and action spaces, thus requiring fewer samples in

problems with large action spaces. Later, deep deterministic policy gradient (DDPG) utilizes

neural networks on high-dimensional space is introduced, as adopted in MolGAN.197 Another

technique for variance minimization to accelerate convergence is to subtract the estimated

reward from the true reward, which separates the policy training from value estimation, also

known as the advantage actor-critic (A2C) algorithm adopted by Neil et al.132

With RL training, chemical libraries shifted towards desired properties are expected to

be generated. However, drug design is a multi-objective optimization problem.9,234 In order
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to prioritize molecules based on the pre-defined goals, non-dominated sorting or pair-based

comparisons are usually exploited to find solutions with the Pareto optimality.235–237 Another

issue with RL is the trade-off between exploration and exploitation. As illustrated by Zhou

et al,169 this trade-off is a dilemma underlying by uncertainty. Due to the lack of a complete

knowledge of the rewards for all the states, if constantly choosing the best action known

to produce the highest reward (exploitation), the model will never learn anything about

the rewards of the other states; on the other hand, if always choosing a random action

(exploration), the model will not receive sufficient reward. A potential solution for the

exploration-exploitation trade-off is active learning, which is a paradigm where the model can

query an expert or any other information sources in an active manner during learning.31,238

Discussions

There has been a surge of AI in drug discovery over the past decade, which is still gaining

popularity. Nonetheless, there are still challenges to be addressed. Despite the prosperity

of deep learning models, it should be emphasized that data is at the core of developing

and evaluating the models.239,240 To make the models (either predictive or generative) more

useful, data must be in sufficient amount and should maintain high quality. However, a fact

to our dismay is that although existing chemical libraries have a large amount of molecules,

the number of data points for each specific assay can be very scarce.239 Sometimes, even the

quality of benchmark datasets is questionable with regard to the representative power for

real-world drug discovery imposed by the vast chemical space.55 Datasets in drug discovery

can be highly imbalanced.58 Thus, when evaluating the models, there is need to obtain

appropriate datasets and also consider data balancing methods as well as proper evaluation

metrics (e.g., AUPRC vs AUROC).9

Besides, for the DMTA cycle (see Section “Drug Discovery Overview”) in drug design,

it should always be driven by a need or certain hypotheses.9 Even equipped with perfect
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predictive and generative models, a question still remains, i.e., what are the hypotheses

for designing a drug candidate? In other words, what are the desired properties underly-

ing an ideal drug candidate? To generate the insights into drug design, real-world data

(e.g., electronic health records (EHR) and marketed drug databases)241 is receiving substan-

tial attention for understanding the effectiveness and side effects of different therapeutics.

Recently, we mined a large-scale EHR database for the innate properties underlying opi-

oid analgesics with reduced overdose effects.242 We also mined the DrugBank database to

identify key pharmacological components (i.e., carriers, transporters, enzymes and targets)

underlying drug-drug interactions (DDIs).243 These patterns emerging from real-world data

(RWD) allows hypotheses generation and can calibrate drug design insights.241

Another challenge is that deep learning, despite its superior performance, still leaves the

model elusive for human interpretation. An ongoing need is, therefore, to develop explain-

able models with high interpretability. More specifically, there are four aspects to cover:31 1)

Transparency, which is knowing how the system reaches a particular answer;2) Justification,

which is elucidating why the answer provided by the model is acceptable;3) Informativeness,

which is providing new information to human decision makers; and 4) Uncertainty estima-

tion, which is quantifying how reliable a prediction is. An ideal state is that AI can allow

scientists to hone their knowledge and beliefs on the investigated process. For more details

on explainable AI in drug discovery, we refer the readers to the review by Jimenez-Luna et

al.31

In addition to the scientific challenges, technical concerns remain. One unignorable re-

ality is that, even for the state-of-the-art representation learning on molecular graphs, fixed

fingerprints can still outperform GNN-derived representations for molecular property predic-

tion.244 In fact, ECFPs are a component of some GNN models.63,71 Besides, there is a lack

of a unified protocol for AI-driven drug discovery studies. For example, different benchmark

datasets, different split folds and evaluation metrics are used across the studies for molecular

property prediction, let alone the varying hyper-parameters tuning, training and evaluation
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procedure.244 For molecule generation, Walters et al239 already proposed a few guidelines to

evaluate the novelty of AI-discovered molecules. Likewise, protocols for molecular property

prediction are also needed.

Overall, there are many promising opportunities as well as significant challenges when

applying AI in drug discovery. In order to launch successful applications, we need to un-

derstand the basic concepts and consider the task, the data, the molecule representation,

the model architecture and the learning paradigm as a whole. In this survey, we have cov-

ered multiple aspects centered around AI-driven drug discovery. We envision that with

these aspects well understood, more meaningful contributions will be made to substantially

transform this field.
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