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Abstract 26 

Advancement in single-cell RNA sequencing leads to exponential accumulation of 27 

single-cell expression data. However, there is still lack of tools that could integrate these 28 

unlimited accumulation of single-cell expression data. Here, we presented a universal 29 

approach iSEEEK for integrating super large-scale single-cell expression via exploring 30 

expression rankings of top-expressing genes. We developed iSEEEK with 13.7 million 31 

single-cells. We demonstrated the efficiency of iSEEEK with canonical single-cell 32 

downstream tasks on five heterogenous datasets encompassing human and mouse 33 

samples. iSEEEK achieved good clustering performance benchmarked against well-34 

annotated cell labels. In addition, iSEEEK could transfer its knowledge learned from 35 

large-scale expression data on new dataset that was not involved in its development. 36 

iSEEEK enables identification of gene-gene interaction networks that are characteristic 37 

of specific cell types. Our study presents a simple and yet effective method to integrate 38 

super large-scale single-cell transcriptomes and would facilitate translational single-cell 39 

research from bench to bedside. 40 

 41 

Introduction 42 

Large volume of single-cell transcriptomes is accumulating rapidly. Technical 43 
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improvements in single-cell RNA sequencing (scRNA-seq)1 lead to rapid drop in 44 

sequencing cost and allows for millions of cells to be sequenced. This was exemplified 45 

by the establishment of international collaborative projects on single-cell such as 46 

Human Cell Atlas2, COVID-19 Atlas3, Single Cell Expression Atlas4, Tabula Muris 47 

Atlas5 and Mouse Cell Atlas6, which aim at depicting reference map of single-cell 48 

signatures. Consequently, integration of these super large-scale data is a challenge and 49 

crucial in the era of single-cell data science7.  50 

 51 

Traditional single-cell transcriptome analysis methods such as Seurat8,9 and Scanpy10 52 

are to learn feature representation of gene expression profiles via dimensional reduction 53 

on expression profiles of high variable genes (HVGs). While the deep learning methods 54 

such as scVI11 and MARS12, in essence analogous to traditional methods, are to perform 55 

dimensionality reduction on gene expression of single-cells specifically in a nonlinear 56 

manner. However, there remain several challenges for single-cell analysis. For instance, 57 

there are high discrepancies in the selection of HVGs among different methods13 and 58 

the batch effect further complicates HVG selection14. Noise and batch effect are 59 

unavoidable as sequencing samples were often compiled from multiple experiments, 60 

handling by different personnel, sequenced with different instruments and protocols15,16. 61 

The batch effect masks the biological variations and entails batch correction. However, 62 

overcorrection is often inevitable 17. 63 

 64 

Herein, we introduced iSEEEK, a universal approach for integrating super large-scale 65 
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single-cell transcriptomes via exploring the rankings of top-expressing genes. We 66 

hypothesize that the expression information of a single-cell is manifested by the 67 

rankings of its top-expressing genes. Therefore, we formulated feature representation 68 

of single-cell transcriptomes as natural language processing (NLP) task in that the 69 

sentence of each single-cell was constructed by concatenation of gene symbols of top-70 

expressing genes ordered by their expression levels. Tremendous progress and 71 

enormouse achievement were obtained in NLP task. The emergence of GPT18, BERT19, 72 

and ERINE20 algorithms revolutionized deep learning in domain of natural language 73 

understanding such as document classification, question answering and semantic 74 

similarity assessment etc. The essence of these algorithms is devoted to modeling 75 

associations among tokens and sentences as pretraining task. We developed iSEEEK to 76 

model the rankings of top-expressing genes on a dataset of 13.7 million single-cells. 77 

Subsequently, we applied the pretrained iSEEEK in downstream tasks such as 78 

delineation of cell clusters on three heterogeneous datasets such as peripheral blood 79 

mononuclear cells9, Human Cell Atlas21 and expression profiles of 20 organs from 80 

Tabula Mursi5. We also tested the transferability of iSEEEK on a new dataset that was 81 

not involved in its development. In addition, we demonstrated the applicability of 82 

iSEEEK to extract gene-gene interaction networks that are specific for CD4/8+ T cells 83 

obtained from fluorescence-activated cell sorting (FACS). iSEEEK would facilitate the 84 

integration of super large-scale single-cell transcriptomes and translational single-cell 85 

research from bench to bedside. 86 

 87 
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Results 88 

iSEEEK：integration of Single-cell Expression via Exploring Expression ranKings 89 

of top-expressing genes 90 

iSEEEK was trained with masked language model task to model the expression 91 

rankings of the top-expressing genes. iSEEEK was trained with 13,702,899 single-cells 92 

collected from public databases covering a variety of cell types from different human 93 

tissues under different conditions and mouse tissues (Supplementary Table 1). 94 

iSEEEK takes as input a sequence of gene symbols ranked by their expression levels 95 

(See Methods). The model learns the information of the ranking of the n top-expressing 96 

genes in a decreased order per cell. In this study, we examined iSEEEK with the 97 

rankings of the top 126 expressing genes. iSEEEK was trained as a masked language 98 

modeling task19,22. In this study, the masked language model task randomly masks some 99 

of genes in the input and predict the vocabulary indexes of masked genes based on their 100 

bidirectional contexts. The vocabulary consists of 20,706 protein-encoding genes. 101 

iSEEEK benefits from multi-head self-attention mechanism and bidirectional encoder 102 

representation. The aggregation of feature representations from multi-head attentions 103 

improved efficiency and precision. We applied the same data sampling strategy during 104 

training as proposed by Devlin J. and colleagues19: the training data generator randomly 105 

chooses 15% of the gene positions for prediction. If the ith gene is chosen, we replace 106 

the it with (1) the [MASK] token 80% of the time, (2) a random gene 10% of the time, 107 

(III) the original unchanged gene 10% of the time. iSEEEK was trained by cross-108 

entropy loss by comparing its predictions to the original genes (Figure 1A). iSEEEK 109 
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consists of 8 transformer layers each with 576 hidden units and 8 attention heads. 110 

Detailed parameters of iSEEEK were listed in Supplementary Table 2. The developed 111 

iSEEEK is able to learn the representations of expression-based gene rankings. The 112 

latent features extracted from the pretrained iSEEEK model can be used as input for 113 

downstream task including delineation of cell clusters, identification of marker genes 114 

and exploration of cell developmental trajectory etc (Figure 1B). 115 

 116 

Clustering performance of iSEEEK 117 

We evaluated the clustering performance of iSEEEK on three heterogeneous datasets 118 

that encompassed bone marrow dataset from Human Cell Atlas Census of Immune 119 

Cells21 (HCA, n=282,558) , peripheral blood mononuclear cells9 (PBMC, n=43,073) 120 

and Tabula Mursi dataset5 (n=54,865 cells). The HCA bone marrow dataset consisted 121 

of 18 cell types with different proportions. The PBMC dataset consisted of CD4+ T cell, 122 

CD8+ T cell, NK cells, FCGR3A+ and CD14+ monocytes. The Tabula Mursi dataset 123 

included single-cells of 20 organs from Mus musculus. 124 

 125 

iSEEEK was able to reveal distinct cell clusters underlying the composition of each 126 

dataset. On the HCA bone marrow dataset, the cell subsets were well separated and the 127 

megakaryocytes with low proportion (0.32%) were captured by iSEEEK (Figure 2A). 128 

On the PBMC dataset, iSEEEK revealed 23 cell clusters involving eight immune cell 129 

subgroups (Figure 2B). The cytotoxic lymphocyte cells were gathered together but 130 

divided into CD4+ T cell, CD8+ T cell and NK cell subgroup, and monocytes with 131 
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different markers (FCGR3A+ or CD14+) are also well mapped in particular. On the 132 

Tabula Mursi dataset from Mus musculus composed of 20 mouse organs, iSEEEK was 133 

able to identify 55 distinct cell types that are well matched with the identity and lineage 134 

of organs (Figure 2C and Supplementary Figure 1). In qualitative measurement of 135 

cell clustering obtained from iSEEEK against putative cell labels, we found that 136 

iSEEEK achieved an adjusted rand index (ARI) of 0.61 for HCA bone marrow dataset, 137 

0.34 for PBMC dataset, 0.72 for Tabula Mursi dataset. The ARI metric achieved by 138 

iSEEEK was comparable to those achieved by Scanpy. The ARI metric and UMAP plots 139 

of Scanpy across these three datasets were provided in Supplementary Figure 2-4. 140 

 141 

Additionally, we found that iSEEEK can work effectively on new dataset that was not 142 

involved in the development of iSEEEK. As an example, we examined iSEEEK on a 143 

new dataset obtained from previous study that consisted of 68,579 peripheral blood 144 

mononuclear cells from a healthy donor23. iSEEEK achieved an ARI of 0.29, which was 145 

comparable to Scanpy (Supplementary Figure 5), and the UMAP-visualization of the 146 

new dataset was shown in Figure 3D. Subsequently, we finetuned iSEEEK model on 147 

this new dataset (Figure 3E). We observed that the finetuned iSEEEK model achieved 148 

an ARI of 0.33 (Figure 3F). We found that finetuning iSEEEK for one epoch is 149 

sufficient (Supplementary Figure 6). The UMAP visualization plots of finetuning 150 

iSEEEK with different epochs were provided in Supplementary Figure 6. In addition, 151 

we showed that iSEEEK achieved a comparable acceptance rate of kBET as compared 152 

with batch-correction methods such as ComBat24, MNN25 and BBKNN26 measured on 153 
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the HCA bone marrow dataset (Supplementary Figure 7). 154 

 155 

iSEEEK reserves the development trajectory of B cells on HCA dataset 156 

We used the feature representation learned by iSEEEK to construct pseudo-temporal 157 

trajectories of bone marrow cells on HCA bone marrow dataset (see Methods). We 158 

identified a developmental trajectory rooted at stem cells towards multiple cell types 159 

with distinguishable intermediate stages (Figure 3A). We identified a developmental 160 

trajectory of B cells (Figure 3), with an initial wave of B cell progenitors (Pro-B cells) 161 

derived from hematopoietic stem cells (HSCs), then followed by precursors of B cells 162 

(pre-B cells), matured naïve B cells (Figure 3F), and finally bifurcated into memory B 163 

cells and plasma cells27. Meanwhile, we also observed differentiation of HSCs into 164 

multiple types of immune cells including plasmacytoid dendritic cells (pDCs), 165 

conventional dendritic cells (cDCs) and CD14+ monocytes (Figure 3C-E). In addition, 166 

the baicalia type of cell trajectories were observed for megakaryocytes and erythroid 167 

cells28 (Figure 3B), naïve CD4+ T cells and naïve CD8+ T cells (Figure G), cytotoxic 168 

T cells and NK cells (Figure 3H), suggesting that they were originated from the same 169 

progenitor cells29. 170 

 171 

iSEEEK enables discovery of marker genes and gene interaction modules 172 

We added and trained a classifier at the end of iSEEEK for identification of marker 173 

genes on the dataset of FACS-sorted CD4/8+ T cells (see Methods). An apparent 174 

separation of CD4+ and CD8+ T cells were observed on the UMAP visualization plot 175 
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(Figure 4A). We identified cell-type specific markers for these CD4/8+ T cells (see 176 

Methods). The identified marker genes for CD4+ T cells include CD4, TXNIP and CD2 177 

(Figure 4B). CD8+ T cells were featured by cytotoxic markers such as CD8A, CD8B, 178 

KLRK1 and NKG7(Figure 4B). 179 

 180 

We respectively obtained gene interaction networks that are characteristic of CD4+ and 181 

CD8+ T cells through analyzing the attention matrices of iSEEEK for the dataset of 182 

FACS-sorted CD4/8+ T cells (See Methods, Figure 4C and 4D). A CD4+ T cell 183 

specific gene interaction module (Figure 4E) derived from Figure 4C was featured by 184 

genes that involved in the development and function of CD4+ T cells (i.e. CXCR6, 185 

FOXP3, ICOS, CCR7 and SELL)30 and immune suppression (i.e. PDCD1, TIGIT, BATF 186 

and TNF receptor family) 31-33 (Figure 4E). These interactions are overrepresented in 187 

the STRING gene-gene interaction database (16/244 interactions; hypergeometric test, 188 

p = 5.0e-4). Among these interactions, CD2/PTPRC interaction is involved in the 189 

activation of T cell receptor34. FOXP3/TNFRSF18 interaction is critical for T cell 190 

differentiation35. The CD8+ T cell specific module (Figure 4F) is characterized by 191 

interactions among cytotoxic genes including GNLY, NKG7, PRF1, LCK and KLRD136. 192 

In addition, the CD8+ T cell recruitment gene CCL537 exhibited strong interaction with 193 

markers of CD8+ T cells including CD8A, CD8B and GZMB. Gene interactions from 194 

the CD8+ T cell specific module is enriched in STRING database (12/144 interactions; 195 

hypergeometric test, p = 1.3e-3).  196 

 197 
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Discussion 198 

In this study, we presented a universal approach iSEEEK for integrating super large-199 

scale single-cell transcriptomes by exploring of the rankings of top-expressing genes. 200 

iSEEEK was developed on 13,702,899 single-cell transcriptomes covering a wide 201 

variety of cell-types from Homo sapiens and Mus musculus. The notable features of 202 

iSEEEK is that it only relies on gene rankings but not actual expression levels, thus its 203 

sensitivity to batch effect should be decreasing. This feature makes iSEEEK a good 204 

candidate for integrating super large-scale amount of single-cell expression data. The 205 

performance of iSEEEK is expected to improve as more and more data are involved in 206 

its development. 207 

 208 

This study demonstrated that pretraining on the rankings of top-expressing genes from 209 

super large-scale scRNA-seq data is effective. The efficiency of cell cluster delineation 210 

on the extracted latent features of the pretrained iSEEEK was demonstrated on three 211 

heterogeneous datasets encompassing different cell types, sequencing with different 212 

protocol and deriving from different species. Across these three datasets, iSEEEK 213 

achieved comparable ARI metric as compared with Scanpy. In addition, iSEEEK also 214 

worked efficiently on new dataset that was not involved in its development. Finetuning 215 

iSEEEK for one epoch apprears sufficient to improve its clustering performance.   216 

 217 

iSEEEK enables to maximize the value of big data from single-cell transcriptomes in 218 

simple and yet effective way. iSEEEK can make use of single-cell transcriptomes from 219 
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different species, which was exemplified by the integration of data from Homo sapiens 220 

and Mus musculus in our study. iSEEEK circumvents the tremendous challenge of 221 

batch-correction in single-cell integration by modeling gene expression rankings rather 222 

than actual expression levels. As iSEEEK is not relying on actual expression levels but 223 

rather on the ranking of top-expressing genes, its sensitivity to batch effect is decreasing, 224 

which was verified in this study (Supplementary Figure 7). Batch-correction methods 225 

such as ComBat24, MNN25 and BBKNN26 require explicit knowledge of the batch 226 

information. However, the batch information is not always available and often 227 

neglected by researchers; therefore, traditional methods are not appropriate for data 228 

integration of multiple datasets without batch information. In addition, traditional 229 

methods8,9 are memory hungry as they require to load all data into memory, hampering 230 

their ability to process super large-scale dataset. In contrast, iSEEEK was trained in a 231 

stochastic manner that only a small batch of samples are processed at each time step. 232 

Thus, memory consumption of iSEEEK is much lower than traditional methods and it 233 

can benefit from acceleration brought by graphical processing unit. 234 

 235 

iSEEEK is quite different from that of other traditional methods as they require selection 236 

of hyper-variable genes (HVGs), batch-correction and data normalization38,39, whereas 237 

iSEEEK uses the ranking of top-expressing genes and does not require selection of 238 

HVGs. Batch-correction methods are sensitive to data volume and the number of 239 

batches, and the robustness of the batch-correction is difficult to assess in large-scale 240 

dataset24-26. Meanwhile, the consistency and reproducibility of the HVGs is also 241 
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difficult to control by different HVG selection methods13. iSEEEK takes as input the 242 

rankings of top-expressing genes, which may be less informative intuitively as 243 

compared with the use of expression levels of HVGs as traditional methods. However, 244 

iSEEEK was able to precisely identify cell types of small proportions such as 245 

FCGR3A+ and CD14+ monocytes in the PBMC dataset (Figure 2B), suggesting that 246 

the rankings of top-expressing genes are sufficient for delineation of cell types with 247 

small proportions. 248 

 249 

We demonstrated that feature representation of the rankings of top-expressing genes 250 

learned by iSEEEK preserved the chronological order of cell development trajectories. 251 

We verified the continuous and identifiable cell trajectory from B cell progenitors 252 

derived from HSCs towards plasma cells27 on HCA bone marrow dataset (Figure 3F).  253 

 254 

As a preliminary endeavor, we demonstrated that by analyzing iSEEEK for the input of 255 

CD4/8+ T cells, we were able to identify gene interaction modules manifested the 256 

features of CD4/8+ T cells. Functional related tend to have strong interactions. The 257 

attention mechanism in iSEEEK makes it possible to learn interaction among different 258 

genes. As the attention mechanism enables modeling gene interaction by taking into 259 

account the influence of other genes, it has the potential to learn complex gene-gene 260 

interaction networks and may shed new lights on gene regulation circuits.  261 

 262 

In this study, we formulate single-cell transcriptome integration as a language modeling 263 
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task. Recent advances in natural language processing will benefit single-cell integration. 264 

The paradigm of pretraining-then-finetuning is a de facto procedure in natural language 265 

processing as this paradigm is robust to overfitting and has the advantage of making 266 

use of super large-scale data and reducing the need of big data on downstream tasks40. 267 

 268 

Herein, we provided a universal, scalable, transferable, effective and easy-to-use 269 

approach for integration of super large-scale single-cell transcriptomes. iSEEEK can be 270 

finetuned on a specific dataset to tackle specific downstream tasks. We expected that 271 

iSEEEK may be helpful for researchers to elucidate the heterogeneous and dynamic 272 

biological processes underlying human diseases with the accumulation of single-cell 273 

transcriptomes.   274 

 275 

Conclusions 276 

In the study, we presented a universal approach for integrating super large-scale for 277 

single-cell transcriptomes by modeling feature representation of the rankings of top-278 

expressing genes as a masked language modeling task. We are in the process of 279 

developing a web server running iSEEEK that would be freely available to the research 280 

community. Our work represented a new paradigm in the integration of super large-281 

scale single-cell transcriptomes and may be helpful for the elucidation of the dynamic 282 

and heterogeneity of single-cells. 283 

 284 
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Methods 453 

Dataset and preprocessing  454 

We collected expression matrices of 13,702,899 single-cells from previous studies. 455 

Detailed information for these studies were provided in Supplementary Table 1. We 456 

discarded mitochondrial genes, ribosomal genes and non-protein coding genes. 457 

Subsequently, we concatenated the 126 top-expressing genes with CLS and SEP tokens 458 

as a sentence for each single-cell. Eventually, we obtained a text file of 13,702,899 459 

sentences. The five datasets used in downstream task of iSEEEK were described below: 460 
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Human Cell Atlas - Bone marrow data of 282,588 cells from 64 healthy donors in 461 

HCA project subjected to 10x sequencing protocol21. There are 18 cells types annotated 462 

by HCA including erythrocytes, mesenchymal stem cells, hematopoietic stem cell and 463 

diverse immune cells.  464 

Peripheral Blood Mononuclear Cells (PBMC) – This dataset was download from 465 

Gene Expression Omnibus repository9 (GSE96583). It consists of 43,095 single cells 466 

obtained from 5 individuals (3 systemic lupus erythematosus and 2 control) subjected 467 

to 10x sequencing. All cells were grouped into 8 categories: B cells, CD4+ T cells, 468 

CD8+ T cells, dendritic cells, megakaryocytes, FCGR3A+ monocytes, CD14+ 469 

monocytes and natural killer cells. 470 

Tabula Mursi - A data set of 100,000 single-cell from Mouse Cell Atlas5 across 20 471 

different organs subjected to 10x and Smart-seq2 sequencing protocols. 54,865 cells 472 

were sorted by FACS, therefore, we used these 54,865 cells for evaluation. 473 

Peripheral Blood Mononuclear Cells-68k (PBMC-68k) – This PBMC-68k dataset 474 

included 68,579 peripheral blood mononuclear cells obtained from a healthy donor 475 

(http://support.10xgenomics.com/single-cell/datasets). 476 

FACS-sorted CD4/8+ T cells - This dataset includes 12,670 CD4+ and 9,012 CD8+ T 477 

cells that were sorted by FACS from tumor patients diagnosed with liver cancer, 478 

colorectal cancer and lung cancer41-43. They were subjected to smart-seq sequencing.  479 

 480 

The iSEEEK model 481 

iSEEEK consists of an embedding layer and 8 encoder layers each with 576 hidden 482 
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units and 8 attention heads.  483 

Embedding Layer. The embedding layer takes the embeddings of a sequence of 128 484 

tokens and their position embeddings as input. An input representation of token can be 485 

represented as . CLS is the classification token and SEP is 486 

sentence separation token. Gi is the gene symbol of the ith gene. The CLS token, gene 487 

symbols and SEP token are first converted into indexes in the gene symbol dictionary. 488 

The gene symbol dictionary consists of protein-encoding genes. 489 

Encoder layer. The encoder layer is a transformer that is the core component of iSEEEK. 490 

It consists of a multi-head self-attention and a feed-forward network inter-connected 491 

with layer normalization layer. Residual connection is added to improve information 492 

flow. The multi-head self-attention enables the model to capture contextual information. 493 

The self-attention head is formulated as: 494 

   495 

The self-attention head takes Q, K and V as inputs and applies softmax transformation. 496 

Q, K and V are projected from the input. The scaling factor  is used to mitigate 497 

the extreme small gradient44. 498 

 499 

Input representations 500 

We constructed a dictionary with protein-encoding genes. For each cell, we prepared a 501 

sequence of 128 tokens, where tokens are gene symbols and/or special tokens such as 502 

[CLS], [SEP] and [PAD]. We filtered out genes with extremely low expression (i.e. an 503 

expression level of 1 or 0) and ranked them according to their expression levels. We 504 

1 2[ , , ,..., , ]nCLS G G G SEP

(Q K V) ( )
T

k

QKAttention softmax V
d

=, ,

kd

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.23.457305doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.23.457305


 

padded [PAD] token to the input sequence if the number of genes is less than 126. The 505 

first token is always [CLS] and the last token is always [SEP]. 506 

 507 

Model pre-training 508 

iSEEEK take a sequence gene symbols with a maximum length of 126 as input. We 509 

applied the same data sampling strategy during training as BERT19: the training data 510 

generator randomly chooses 15% of the gene positions for prediction. If the ith gene is 511 

chosen, we replace the it with (1) the [MASK] token 80% of the time, (2) a random 512 

gene 10% of the time, (III) the original unchanged gene 10% of the time. iSEEEK was 513 

trained by cross-entropy loss by comparing its predictions to the original genes. We 514 

trained iSEEEK model for 48 epochs with a batch size of 64 and the learning rate was 515 

set to 0.0001. The PyTorch (version 1.7.1) and transformers (version 4.6.0) packages 516 

were used to develop iSEEEK. 517 

 518 

Identification of marker genes 519 

We added a classifier to the end of the pre-trained iSEEEK and trained on the FACS-520 

sorted CD4/8+ T cells. The parameters of the pre-trained iSEEEK were frozen and 521 

parameter updating was applied for the linear classifier. We trained this classifier with 522 

a learning rate of 0.001 and batch size of 16 with Adam optimizer for 30 epochs. We 523 

quantitatively measure the impact of a specific gene as the difference between the logit 524 

values for the original gene sequence and gene sequence with that gene replaced with 525 

[UNK] token. Specifically, for an input gene sequence of S = [G1, G2, …, Gn], we 526 
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obtained S* = [G1, UNK, …, Gn] by replacing G2 with UNK. Let L and L* denote the 527 

logit values obtained from the classifier, the influence of G2 on the decision made by 528 

this classifier is defined as: 529 

∆= 𝐿 − 𝐿∗ 530 

For a specific cell type, we rank the influence of genes by the average value of ∆ and 531 

those ranked on the top is considered to be marker genes. 532 

 533 

Diffusion pseudotime analysis 534 

The affinity matrix of cells  was constructed from representation features of the 535 

CLS token. which is performed using community detection algorithms45 and the HNSW 536 

algorithm46 is applied to find the top-k nearest neighbors. A scaled Gaussian kernel is 537 

used to define the distance between cell-x and cell-y as: 538 

, 539 

x and y are representation features of the CLS token for cell-x and cell-y, respectively. 540 

is the local kernel width of x, calculated as the median value of x and its top-k nearest 541 

cells. The affinity matrix is defined as: 542 

 543 

Where  is defined as: 544 

 545 

The Markov chain transition matrix P and the symmetric transition matrix Q are then 546 

calculated based on the affinity matrix as follows: 547 
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, 548 

 ,  549 

The symmetrical matrix Q can be decomposed as UAUT. Let . A family with 550 

parameter timescale of t for approximated diffusion maps is defined as: 551 

 552 

The approximated DPT maps are constructed based on the aforementioned 553 

diffusion maps as: 554 

 555 

The diffusion maps and diffusion pseudotime maps are performed using package 556 

Pegasus47 (v1.4.3) with K set to 30. The cell trajectory was visualized with force-557 

directed layout embedding (FLE) algorithm48. We set δ and nδ as its the default 558 

parameter: δ=2.0 and nδ=5,000. 559 

 560 

Construction of gene interaction network 561 

We constructed the cell-type specific gene interactions respectively for CD4+ and 562 

CD8+ T cells based on the FACS-sorted CD4/8+ T cell dataset23. For each input 563 

sequence consisted of n genes, we can extract an attention matrix ɑ of n columns and n 564 
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rows corresponding to each attention head. Attention weight ɑi,j denotes the attention 565 

of gene i to gene j. Gene attention matrix of a specific cell type was constructed from 566 

the attention matrix ɑ for each cell from that cell type. Specifically, we define an 567 

indicator function f(i, j, θ) that returns 1 if the attention weight between gene i and j ɑi,j > 568 

θ, and 0 otherwise. The attention matrix a specific cell type (Cɑ) was constructed as 569 

follow: 570 

 571 

θ is a threshold to filter out low attentions and a value of 0.05 was used in this study.  572 

Given that attentions between gene i and j is not identical to j and i, therefore, the 573 

attention matrix a specific cell type was further refined as: 574 

 575 

We retained the top 10% interactions in G(i, j) in subsequent analysis. Network 576 

construction was carried out with Python package networkx (version 2.5). Functional 577 

modules of networks were detected through Louvain community detection algorithm49 578 

based on package python-community (version 0.15). Overrepresentation of detected 579 

modules in STRING gene-gene interaction database50 was evaluated with 580 

hypergeometric test. A p < 0.05 was considered statistically significant. The gene 581 

interaction networks were visualized using Cytoscape (version 3.8.2)51.  582 

 583 

Single-cell clustering and evaluation 584 

We extracted the represented features of each single-cell with the pretrained iSEEEK. 585 

The extracted features were used as input to the K-Nearest Neighbors (KNN) algorithm 586 
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to construct KNN graphs for subsequent single-cell community detection by Leiden52 587 

algorithm. We applied single-cell clustering pipeline implemented in Scanpy to perform 588 

single-cell clustering on KNN graph. The uniform manifold approximation and 589 

projection53 (UMAP) is used for visualizing clustering result.  590 

 591 

For comparison, we also performed single-cell clustering using Scanpy (v1.6.0) as the 592 

benchmarking tools. The conventional single-cell analysis based on the gene expression. 593 

We first filtered out cells and the criteria: the number of expression genes <200 or 594 

mitochondrial counts >30%. The highly variable genes (HVGs) were selected with 595 

default parameters (i.e max_mean=3 and min_mean=0.0125). We used the default 50 596 

principal components to construct the KNN graph and subsequently applied Leiden 597 

community detection algorithm to delineate cluster with default parameter (i.e. 598 

resolution =1). 599 

 600 

We used adjusted rand index (ARI) as clustering measure to evaluate the clustering 601 

performance. The ARI metric is calculated on the contingency table summarizing the 602 

truth labels and clustering. In the contingency table, rows and columns represent truth 603 

and clustering labels, respectively. ARI is defined as: 604 

 605 

where  denoted the numbers of cell in common between clustering labels and truth 606 
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labels,  the sum of  row and  the sum of  column of the contingency 607 

table. 608 

 609 

Batch-correction and evaluation 610 

We used the acceptance rate of kBET54 as a measurement of batch-effect. The 611 

acceptance rate measures whether cells from different batches are well-mixed in the 612 

local neighborhood of each cell. The acceptance rate obtained from iSEEEK was 613 

compared with the other three batch-correction methods Combat55, MNN25, BBKNN26.  614 

kBET acceptance rate. We assumed that the dataset of single-cell with batches of m, 615 

and there are  cells in batch j. The batch mixing frequency denotes as 616 

, where . The number of neighbors of cell-i belonging to batch 617 

j is . Its test statistic with degrees of (m-1) is calculated as: . 618 

The P value is calculated as: , where  represents the 619 

cumulated density function. The kBET acceptance rate is defined as the percentage of 620 

cells that accept the null hypothesis at significance level α as follows: 621 

, 622 

I(x) is the indicator function where I(x) = 1 if x > 0 otherwise I(x) = 0. We used Pegasus 623 

(v1.4.3) to calculate the kBET acceptance rate by setting K and α to 5 and 0.01, 624 

respectively. 625 
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645 

Figure 1. A flowchart depicting the development and downstream applications of 646 

iSEEEK. (A) Development of iSEEEK based on the genes symbols of top-expressing 647 

genes ranked by expression in descending order for large-scale single-cells. (B) 648 

Downstream application of iSEEEK includes delineation of single-cell clustering, 649 

pseudotime inference of cell trajectory, identification of marker genes and exploration 650 

of cluster-specific gene-gene interaction modules. 651 
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652 

Figure 2. The clustering performances of iSEEEK. UMAP visualization of feature 653 

representations learned by iSEEEK on the (A) HCA dataset, (B) PBMC dataset, (C) 654 

Tabula Mursi dataset and (D) PBMC-68k dataset that was not involved in the 655 

development of iSEEEK. (E) Fine-tuning iSEEEK with new dataset PBMC-68k. (F) 656 

UMAP visualization of feature representations of PBMC-68k dataset with features 657 

extracted from iSEEEK being fine-tuned on the PBMC-68k dataset. 658 
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 659 

Figure 3. Diffusion pseudotime analysis of bone marrow cells in HCA dataset. (A)  660 

The panorama diffusion map of HCA dataset with the cell types colored. (B) Bifurcation 661 

of megakaryocytes and erythroid cells. Bifurcation of CD14+ monocytes (C), 662 

plasmacytoid dendritic cells (pDCs) (D) and conventional dendritic cells (cDCs) (E) 663 

from hematopoietic stem cells (HSCs). (F) The developmental trajectory of B cells 664 

from hematopoietic stem cells (HSCs), towards B cell progenitors (Pro-B cells), 665 

precursors of B cells (pre-B cells), matured naïve B cells, memory B cells and plasma 666 

cells. The arrows represent the directionality of the cell developmental trajectory. (G) 667 

Bifurcation of naïve CD4+ T cells and naïve CD8+ T cells, similarly, (H) cytotoxic T 668 

cells and NK cells. 669 
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 670 

Figure 4. Marker genes and examplified gene-gene interaction networks 671 

deciphered from FACS-sorted CD4/8+ T cells dataset. (A) UMAP visualization 672 

CD4+ and CD8+ T cells. (B) Barplot representation of marker genes for CD4+ and 673 

CD8+ T cells. (C and D) The gene-gene interaction networks for CD4+ and CD8+ T 674 

cells, respectively. (E and D) The gene interaction modules characteristic of CD4+ and  675 

CD8+ T cells, respectively. The red edge indicates it is represented in STRING gene-676 

gene interaction database. The thickness of the edge is proportional to attention weights 677 

among interacted genes. 678 

 679 

Supplementary Figures & Tables 680 

Supplementary Figure 1. The full annotation of UMAP visualization of iSEEEK 681 

on the Tabula Muris. The ARI metric and annotation of cells are shown. 682 

 683 

Supplementary Figure 2. The UMAP visualization plots of Scanpy with different 684 

batch-correction methods on the HCA dataset. Batch-correction methods included 685 

(A) Combat, (B) MNN and (C) BBKNN, respectively. The ARI metric and annotation 686 

of cells are shown. 687 
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 688 

Supplementary Figure 3. The UMAP visualization plots of Scanpy with different 689 

batch-correction methods on the PBMC dataset. Batch-correction methods included 690 

(A) Combat, (B) MNN and (C) BBKNN, respectively. The ARI metric and annotation 691 

of cells are shown. 692 

 693 

Supplementary Figure 4. The UMAP visualization plot of Scanpy on the Tabula 694 

Muris dataset. The ARI metric and annotation of cells are shown. 695 

 696 

Supplementary Figure 5. The UMAP visualization plot of Scanpy on the PBMC-697 

68k dataset. The ARI metric and annotation of cells are shown. 698 

 699 

Supplementary Figure 6. The UMAP visualization plots of iSEEEK finetuned on 700 

the PBMC-68k dataset for 1 (A), 2 (B), 3 (C) and 4 (D) epochs, respectively. The 701 

ARI metric and annotation of cells are shown. 702 

 703 

Supplementary Figure 7. The kBET acceptance rate of iSEEEK and Scanpy with 704 

different batch-correction methods such as ComBat, MNN and BBKNN on the 705 

HCA bone marrow dataset. 706 

 707 

Supplementary Table 1. Data source information. 708 
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