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Abstract 
Protein-DNA interactions play crucial roles in the biological systems, and identifying protein-DNA binding sites is the 
first step for mechanistic understanding of various biological activities (such as transcription and repair) and designing 
novel drugs. How to accurately identify DNA-binding residues from only protein sequence remains a challenging task. 
Currently, most existing sequence-based methods only consider contextual features of the sequential neighbors, which 
are limited to capture spatial information. Based on the recent breakthrough in protein structure prediction by 
AlphaFold2, we propose an accurate predictor, GraphSite, for identifying DNA-binding residues based on the structural 
models predicted by AlphaFold2. Here, we convert the binding site prediction problem into a graph node classification 
task and employ a transformer-based variant model to take the protein structural information into account. By 
leveraging predicted protein structures and graph transformer, GraphSite substantially improves over the latest 
sequence-based and structure-based methods. The algorithm is further confirmed on the independent test set of 181 
proteins, where GraphSite surpasses the state-of-the-art structure-based method by 16.4% in AUPR and 11.2% in MCC, 
respectively. We provide the datasets, the predicted structures, and the source codes along with the pre-trained models 
of GraphSite at https://github.com/biomed-AI/GraphSite. The GraphSite web server is freely available at 
https://biomed.nscc-gz.cn/apps/GraphSite. 
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1. Introduction 
Protein-DNA interactions play crucial roles in many biological processes such as transcription, repair, and signal transduction [1, 2]. While protein-

DNA binding affinity prediction [3, 4], protein-interacting site prediction on DNA (e.g. promoter prediction) [5], and protein-DNA docking [6] have 

been widely studied, accurately identifying amino acids involved in protein-DNA interactions solely based on proteins is also an important topic in 

bioinformatics, which helps to improve molecular docking [7, 8], understand disease mechanism [9, 10], predict protein function [11, 12], and 

identify potential drug target for novel drug design [13, 14]. However, conventional experimental methods for DNA-binding site detection such as 

X-ray crystallography [15] and fast ChIP [16] are costly and time-consuming. Although protein-DNA binding patterns are complicated and many 

proteins may specifically recognize local DNA structures such as hairpins, cruciforms and G-quadruplexes [17, 18], DNA-binding residues are often 

conserved [19]. Therefore, it is necessary and feasible to develop complementary computational methods capable of making reliable and accurate 

DNA-binding site prediction. 

Computational methods for DNA-binding site prediction can be classified into two classes, sequence-based and structure-based methods, 

according to their used information. Sequence-based methods such as DNAPred [20], DNAgenie [21], and NCBRPred [22] learn local patterns of  
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DNA-binding characteristics through sequence-derived features. For example, NCBRPred adopts evolutionary conservative information and 

predicted secondary structure and solvent accessibility extracted from protein sequence and employs bidirectional Gated Recurrent Units (BiGRUs) 

to learn local patterns from sequence contexts using sliding-window strategy. While these sequence-based approaches require protein sequences only, 

the lacks of using tertiary structures cause their limited predictive accuracies. 

By comparison, structure-based approaches inferring binding sites from known structures are often more accurate, which can be generally 

categorized into template-based methods, machine learning based methods, and hybrid methods. Template-based methods identify DNA-binding 

sites using the sequence and structure information of templates, which are selected by alignment or comparison algorithms [23, 24]. Nevertheless, 

for the proteins that have no high-quality template, the performance of these methods will be seriously restricted. With features derived from protein 

structures, recent structure-based machine learning methods represent protein structures as voxels in three-dimensional Euclidean space or nodes in 

connected graphs. For example, DeepSite [25] maps protein atoms into 3D voxels and employs 3D convolutional neural networks (3DCNN) to 

extract features from neighborhood of the target residue. Alternately, GraphBind [26] encodes protein structures as graphs and adopts graph neural 

networks (GNN) to learn the local tertiary patterns for binding residue prediction. Hybrid methods integrate template-based methods and machine 

learning based methods simultaneously, such as DNABind [27], COACH-D [28] and NucBind [7]. Albeit powerful, the structure-based methods are 

not applicable to most proteins that don’t have known tertiary structures due to the difficulties to determine protein structures experimentally [29]. 

With the development of deep learning techniques, protein structure prediction is experiencing a breakthrough. The representative method, 

AlphaFold2 [30], has incorporated physical and biological knowledge about protein structure, information of multi-sequence alignment, and the 

sophisticated design of the deep learning algorithm. The method was shown able to predict protein structure with atomic accuracy even when no 

similar structure template is known, and demonstrated accuracy competitive with experiment in a majority of cases in the challenging 14th Critical 

Assessment of protein Structure Prediction (CASP14). Such breakthrough will undoubtedly benefit downstream protein function studies, including 

binding site prediction. 

Effective learning of protein structure remains a challenging task, even though 1DCNN [31], 2DCNN [32], 3DCNN [33], GNN and its variants 

[34, 35] have been widely adopted. On the other hand, transformer [36] is well acknowledged as the most powerful neural network in modelling 

sequential data, such as natural language[37], drug SMILES [38] and protein sequence [39]. In the last few years, transformer variants have also 

been shown great performance in graph representation learning [40-42]. Therefore, it is promising to advance the protein binding site prediction by 

constructing accurate structure model from sequence and effectively learning the structural information through the recent graph transformer 

technique. 

In this study, we have developed a novel method GraphSite, which applies graph transformer network and predicted protein structures from 

AlphaFold2 for sequence-based prediction of DNA-binding residues. Specifically, we integrate multi-sequence alignment and structural information 

to construct residual features and calculate pairwise amino acid distances to mask out the spatially remote amino acids when calculating attention 

scores in the transformer. With the spatial information and structure-aware transformer, GraphSite was found to outperform other sequence-based 

and structure-based methods through various performance evaluations. To the best of our knowledge, this is the first work that utilizes AlphaFold2-

predicted structures and graph transformer for protein-DNA binding site prediction, which can be easily extended to sequence-based prediction of 

other functional sites. 

 
2. Materials and Methods 
2.1 Datasets 
We adopted two publicly available benchmark datasets from the previous study [26] to train and test our method: Train_573 and Test_129, which 

are named by the numbers of proteins in the datasets. These two datasets were collected from the BioLiP database [43], which pre-computes binding 

sites according to experimentally determined complex structures from Protein Data Bank (PDB) [44]. Concretely, Train_573 contains proteins 

released before 6 January 2016 while Test_129 from 6 January 2016 to 5 December 2018. In these datasets, a DNA-binding residue was defined if 

the smallest atomic distance between the target residue and the DNA molecule is less than 0.5 Å plus the sum of the Van der Waal’s radius of the 

two nearest atoms. To deal with the data imbalance problem, the authors [26] applied data augmentation on Train_573, which transferred binding 

annotations from protein chains with similar sequences (sequence identity > 0.8) and structures (TM scores > 0.5) to increase the number of binding 

residues. This was conducted for the following reasons: 1) similar proteins, although could derived from different organisms, may have the same 

biological function. 2) different resolutions or co-factors may lead to minor differences in the structures for the same protein. Finally, CD-HIT [45] 

was used to ensure no redundant protein with more than 30% sequence identity within the training set and between the training and test set. To 
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further demonstrate the generalization of our method, we built another independent test set (Test_181) based on newly released DNA-binding 

proteins in BioLiP (6 December 2018 to 19 August 2021). We have removed redundant proteins sharing sequence identity > 30% over 30% overlap 

with any sequence in the above two datasets and within Test_181 using CD-HIT. Details of the number of binding and non-binding residues of these 

datasets are given in Table 1. 

 
2.2 Protein representation 
In our framework, the DNA-binding site prediction task is treated as a graph node classification problem, where a protein consisting of n amino acid 

residues is represented by a node feature matrix 𝑿𝑿 and a distance matrix 𝑫𝑫. 

 
2.2.1 Predicted protein structures and distance maps 
Following the tutorial at https://github.com/deepmind/alphafold, we downloaded the model parameters and genetic databases including UniRef90 

[46], MGnify [47], BFD [48], Uniclust30 [49], PDB70 [50] and PDB [44] to implement AlphaFold2 in the Tianhe-2 supercomputer. We set the “--

max_template_date” parameter to 2020-05-14 just as the AlphaFold2 model in CASP14 to predict the protein structures in Train_573 and Test_129, 

from which the relaxed models with the highest confidences (measured by the predicted Local Distance Difference Test (LDDT) scores) were chosen. 

However, to further avoid the possibility that AlphaFold2 might use the native known structures in PDB as templates, we set “--max_template_date” 

to 2018-12-5 when predicting proteins in the independent Test_181. This made Test_181 more challenging and closer to the situation where only 

protein sequences instead of similar templates are available. According to the predicted protein structural models from AlphaFold2, we acquired the 

coordinate of the Cα atom of each amino acid residue, and then calculated the Euclidean distances between all residue pairs, which formed a distance 

map 𝑫𝑫 ∈ ℝ𝑛𝑛×𝑛𝑛.  

 
2.2.2 Node features 
We employed two groups of amino acid features to train our model: multi-sequence alignment (MSA) information and structural properties, which 

were concatenated and formed the final node feature matrix 𝑿𝑿 ∈ ℝ𝑛𝑛×438 with n denoting the length of a protein sequence. 

MSA information. Co-evolving amino acids may structurally contact, and evolutionarily conserved residues may contain motifs related to important 

protein properties such as DNA binding propensity. Here, we employed the “single representation” feature output by AlphaFold2 along with the 

predicted structures. This single representation is derived by a linear projection of the first row of the MSA representation, which is a highly processed 

MSA feature matrix through 48 Evoformer blocks in AlphaFold2. In addition, we also explored the widely used position-specific scoring matrix 

(PSSM) and hidden Markov models (HMM) profile. Concretely, PSSM was generated by running PSI-BLAST [51] to search the query sequence 

against UniRef90 database with three iterations and an E-value of 0.001. The HMM profile was produced by running HHblits [52] to align the query 

sequence against UniClust30 database with default parameters. Each amino acid was encoded into a 384-dimensional vector in single representation 

and 20-dimensional vector in PSSM or HMM, and the values were normalized to scores between 0 to 1 using Equation (1), where v is the original 

feature value, and Min and Max are the smallest and biggest values of this feature type observed in the training set. 

𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑣𝑣 −𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀 −𝑀𝑀𝑀𝑀𝑀𝑀
                                                                                                            (1) 

Structural properties. Three types of structural properties were extracted by the program DSSP [53] using predicted structures: 1) 9-dimensional 

one-hot secondary structure profile where the first 8 dimensions represent 8 secondary structure states, and the last dimension represents unknown 

secondary structure. 2) Peptide backbone torsion angles PHI and PSI, which were converted to a 4-dimensional feature vector using sine and cosine 

transformations. 3) Solvent accessible surface area (ASA), which was normalized to relative solvent accessibility (RSA) by the maximal possible 

ASA of the corresponding amino acid type. This 14-dimensional structural feature group is named DSSP in this article. 

 

2.3 The architecture of GraphSite 
Figure 1 shows the overall architecture of the proposed framework GraphSite, where the protein sequence is input to AlphaFold2 to produce the 

single representation and the predicted protein structure, from which the distance map and DSSP are extracted. Finally, the single representation, 

DSSP and sequence-derived features PSSM and HMM are concatenated to form the node feature vector, which is then input to the graph transformer 

masked by the distance map to learn the DNA-binding site patterns. 
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2.3.1 Graph transformer 
The traditional transformer encoder layer consists of a multi-head self-attention module and a position-wise feed-forward network. Let 𝑯𝑯 =

 [𝒉𝒉1𝑇𝑇 , … ,𝒉𝒉𝒏𝒏𝑇𝑇]𝑇𝑇 ∈ ℝ𝒏𝒏×𝒅𝒅 denote the input of the self-attention module where 𝑑𝑑 is the hidden dimension and 𝒉𝒉𝑖𝑖 ∈ ℝ1×𝑑𝑑 is the hidden representation 

of the 𝑖𝑖th amino acid. Note that the initial 𝑯𝑯(0) does not have to be the feature matrix 𝑿𝑿, which means that a fully connected layer can be applied 

on 𝑿𝑿  to obtain the initial hidden representation 𝑯𝑯(0) . The input 𝑯𝑯(𝑙𝑙)  is projected by three matrices 𝑾𝑾𝑄𝑄 ∈ ℝ𝑑𝑑×𝑑𝑑𝐾𝐾 , 𝑾𝑾𝐾𝐾 ∈ ℝ𝑑𝑑×𝑑𝑑𝐾𝐾  and 𝑾𝑾𝑉𝑉 ∈

ℝ𝑑𝑑×𝑑𝑑𝑉𝑉 to the corresponding queries, keys and values representation 𝑸𝑸,𝑲𝑲,𝑽𝑽:  

𝑸𝑸 = 𝑯𝑯(𝑙𝑙)𝑾𝑾𝑄𝑄,     𝑲𝑲 = 𝑯𝑯(𝑙𝑙)𝑾𝑾𝐾𝐾 ,     𝑽𝑽 = 𝑯𝑯(𝑙𝑙)𝑾𝑾𝑉𝑉                                                                                        (2) 

The self-attention is then calculated as: 

𝑨𝑨 =
𝑸𝑸𝑲𝑲𝑇𝑇

�𝑑𝑑𝐾𝐾
                                                                                                                      (3) 

𝑯𝑯(𝑙𝑙+1) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑯𝑯(𝑙𝑙)� = softmax(𝑨𝑨)𝑽𝑽                                                                                             (4) 

where 𝑨𝑨 is a matrix capturing the similarities between queries and keys. In order to take the protein structure information into account for focusing 

on spatially adjacent residues, we adopt k-nearest mask according to the distance matrix 𝑫𝑫 to mask out the spatially remote amino acids, which 

means that for node 𝑖𝑖, only spatially adjacent nodes 𝑗𝑗 ∈ Neighbor(𝑖𝑖, 𝑘𝑘) are used to calculate the attention scores in the transformer. In order to 

jointly attend to information from different representation subspaces at different positions, we use multi-head attention to linearly project the queries, 

keys and values h times, perform the attention function in parallel and finally concatenate them together. In this study, 𝑑𝑑𝐾𝐾 = 𝑑𝑑𝑉𝑉 = 𝑑𝑑 / ℎ. 

 
2.3.2 Multilayer Perceptron 
The output of the last graph transformer layer is input to the multilayer perceptron (MLP) to predict the DNA-binding probabilities of all n amino 

acid residues: 

𝒀𝒀′ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑯𝑯(𝐿𝐿)𝑾𝑾 + 𝑏𝑏�                                                                                                     (5) 

where 𝑯𝑯(𝐿𝐿) ∈ ℝ𝑛𝑛×𝑑𝑑 is the output of the Lth graph transformer layer; 𝑾𝑾 ∈ ℝ𝑑𝑑×1 is the weight matrix; 𝑏𝑏 ∈ ℝ is the bias term, and 𝒀𝒀′ ∈ ℝ𝑛𝑛×1 is 

the predictions of n amino acid residues. The sigmoid function normalizes the output of the network into binding probabilities ranging from 0 to 1. 

 
2.4 Implementation details 
We performed 5-fold cross-validation on the training data, where the data were split into five folds randomly. Each time, a model was trained on 

four folds and evaluated on the remaining one fold. This process was repeated five times and the performances on the five folds were averaged as 

the overall validation performance, which was used to choose the best feature combination and optimize all hyperparameters through grid search 

(Supplementary Table S1). In the testing phase, all five trained models in the cross-validation were used to make predictions, which were averaged 

as the final predictions of our method. 

Specifically, we utilized a 2-layer graph transformer module with 64 hidden units and the following set of hyperparameters: h = 4, k = 30 and 

batch size of 16. We employed the Adam optimizer [54] with β1 = 0.9, β2 =0.99, ε = 10−5, weight decay of 10−5 and learning rate of 3 × 10−4 for model 

optimization on the binary cross entropy loss. The dropout rate was set to 0.2 to avoid overfitting. We implemented the proposed model with Pytorch 

1.7.1 [55]. Within each epoch, we drew 5000 samples from the training data using random sampling with replacement to train our model. The training 

process lasted at most 15 epochs and we performed early-stopping with patience of 4 epochs based on the validation performance, which took 

approximately 40 minutes on an Nvidia GeForce RTX 3090 GPU. In the testing phase, it took about 5 seconds to make prediction for one protein 

with pre-computed features. 

 
2.5 Evaluation metrics 
Similar to the previous studies [56, 57], we used specificity (Spe), precision (Pre), recall (Rec), F1-score (F1), Matthews correlation coefficient 

(MCC), area under the receiver operating characteristic curve (AUC), and area under the precision-recall curve (AUPR) to measure the predictive 

performance: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                                                                                (6) 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                                                                                (7) 
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𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                                                                               (8) 

𝐹𝐹1 = 2 ×
𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                                                                                                   (9) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
                                                                 (10) 

where true positives (TP) and true negatives (TN) denote the number of binding and non-binding sites identified correctly, and false positives (FP) 

and false negatives (FN) denote the number of incorrectly predicted binding and non-binding sites, respectively. AUC and AUPR are independent 

of thresholds, thus revealing the overall performance of a model. The other metrics were calculated using a threshold to convert the predicted binding 

probabilities to binary predictions, which was determined by maximizing F1-score for the model. We used AUPR for the above hyperparameter 

selection as it is more sensitive and it emphasizes more on the minority class in imbalanced two-class classification tasks [58]. 

Significance tests were performed to investigate if the results are not biased by a subset of test proteins by measuring whether the predictive 

performance is consistent over different subsets. Similar to [26, 59], we randomly sampled 70% of the test proteins and calculated the AUPRs of the 

best-performing method and other methods. This was repeated 10 times and we compared the corresponding 10 paired results. If the measurements 

were normal, as tested by the Anderson–Darling test [60] with 0.05 significance, we applied the paired t-test to investigate significance. Otherwise, 

the Wilcoxon rank sum test [61] was utilized. If P-value < 0.05, the difference between a given pair of methods is considered statistically significant. 

 

3. Results 
3.1 Performance on the 5-fold cross-validation and independent tests 
We evaluated the performance of GraphSite by AUC and AUPR using 5-fold cross-validation (CV) on the Train_573 dataset and independent tests 

on the Test_129 and Test_181 datasets. The final GraphSite model obtains AUC of 0.915, 0.934 and 0.917; as well as AUPR of 0.589, 0.544 and 

0.369 on the 5-fold CV and two independent tests, respectively. The consistent AUC on the CV and tests indicate the robustness of our model. Note 

that the AUPR drops about 0.18 in Test_181, which might be ascribed to the lower positive sample ratio, or the lower predicted qualities of the 

protein structures in this dataset (discussed in Section 3.4). Since the prediction of GraphSite is the average predictive scores from the five trained 

models in cross-validation, we also discussed the uncertainty of our method, which is empirically measured by the standard deviation of these five 

scores. As shown in Supplementary Table S2, the predictions are more accurate when GraphSite is more confident and vice versa. 

In order to demonstrate the advantages of protein geometric knowledge and the graph transformer model, we compared GraphSite with a 

baseline method BiLSTM, which contains a two-layer bidirectional long short-term memory network with 256 hidden units and an MLP module. 

This model uses the same residue features as GraphSite and serves as a geometric-agnostic baseline to evaluate the impact of the spatial information 

for binding residue prediction. As shown in Supplementary Table S3, GraphSite yields higher F1, MCC, AUC, and AUPR values, which are 

0.064(0.051), 0.068(0.054), 0.021(0.036) and 0.073(0.073) higher than those of BiLSTM on Test_129(Test_181), respectively. Figure 2 and 

Supplementary Figure S1 show the precision-recall curves and ROC curves of GraphSite and BiLSTM on the CV, Test_129 and Test_181, where 

the curves of GraphSite are largely located above those of BiLSTM. Here, the k-nearest mask helps GraphSite focus on the spatially adjacent residues, 

while remote residues can still be learned since the whole graph is connected. As shown in Supplementary Table S4, removal of the k-nearest mask 

leads to AUPR drops (0.036 and 0.034) on both Test_129 and Test_181. 

The performance improvement of GraphSite over BiLSTM is likely due to its better capability in capturing long-range contact information. To 

illustrate this, we compared the performance of GraphSite and BiLSTM on amino acids with different number of non-local contacts, defined as the 

contacts from the residues that are more than 20 residues away in sequence positions, but ≤ 12 Å in terms of their atomic distances between Cα 

atoms. Figure 3 shows that GraphSite consistently surpasses BiLSTM on Test_181 and more importantly, the performance gap between them 

enlarges as the non-local contact number of the amino acids increases. Specifically, the performance of GraphSite surpasses BiLSTM by 8.6% in 

MCC on the amino acids with 0 to 9 non-local contacts, and the gap widens to as much as 80.5% on the amino acids with ≥ 30 non-local contacts. 

Similar results can also be observed in Test_129 (Supplementary Figure S2). These comparisons highlight the importance of the spatial information, 

and the effectiveness of GraphSite in harnessing protein structural knowledge especially non-local contacts for DNA-binding residue recognition. 

 

3.2 Feature importance 
To demonstrate the relative importance of each feature we adopted, we conducted feature ablation experiments by using one feature individually or 
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excluding one feature from the final feature combination. As shown in Table 2, when using single feature group as node features, the highly processed 

single representation from AlphaFold2 already gives satisfactory performance with AUPR of 0.520 in Test_129 and 0.336 in Test_181. On the other 

hand, using DSSP solely as node features yields the worst performance with AUPR of 0.126 in Test_129 and 0.080 in Test_181, indicating that 

structural properties of amino acids such as secondary structure and relative solvent accessibility are insufficient to capture the complicated patterns 

of DNA-binding sites. Vice versa, the removal of single representation from the final feature combination leads to the greatest performance drops of 

about 0.1 in AUPR for the two test sets, and the removal of DSSP leads to the smallest performance drops as expected. In addition, although both 

the single representation and evolutionary features (PSSM and HMM) contain MSA information, the removal of PSSM and HMM still leads to 

AUPR drop of 0.021 in Test_129 and 0.037 in Test_181. The performance reduction when removing any feature group suggests that the combined 

feature groups are nonredundant.  

 

3.3 Comparison with state-of-the-art methods 
We compared GraphSite with three sequence-based (SVMnuc, NCBRPred and DNAPred) and four structure-based (COACH-D, NucBind, 

DNABind and GraphBind) predictors on Test_129, where GraphSite outperforms all other methods significantly (shown in Table 3). Concretely, 

GraphSite surpasses the second-best sequence-based method DNAPred by 56.3% in MCC and 48.2% in AUPR, respectively. In addition, GraphSite 

achieves recall and precision of 0.665 and 0.460 on Test_129, respectively, surpassing all other sequence-based methods. It should be noted that 

recall and precision are unbalanced measures strongly depending on thresholds. Though GraphSite is a sequence-based predictor input with protein 

sequences only, GraphSite outperforms the latest structure-based method GraphBind by 0.020 in MCC and 0.025 in AUPR, respectively. This is 

reasonable because: 1) GraphBind only uses the evolutionary features PSSM and HMM from MSA, while our method additionally employs the 

informative single representation from AlphaFold2. 2) The graph transformer model is proven to be powerful (Figure 2). 3) The AlphaFold2-

predicted protein structures used by GraphSite are of high quality (discussed in Section 3.4). On the other hand, the performance of these four 

structure-based methods will further decrease when using predicted structures as input (e.g., AUPR from 0.519 to 0.497 for GraphBind), and the 

superiority of our method will be further reflected. Besides, we also tested GraphSite using the native structures as input, which will cause 

performance drop of AUPR from 0.544 to 0.502, since our method were trained using predicted structures. However, re-training the model using 

native structures will restore the AUPR to a similar level (0.541) as before. 

To further demonstrate the generalization and stability of our method, we also compared GraphSite with other methods on our newly built 

independent Test_181. Note that this is a more challenging dataset for our method since we set “--max_template_date” in AlphaFold2 before the 

release dates of all proteins in Test_181. As shown in Table 3, the performance ranks of these methods are generally consistent as in Test_129, and 

GraphSite still outperforms all other methods significantly, including the structure-based methods that use native protein structures. On the other 

hand, when using predicted structures as input, our method surpasses the best structure-based method GraphBind by 16.4% in AUPR and 11.2% in 

MCC, respectively. This suggests that our method is practical and much more powerful for the situation where only protein sequences instead of 

native structures are available. 

 
3.4 Impact of the quality of predicted protein structure 
Since GraphSite employs predicted protein structures for geometric deep learning, the predicted quality of AlphaFold2 should be crucial to the 

downstream DNA-binding site prediction. We calculated the average global distance test (GDT) [62] between the native structures and the predicted 

structures by AlphaFold2 in the three datasets through SPalign [63]. The average GDT for Train_573 and Test_129 are 0.86 and 0.85, indicating that 

AlphaFold2 can make accurate structure predictions when similar structure templates are available. However, the predicted quality drops when we 

set the restriction of the max available date of templates in AlphaFold2. Concretely, the GDT drops to 0.71 for the independent Test_181, which 

partly explains why the performance of GraphSite decreases in this dataset. For further demonstration, Figure 4 shows the predicted quality 

(measured by GDT) of AlphaFold2 and the per-protein AUPR on Test_181 for GraphSite (blue scatters). Moreover, we sorted the proteins in Test_181 

according to the GDT and divided them into 9 bins equally to compute the average GDT and AUPR for each bin (red line). As expected, GraphSite 

shows a positive correlation between the predicted quality of AlphaFold2 and the AUPR. A closer inspection shows that the top-30% proteins with 

the highest GDT (average GDT = 0.92) correspond to an average AUPR of 0.525 predicted by GraphSite. On the other hand, the bottom-30% 

proteins with the lowest GDT (average GDT = 0.46) correspond to an average AUPR of 0.287, which is significantly lower than that of the top-30% 

proteins (P-value = 9.0 × 10-5) according to Mann–Whitney U test [64]. We also observed a negative correlation between the predicted error of 

AlphaFold2 at amino acid level (measured by the distance between the native and predicted amino acid after structure alignment) and the performance 
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of GraphSite (Supplementary Table S5). These results suggest the importance of the predicted quality of protein structure for DNA-binding site 

prediction. 

 

3.5 GraphSite learns effective latent representations of residues 
In this section, we visualized the raw feature vectors and the latent feature vectors learned by GraphSite on Test_181. For a target residue, the initial 

node feature vector consisting of MSA information and structural properties with the size of 438 serves as the raw feature vector. The latent feature 

vector learned by GraphSite with the size of 128 is the concatenation of the embedding vectors from the two graph transformer layers. t-SNE [65] 

was applied to project the high-dimensional feature vectors into the 2-dimensional space. Figure 5A and 5B illustrate the distributions of samples 

encoded by raw feature vectors and latent feature vectors, respectively. As shown in Figure 5A, the binding and non-binding residues overlap and 

are indistinguishable, while Figure 5B shows that most binding residues are clustered together and separated from most non-binding residues. These 

results demonstrate that the latent representations learned by GraphSite effectively improve the discriminability of binding and non-binding residues. 

 
3.6 Case study 
To visualize the superiority of our method, we selected mycobacterial DNA polymerase LigD (PDB ID: 6SA0, chain A) from Test_181 for illustration. 

Figure 6 shows the DNA-binding site prediction results of GraphSite (A) and the geometric-agnostic baseline method BiLSTM (B). In this example, 

there are 32 DNA-binding residues over a total of 333 residues. GraphSite predicts 48 binding residues in which 24 are true positives, leading to an 

F1 of 0.600, MCC of 0.562, and AUPR of 0.554. By comparison, BiLSTM predicts 52 binding residues in which only 20 are true positives, leading 

to a lower F1 of 0.476, MCC of 0.421, and AUPR of 0.367. Besides, as shown in Figure 6A, the false-positive binding residues (colored in red) 

predicted by GraphSite are mostly around the interface of protein-DNA interaction or close to the DNA structure. In addition, the results of the 

structure-based method GraphBind using the predicted structure of this protein can be found in Supplementary Figure S3. Visualization of another 

case (PDB ID: 6YMW, chain B) can also be found in Supplementary Figure S4. 

 
4. Discussion and Conclusion 
Identifying protein-DNA binding sites is crucial for understanding biological activities and designing novel drugs. Existing sequence-based methods 

only consider contextual features of the sequential neighbors, leading to their limited predictive performance, while the structure-based methods are 

not applicable to most proteins that don’t have known tertiary structures. Trained with the predicted structure models and the single representations 

from AlphaFold2, GraphSite achieves great performance (surpassing the best structure-based method) using only protein sequences, which 

simultaneously solves the limitations of the current sequence-based and structure-based methods. The graph transformer technique adopted by 

GraphSite is able to refine the geometric characteristics by taking the local structural context topology into account, while most of the competitive 

methods first extract structural characteristics and then feed these features into some supervised classifiers, separating the feature engineering and 

classification. In summary, the superiority of GraphSite benefits from two aspects: 1) the predicted structures from AlphaFold2 are of high quality 

and the single representations are informative; 2) the structure-aware graph transformer is an effective algorithm to learn the patterns for binding 

residue prediction. 

With the development of sequencing techniques, many DNA-binding proteins have been detected, and such discoveries require confirmations 

in biological experiments. While the whole chain screening is time-consuming and expensive, the predictive methods can help narrow down potential 

binding sites, as indicated in our previous collaborative study [10] to validate nucleic acid binding residues in JAK2 kinase through computational 

predictions and wet experiments. On the other hand, these predictions can also provide hypotheses and insights for the mechanisms of many disease-

causing gene mutations, such as the THOC2 mutations which affect mRNA export [9]. In novel drug design, the binding site prediction can be used 

to predict druggability [13] or used as condition of generative models for de novo molecule design [14]. 

Our GraphSite model still has a few limitations. Firstly, the performance of GraphSite is largely affected by the predicted quality of AlphaFold2. 

This may be solved by adding other informative sequence-derived features or building heterogeneous graphs through integrating protein primary 

sequences to increase the model robustness to structure predicted quality. Another way is to keep all five relaxed models from AlphaFold2 instead 

of only retaining the model with the highest predicted LDDT score to perform data augmentation. Secondly, our graph transformer algorithm only 

uses the protein distance matrices as masks in the self-attention step now, and modifications might be made to add the pairwise residue distances as 

biases to the attention scores. Our framework can also be explored to handle protein graphs with edge features constructed by residue distance, angle 

or the pair representation from AlphaFold2. Thirdly, our method only considers the protein information to predict potential DNA-binding sites, thus 
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cannot predict the specific binding pattern given a known DNA sequence or structure. We left these above improvements of this longstanding 

challenge to future work. 

In conclusion, this study proposes a geometric-aware framework called GraphSite for DNA-binding site prediction, where we predict protein 

structures from sequences using AlphaFold2 and employ graph transformer network to learn the amino acid representations. GraphSite shows 

preferable performance than other sequence-based and structure-based methods in comprehensive evaluations. We suggest that our method could 

provide useful information for biologists studying protein-DNA binding patterns or pathogenic mechanisms of mutations, and chemists interested 

in targeted drug design. In the future, we would further improve our graph transformer architecture and integrate multi-task learning [66] to extend 

our method to various fields, including predicting protein binding sites with RNA and small ligands, or protein functional sites such as methylation 

and phosphorylation. 

 
Key points 
 Existing sequence-based methods for identifying protein-DNA binding sites only consider contextual features of the sequential neighbors, 

which are limited to capture spatial information. 

 GraphSite is the first sequence-based method to predict protein-DNA binding sites based on the predicted structures from AlphaFold2, where 

structure-aware graph transformer is employed to capture the protein structural context topology. 

 GraphSite shows preferable performance than state-of-the-art sequence-based and structure-based methods in two independent datasets. 

 
Data Availability 
We provide the datasets, the predicted structures, and the source codes along with the pre-trained models of GraphSite at https://github.com/biomed-

AI/GraphSite. The GraphSite web server is freely available at https://biomed.nscc-gz.cn/apps/GraphSite. 

 
Supplementary data 
Supplementary data are available online at https://academic.oup.com/bib. We also provide the datasets, the predicted structures, and the source codes 

along with the pre-trained models of GraphSite at https://github.com/biomed-AI/GraphSite. 
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Figure 1. The overall architecture of GraphSite. The protein sequence is input to AlphaFold2 to produce the single representation and the predicted 

protein structure, from which the distance map and DSSP are extracted. Then, the single representation, DSSP and sequence-derived features PSSM 

and HMM are concatenated to form the node feature vector, which is then input to the graph transformer model with k-nearest mask by the distance 

map to learn the DNA-binding site patterns. 

 

 

 

 

 

 

 

Figure 2. Precision-recall curves of GraphSite and BiLSTM on the CV, Test_129 and Test_181. 
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Figure 3. The MCC of GraphSite and BiLSTM on amino acids with different number of non-local contacts in Test_181. 

 
 
 
 
 
 

 
Figure 4. The positive correlation between the predicted quality of AlphaFold2 measured by GDT and the performance of GraphSite measured by 

AUPR on Test_181. The blue scatters denote the per-protein GDT and AUPR, while the red line denotes the average GDT and AUPR for each bin 

after sorting all proteins according to GDT and dividing them into 9 bins. 
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Figure 5. Visualization of the distributions of samples encoded by raw feature vectors (A) and latent feature vectors learned by GraphSite (B) on 

Test_181 using t-SNE. 

 
 
 
 
 
 

 
Figure 6. Visualization of one example (PDB ID: 6SA0, chain A) from Test_181 predicted by GraphSite (A) and the geometric-agnostic baseline 

method BiLSTM (B). True positives, false positives and false negatives are colored in green, red and yellow, respectively. 
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Table 1. Statistics of the three benchmark datasets used in this study. The columns give, in order, the dataset name, the number of binding, and the 

number of non-binding residues in each dataset, and the percentage of the binding residues out of total. 

Dataset Binding residues Non-binding residues % of binding residues 

Train_573 14479 145404 9.06 

Test_129 2240 35275 5.97 

Test_181 3208 72050 4.26 

 
 
 
 
 
 
Table 2. The AUC and AUPR of the 5-fold cross-validation (CV), Test_129 and Test_181 using a single feature individually or excluding each 

feature in turn from the final feature combination. AF2 Single denotes the single representation produced by AlphaFold2, and Evo denotes the 

evolutionary feature groups PSSM and HMM. Bold fonts indicate the best results. 
Feature CV AUC CV AUPR Test_129 AUC Test_129 AUPR Test_181 AUC Test_181 AUPR 

AF2 Single 0.906 0.557 0.925 0.520 0.908 0.336 

Evo 0.864 0.417 0.888 0.381 0.854 0.232 

DSSP 0.691 0.173 0.721 0.126 0.686 0.080 

-AF2 Single 0.886 0.497 0.913 0.452 0.882 0.263 

-Evo 0.911 0.568 0.928 0.523 0.909 0.332 

-DSSP 0.911 0.573 0.929 0.532 0.909 0.347 

GraphSite 0.915 0.589 0.934 0.544 0.917 0.369 
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Table 3. Performance comparison of GraphSite with state-of-the-art methods on Test_129 and independent Test_181. The results of GraphBind were 

obtained from its standalone program, while the predictions by other competitive methods were generated from their web servers. Bold fonts indicate 

the best results. 

Dataset Method Spe Rec Pre F1 MCC AUC AUPR P-values of AUPR 

Test_129 SVMnuc 0.966 0.316 0.371 0.341 0.304 0.812 0.302 6.6 × 10-14 

NCBRPred 0.969 0.312 0.392 0.347 0.313 0.823 0.310 2.2 × 10-11 

DNAPred 0.954 0.396 0.353 0.373 0.332 0.845 0.367 2.3 × 10-11 

COACH-Da 0.958 0.367 0.357 0.362 0.321 0.710 0.269 2.7 × 10-11 

NucBinda 0.966 0.330 0.381 0.354 0.317 0.811 0.294 9.2 × 10-12 

DNABinda 0.926 0.601 0.346 0.440 0.411 0.858 0.402 1.9 × 10-10 

GraphBinda 0.941 0.684 0.422 0.522 0.500 0.928 0.519 6.1 × 10-5 

COACH-Db 0.955 0.328 0.318 0.323 0.279 0.712 0.248 3.1 × 10-11 

NucBindb 0.964 0.322 0.366 0.343 0.304 0.809 0.284 8.0 × 10-13 

DNABindb 0.952 0.487 0.389 0.433 0.395 0.832 0.391 1.1 × 10-11 

GraphBindb 0.948 0.625 0.434 0.512 0.484 0.916 0.497 2.6 × 10-7 

GraphSite 0.950 0.665 0.460 0.543 0.519 0.934 0.544 N/A 

Test_181 NCBRPred 0.964 0.259 0.241 0.250 0.215 0.771 0.183 7.2 × 10-11 

SVMnuc 0.960 0.289 0.242 0.263 0.229 0.803 0.193 7.1 × 10-11 

DNAPred 0.948 0.334 0.223 0.267 0.233 0.802 0.230 6.2 × 10-10 

COACH-Da 0.971 0.254 0.280 0.266 0.235 0.655 0.172 2.8 × 10-12 

NucBinda 0.960 0.293 0.248 0.269 0.234 0.796 0.191 7.6 × 10-11 

DNABinda 0.904 0.535 0.199 0.290 0.279 0.825 0.219 4.6 × 10-10 

GraphBinda 0.933 0.624 0.293 0.399 0.392 0.904 0.339 3.9 × 10-5 

COACH-Db 0.971 0.239 0.266 0.251 0.220 0.668 0.169 3.4 × 10-12 

NucBindb 0.959 0.288 0.240 0.262 0.227 0.798 0.186 5.5 × 10-11 

DNABindb 0.941 0.392 0.229 0.289 0.259 0.803 0.208 2.8 × 10-10 

GraphBindb 0.949 0.505 0.304 0.380 0.357 0.893 0.317 7.4 × 10-7 

GraphSite 0.958 0.517 0.354 0.420 0.397 0.917 0.369 N/A 
a Using native protein structures. 
b Using predicted protein structures. 
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Table S1. The performance of GraphSite on the 5-fold cross-validation (CV), Test_129 and Test_181 using different 

hyperparameters. For each row, the hyperparameters that are not shown are the same as the final GraphSite model. 

Hyperparameter Value 5-Fold CV AUPRC Test_129 AUPRC Test_181 AUPR 

Layers 

1 0.570 0.524 0.356 

2 0.589 0.544 0.369 

4 0.577 0.530 0.359 

k 

20 0.573 0.518 0.356 

30 0.589 0.544 0.369 

40 0.569 0.522 0.352 

h 

1 0.548 0.506 0.337 

2 0.578 0.532 0.362 

4 0.589 0.544 0.369 

8 0.583 0.536 0.353 

Hidden Units 

32 0.580 0.525 0.359 

64 0.589 0.544 0.369 

128 0.549 0.500 0.333 

Dropout 

0.1 0.569 0.520 0.352 

0.2 0.589 0.544 0.369 

0.3 0.588 0.530 0.363 

 
 
 
Table S2. The negative correlation between the predictive uncertainty and the performance of GraphSite on Test_129 and Test_181. 

Amino acids in the datasets were sorted according to the uncertainty (measured by the standard deviation of the five predictive 

scores), and then divided into 5 bins equally. Average uncertainty, accuracy (ACC) and binary cross-entropy (BCE) were calculated 

for each bin. 

Dataset Bin 1 2 3 4 5 

Test_129 

Average Uncertainty 4.6×10-4 1.2×10-3 3.7×10-3 1.8×10-2 1.3×10-1 

ACC 0.999 0.998 0.992 0.965 0.712 

BCE 0.003 0.013 0.046 0.143 0.451 

Test_181 

Average Uncertainty 4.8×10-4 1.3×10-3 3.8×10-3 1.7×10-2 1.2×10-1 

ACC 0.999 0.998 0.994 0.969 0.735 

BCE 0.005 0.010 0.036 0.128 0.422 
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Table S3. Performance comparison with the geometric-agnostic baseline model BiLSTM on Test_129 and Test_181. The highest 

values are bolded. 

Dataset Method Spe Rec Pre F1 MCC AUC AUPR 

Test_129 
BiLSTM 0.940 0.615 0.393 0.479 0.451 0.913 0.471 

GraphSite 0.950 0.665 0.460 0.543 0.519 0.934 0.544 

Test_181 
BiLSTM 0.953 0.463 0.306 0.369 0.343 0.881 0.296 

GraphSite 0.958 0.517 0.354 0.420 0.397 0.917 0.369 

 

 

 
Figure S1. Receiver operating characteristic curves of GraphSite and BiLSTM on the CV, Test_129 and Test_181. 

 

Table S4. Performance comparison with transformer without k-nearest mask on Test_129 and Test_181. The highest values are 

bolded. 

Dataset Method Spe Rec Pre F1 MCC AUC AUPR 

Test_129 
Transformer 0.960 0.557 0.470 0.510 0.478 0.916 0.508 

GraphSite 0.950 0.665 0.460 0.543 0.519 0.934 0.544 

Test_181 
Transformer 0.959 0.464 0.339 0.392 0.365 0.896 0.335 

GraphSite 0.958 0.517 0.354 0.420 0.397 0.917 0.369 

 
 

 
Figure S2. The MCC of GraphSite and BiLSTM on amino acids with different number of non-local contacts in Test_129. 
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Table S5. The model performance for the amino acids with different degrees of predicted errors. All amino acids in Test_181 were 

sorted according to the distance between the native and predicted amino acid and divided into 5 bins equally, from which the median 

distances and AUPRs were calculated. 

Bin Range (Å) 0.00-0.60 0.60-1.06 1.06-1.93 1.93-6.53 > 6.53 

Median Distance (Å) 0.39 0.81 1.40 3.12 21.56 

AUPR 0.445 0.456 0.347 0.310 0.258 

 
 
Figure S3 shows the DNA-binding site prediction results of GraphSite (A) and the second-best method GraphBind (B) using the 

predicted structure of mycobacterial DNA polymerase LigD (PDB ID: 6SA0, chain A) from Test_181. In this example, there are 32 

DNA-binding residues over a total of 333 residues. GraphSite predicts 48 binding residues in which 24 are true positives, leading 

to an F1 of 0.600, MCC of 0.562, and AUPR of 0.554. By comparison, GraphBind predicts 15 binding residues in which 9 are true 

positives, and 72% of the true binding residues are incorrectly predicted as non-binding residues, leading to a lower F1 of 0.383, 

MCC of 0.371, and AUPR of 0.461. 

 
Figure S3. Visualization of one example (PDB ID: 6SA0, chain A) from Test_181 predicted by GraphSite (A) and the second-best 

method GraphBind (B). True positives, false positives and false negatives are colored in green, red and yellow, respectively. 

 
Figure S4 shows the DNA-binding site prediction results of GraphSite (A), the geometric-agnostic baseline method BiLSTM (B), 

and the second-best method GraphBind (C) using the predicted structure of yeast mitochondrial transcription factor 1 (PDB ID: 

6YMW, chain B) from Test_181. In this example, there are 15 DNA-binding residues over a total of 340 residues. GraphSite predicts 

26 binding residues in which 9 are true positives, leading to an F1 of 0.439, MCC of 0.423, and AUPR of 0.371. By comparison, 

BiLSTM predicts 21 binding residues in which only 4 are true positives, and 73% of the true binding residues are incorrectly 

predicted as non-binding residues, leading to a lower F1 of 0.222, MCC of 0.183, and AUPR of 0.273. The second-best method 

GraphBind predicts 15 binding residues in which 4 are true positives, leading to an F1 of 0.267, MCC of 0.233, and AUPR of 0.221. 

 
Figure S4. Visualization of another example (PDB ID: 6YMW, chain B) from Test_181 predicted by GraphSite (A), BiLSTM (B) 

and GraphBind (C). True positives, false positives and false negatives are colored in green, red and yellow, respectively. 
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