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Abstract 

Many computational methods are used to expand the open-ended border of 

chemical spaces. Natural products and their derivatives are an important source for drug 

discovery, and some algorithms are devoted to rapidly generating pseudo-natural 

products, while their accessibility and chemical interpretation were often ignored or 

underestimated, thus hampering experimental synthesis in practice. Herein, a bio-

inspired strategy (named TeroGen) is proposed, in which the cyclization and decoration 

stage of terpenoid biosynthesis were mimicked by meta-dynamics simulations and deep 

learning models respectively, to explore their chemical space. In the protocol of 

TeroGen, the synthetic accessibility is validated by reaction energetics (reaction barrier 

and reaction heat) based on the GFN2-xTB methods. Chemical interpretation is an 

intrinsic feature as the reaction pathway is bioinspired and triggered by the RMSD-PP 

method in conjunction with an encoder-decoder architecture. This is quite distinct from 

conventional library/fragment-based or rule-based strategies, by using TeroGen, new 

reaction routes are feasibly explored to increase the structural diversity. For example, 

only a rather limited number of sesterterpenoids in our training set is included in this 

work, but our TeroGen would predict more than 30000 sesterterpenoids and map out 

the reaction network with super efficiency, ten times as many as the known 

sesterterpenoids (less than 2500). In sum, TeroGen not only greatly expands the 

chemical space of terpenoids but also provides various plausible biosynthetic pathways, 

which are crucial clues for heterologous biosynthesis, bio-mimic and chemical 

synthesis of complicated terpenoids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Introduction 

A compound library is essential for drug discovery, and the structural diversity is 

key to the original innovation of drug design. It has been estimated that 1060 small 

organic molecules could possibly populate the chemical space1,2, which is much larger 

than the 108 actual compounds found so far3. Natural products make up only a tiny 

fragment (<106) of the chemical space4, whose importance for medicinal chemistry5-7 

is widely admired, mostly owing to their diverse structures8. In order to expand the 

chemical space of natural products, many experimental approaches have been reported 

to accelerate the discovery of natural products9-11, or synthesize pseudo-natural 

products inspired by natural products12-14. The virtual libraries of natural products or 

pseudo-natural products were also generated rapidly by computational methods such as 

recursive atom-based enumeration15 and reaction rule-based exploration16. 

Molecule generation is widely used to explore the chemical space. Recent 

developments in deep learning have resulted in various generative models for de novo 

structure generation such as recurrent neural networks (RNN), variational autoencoder 

(VAE) and generative adversarial networks (GAN), in which the molecules were 

basically represented by a simplified molecular input line entry specification (SMILES) 

or molecular graphs.17,18 Segler et al.19 proposed an RNN model to generate focused 

molecule libraries correlated with the training data. MolGAN20 is an implicit generative 

model for higher validity and novelty molecular graphs using reinforcement learning. 

In addition, the scaffold-based molecular design has also evoked the interest of 

researchers in this filed, by which derivative compounds retaining a particular scaffold 

can be generated as needed. Lim et al.21 developed a VAE model that accepts a 

molecular scaffold as input and extends it to generate derivative molecules. There is 

also a SMILES-based generative architecture that can generate molecules for a scaffold 

by specifying its attachment points.22 For natural products, Zheng et al.23 reported a 

quasi-biogenic molecule generator with RNN that is able to generate focused libraries 

biased on a specified scaffold. These deep generative models can generate a large set 

of novel and even customized structures, but the synthesizability is not considered in 

most cases, which hampers their utility.24 To consider the accessibility, the reaction-

based generative models have been reported recently25,26, while the reliability of the 

results relies on the generality/specificity of the reaction rules, which is very difficult 

to make a trade-off27.  

In contrast to the above data-driven methods, chemical reaction mechanism 

exploration based on chemical theory, e.g. quantum chemistry, will guarantee the depth, 

reliability and accuracy in the process.28 Mechanisms have always been essential for 

the elucidation of fundamental chemical processes and further analysis of complex 

chemical networks such as prediction of product yields or pollutant formation.29 Thus, 



 

 

taking the reaction mechanisms into account in molecule generation will not only 

improve the reliability of generated molecules but also help in subsequent synthesis. 

Recently, ab initio molecular dynamics (AIMD) simulation was developed to explore 

the reaction space of molecules without any prior knowledge, coupled with automatic 

analysis and refinement methods to build a quantitatively accurate reaction network.30 

The application of this method to Urey-Miller chemistry resulted in the formation of 

amino acids and other products from hydrogen, ammonia, methane, carbon monoxide 

and water, which shows the significant strengths of chemical space exploration. 

However, despite the GPU acceleration, the computational cost is still very high31. In 

addition, the enumeration with predefined reaction types32 and sampling of the 

carbocation potential energy surface by an artificial force induced reaction (AFIR) 

method33 were utilized to explore the reaction space of several mono- and sesqui-

terpenoid natural products, respectively. However, the computational cost is also 

enormous and thus has limited their application.  A recent alternative approach34 was 

described that explores the reaction space with metadynamics simulations based on the 

tight-binding quantum chemistry method GFN2-xTB35. A so-called RMSD-PP was 

employed to find the reaction path and transition states (TSs) just by applying two bias 

potentials that “pushes” the molecule away from the substrate and “pulls” the molecule 

towards the product. It has been proved that this approach is accurate and fast enough 

to automatically identify promising products as well as TSs from substrates in different 

reaction types36,37.  

Although organic synthesis has become a highly powerful art in creating new 

molecules, the organic reaction rules are not suitable for generation or synthesis of the 

majority of natural products due to structural complexity38. In nature, enzymes use 

limited reaction rules to create many natural products, and the reaction types involved 

are far more than the known reaction types in organic small molecule synthesis. An 

example are the terpenoids, which are the largest family of natural products and a major 

source of drug discovery.39 They are some of the most synthetically challenging 

structures due to their complex and stereochemically-rich polycyclic ring systems40,41. 

Hence the biosynthesis-driven strategies including metabolic engineering42, 

semisynthesis43 and biomimetic synthesis44 provide alternative methods for producing 

high-value terpenoids. As shown in Figure 1a, starting with the C5n isoprenoid 

diphosphates (n = 1, 2, 3, etc.), the biosynthesis of terpenoids is initiated by the 

cyclizations and carbocation rearrangements, which lead to the formation of terpenes. 

And further oxidation and optional post-decoration are wide spread in most of the 

species45. The diverse carbocation rearrangement and functionalization in post-

decoration produces a variety of terpenoid structures.46,47 In view of the “biosynthetic 

tree” of terpenoids (Figure 1a), can we learn from nature to explore the chemical space 

based on the knowledge of their biosynthetic mechanisms?  



 

 

By considering the biosynthetic logic of terpenoid natural products, we introduce 

a bio-inspired strategy for the chemical space exploration of terpenoids (Figure 1b), 

named TeroGen. In the protocol of TeroGen, first metadynamics simulations were used 

to explore the carbocation rearrangement reactions (Reactor), where the reaction barrier 

and energy can be estimated rapidly. Then a Transformer and an encoder-decoder RNN 

neural network architecture were applied to find the decorating sites and functional 

groups respectively (Decorator). 

 

 

 

Figure 1. (a) The “biosynthetic tree” of terpenoids, from dozens of C5n isoprenoid 

diphosphate precursors (brown) to thousands of terpenes (yellow) and finally to the 

hundreds of thousands of terpenoids (green). (b) The workflow of TeroGen, which 

consists of Reactor (exploring carbocation reaction space) and Decorator (predicting 

the decorating sites as well as functional groups based on the carbocation skeletons and 

further assembling them into the final terpenoids). The biosynthesis of Taxol was taken 

as example for this protocol: OPP, diphosphate; Ac, acetyl; Glc, glucose; GGPP, 

geranylgeranyl diphosphate; Ph, phenyl; Bz, benzyl; “*”, means the predicted sites.  

 

Results 

Validation of Reactor. To investigate the performance of our carbocation Reactor, 

four precursors of sesquiterpenoids were selected as the initial structures. A reaction 

network (Figure 2a) is ultimately mapped out after two rounds of metadynamics 

simulations in which 6631 unique reactions and 4767 carbocations were generated. 93.5% 

of reactions had reasonable barriers (here defined as <30 kcal/mol as shown in Figure 

2b, and it was 90% if the threshold value is set at 25 kcal/mol), hence most of those 

reaction pathways are kinetically feasible. Meanwhile, 83.5% out of the 4767 



 

 

carbocations are yielded by means of an exothermic reaction or endothermic process 

with less than 10 kcal/mol (also shown in Figure 2b and it was 89.4% if 15 kcal/mol is 

defined as the cutoff). Considering that those carbocations are serving as intermediates 

and will ultimately transform into neutral terpene products or ongoing further 

decoration, heat release is reasonable and the complete reaction pathway is plausibly 

thermodynamically favorable. In this sense, the reactions explored by the Reactor are 

mostly accessible with rational energetics characteristics in thermodynamics and 

kinetics.  

In addition, all of the plausible carbocation intermediates directly connected to the 

bisabolyl cation as proposed by Tantillo48 could be rapidly sampled by the Reactor in 

its first round. After two rounds, the Reactor covered all the rearrangements, 

intermediates and products. In addition, 41 terms of reactions were selected for further 

validation with high-level DFT calculation results48,49. The thermodynamic feasibility 

for different reaction styles for those reactions were investigated, as summarized in 

Figure 2c, the exothermicity and endothermicity could be perfectly reproduced for the 

widely existing cyclizations and also as well for H-shift and alkyl-transfer. Finally, it 

should be noted that the reaction energetics predicted by Reactor are not suitable for 

quantitative criteria as a semiempirical DFT method (GFN2-xTB) was used in Reactor. 

Nevertheless, considering the powerful sampling ability and the predicted reaction 

energetics are basically qualitatively consistent with the high-precision method. The 

Reactor is reliable and powerful for the exploration of reaction space triggered by a 

reactive carbocation, which is ubiquitous and fundamental in the biosynthesis of cyclic 

terpenes and diverse carbon skeletons.  

 



 

 

 

Figure 2. Validation of Reactor (a/b/c) and Decorator (d). (a) The predicted reaction 

network originating from four typical precursors of sesquiterpenoids as initial structures. 

The nodes and edges represent the carbocations and reactions, respectively. Several 

intermediates or products are highlighted for showing detailed structures, and a more 



 

 

complicated network would be obtained if the number of rounds is increased in the 

“Reactor”. (b) The reaction barriers and heat release for all reactions captured in the 

network. (c) The reproduction rate (histogram) and distribution (boxplot) of the 

exothermicity and endothermicity for different reaction styles, the high-level DFT 

(mPW1PW91/6-31+G(d,p)//B3LYP/6-31+G(d,p)) calculation results are extensively 

reported by Tantillo48,49. (d) The performance of Decorator for the modification-site 

and R-groups prediction and two examples taken for representing the workflow of core 

structures and terpenoids generation from two similar C20-skeletons in the test set. All 

of the potential decoration sites and bonds were highlighted with blue and the points 

for linking substitute were noted by asterisks. The experimentally discovered terpenoids 

were shown in red box. 

 

Validation of Decorator. After a series of data collection and notation, as well as 

model pre-optimization, the ensemble of canonical and mixed Transformer model was 

then used as a “site prediction” strategy, and the encoder-decoder RNN neural network 

architecture was employed for the “R-group prediction” strategy. As summarized in 

Figure 2d, the accuracy, validity, uniqueness, and novelty were used to estimate the 

performance of the Decorator. For site prediction only the outputs sharing the same 

carbon skeleton with the input were considered to be valid. And for the R-groups 

prediction, the validity was measured from the percent of the completely decorated 

output. The uniqueness was the ratio of nonredundant output to valid output. In site 

prediction, the output that contains at least one decorating site that is not in the known 

structure of terpenoids was defined as a novel output. While in the R-groups prediction, 

the output R-groups that contain at least one R-group that is not present in the training 

set was defined as novel output. The novelty was calculated as the ratio of a novel 

output to unique output.  

Based on these criteria, most of the outputs (76.4%) of site prediction were valid 

SMILES and 40% of them were unique. Therefore, the model can reconstruct the core 

skeleton structures and find the correct decorating sites as validated by the known 

structures. More importantly, novel, potential decoration sites would also be found, as 

shown by the average percentage (55.7%) of at least one undiscovered modification site 

in each skeleton. Thus the exploration ability of new decoration sites is warranted by 

this ensemble model established by the Transformer architecture. For the R-groups 

prediction, the sampling process yielded a total of 6287 decorated molecules from 300 

core structures, and 199 (66.3%) of them were found to be validated natural molecules. 

96.0% of the output were completely decorated molecules, in which the average 

uniqueness is 31.0%. And 769 (12.5%) of the molecules contain at least one R-group 

not presented in the training set. This indicates that the end-to-end model of Decorator 

has learned the features of functional groups in the natural terpenoids while in the 



 

 

meantime, it brings the creativity of R-groups, which is important to the expansion of 

chemical space. For example, several outputs derived from the two diterpenoid carbon 

skeletons predicted by of Decorator are presented in Figure 2d. We can see that the 

Decorator can distinguish between these two skeletons in spite of their high similarity, 

and not only the “optimal” decorating sites are detected but a series of R-group 

substituted terpenoids derivatives includes ones discovered in nature. All these results 

establish that the Decorator can produce terpenoid-like structures by learning the 

manner of natural modification.  

By combining the Reactor and Decorator, the terpenoids exploration strategy named 

TeroGen is established as summarized in Figure 1b. It should be emphasized that 

TeroGen is not a rule-based approach but a physically based (metadynamics with 

semiempirical DFT) and learning-based (Transformer for site prediction and an 

encoder-decoder RNN neural network for R-group functionalization) hybrid strategy. 

Nevertheless, it can be used to greatly expand the chemical space of terpenoids 

following the rules of terpenoids biogenesis, since the principle for those 

method/models employed in TeroGen aims to closely follow the biosynthetic rules of 

terpenoids and its modifications. Next, its performance for sesterterenoids is discussed.   

 

Figure 3. (a) Some typical carbocations generated by TeroGen. The modelling is 

starting from the two structures (blue) which were thought to be the key intermediates 

distinguished by the type A and type B cyclization pathways for sesterterenoids. The 

already proposed paths are marked, and those not sampled by Reactor (2 rounds) are 

colored gray. (b) The chemical space overlap for the terpenoids collected in TeroMOL 

and generated sesterterpenoids by TeroGen in this work. (c) The chemical space of all 

sesterterpenoids (blue) in TeroMOL and the generated ones (red) by TeroGen. 



 

 

 

Sesterterpenoids generation. The TeroGen protocol (Figure 1b) was then used to 

explore the subspace of terpenoids, sesterterpenoids (with C25 skeleton), whose number 

is only about 2500. Sesterterpenoids consist of are many fewer examples than the 

diterpenoids (with a C20 skeleton) and triterpenoids (with a C30 skeleton), both of which 

have about 40000 structures. Over the years, the bifunctional di-/sester-terpene 

synthases called cyclopentane-forming terpene synthases (CPF-TSs)50 have caught 

much attention since they produce many chiral, congested and structurally complex 

polycyclic molecules. In the early stage of the ring construction, cation-mediated 

double annulation gives a 5/15 (type A) or a 5/11 bicyclic intermediate (type B).51 In 

this work, first with Reactor, these two well validated intermediates were selected as 

the starting point to explore the carbocation reaction space, with 1374 carbocations and 

2709 reactions output. A large number of carbocation rearrangements were detected 

during the metadynamics simulations including those already proposed mechanisms 

reviewed by Oikawa and Minami et al.50 (Figure 3a). For the intermediates not sampled 

by Reactor, some of them may skipped in the concerted but asynchronous reactions to 

avoid the high energy secondary carbocations, which is proposed in previous gas phase 

calculation done by Hess and Tantillo52,53, such as the path II of type B cyclization for 

sesterterpenoids. Secondly, followed by the Decorator, 3553 sesterterpenes were 

obtained by deprotonation and a total of 1716 carbon skeletons were generalized for 

further decoration. Since the number of sesterterpenoids in the training data is rather 

small, the validity of ensemble model in site prediction was low (the valid core 

structures were predicted for about 600 skeletons). To better explore the chemical space 

of sesterterpenoids, the mix model was used for site prediction, by which more than 

1500 skeletons could be predicted with about 7000 valid core structures (top 5 are 

outputted). Eventually a total of 34439 sesterterpenoids were generated by the 

Decorator, with only about 50 of them existing in the TeroMOL database. This also 

indicated us that for site prediction, the ensemble model prefers the skeletons with more 

training information. Though it cannot guarantee the validity of the rare or novel 

skeletons, for which the mixed model might be better.  

Furthermore, 11 kinds of physicochemical properties were calculated as in our 

previous work39 and principal component analysis (PCA) was used to visualize the 

chemical space of the generated structures (Figure 3b). The result shows that the 

chemical space of generated sesterterpenoids are covered by the existing terpenoids and 

larger than the existing sesterterpenoids. Finally, our bio-inspired exploration protocol, 

TeroGen, has greatly expanded the chemical space of sesterterpenoids, generating 

34439 sesterterpenoids. To obtain a clearer visualization of such huge molecules, the 

structure diversity was evaluated by Tree Maps (TMAPs)54, which cluster molecules 

according to similarity of their fingerprints, as shown in Figure 3c. Obviously, the 



 

 

generated sesterterpenoids varies greatly from the existing ones, in spite of a small 

overlap. This is mainly because that most of the existing sesterterpenoids, such as those 

with the linear skeletons and the scalarane-type tetracarbocyclic skeletons, do not 

belong to products of CPF-TSs. The generated sesterterpenoids not only contain varied 

carbon skeletons but also have been decorated with a series of R-groups. Considering 

that sesterterpenoids only occupy less than 1.6% of all well-known terpenoids in nature 

based on our TeroKit webserver (http://terokit.qmclab.com/), it means that only a 

rather limited number of sesterterpenoids exist in our training set in this work. 

Nevertheless, our TeroGen shows super efficiency on its prediction ability and extreme 

overlap of chemical space (namely coverage ability), thus a high portability to other 

types of terpenoids by TeroGen is expected.  

Discussion 

The exploration ability of our bio-inspired strategy TeroGen is investigated above. 

In addition, the network map could be further constructed to decipher the correlation of 

this chemical space with the reaction network. That is, the biosynthesis pathway can be 

traceable, especially for the Reactor, where the plausible carbocation rearrangement 

reactions will provide insights into the biosynthetic mechanism of terpenoid skeletons. 

Although the semi-empirical method GFN2-xTB used here is not as accurate as the 

DFT methods, it is a good approximation and an initial point for further refinement by 

DFT methods. Take the application on the humulyl cation (C15H25
+), sampled by the 

Reactor. Twenty-six carbocations directly connected to the humulyl cation were 

obtained in the first round, and a total of 1979 carbocations were generated after two 

rounds of simulation, which cost about 7 days running with two 12-core CPUs (Xeon 

E5-2609 1.70GHz). In a previous work33, the reaction space of humulyl cation was also 

investigated by DFT methods with the AFIR strategy. A total of eight accessible 

carbocations (without regard to stereochemistry) were located by the DFT methods, 

which are predicted to be formed through pathways with no individual steps having 

barriers greater than 20 kcal/mol. Here we sampled all of these eight carbocations 

(highlighted with blue circles, although some of them have different stereochemistry), 

seven of which were also predicted to be accessible (Figure 4) and except one (L) 

formed via an alkenyl carbocation intermediate (K). For the competitive pathways 

between B to C and B to D, the DFT calculation with AFIR33 revealed that the barrier 

of the former is lower than the latter and both of them are significantly exothermic, 

which is consistent with our results. In additional, all the unlikely carbocations that are 

predicted to be formed through the pathways with at least one step having barriers 

greater than 20 kcal/mol in the DFT calculations33 were not sampled by our Reactor 

except Z, which is also unlikely to form since the pathway contains an endothermic 

http://terokit.qmclab.com/


 

 

step (X to Y) with barrier being 39.3 kcal/mol. All these results demonstrated that the 

Reactor can sample more feasible reaction pathways efficiently and the landscape of 

the carbocation potential energy surfaces are mostly in agreement qualitative agreement 

with those calculated by DFT. Considering such a low computational cost, Reactor can 

be used for high-throughput chemical reaction space exploration of terpenoids, while 

other available methods cannot be. 

 

 

Figure 4. The selected reaction pathways in the complicated reaction network around 

the humulyl cation predicted by TeroGen (Reactor). The reaction barrier and energy 

(heat release) were represented by the color and width of edge, respectively. The 

reaction energies with highest (A to K), lowest (W to X) as well as the closest to 0 (T 

to S) were shown for reference.  

 

Another aspect should be noted is that dividing the terpenoid biosynthesis into two 

relatively independent stage (cyclization and decoration) is idealistic although it can be 

correct for a considerable number of terpenoids. One exception is that deprotonation is 

not the only way of carbocation quenching. The other way was trapping by nucleophiles 

(usually the water) also exists, which leads to the formation of terpene alcohols46. Yet 

it is probably not a major problem since the hydroxyl can be added by Decorator. The 

other and more complicated case is that oxidation is sometime accompanied by further 

rearrangement55, which could lead to the change of the initial carbon skeletons. In these 

circumstances, the skeletons cannot be sampled by the Reactor, and equally, these 

terpenoids cannot be generated by Decorator. Perhaps further metadynamics simulation 

of the oxidization starting from terpenes but not carbocations would be complementary 

to solve this issue, while obviously it will be much more complicated and 



 

 

computationally expensive. And with the development of machine learning (ML) 

potential56,57, ML-based simulations featuring both high speed and high accuracy could 

be an alternative to exploring the reaction network. 

In summary, we propose a bio-inspired terpenoids exploration strategy using 

metadynamics simulations and deep learning according to the characteristics of two key 

stages in terpenoid biogenesis. The carbocation reactions are sampled by the Reactor to 

explore the covered space, then a compound slicing algorithm was developed to 

decompose natural terpenoids into core skeletons and decoration groups, which help to 

construct the Decorator models. By combining the physical-model-based Reactor and 

data-learning-based Decorator, TeroGen protocol will generate diverse terpenoid 

structures in the manner of biosynthesis. In practices, TeroGen not only provides an 

efficient, intuitively accessible strategy to map out and clearly visualize the cryptic 

chemical space difference between the known and generated terpenoids, but also could 

map out the generated chemicals ensembled in a reaction pathway network which obeys 

the general biogenesis rules for terpenoids. Therefore, it is very promising for user’s 

personalized aim to navigate and analyze the detailed reaction space of terpenoids of 

practical use, such as to interpret the biosynthetic mechanism of existing terpenoids, to 

provide primary inspiration for the synthesis strategies of terpenoids, to supplement the 

clues for discovering plausible biosynthetic pathways to produce high-value terpenoids 

for heterologous biosynthesis, to define the known subspace of terpenoids natural 

products and to explore where the boundaries of terpenoid space are. 

Methods 

Reactor. As shown in Figure 1b, the Reactor consists of parallel metadynamics 

simulations carried out using the xtb34,58,in which the RMSD-PP plugin (with an 

optimized parameter set) was used to calculated the reaction paths, transition states as 

well as the reaction barriers and energies. An in-house script was used to extracted the 

reactions along the trajectory by detecting the location of positive charge and change 

of bond order. After the exploration, all carbocations were deprotonated exhaustivity to 

form terpenes or generalized to generate the carbon skeleton.  

Decorator. The Decorator consisted of two models that predict the decorating 

sites and R-groups, both of which were constructed by Pytorch59 with molecules 

represented by SMILES. The Transformer architecture used in site prediction was 

provided by OpenNMT60,61. The structures from the terpenoids database, TeroMOL, 

was preprocessed to train and test the Decorator model. 
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