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Abstract 

There is great interest to develop artificial intelligence-based protein-ligand affinity 

models due to their immense applications in drug discovery. In this paper, PointNet and 

PointTransformer, two pointwise multi-layer perceptrons have been applied for 

protein-ligand affinity prediction for the first time. Three-dimensional point clouds could be 

rapidly generated from the data sets in PDBbind-2016, which contain 3 772 and 11 327 

individual point clouds derived from the refined or/and general sets, respectively. These 

point clouds were used to train PointNet or PointTransformer, resulting in protein-ligand 

affinity prediction models with Pearson correlation coefficients R = 0.831 or 0.859 from the 

larger point clouds respectively, based on the CASF-2016 benchmark test. The analysis of 

the parameters suggests that the two deep learning models were capable to learn many 

interactions between proteins and their ligands, and these key atoms for the interaction 

could be visualized in point clouds. The protein-ligand interaction features learned by 

PointTransformer could be further adapted for the XGBoost-based machine learning 

algorithm, resulting in prediction models with an average Rp of 0.831, which is on par with 

the state-of-the-art machine learning models based on PDBbind database. These results 

suggest that point clouds derived from the PDBbind datasets are useful to evaluate the 

performance of 3D point clouds-centered deep learning algorithms, which could learn 

critical protein-ligand interactions from natural evolution or medicinal chemistry and have 

wide applications in studying protein-ligand interactions. 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction  

Space and matters in the Universe are in three-dimensional and their 3D information can 

be obtained, processed, stored, and utilized in a variety of ways, using depth images, meshes, 

and voxel grids, among others.
1
 A point cloud consists of points with x, y, and z coordinates 

and additional Information, which is a commonly used digital format to preserve the original 

geometric information of the 3D objects. Many deep learning methods have been 

developed to process and train point clouds, which may be widely adapted in robotics, 

computer vision, and autonomous driving.
2
 Recently, Sarupria and co-workers pioneeringly 

used the pointwise multi-layer perceptron PointNet to developed a generic framework for 

identifying local structures in molecular simulations. This method showed 99.5% accuracy for 

crystal structure identification in Lennard-Jones, water, and mesophase systems.
3
 In two 

preprints, Jacobs et al. developed ASYNT-GAN, which used U-Net as an encoder and 

PointNet as a decoder to generate ligand structures in 3D space for de novo drug design,
4
 

while Li et al. adapted submanifold sparse convolution based U-Net to develop PointSite for 

the prediction of ligand-binding atoms in proteins.
5
 These studies suggest the great 

potential of point clouds in biology and chemistry, since protein-ligand interactions may also 

be represented without any discretization and could be processed to point clouds for deep 

learning. The trained deep learning models may learn these intrinsic interaction features, 

governed by many non-covalent interactions, including hydrogen-bonding, π-π stacking 

and hydrophobic interactions, among others, which should greatly facilitate the prediction of 

protein-ligand affinity. 

In silico drug design often requires accurate prediction of the affinity between a ligand 

(often a small molecule) and a target protein. In recent years, many mathematic models 

based on machine learning or deep learning have shown excellent capabilities for 

protein-ligand affinity prediction, and their performance exceeds traditional scoring 

functions (X-Score,
6
 CyScore,

7
 and Autodock Vina

8
) with Pearson correlation coefficient Rp 

approaching to 0.861.
9,10

 At present, there are many methods to process the 3D structural 

information of proteins and ligands. Their 3D structural information can be converted into 

molecular descriptors (FPRC, PerSpect, PSH),
11–13

 expressed in 2D interaction diagrams 



(DeepBindRG),
14
 converted into 3D voxels (KDeep, AK-Score, DeepAtom),

15–17
 or graphic data 

(Graph-CNN, GraphBAR).
18,19

  

 

Figure 1. The article's research methodology. 

 

Since the point cloud can directly input the atomic coordinates and their properties into 

the neural network after simple normalization, which may greatly reduce the pre-processing 

time of 3D protein-ligand structures. Therefore, we hypothesize that protein-ligand affinity 

prediction deep learning models based on point clouds may feature faster and simpler 

preprocessing than many of the voxelization-based approaches (Figure 1). Moreover, since 

each point in the point cloud represents an existing atom in protein-ligand structures, this 

salient feature would facilitate the interpretation of the developed models through 

visualization. In this study, we have selected two neural network structures, PointNet and 

PointTransformer to establish the protein-ligand affinity prediction models. After training on 

the PDBbind-2016 refined and a larger point clouds respectively, the models showed Rp of 

0.803 and 0.831 for PointNet, or 0.791 and 0.859 for PointTransfomer. These new deep 

learning models could learn protein-ligand interactions based on the input parameter 

analysis, and these key atoms for the interaction could be also visualized. Furthermore, the 

obtained protein-ligand interaction features from PointTransformer were adapted for the 

XGBoost-based machine learning algorithm, which resulted in protein-ligand affinity 

prediction models with Rp on par with the state-of-the-art machine learning models 

including PerSpect ML and PSH-ML, based on benchmark tests using PDBbind-2007, 

PDBbind-2013, and PDBbind-2016. Our study suggests that the generated deep learning 

models from PDBbind-derived point clouds could learn the intrinsic interaction features 



between proteins and their ligands, which would have wide applications in studying 

protein-ligand interactions.  

2. Methods 

2.1 Datasets 

2.1.1. Preprocessing Data 

We first utilized the refined set in PDBbind-2016 as the training set in this study. The 

refined set contains 4 057 protein-ligand complex data sets. We employed the core set as 

the test set, and the remaining 3 772 data sets as the training and validation sets.
20
 In 

addition, in order to investigate the model's performance on a larger data set, we also 

utilized the combination of the refined and general sets of PDBbind-2016 as a larger training 

set. Openbabel and Pymol are used for all the pre-processing steps.
21,22

 To preprocess the 

PDBbind-2016 database, we adapted the following rules: (1) Entries that contain peptide 

ligands were deleted (590); (2) The entries containing covalently-bonded ligands were 

deleted (379); (3) The entries with insufficient ligands were deleted (481). All data from the 

test set were removed from the training set. Finally, a bigger training set of 11 327 data sets 

were obtained. Prior to transferring these data sets to the point cloud format, we eliminated 

solvents, metals, and ions from the complexes.  

2.1.2. Transfer data sets from PDBbind-2016 to Point cloud formats 

 The atom numbers of the protein and its ligand in each data set were first counted 

(Figure S1). Considering rotation and translation should have no effect on the affinity 

prediction results, we mitigated their effect by aligning coordinates and rotation data.
23
 Prior 

to incorporating the point clouds for training, we aligned the coordinates of the complex to 

the ligand's center, which ensured that the model was not affected by translation. We started 

with the 1 024 atoms closest to the ligand's center from the preprocessed data sets. To 

simplify computations, we considered the atoms of protein and ligand separately, while 

disregarded the covalent-bond relationships in proteins or ligands. Six types of atom 

information are contained in each point, corresponding to a single atom, including x, y, and z 

coordinates, Van der Waals radius, atomic weight, and their sources (1 for proteins and -1 

for ligands). Atomic coordinates were normalized by the distance of the atom farthest from 

the ligand center. All other parameters including radius and atomic weight, were also 



normalized (Table S1). If the total number of atoms is fewer than 1 024, additional points 

with all parameters set to zero are created to compensate. In Algorithm S1, we present 

pseudo-code for calculating these data. 

 To investigate the effect of different atomic attribute inputs on the prediction results, we 

used two additional input methods: (1) Seven atom-type channels, including hydrogen, 

carbon, nitrogen, oxygen, phosphorus, sulfur, and halogen were added; (2) The sampling 

atoms were increased from 1 024 to 2 048. 

2.2. Comparison of pre-processing and inference time of different models 

We first generated point clouds data from the processed PDBbind data using Python 

and Openbabel. To further improve the performance of data processing, C++ was employed 

to accelerate the generation of point clouds. To compare the pre-processing speed of point 

clouds by Python or C++, we also employed the HTMD framework's voxelization approach, 

Pafnucy's pre-processing method (voxelization), and molecular descriptor methods (such as 

IFPScore and Persistent Spectral Hypergraph).
11,24–26

 Python was used to read files, and C was 

used to complete the voxelization procedure in HTMD with three voxelized grids of different 

volumes of 15, 25, and 35 Å. Pafnucy's pre-processing program was written in Python. All 

methods for molecular descriptors were written in Python. In addition, we examined the 

inference times of PointNet, PointTransformer, and different depth convolutional neural 

networks. For each prediction, different sample times were used, including Pafnucy (20), 

ResAtom (5), PointNet (1, 5, and 24), and PointTransformer (1 and 5).
27
 

All tests were run on a single thread without the use of a graphic processing unit (GPU). 

2.3. PointNet and PointTransformer architecture and training 

2.3.1. The neural network structures 

Figure S2 depicts the PointNet structure, which comprises three modules including an 

encoder layer, a maximum pooling layer, and a connected layer.
23
 The encoder layer consists 

of two transform modules and three 1-D convolution module. Each of the two transform 

modules contains two tiny models that are trained in conjunction with the network. The fully 

connected layer contains two hidden layers, while a BatchNorm1d and an activation function 

Rectified Linear Unit are coupled after each hidden layer.
28
 There is also a dropout layer (0.5) 

at the end of the neural network architecture. The network structure of the PointTransformer 



is depicted in Figure S3, which also consists of three modules including an encoder layer, a 

maximum pooling layer, and a fully connected layer.
2
 The encoder layer consists of a 

completely linked layer, several transformer layers, and several transition down layers. The 

transformer layer is comprised of two linear layers and a self-attention layer with a residual 

module comprise. The transition down layer consists of a completely connected sampling 

layer and a layer for pooling local maximal values. Given that the order of the points in the 

input should have no effect on the prediction outcomes, a symmetric function maximum 

pooling layer is added after the two models extract their features. In Figure S4, the principle 

was illustrated with a simple example. 

2.3.2. Training, Validation and Testing 

 Before the above generated point clouds were trained, the point clouds from the 

training set and validation set were rotated 90, 180, and 270 degrees around the ligand 

center respectively, along the x, y, and z axes of each atom, which increases the size of the 

point clouds by 24 times. In the benchmark test, the final projected value was the average of 

24 outputs from each point cloud. To train the point clouds of 11 327 data sets, we utilized 

two approaches to amplify the point clouds by firstly rotate each data set for 24 times in 

preparation and rotate each data set at a random angle for each epoch in training. The 

procedure for evaluating the pre-rotation model was identical to that for testing the refined 

set. The randomly rotated model outputs the mean of five random rotations. The reason for 

employing two different training approaches for the point clouds of 11 327 data sets was 

that the random rotation model can significantly minimize the number of inferences 

required for a single ligand. Since integrating multiple models can increase the performance 

of the prediction model, we integrated five best models in the final benchmark test.  

All training is conducted in a Tesla V100 32G by in double precision. To train the above 

point clouds from PDBbind-2016, we utilized the SGD optimizer with a learning rate of 0.001 

for training the data sets from the curated refined sets, while 0.003 for training the data sets 

from the curated refined and general sets. SmoothL1Loss was chosen as the loss function.
29
 

𝑙𝑜𝑠𝑠(𝑥, 𝑦) =  
1

𝑛
∑ {

0.5(𝑥𝑖 − 𝑦𝑖)2,     𝑖𝑓|𝑥𝑖 − 𝑦𝑖| < 1
|𝑥𝑖 − 𝑦𝑖| − 0.5,   𝑜𝑡ℎ𝑒𝑟                 

𝑖

 

In the benchmark test, the final output result was the integrated prediction results from 



five best models. To evaluate the model's performance, we used the Pearson correlation 

coefficient (RP), the Spearman correlation coefficient (RS), the root mean squared error 

(RMSE), and the mean absolute error (MAE). 

2.4. Input parameter analysis and visualization 

 To investigate whether PointNet and PointTransformer could fully explore the input 

factors and learn important protein-ligand interaction features rather than merely 

remembering the ligand binding pockets in the proteins, we eliminated individual parameter 

(Van der Waals radius, atomic weight, atom sources, all protein atoms, and all ligand atoms) 

from each data set, by replacing the removed data with 0.  

We also visualized the prediction results from six data sets, including 3L7B, 4IH7, 4KZQ, 

1OYT, 2YKI and 5C2H.
30–36

 For each model, two best predictions, e.g., the predicted and true 

affinity of the protein-ligand complexes have the least difference (less 0.04), and two worst 

predictions, e.g., the predicted and true values of the protein-ligand complexes have the 

biggest differences (more than 3.70), were used for visualization. 3L7B and 3IH7 were 

visualized using PointNet, whereas 4KZQ and 1OYT were visualized by PointTransformer. 

2YKI and 5C2H, two models performed poorly were also visualized. 

We used the K-means method to cluster 1 024 points in the six point clouds data and 

aggregated them into 20 groups. Then, we deleted each group of data from the point cloud 

independently and predicted the affinity of the processed data sets using PointNet or 

PointTransformer. The difference between the predicted result after eliminating each group 

and the unremoved data was tallied. If the difference exceeds the average value, it is 

regarded as a critical atom affecting the prediction result. We labeled each point used with a 

sphere, where a distance deviation more than or equal to the average distance deviation are 

highlighted in red, while those with a difference less than the average deviation are 

highlighted in blue. 

2.5 PointTransformer features for machine learning. 

A single model trained by PointTransformer can output features with a length of 512. 

The PointTransformer ensemble model was used to extract features, and each point cloud 

data set was randomly rotated five times upon input. Consequently, a 25 × 512 interactive 

features were created. To minimize the effect of rotation on prediction results, we repeated 



the preceding procedure 30 times to produce a training set. 

We employed XGBoost to construct machine learning models by using protein-ligand 

interaction features learned by PointTransformer. Table 1 shows the detailed parameters for 

training the machine learning model. The refined sets of PDBbind-2007, PDBbind-2013, and 

PDBbind-2016 without the core set were used for training (Table 2). Finally, the three data 

sets would create 1 105 × 30, 2 764 × 30, and 3 772 × 30 training features, respectively. 

XGBoost was employed to train the three feature data sets. When performing the test set, we 

generated each data set for five times using the approach described above, and the average 

of the five prediction results was designated as the final prediction result. 

 

Table 1. The setting of parameters for XGBoost machine learning models. 

Number of estimators Subsample Max depth Learning rate Colsample bytree 

500 0.8053 7 0.1 0.7134 

 

Table 2. Number of data sets for different versions of PDBbind database. 

Name Training sets Test sets 

PDBbind-2007 1 105 195 

PDBbind-2013 2 764 195 

PDBbind-2016 3 772 285 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results and Discussions 

3.1. Comparison of pre-processing and inference time of different models 

Since the order of atomic input should not affect the protein-ligand prediction results, 

we selected PointNet to establish protein and ligand affinity prediction model.
23
 PointNet 

directly inputs point clouds and is immune to permutation through a symmetric function. It 

would learn pointwise features and extracts global features through its unique neural 

network structure. Since PointNet learns the hidden features in the point clouds without 

using complex 2D or 3D convolution, it would greatly reduce computation burden. Each 

point of the point clouds represents a single atom, which however only contains six types of 

atom properties including its 3D coordinates, and Van der Waals radius, among others. Since 

the bonding relationships of individual atoms were ignored in point clouds, we surmised that 

a very recently developed PointTransformer with local sampling capabilities and a 

self-attention layer could improve the model performance trained by PointNet.
2
 

 As illustrated in Figure 2, the point cloud preprocessing program significantly 

outperformed the others in terms of data processing speed. For example, when processing 

ribulose 1,5-bisphosphate carboxylase in complex with 

2-carboxyarabinitol-1,5-diphosphate (1RBO) with over 40 000 atoms, its C++ version 

completed the task in less than 0.05 seconds, whereas other approaches run much lower, 

such as HTMD
 37 

(> 170 seconds) and the Persistent Spectral Hypergraph (PSH) (> 700 

seconds).
11
 For smaller proteins including the HDAC6 zinc-finger domain in complex with 

3-(1,3-benzothiazol-2-yl)propanoic acid (6CEF) and the methylarginine-dependent 

interaction with Tudor domain in complex with methylarginine (3NTH), the point cloud 

preprocessing program still retains significant benefits, including a speed of 40 times that of 

the voxelization method (HTMD) and a speed of 20 000 times that of the PSH. All programs 

were run in a single thread.  

 



 

Figure 2. Comparison of the pre-processing time required for different scoring function. 

When using IFPScore for pre-processing IRBO, an error occurred. C++ and python stand for 

the pre-processing programing languages. PSH: Persistent Spectral Hypergraph. 

 

In addition, we compared the amount of time required for inference using various 

scoring functions (Table 3). When PointNet used 24 samples (as tested by rotating 24 times 

with CASF-2016), it was still about 40% faster than Pafnucy.
25
 However, we discovered that 

the inference time is significantly higher using PointTransformer. This could be because 

PointTransformer demands a great deal of time-consuming self-attention and local 

sampling. 

 

Table 3. Comparison of the inference time among different scoring functions. 

Name Time (s) 

Pafnucy (20 samples) 1.164 ± 0.03 

ResAtom (5 samples) 1.043 ± 0.0306 

PointNet (5 samples) 0.166 ± 0.0072 

PointNet (24 samples) 0.815 ± 0.0185 

PointTransformer (5 samples) 2.827 ± 0.0590 

 

3.2. The performance of point cloud models using CASF-2016 benchmark test 

We first utilized the PDBBind-2016 refined set to build several training sets with 

different input information of atom characteristics and sampling numbers. By examining the 

influence of different point cloud input approaches on PointNet, three protein-ligand affinity 

prediction models were generated (i.e., PointNet (1 024) and PointNet (2 048) with 1 024 and 



2 048 sampling atoms respectively, PointNet (AtomChannel) with seven additional channels 

including hydrogen, carbon, et al). As shown in Table 4, while the MAE and RSME of 

PointNet (AtomChannel) were lowered from 1.43 to 1.08 or 1.74 to 1.35, no model 

performed better in terms of Pearson correlation coefficients. In addition, we observed that 

increasing sampling points from 1 024 to 2 048 slightly reduced the model performance, 

probably due to the increase of data noise with only limited amount of data, which would 

prevent it from learning the hidden features in the point cloud. Next, we chose 1 024 

sampling points for the model training using PointTransformer, while the resulting model 

PointTransformer (1 024) (Rp = 0.791) performed worse than the simpler PointNet (1 024) (Rp 

= 0.803), as well as other the state-of-the-art models, such as Kdeep, DeepAtom, PSH-GBT, 

and TopBP (Complex). 

 

Table 4. The performance of protein-ligand binding affinity prediction on the PDBbind-2016 

core set. R: the refined set of PDBbind-2016 for training; B: the use of refined and general 

sets of PDBbind-2016 for training. Pre-rotation is a term that refers to rotating of the point 

cloud for 24 times before training. 

 

Models Pearson R Spearman R MAE RMSE 

PointNet-1 024 (R) 0.803 0.800 1.43 1.74 

PointNet-AtomChannel (R) 0.800 0.798 1.08 1.35 

PointNet-2 048 (R) 0.785 0.795 1.48 1.81 

PointTransformer (R) 0.791 0.782 1.09 1.38 

PointNet (B) 0.831 0.827 0.97 1.26 

PointNet- pre-rotation (B) 0.831 0.827 1.03 1.31 

PointTransformer (B) 0.859 0.853 0.923 1.19 

PointTransformer-pre-rotation (B) 0.857 0.850 0.932 1.19 

Pafnucy
25
 0.78  1.13 1.42 

Kdeep
17
 0.82 0.82  1.27 

DeepAtom
16
 0.831   1.23 

PSH-GBT
11
 0.835   1.280 

TopBP (Complex)
9
 0.861   1.86 

 

Therefore, we trained PointNet and PointTransformer on a larger training set derived 

from the refined and general sets of PDBbind-2016 to generate several models (i.e., 

PointNet (B), PointNet-pre-rotation (B), PointTransformer (B), 

PointTransformer-pre-rotation (B) (Table 4). Encouragingly, the larger training set improved 



the performance of all generated models. For example, the performance of the 

PointTransformer model significantly improved over the model trained using the smaller 

refined set, with a Rp from 0.791 to 0.859. Since deep learning would automatically learn data 

features through numerous iterations using basic inputs,
38,39

 the model performance would 

likely be improved with increasing data. In machine learning algorithms, a variety of 

pre-designed structures are employed to extract protein-ligand interaction features and are 

less affected by the available data amount.
40
 The PointTransformer performed better than 

PointNet (Rp = 0.831) with a simpler network structure and the lack of local sampling 

capabilities, since it can learn the implicit bond information included in the atomic 

information by a local sampling function which is similar as a convolutional layer.
41
 

Additionally, PointTransformer incorporates a significant amount of self-attention, which 

may aid the models in learning the interaction features between proteins and their ligands.  

 

3.3. Input parameter analysis 

Deep learning-based protein-ligand affinity prediction methods have demonstrated 

excellent performances.
42
 However, the majority of these studies consider these deep 

learning models to be black boxes, with only a few of them being able to explain the 

prediction results.
40,43

 For example, Kwon et al. visualized the 3d convolutional neural network 

using gradient-weighted class activation mapping (Grad-CAM) and described the 

approximate areas that impact the major components of the affinity prediction.
15
 Since each 

point in point clouds represents an atom from the protein-ligand complex, it would offer a 

unique opportunity to understand how PointNet and PointTransformer deep learning 

models predict the protein-ligand affinity. Table 5 summarizes the results of the input 

parameter analysis.  

Both PointNet (B) and PointTransformer (B) relied on the entire data sets for a superior 

performance, since removing any data would reduce their prediction performance 

significantly. PointNet (B) was more sensitive to data variance than PointTransformer (B). 

When all the atoms belonging to proteins were deleted, PointNet's Rp on CASF-2016 

decreased from 0.831 to -0.2030, while PointTransformer's Rp only decreased from 0.859 to 

0.4495. The above input parameter analysis of the model parameters suggests that the 



models trained by PointNet and PointTransformer are capable of learning the interaction 

features between the protein and its ligand, rather than simply remembering the active 

pocket features of the protein and the ligand. 

 

Table 5. Evaluation of the performance of PointNet (B) and PointTransforafter (B) after 

removing selective data in the training process.  

 Parameter Pearson correlation coefficient 

PointNet (B) All protein atom -0.2030 

All ligand atom 0.1803 

Atomic weight 0.2146 

Radius  -0.1191 

Atom source (protein or ligand) 0.1673 

PointTransformer(B) All protein atom 0.4495 

All ligand atom 0.2014 

Atomic weight 0.3438 

Radius  0.3984 

Atom source (protein or ligand) 0.1218 

 

3.4. Point Cloud Visualization 

To further investigate the protein-ligand interaction relationships learned by the trained 

models, we visualized four data sets with the best prediction outcomes (3L7B and 3IH7 for 

PointNet, 4KZQ and 1OYT for PointTransformer) and two data sets with the worst prediction 

outcomes (2YKI and 5C2H) (Figures 3 and S5). It seemed that both PointNet and 

PointTranfromers could detect certain atoms in at least one significant amino acid residue 

involved in ligand binding, but neither model recognized all the atoms in all significant 

amino acid residues even on the best-performing data sets. In the co-crystal structure of 

glycogen phosphorylase (3L7B) (Figure 3b), the 3ʹ-F of 

4-amino-1-(3-deoxy-3-fluoro-beta-D-glucopyranosyl) pyrimidin-2(1H)-one forms 

hydrogen bonds with the protein amides among A673, S674, and G675. The O-2 and O-6 of 

the ligand form hydrogen bonds with the protein amide close to N284 and H377, 

respectively, while C-5 and C-6 of the ligand have Van der Waals interactions with G135.
36
  

 



 

Figure 3. Visualization of the prediction outcomes by PointNet and PointTransformer. (a) 

3L7B. (b) Visualization of 3L7B by PointNet. (c) 4KZQ. (d) Visualization of 4KZQ by 

PointTransformer. The blue denotes the ligand, the yellow denotes the critical amino acid 

residue, and the red sphere denotes the atom that has the greatest effect on the prediction 

outcome.  

 

In human tankyrase (4KZQ) (Figure 3d), the oxygen from the benzopyran ring has π–π 

stacking interactions with Y1071 and hydrogen bonding interaction with the protein amide 

of G1032 and S1068.
35

 Each importance amino acid residue contains many identified atoms. 

In comparison to the model trained by PointNet (Figure S5d and S5h), PointTransformer 

can detect a larger number of critical amino acids. For example, PointNet can only recognize 

F719 in 5C2H, while PointTransformer can recognize F719, and three additional amino acids 

Y683, F686, and Q716.
34
  

  While the two best prediction outcomes of both models in CASF-2016 benchmark are 

different, both models performed poorly for 2YKI and 5C2H. The elimination of the 

important H2O molecule to mediate ligand-protein interactions in the protein-ligand 

complex in 2YKI is likely one of the main reasons for the poor performance.
34
 Water 

molecules have been shown to improve the flexibility and complementarity of proteins and 

ligands, as demonstrated by Wang et al. and Liu et al.
44,45

 Many studies have shown that 

including explicit water molecules in docking simulations improves the quality of docked 

postures and the accuracy of binding affinity prediction.
46–50

 There might also be flaws in the 



construction of the point cloud from 2YKI, due to the huge size of the ligand binding pocket. 

Some critical amino acids are too far (~ 15 Å from the ligand center) to be included in the 

point cloud data set (Figure S5c and S5g).  Although PointTransformer recognized the 

majority of critical amino acids and PointNet only found one critical amino acid atom. 

(Figure S5d and S5h), the predicted values from the two models are significantly different 

from the true values. While the affinity of the ligands to the target protein in 5C2H is high, 

there are few data with equivalent affinity in the training sets, which therefore limited the 

model's effectiveness to catch the intrinsic features and is consistent with the poor 

performance of 5C2H in PSH machine learning.
11
  

 

3.5 Features extracted PointTransformer for machine learning. 

Based on the input parameter analysis and representative visualization results from 

point clouds, both PointNet- and PointTransformer-based models seem to learn important 

protein-ligand features. Therefore, we propose that these features extracted by them 

automatically may be used as molecular descriptors for machine learning. We therefore 

tested if features from PDBbind-2007, PDBbind-2013, and PDBbind-2016 retrieved by the 

best-performing PointTransformer model could be used. We generated 25 × 512 features 

from each data and repeated for 30 times. Finally, processing these data sets resulted in 

three training sets containing 1 105 × 30, 2 764 × 30, and 3 772 × 30 point cloud sets, 

respectively. The well-known XGBoost algorithm was used to construct machine learning 

models.
51,52

 The average Rp of 0.831 was obtained for the three datasets (Table 6). Figure 4 

illustrates a comparison of expected and experimental affinity values. We compared our 

model's Rp to the most recent results in the literature shown in Figure 5.
11–13,20,25,53–57

  

 

Table 6. Pearson's correlation coefficient, root mean square error and mean absolute error 

for XGBoost machine learning models using features extracted from the PointTransformer 

model on the three test sets PDBbind-2007, PDBbind-2013, and PDBbind-2016 

XGBoost models R RMSE MAE 

PDBbind-2007 0.860 1.27 1.02 

PDBbind-2013 0.802 1.47 1.17 

PDBbind-2016 0.838 1.22 0.94 

Average 0.831 1.32 1.04 



 

The machine learning model constructed using the PointTransformer features seemed 

comparable to the state-of-the-art models. Although it does not completely outperform 

previous machine learning models, it may have the following advantages. The procedure of 

obtaining features is divided into two stages: pre-processing and feature extraction using 

PointTransformer. Since the pre-processing time is small in comparison to the time required 

to extract the features, the PointTransformer extracts features regardless of the number of 

protein atoms. Additionally, the extracted features are more refined (25 × 512) than those 

of PerSpect ML (36 × 250 × 11 + 50 × 100 × 11), allowing the description of protein-ligand 

interactions with fewer features. Finally, because the model was generated using Pytorch, it is 

simple and convenient to accelerate feature extraction using GPU-based acceleration. One 

limitation of PointTransformer is that its data augmentation is conducted using multiple 

rotations, which would increase computation time for training, in contrast to molecular 

descriptor-based methods capable of achieving rotation invariance.  

 

 

 

 

 

 
Figure 4. Comparison of experimental and predicted values for XGBoost models with the 

three test sets. 

 



 
Figure 5. Comparison of our model with other models Pearson correlation coefficients. 

 

 

 

 

 

 

 



4. Conclusion 

Deep learning-based protein-ligand affinity prediction models have shown great 

promise in structure-based virtual screening and in silico drug design, while significant 

challenges remain including understanding the learned protein-ligand interaction features 

by respective models.
40
 We have applied the point cloud-based neural network structures 

PointNet and PointTransformer for the rapid prediction of protein-ligand affinity trained on 

PDBbind-2016, which allowed the analysis and visualization of generated deep learning 

models (Table 4 and Figure 3). Further, these automatically extracted interaction descriptor 

from point cloud models could be adapted for the XGBoost-based machine learning 

algorithm, resulting in prediction models with the average of Rp of 0.831 on CASF benchmark 

tests (Table 5). Our study suggests that point cloud-based algorithms including PointNet 

and PointTransformer may generate transparent and interpretable protein-ligand affinity 

deep learning models, which should greatly facilitate the further development of prediction 

models for protein-ligand interactions. 

When compared to machine learning or other deep learning models, the point 

cloud-based models outperform them by several orders of magnitude in terms of 

pre-processing speed for the tested data sets (Figure 1). After training of PointNet and 

PointTransformer with the PDBbind data sets, the generated deep learning models have 

already possessed some feature extraction capabilities, which may be further trained on 

fresh datasets as migration models and hence lower the amount of data required.
58–60

 Since 

the interaction features between a protein and its ligand may be effectively retrieved using 

PointNet and PointTransformer, these models could be used to predict critical amino acid 

residues important for the binding affinity of the ligand.  

While the PointTransformer model achieved the superior performance, its 

computational cost is 15 times that of PointNet. Therefore, the performance of PointNet 

model could be enhanced by including more bonding information of neighboring atoms 

and hyperparameter optimizing, since we have only included limited information on the 

atom itself (i.e., atomic radius and mass). The highly efficient PointNet may be used as an 

encoder module to describe the state of protein-ligand complex, allowing point clouds to be 

applied to domains such as reinforcement learning.
61,62

 These point cloud models can also be 



developed into a variety of other applications, including enzyme active site search and 

molecular docking. 
39,42,63,64

 

 

Key Points: 

⚫ Deep learning-based point clouds using PointNet and PointTransformer were firstly 

applied for the prediction of protein-ligand affinity. 

⚫ Visualization of protein-ligand interactions learned by point cloud models on the 

atomic level. 

⚫ Develop an XGBoost machine learning model using the features automatically retrieved 

from the PointTransformer models for the prediction of ligand binding affinity, 

comparable to the state-of-the-art scoring functions using CASF benchmark tests 

(2007, 2013, and 2016). 

 

Data and code availability: 

Data and code can be found from this link https://github.com/wyji001/Point-Cloud. 
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Table S1. Normalized data for different atoms 

Atomic number atomic weight radius 

1 -0.929 0.55 

6 -0.642 0.85 

7 -0.590 0.775 

8 -0.538 0.76 

9 -0.460 0.735 

15 -0.172 0.90 

16 -0.120 0.90 

17 -0.030 0.875 

35 1.129 0.915 

53 2.356 0.99 

Other 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Hyperparameter Optimization for PointNet 

Optimizer Batch Size Learning rate R 

Adam 

128 

0.01 0.725 

0.001 0.728 

0.0001 0.715 

SGD 

0.1 0.715 

0.01 0.742 

0.001 0.700 

0.0001 0.729 

64 0.001 0.757 

32 0.001 0.753 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3. The performance of single model. 

Name 1 2 3 4 5 Mean 

PointScore-1024(R) 0.762 0.759 0.754 0.753 0.751 0.756 

PointScore-AtomChannel(R) 0.772 0.770 0.769 0.767 0.748 0.765 

PointScore-2048(R) 0.755 0.751 0.748 0.747 0.746 0.749 

PointTransformer(R) 0.760 0.758 0.754 0.750 0.746 0.753 

PointScore(B) 0.794 0.791 0.788 0.787 0.764 0.784 

PointScore-prerot(B) 0.798 0.790 0.789 0.788 0.768 0.787 

PointTransformer(B) 0.827 0.822 0.821 0.820 0.819 0.822 

PointTransformer-prerot(B) 0.845 0.835 0.831 0.826 0.825 0.832 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Algorithm S1. pseudo-code computation 

Input: Protein and Ligand structure 

1: Align the coordinates with the center of the ligand 

2: Calculate the distance of all atoms from the center 

3: Get all the atoms of ligand and (1024- ligand atom number) protein atoms closest to 

the center. 

4: for each selected atom do 

5:   a, b, c ← AtomCoords, AtomRadius, AtomWeight 

6:   if atom from protein 

7:     d ← 1 

8:   elif atom from ligand 

9:     d ← -1 

10:  end if 

11:  Point Clouds [ i ] ← [a, b, c, d] 

12: end for 

Output: Point Clouds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S1. Distribution of atomic number of big data and casf-2016 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2. PointNet architecture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3. PointTransformer architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4. A simple example to explain the meaning of Max Pool Layer. The atomic input 

order changes do not effect the output information after Max Pool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5. Visualization of the output results of the six protein-ligand complexs. The blue 

denotes the ligand, the yellow denotes the critical amino acid residue, and the red sphere 

denotes the atom that has the greatest effect on the prediction outcome. (a) 3L7B - 

PointNet (b) 3IH7 - PointNet (c) 2YKI - PointNet (d) 5C2H - PointNet (e) 4KZQ - 

PointTransformer (f) 1OYT - PointTransformer (g) 2YKI - PointTransformer (h) 5C2H - 

PointTransformer 



 

 

 

 

 



Figure S6. Visualization of 4KZQ by PointTransformer. The blue denotes the ligand, the 

yellow denotes the critical amino acid residue, and the red sphere denotes the atom that 

has the greatest effect on the prediction outcome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7. Visualization of 3L7B by PointNet. The blue denotes the ligand, the 

yellow denotes the critical amino acid residue, and the red sphere denotes the atom that 

has the greatest effect on the prediction outcome.  

 
 

 

 


