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ABSTRACT 
Clustering analysis is widely utilized in single-cell RNA-sequencing 
(scRNA-seq) data to discover cell heterogeneity and cell states. While 
many clustering methods have been developed for scRNA-seq analysis, 
most of these methods require to provide the number of clusters. However, 
it is not easy to know the exact number of cell types in advance, and ex-
perienced determination is not always reliable. Here, we have developed 
ADClust, an automatic deep embedding clustering method for scRNA-
seq data, which can accurately cluster cells without requiring a predefined 
number of clusters. Specifically, ADClust first obtains low-dimensional 
representation through pre-trained autoencoder, and uses the representa-
tions to cluster cells into initial micro-clusters. The clusters are then com-
pared in between by a statistical test, and similar micro-clusters are 
merged into larger clusters. According to the clustering, cell representa-
tions are updated so that each cell will be pulled toward centres of its as-
signed cluster and similar clusters, while cells are separated to keep dis-
tances between clusters.  This is accomplished through jointly optimizing 
the carefully designed clustering and autoencoder loss functions. This 
merging process continues until convergence. ADClust was tested on 
eleven real scRNA-seq datasets, and shown to outperform existing meth-
ods in terms of both clustering performance and the accuracy on the num-
ber of the determined clusters. More importantly, our model provides high 
speed and scalability for large datasets. 
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1. Introduction  
Recent advances in single cell RNA sequencing (scRNA-seq) technolo-
gies have paved the way for researchers to generate high-throughput sin-
gle-cell gene expression [1]. A full characterization of transcriptome pro-
filing at single-cell resolution holds enormous potential for discovering 
trajectories of different cell developmental states and investing the cellular 
heterogeneity [2, 3]. One important step to discover cell heterogeneity and 
cell states is to perform clustering analysis, which aims to group a set of 
cells into meaningful cell populations based on their transcriptome simi-
larity [4, 5]. The clustering can be used as additional downstream analysis 
and provide a reference to build a cell atlas [6-8]. Nevertheless, the clus-
tering is meeting grand challenges due to the characteristic of scRNA-seq 
data, such as sparsity and high dimensional features [9, 10].  

To resolve these challenges, a wide variety of clustering algorithms 
have been developed for scRNA-seq analysis [4, 5]. Early popular algo-
rithms are variants of K-means that divide cells into K clusters with K as 
the pre-determined cluster number. For example, scDeepCluster [11] uses 
K-means to obtain initial centres of clusters, and then pushes each cell to 
its most similar centres iteratively. Similar strategies have also been used 
by other methods like SAIC [12], scVDMC [13],  and DESC [14].  On the 
other hand, graph clustering is based on the community detection algo-
rithms that cluster neighbored cells based on a resolution parameter. For 

example, Seurat [15], one of the most widely used toolkits for scRNA-seq 
analysis, connects cells into a KNN-graph and then partitions the graph 
into communities (clusters) through a predetermined resolution parameter, 
where a higher resolution generates a greater number of clusters. Similar 
strategies have also been used by other methods like SNN-Cliq [16] and 
SCANPY[17].  While these two classes of methods are robust, they need 
a parameter (K or resolution) as a priori, which unfortunately is seldom 
known in advance.  

To avoid the predetermined parameter, SIMLR[18]  pre-estimates the 
cluster number as the rank constraint and then combines graph diffusion 
to learn a cell similarity measure for clustering. Similarly, SC3[19] also 
pre-estimates the cluster number, but it then uses K-means to cluster cells 
from different eigenvectors, and constructs a consensus matrix for cluster-
ing. However, the pre-estimated cluster numbers are usually not accurate, 
causing low performance in the following clustering. Another strategy is 
to select optimal cluster numbers according to the clustering results. For 
example, IKAP [20] clusters cells by overestimating the cluster number in 
the PC space of Principle Component Analysis (PCA) [21], and then iter-
atively merges the nearest clusters to determine the optimal cluster number. 
The recently developed MultiK [22] generates multiple groups of cluster-
ing results using different cluster numbers by tests and trials and selects 
the optimal cluster number under certain evaluation criteria. Similar strat-
egies are applied in methods like Clustree [23],  scClustViz [24],  and 
TooManyCells [25]. Nevertheless, these methods are machine learning or 
statistics-based methods that have to decouple the feature extraction and 
clustering into two separate steps, whereas the pre-extracted features are 
not optimal for the subsequent clustering. At the same time, they learn cell 
representations through linear algorithms (mainly PCA), which cannot ef-
ficiently process the complex scRNA-seq data [26]. Additionally, since 
these algorithms need multiple tests and trials, they are time-consuming, 
and can’t process large datasets with thousands of cells. 

Here, we proposed ADClust, an automatic deep embedding clustering 
method for scRNA-seq data, which can accurately cluster cells without 
requiring a predefined cluster number. Specifically, we first pre-train the 
autoencoder to learn the non-linear low-dimensional representation of 
original gene expression, which is used to cluster cells into a mass of mi-
cro-clusters. The micro-clusters are then compared in between through a 
statistical test for unimodality called Dip-test [27] to detect similar micro-
clusters, and similar micro-clusters are merged through jointly optimizing 
the carefully designed clustering and autoencoder loss functions.  This 
process continues until convergence.  By benchmarked on 11 real scRNA-
seq datasets, ADClust was shown to outperform existing methods in terms 
of both clustering performance and the accuracy on the number of the de-
termined clusters. More importantly, ADClust showed a high speed and 
scalability on large datasets.  

2. Materials and Methods 
2.1 Datasets and pre-processing 
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We employed the commonly used datasets from ref [28] that included 15 
datasets. By removing seven small datasets containing less than 1000 cells, 
we finally kept eight datasets (Xin, Tasic, Baron Mouse, Klein, Romanov, 
Zeisel, Segerstolpe, and Baron Human). In order to test the scalability of 
our model, we selected three largest datasets (Mouse retina, TM, and 
PBMC 68K) from previous studies [11, 29], containing 27,499, 54,865, 
and 68,579 cells, respectively. As detailed in Table 1, these datasets are 
involved in different biological processes and various tissues and contain 
different scales of cells from thousands to tens of thousands derived from 
various single-cell RNA-seq techniques. Each dataset was preprocessed 
using the standard procedure as proposed in Seurat. Concretely, we nor-
malized the gene expression by the “NormalizeData” function with the 
default parameter “LogNormalize” and the scaling factor of 10,000. 
Then, the top 2000 highly variable genes were selected through the 
“FindVariableFeatures” function based on the normalized matrix.   

2.2 The architecture of ADClust 
This study proposed an automatic deep embedding clustering method that 
can accurately cluster cells without requiring to predefine the number of 
clusters. As shown in Fig. 1, the ADClust model consists of two modules:  
the autoencoder and clustering modules. The autoencoder aims to learn 
deep embedding representations of cells, and the clustering module uses 
the learned embedding representations to cluster cells. 

2.2.1 Autoencoder module  
Autoencoder is used for embedding the input scRNA-seq gene expression 
data X ∈ ℝ𝑁𝑁 ×𝑑𝑑  into low-dimensional space, where N and d are the num-
ber of cells and the size of genes, respectively. Autoencoder is an unsu-
pervised neural network that consists of the encoder and decoder modules 
[30]. The encoder tries to embed the input data into a latent, and the de-
coder tries to reconstruct the embedded data into its origin space. Thus, 
the autoencoder can efficiently learn the useful low-dimensional latent by 
minimizing the reconstruction loss L𝑟𝑟𝑟𝑟𝑟𝑟 as follows:  
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where ‖ ̇‖22 represents the square Euclidean, and the dec() and enc() rep-
resent encoder and decoder functions, respectively. The 𝑑𝑑𝑒𝑒𝑑𝑑(𝑥𝑥) is the 
learned embedding representation for gene expression x of individual cell. 

2.2.2 Clustering module  
Based on the learned embedding representations, cells are clustered 
through the Louvain algorithm [31] into plentiful initial micro-clusters.  
The micro-clusters are then compared in between by Dip-test, and similar 
micro-clusters are merged through a carefully designed clustering loss 
function.  

Clustering loss 
Similar micro-clusters were pulled together in the embedding space of au-
toecnoder through the clustering loss L𝑐𝑐𝑐𝑐𝑐𝑐 originally used in ref [32]: 
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where c𝑥𝑥 is the cluster containing cell 𝑥𝑥, 𝜇𝜇 is the centres for K clusters, 
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  reflects cluster similarity by normalizing the Dip-

score  𝑃𝑃 (𝑑𝑑𝑥𝑥, 𝑗𝑗) between the cluster centres of c𝑥𝑥 and i estimated through 
the Dip-test[27]. The “mean” and “std” are the mean and standard devia-
tion of the set of cluster-pairwise distances 𝐷𝐷𝐶𝐶 . 
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Intuitively, our model will minimize the loss by reducing the distance 

between a cell to the centre of its assigned centre. At the same time, the 
cell will also be pulled toward its similar clusters with strength depending 
on the similarity to the cluster i.  As a result, the model will reduce the 
distance between clusters if they are similar with a large Dip-score. This 
process will pull similar micro-clusters together. The division by the mean 
(D𝐶𝐶) was used to prevent the autoencoder from only reducing the embed-
ding scale to minimize loss L𝑐𝑐𝑐𝑐𝑐𝑐. We also apply the term std (D𝐶𝐶) to im-
pede the model's ability to reduce the scale and simultaneously push indi-
vidual clusters far away.  

Finally, we optimize ADClust with the following loss in an end-to-end 
manner:  
 

L = L𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 (4) 
 

where 𝜆𝜆 is the hyper-parameter to balance contributions from the cluster-
ing loss. In this study, we set 𝜆𝜆 = 1 for all datasets.  
 
Merging process 
We merge two clusters if their corresponding Dip-score is larger than the 
Dip-score threshold. Cells in these two merging clusters will be assigned 
the same cell label, and a new centre of these cells will be computed as the 
following: 
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Based on the new centre μ𝑛𝑛𝑟𝑟𝑛𝑛, we need to update the Dip-score matrix 
P and P�. The merging process is repeated if there is still a Dip-score in P 
that is greater than the threshold. After the merging process, we continue 
optimizing the model and merging the clusters. This process continues un-
til there is no Dip-score greater than the threshold. 

2.3 Hyper-parameters setting 
The ADClust was implemented in PyTorch and C.  The dimensions of the 
autoencoder were set to input-512-256-128-10-128-256-512-input. The 
training batch size was generally set as 128, while the size was increased 
for large datasets (1024 for above 10,000 cells) to further reduce the train-
ing time of each epoch. The models were optimized through the Adam 
optimizer with a learning rate of 0.0001. We empirically set resolution=3 
in the Louvain algorithm for all datasets to obtain the initial cluster num-
bers that were much larger than the true cluster numbers (We listed the 
true cluster numbers and the initial cluster numbers for all datasets in Sup-
plementary Table S1). The Dip-score threshold was set to 0.9 that deter-
mined whether two clusters should be merged. The number of epochs for 
the pre-training and the clustering process was set to 100 and 50, respec-
tively. All results reported in this paper were conducted on Ubuntu 16.04.7 
LTS with Intel® Core (TM) i7-8700K CPU @ 3.70 GHz and 256 GB 
memory, with the Nvidia Tesla P100 (16G). 

2.4 Evaluation criteria 
Three common clustering metrics are used for evaluating cell clustering 
results in this study, Normalized Mutual Information (NMI) [33], Ad-
justed Rand Index (ARI) [34], and Clustering Accuracy (CA) [35]. The 
NMI is defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑌𝑌,𝐶𝐶) =  
2 × [𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝐶𝐶)]

[H(Y) + H(C)]
                   (6) 
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where C and Y are the predicted clusters and the true clusters (the same 
below), respectively. The term H ( ) is used for computing the entropy.  
 
The ARI is defined as:  
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where a𝑖𝑖 is the number of cells appearing in the i-th cluster of C, b𝑗𝑗 is the 
number of cells appearing in the j-th cluster of Y. n𝑖𝑖𝑗𝑗 is the number of 
overlaps between the j-th cluster of Y and the i-th cluster of C.  

The CA is calculated as: 

𝐶𝐶𝐴𝐴 = max
𝑚𝑚

∑ 1{𝑙𝑙𝑖𝑖 = 𝑚𝑚(𝑑𝑑𝑖𝑖)}𝑛𝑛
𝑖𝑖=1

𝑒𝑒
        (8) 

where 𝑒𝑒 is the total number of cells, and 𝑚𝑚 ranges over all probable one-
to-one mapping between clustering assignment 𝑑𝑑𝑖𝑖 and real label  𝑙𝑙𝑖𝑖. 

2.5 Benchmark methods 
To evaluate the clustering performance, we compared ADClust with 
other tools including MultiK, SIMLR, scDeepCluster, SC3, scQcut [36], 
IKAP, CIDR [37], Seurat (version 3.0), and DESC. As MultiK outputs 
multiple estimated cluster number, we selected the estimated cluster num-
ber with the highest ARI. We set the “NUMC” parameter of SIMLR as a 
range [2:20] to estimate the cluster number followed ref [36]. We set the 
true cluster numbers for scDeepCluster since it could not estimate the clus-
ter numbers. For other competing methods, we used the default hyper-pa-
rameters recommended in the origin paper to estimate the cluster numbers 

3. Results 
3.1 Performance on scRNA-seq datasets  
To evaluate the clustering performance of ADClust, we applied our model 
to eleven scRNA-seq datasets, including eight small datasets (containing 
less than 10,000 cells) and three large datasets (containing more than 
20,000 cells). On the eight small datasets, our model showed superior clus-
tering performance compared to competing algorithms (Fig. 2a). On aver-
age, ADClust achieved ARI of 0.78, which was 8% higher than the one 
achieved by the 2nd best method MultiK. The 3rd ranked method scQcut is 
a graph partitioning algorithm achieving ARI of 0.61. This value was 10% 
higher than Seurat, another graph partitioning algorithm. The better per-
formance by scQcut is likely because scQcut optimized the number of 
neighbors for the KNN-graph [36]. The 4rd ranked method DESC achieved 
decent performance since it jointly optimized cell labels assignment and 
learned the latent representation that was fitted for clustering.  CIDR and 
SIMLR achieved similar and low performance since their pre-estimated 
cluster numbers in advance were usually incorrect. scDeepCluster ranked 
the ninth, although it was inputted with the real cluster numbers. This is 
likely because its performance heavily relied on the initialized results of 
K-means. SC3 performed the worst since it was sensitive to parameters 
used in dimension reduction and tended to overestimate the cluster num-
bers, as also indicated in previous studies [22, 38].  

On three large datasets with the number of cells greater than 20,000, 
ADClust consistently achieved the best clustering performance (Fig 2b). 
On average, ADClust achieved ARI of 0.70, 6% higher than the one 
achieved by the 2nd best method DESC. The 3nd ranked method Seurat 
achieved similar performance with the 4nd ranked method scDeepCluster. 
IPKA and scQcut only could run on the large dataset Mouse retina, and 
the ARI values of them were 81% and 8% smaller than our method 
(ARI=0.93), respectively.  We didn’t compare with IPKA and scQcut (on 
large datasets containing greater than 50,000 cells), CIDR, SC3, SIMLR, 
and MultiK due to occurring errors (scQcut), out of memory (SIMLR and 

CIDR), “NAN” values generation (SC3), or the runtime of more than two 
days (IPKA and MultiK).  

We also showed the comparisons on eleven scRANA-seq datasets for 
evaluation criteria CA and NMI in Supplementary Figure S1, and similar 
trends could also be observed. 

3.2 The evaluation on the determined cluster numbers  
To evaluate the accuracy of the determined cluster number, we applied our 
model on all scRNA-seq datasets. Since Seurat, scDeepCluster, and DESC 
couldn’t estimate the cluster number, we didn’t compare with them. As 
shown in Fig. 3(a), on eight small datasets, the median absolute deviation 
of the cluster number determined by our model was closest to zero, which 
was the smallest of the seven methods.  We further showed the specific 
cluster number determined by each method in Supplementary Table S2. 
For the eight small datasets, the cluster numbers determined by our model 
in five datasets were the most accurate. scQcut achieved second best per-
formance and made the most accurate estimation for four datasets. IKAP 
achieved third best performance and made the most accurate estimation 
for three datasets. The cluster numbers determined by SIMLR, CIDR, and 
SC3 were usually incorrect. When tested on three large datasets, our model 
achieved more accurate estimation than IKAP and scQcut (Supplementary 
Table S2). Other clustering methods couldn’t achieve corresponding re-
sults on larger datasets due to error generation or the runtime of more than 
two days. 

To view the accuracy of the cluster number determined by each 
method more clearly, we further drew a scatter plot with the determined 
cluster number and the true cluster number. On eight small datasets, as 
shown in Fig. 3(b) and Supplementary Figure S2, the cluster number de-
termined by our model was more similar to the true number of clusters 
when compared to MultiK, the method with the second-highest clustering 
performance. SC3 tended to overestimate the cluster number, but SIMLR 
and CIDR tended to underestimate the cluster number. Our model also 
tended to underestimate the cluster number on a few datasets.   

To investigate why our model underestimated the cluster number on 
datasets Xin, Baron Mouse, Segerstolpe, Mouse retina, and TM, we ana-
lyzed the cell composition of these datasets. As shown in Supplementary 
Table S3-7, we found that these datasets contained multiple rare cell clus-
ters [39], and these rare cell clusters that consist of less than or equal to 
1.5% of the total cell population on average. (Xin < 1.5%, Baron Mouse 
< 0.7%, Segerstolpe <0.5%, Mouse retina <1% and TM < 0.09%).  In 
summary, all methods, except SC3, tended to underestimate the cluster 
number due to the inclusion of rare cell clusters in many datasets. How-
ever, the cluster numbers estimated by SC3 were much larger than the true 
cluster numbers.   

3.3 Contribution of Components to the Clustering 
To investigate the contributions of components for the clustering perfor-
mance of ADClust, we conducted ablation studies on all scRNA-seq da-
tasets. As shown in Table 2, the initial clustering results of ADClust 
achieved the worst performance with 0.236, 0.620, and 0.347 in terms of 
ARI, NMI, and CA on average, respectively.  The results showed that AD-
Clust failed to achieve the desired performance when the cluster number 
was overestimated. We noticed the value of NMI was much greater than 
both ARI and CA. This is likely because initially the number of micro-
clusters were much larger than the actual cluster number and each initial 
micro-cluster might contain only one cell type, resulting in a wrongly high 
NMI value. The removal of both clustering and autoencoder losses caused 
decreases of 7%, 6%, and 9.6% in terms of ARI, NMI, and CA, respec-
tively. The changes indicated ADClust could achieve decant performance 
by jointly optimizing cell labels assignment and learning embedded rep-
resentations. The removal of the clustering loss caused decreases of 6%, 
3.9%, and 7.5% in terms of ARI, NMI, and CA on average, respectively. 
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The results indicated the similar micro-clusters were efficiently pulled to-
gether in the low-embedding representation of the autoencoder by opti-
mizing clustering loss. The removal of autoencoder loss in the clustering 
phase caused a small but significant drop (3.4%, 2.2%, and 2.5% in terms 
of ARI, NMI, and CA, respectively), indicating the importance of autoen-
coder for improving the representation.  In summary, the better clustering 
of the scRNA-seq data relied on the cooperation of the modules.  

3.4 Illustration of the ADClust   
To illustrate how our model worked, we visualized the merging process 
through UMAP [40]. Here, we took the Baron Human dataset containing 
14 original cell types as an example.  As shown in Fig. 4 (a), the Baron 
Human dataset was clustered into 34  initial classes in this example by 
using the Louvain algorithm with resolution=3.0.  By minimizing cluster-
ing and autoencoder loss functions, similar micro-clusters were pulled to-
gether. As shown in Fig. 4(b), most of the initial clusters were mixed with 
their similar clusters, resulting in multiple larger clusters with the charac-
teristics of intra-cluster compactness and inter-cluster separability. Com-
pared with the true cell clusters as shown in Fig. 4(c), most similar micro-
clusters were correctly combined by our model. The results indicated our 
model could efficiently cluster cells without requiring a predefined cluster 
number.  

To further confirm the clustering performance of ADClust, we visual-
ized the wrongly clustered cells by the Sankey river plots on the Baron 
Human dataset. As shown in Fig. 5, ADClust achieved CA, NMI, and ARI 
values of 0.89, 0.88, 0.913, respectively. For the two major cell types beta 
and alpha, which together account for the biggest portion (57%), our 
model could correctly assign 98% cells. The second-best method CIDR 
could correctly assign 93% of cells. Other methods made the accuracy of 
60-82% on beta and alpha cell types (Supplementary Figure S3). One ma-
jor source of wrong assignments in our model was the separation of the 
ductal cells into three clusters. The separation of ductal cells was also seen 
in all competing methods. These similar mistakes may come from the dif-
ficulty of clustering this cell type. 

3.5 Running time  
With advances in scRNA-seq technologies, the cells in emerging scRNA-
seq datasets can exceed hundreds of thousands, requiring their scalability 
and efficiency of methods.  For evaluating the runtimes of all methods and 
their scalability, we applied all methods to scRNA-seq datasets with a 
wide range of sizes. As shown in Fig. 6, dramatic differences in runtimes 
can be observed among these methods with increasing the number of cells.  
ADClust was faster than all competing clustering methods. ADClust 
showed high scalability with about linear growth of runtimes with the 
number of cells: 36s for about 2K cells and 900s for about 70K.  The next 
fastest method CIDR was close to our algorithm in speed for datasets with 
less than 4K cells, but the runtimes remarkably increased with the increase 
in the number of cells. When the number of cells reached 8K, CIDR was > 
5 times slower than our model. MultiK was the slowest method and sig-
nificantly slower than all methods, which needed more than two days 
when running datasets with larger than 10K cells.  We didn’t include par-
tial algorithms for large datasets because they failed to run due to out of 
memory (SIMLR and CIDR) or “NAN” values generation (SC3) or the 
runtime of more than two days (IKAP and MultiK). Though Seurat was 
faster than our model, its ARI was averagely 23% lower than our method 
(Supplementary Figure S4).  

4. Discussion 
The optimization of clustering algorithms is being consumingly studied in 
scRNA-seq analysis. One critical challenge of clustering algorithms is to 
accurately cluster cells into meaningful groups without predefining the 
cluster number. For this challenge, we proposed ADClust, an automatic 

deep embedding clustering method for scRNA-seq data, which can accu-
rately cluster cells without requiring a predefined cluster number.  AD-
Clust first clusters cells into the overestimated number of micro-clusters 
and then pushes micro-clusters sharing structural similarities together by 
jointly optimizing the clustering and autoencoder loss functions. On 11 
real scRNA-seq datasets, our model demonstrated better performance in 
terms of both clustering performance and the accuracy on the number of 
the determined clusters. More importantly, our model provided high speed 
and scalability for large scRNA-seq datasets. 

While a few methods, such as MultiK, are also used for simultaneously 
clustering scRNA-seq data and estimating the cluster number through 
multiple tests and trials, it’s necessary to strike a balance between perfor-
mance and time consumption for these methods. In contrast, we cluster 
cells by iteratively merging similar micro-clusters through minimizing 
clustering and autoencoder loss functions. Our model achieved superior 
clustering performance by jointly optimizing the cell labels assignment 
and learning the representations that are suitable for the clustering. More 
importantly, ADClust is scalable and fast since we train our model with 
the means of mini-batches by using GPU. In short, our model achieved 
superior results in terms of both performance and efficiency.  

Despite the advantages of ADClust, our model can be improved in sev-
eral aspects. First, our model may fail to distinguish between subtypes of 
cells since they have extremely similar gene expressions. We could add 
prior information such as marker genes into our model. Second, our model 
doesn’t consider batch effects and we will add modules to remove batch 
effects[14]. This is important with the decreasing scRNA-seq costs and 
increasing international collaborations. Third, small and rare clusters may 
not be detected by our model since the Dip-test might identify two clusters 
as unimodal if they differ greatly in sizes.  

In summary, we demonstrate that ADClust provides an automatic deep 
embedded clustering algorithm, which provides stable clustering solutions 
for scRNA-seq datasets without requiring the predefined cluster number. 
In addition, it is worth noting that the concept of ADClust is applicable 
beyond scRNA-seq data, such as mass cytometry and scATAC-seq data.  

Code availability 
All source codes used in our experiments have been deposited at 
https://github.com/biomed-AI/ADClust . 

Data availability 
The scRNA-seq datasets that support the findings of this study are availa-
ble here:  https://www.synapse.org/#!Synapse:syn26524750/files/ .  
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Table 1. Summary of the datasets used in this study 

Datasets GSE/ID #Cells #Genes #Cell types 
Xin GSE81608 1600 39851 8 
Tasic GSE71585 1679 24150 18 
Baron Mouse GSE84133 1886 14878 13 
Klein GSE65525 2717 24175 4 
Romanov GSE74672 2881 24341 7 
Zeisel GSE60361 3005 19972 9 
Segerstolpe E-MTAB-5061 3514   25525   15 
Baron Human GSE84133 8569 20125 14 
Mouse retina  GSE81904 27,499 13,166 19 
TM GSE109774 54,865 19,791 55  
PBMC 68k SRP073767 68,579 20,387 10 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig 1.  Overview of the ADClust framework.  ADClust consists of autoencoder and clustering modules. The autoencoder aims to learn deep embedding 
representations of cells, and the clustering module uses the learned embedding representations to cluster cells. 
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Fig 2. Clustering performance of all methods on (a) small scRNA-seq datasets with less than 10000 cells and (b) large scRNA-seq datasets with cells 
greater than 20000.  The dashed line indicates the mean value of ARI.  
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Fig 3. The accuracy of the determined cluster numbers. (a) the deviations between the true cluster numbers and the determined cluster numbers by each 
method on eight small scRNA-seq datasets. The median absolute deviation of the ADClust was the smallest of the seven methods. (b) Correlations 
between the determined cluster numbers by each method and the true cluster numbers.   
 

 
 

 
Table 2. Ablation results on all datasets 

 
Ablation tests ARI NMI CA 

Initial micro-clusters 0.236 0.620 0.347 
ADClust – clustering & autoencoder losses 0.690 0.730 0.724 

ADClust – clustering loss 0.70 0.751 0.745 
ADClust – autoencoder loss 0.726 0.768 0.795 

ADClust 0.760 0.790 0.820 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.19.473334doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473334


 
 

 
 
 
 
Fig 4. Visualizing our method on the Baron Human dataset containing 14 cell types. (a) the Baron Human dataset was clustered into 34  initial classes by 
using the Louvain algorithm with parameter resolution=3.0. (b) final clustering results colored with initial clustering labels (c) final clustering results 
colored with true labels.  
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Fig. 5.  A Sankey river plot shows the match between the actual labels and clustering results on the Baron human dataset. 
 
 
 

 
 

   
(a) Initial clusters (b) Final clusters (colored with initial clustering labels) (c) Final clusters (colored with true labels) 
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Fig. 6. Comparison of different methods for the running time on variably sized datasets.  
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