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Abstract

Motivation: In contrast to messenger RNAs, the function of the wide range of existing long non-coding
RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner molecules.
Thus, the determination or prediction of the secondary structure of lncRNAs is critical to uncover their
function. Classical approaches for predicting RNA secondary structure have been based on dynamic
programming and thermodynamic calculations. In the last 4 years, a growing number of machine learning
(ML)-based models, including deep learning (DL), have achieved breakthrough performance in structure
prediction of biomolecules such as proteins and have outperformed classical methods in short transcripts
folding. Nevertheless, the accurate prediction for lncRNA still remains far from being effectively solved.
Notably, the myriad of new proposals has not been systematically and experimentally.
Results: In this work we compare the performance of the classical methods as well as the most recently
proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent
experimental setup. We use the publicly available structural profiles for 3,023 yeast RNA sequences,
and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we
propose a novel metric to assess the predictive performance of methods, exclusively based on the
chemical probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated
by computational predictions when using dot-bracket references. Our results provide a comprehensive
comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in
the development and comparison of future approaches.
Availability: Full source code and benchmark datasets are available at: https://github.com/sinc-
lab/lncRNA-folding
Contact: lbugnon@sinc.unl.edu.ar
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.

1 Introduction
For decades, the sole function assigned to RNAs was to act as an
information messenger between DNA and proteins. Originally, in the
central dogma of biology, RNA was considered to play a secondary
part in expressing inherited information as proteins. However, our recent
ability to sequence entire genomes and transcriptomes served to uncover

that the majority of the human genome is transcribed, although nearly
98% of it comprises non-coding regions [33, 63]. Growing evidence
has linked non-coding RNAs (ncRNAs) to virtually every step of gene
expression regulation, including epigenetics and spatial organization
of genetic information in the cell nucleus, transcripts processing and
stability, messengers translation, post-transcriptional protein modification
and degradation [42]. Non-coding RNAs can be classified according to
their size into two large classes [30]. On the one hand active small

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

This is a pre-copyedited, author-produced version of an article accepted for publication in Briefings in Bioinformatics following peer review. The version of record L A Bugnon, A A 
Edera, S Prochetto, M Gerard, J Raad, E Fenoy, M Rubiolo, U Chorostecki, T Gabaldón, F Ariel, L E Di Persia, D H Milone, G Stegmayer, Secondary structure prediction of long 
noncoding RNA: review and experimental comparison of existing approaches, Briefings in Bioinformatics, Volume 23, Issue 4, July 2022, bbac205, https://doi.org/10.1093/bib/bbac205

https://github.com/sinc-lab/lncRNA-folding 
https://github.com/sinc-lab/lncRNA-folding 
lbugnon@sinc.unl.edu.ar


i
i

“lncRNA” — 2022/2/26 — 18:18 — page 2 — #2 i
i

i
i

i
i

2 L.A. Bugnon et al.

RNAs, less than 50 nt in length, include microRNAs (miRNAs), small
interfering RNAs (siRNAs), heterochromatic siRNAs (hetsiRNAs), Piwi-
associated RNAs (piRNAs), small nuclear and nucleolar RNAs (snRNAs
and snoRNAs, respectively), among others. On the other hand, long non-
coding RNA (lncRNAs), larger than 200 nt, may exert their functions
as long transcripts without being processed into small RNAs [67].
In particular, several studies shed light on the role of lncRNAs in
diverse cellular processes, such as cell-cycle regulation in health and
disease [19, 34], including cancer and diabetes [2, 18, 46, 72, 79], among
others. In plants, lncRNAs have been associated with development and
the dynamic response to the environment [5, 38]. At the molecular level,
lncRNAs have been linked to virtually every step of gene expression
regulation, including chromosome inactivation, genomic imprinting,
chromatin dynamics, protein modifications and stability [45, 47]. Similar
to proteins, RNA function is mainly related to its structure [22]. In
particular, it should be noted that ncRNAs perform their functions through
interaction with other molecules (DNA, RNA, proteins and lipids). In
this sense, the lncRNA secondary structure is decisive to determine its
interactome and the related functional output [60].

The RNA molecule is an ordered sequence composed of four
nucleotides (nts) or bases: adenine (A), cytosine (C), guanine (G) and
uracil (U), arranged in the 5âŁ™ to 3âŁ™ direction. The pairing of these
four bases within a RNA molecule gives rise to its secondary structure.
Canonical base pairs include the WatsonâŁ“Crick base pairs (AâŁ“U and
GâŁ“C) and wobble base pairs (GâŁ“U), which provide higher energetic
stability to the molecule. These base pairs often result in the formation of a
nested structure, where several pairs are stacked and one or more unpaired
bases form a loop. RNA secondary structure is a 2-D representation of this
self-folding. Figure 1 (top) illustrates an example of the basic motifs: (i) the
double stranded regions named stems, obtained by the stacking of two or
more consecutive base-pairs; (ii) the hairpin loop, a single-stranded region
at the end of a stem; (iii) a bulge, a single stranded region which interrupts
a stem on one side; (iv) an internal loop stops a stem on either side;
and (v) a single stranded region where several stems meet called a multi-
branched loop [1]. The RNA secondary structure is usually represented
in dot-bracket notation, with matching parentheses for paired bases and
dots for unpaired bases (Figure 1, bottom). Additional structures called
pseudo-knots can be formed when unpaired bases match with distant ones,
commonly annotated with other symbols such as angle- and curly-brackets.

Even though there is currently a wide variety of publicly available
ncRNA sequences, and their numbers keep growing at an ever-increasing
rate [61], most of their structures remain unknown. Therefore, the
efficient determination of their secondary structure is of high interest,
which can be carried out by physico-chemical methods. For example,
from atomic coordinates obtained from X-ray crystallography or nuclear
magnetic resonance (NMR) [21, 31, 59]. However, such methods have
low throughput and it is very challenging to apply them on lncRNAs not
only because of the high experimental costs and resolution limits [48], but
also due to their length, low abundance in in-vivo systems and the large
diversity of stable structures that they can adopt. To date, the majority of
structural elements found in lncRNA sequences has been determined as
patterns of base pairings using a combination of chemical or enzymatic
probing [74] such as PARS [32], nextPARS [52], SHAPE-seq [37] or
DMS-seq [15]. Yet, the structures of only a tiny fraction of RNAs have
been experimentally determined, limiting the understanding of this key
feature upon functional outputs.

In the last decades, many methods have been developed for the
computational prediction of RNA secondary structure. The first proposals,
dating 15 years ago [41], were based on dynamic programming and
thermodynamics calculations [53, 66], identifying a structure with
minimum free energy (MFE) according to the principle that RNA
molecules exist in energetically stable states, like proteins [4]. Until

Fig. 1. Example of typical motifs of RNA secondary structure in the transcript snR17a of S.
cerevisiae: (top) hairpin loop, internal loop, stem, bulge and multi-branched-loop; (down)
corresponding dot-bracket notation.

the irruption of machine learning (ML)-based methods in the field
approximately 4 years ago, prediction accuracy has remained almost
unaltered. Recent works have shown that newer methods based on Deep
Learning (DL) can outperform existing mainstream methods on small
datasets, in terms of accuracy and applicability [77].

DL techniques first emerged as an alternative approach to structure
prediction problems in proteins with AlphaFold [28] and in RNA
secondary structure prediction as well [55, 75]. Compared to classical
approaches, DL methods make much weaker assumptions about the
thermodynamic mechanic driving RNA folding, which is based on labor-
intensive experimental melting data [66]. Thus, they are more suited to
detect more complex foldings [20], such as non-canonical base pairing or
previously unrecognized base pairing constraints. There are many different
DL proposals, which differ in their architectural design, model input-
output, training data and optimization algorithms used to adjust their
parameters. In general, methods treat the input RNA as a sequence of
characters defined by the bases, which can be processed by different well-
known computational models for text processing, such as Long Short-Term
Memory (LSTM) [23] or Transformer encoders [70] that are well suited for
capturing long-range interactions between nucleotides. Other approaches
integrate DL techniques with thermodynamic methods to further improve
predictions [51]. From a practical point of view, it is difficult to choose
among the myriad of new methods available, in particular because existing
DL approaches still face several challenges. For example, a huge number
of model parameters need to be adjusted, resulting in high computational
cost. Another major point is training data because representative and
high quality training data is critical to achieve reliable models and high
performance in terms of generalization capability, i.e. the ability to make
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good structural predictions for RNA sequences that differ from those used
for model training.

Several reviews have been published on the topic of RNA secondary
structure prediction [17, 54, 77]. Yet, they still do not offer systematic
evaluations of ML and DL techniques for comparatively assessing their
performance on representative and large benchmark datasets. Notably,
previous attempts at creating RNA secondary structure databases for
methods comparison [3, 12, 43, 69] are no longer available, have
not been updated or lncRNA sequences are not included. Additionally,
the secondary structures provided are mostly limited to computational
predictions. In this review, instead, we have included only RNA secondary
structures experimentally determined by biochemical approaches. We
provide a comprehensive overview of the most recent ML- and DL-
based methods for lncRNA secondary structure prediction, in comparison
to classical methods. Furthermore, particularly for lncRNAs, we
have compiled a novel benchmark dataset of manually curated and
experimentally validated secondary structures of lncRNAs. In this work we
also introduce a novel metric for assessing the performance of predictions
using the probing scores obtained from enzymatic approaches as the
reference of the true RNA structure. This metric named Mean Average
Similarity (MAS) makes comparison between methods less biased than
classical metrics based on reference dot-bracket structures obtained by
specific folding methods. Our work not only provides a comprehensive
comparative assessment of existing methodologies for lncRNA secondary
structure prediction in the last 15 years, but also contributes to the
bioinformatics community for the development and comparison of future
approaches.

2 RNA secondary structure prediction methods
RNA structure prediction has been classically formulated as an
optimization problem, where a score is defined for every possible folding
of the given RNA sequence, and the predicted folding is the one that
maximizes it. The most popular approach was based on thermodynamic
models [53], such as Turner’s nearest neighbor model [66]. The free energy
of each nearest neighbor is calculated by summing up its free energy
parameters. The free energy of an entire RNA secondary structure will
be the sum of the free energy of each nearest-neighbor loop. An optimal
secondary structure with MFE is calculated using dynamic programming,
such as the Zuker algorithm [80].

The scores of each local element were obtained from wet-lab
experiments reflecting the thermodynamics free energy theory [53].
However, the increasing availability of known RNA structures for training
made it possible to successfully drift towards hybrid approaches, which
are based on dynamic programming but make a fine-tuned parameter
estimation based on ML [24]. Nowadays, methods for RNA structure
prediction are shifting towards full ML and DL-based approaches, due to
the fact that there is now larger data available for training (mostly of short
sequences). A comprehensive summary of the methods that have appeared
in the last 15 years in literature is presented in Table 1 and described in detail
in Supplementary Material 1. The methods included in the experimental
results of this study are only those available, at the time of writing this
manuscript, as open access tools (already trained prediction models) in a
repository or as public web servers.

3 Data and performance measures

3.1 Data

Saccharomyces cerevisiae (sce). A large benchmark dataset was obtained
from [32] where PARS was performed to characterize the secondary

structure of the messenger RNAs (mRNAs) and ncRNAs of the budding
yeast Saccharomyces cerevisiae. A total of 3,199 transcripts ranging from
71 to 8,145 bases in length were profiled. From this data, we defined 3
distinctive sub-datasets: sce3k, sce188 and sce18. The sce3k subset has
3,023 unique sequences with length larger than 200 nt. The subset sce188
was obtained from the previous one by identifying non-coding transcripts.
To this end, we used the coding potential calculator 2 (CPC2) [29], which
is species-neutral and has high accuracy for long non-coding transcripts.
The sce18 subset was defined by taking only those sequences from sce188
that were not previously classified as mRNA in [32]. Authors used the
Vienna package [36] to fold transcripts, calculate the partition function
of the structure ensemble and base pairing probabilities, without probing
scores as constraints1.

Curated set of lncRNAs. As indicated in [40], an informative
benchmark requires a variety of high-quality structures. We have generated
a novel dataset including curated structures of lncRNAs that were
determined by experimental analyses, for which the structures have
been carefully studied and validated through a variety of biochemical
approaches. We have compiled those available from literature and those
mentioned in a very recent review on lncRNAs [48]. The curated lncRNAs
included in our study are shown in Table 2, where the name, species,
length, year of discovery and probing methodology are indicated in the
columns, for each test lncRNA in the rows. A brief description of these
lncRNAs can be found in Supplementary Material 2. For each lncRNA, its
reference structure is represented in two different ways. In the first place,
the classical dot-bracket representation, in which the nested base-pairs
2D conformation was obtained with a classical method, using the probing
scores as constraints. The other reference representation consists of the
probing score per base, which indicates the pairing probability of each
nucleotide in the sequence. Since each experimental technique provides a
different distribution of score values, a normalization2 step was performed
to place all the scores within the [0, 1] interval, where 0 is unpaired, 1 is
paired, and values around 0.5 are uncertain.

3.2 Performance measures

Classical measures. In this case, the focus of performance measures
is on the accuracy of predicted base pairs in comparison to a reference
structure [40]. Pairs that are both in the prediction and in the reference
structure are true positives (TP), while pairs predicted but not in the
true structure are false positives (FP). Similarly, a pair in the reference
structure that is not predicted is a false negative (FN), and a pair that is
neither predicted nor in the true structure is a true negative (TN). To fully
characterize the successes and failures of structure prediction, theF1 score
is defined as

F1 =
2 TP

2 TP + FP + FN
.

These classical measures were calculated with the scorer program in
RNAstructure package3.

Mean absolute similarity (MAS) score. We propose a new score that
can reflect the similarity between the nextPARS/PARS/SHAPE probing
data and the predicted dot-bracket structures. Given an RNA sequence, this
score takes into account the binary paired-unpaired state of each nucleotide
n in the predicted structure b(n) ∈ 0, 1, and the corresponding normalized
probing score p(n) ∈ [0, 1]. The paired, unpaired and average similarities

1 https://genie.weizmann.ac.il/pubs/PARS10/pars10_catalogs.html
2 This is detailed in the source code, results section
3 http://rna.urmc.rochester.edu/Releases/
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Table 1. Methods for RNA secondary structure prediction included in this review.

Method Year Type Repository Web server

CONTRAFold [16] 2006 Statistical learning http://contra.stanford.edu/contrafold/download.html http://contra.stanford.edu/contrafold/server.html
CentroidFold [49] 2009 Statistical decision theory https://github.com/satoken/centroid-rna-package http://rtools.cbrc.jp/centroidfold/
ShapeKnots [13] 2010 Dynamic programming http://rna.urmc.rochester.edu/RNAstructure.html
ProbKnot [6] 2010 Assembling structures from base-pair probabilities http://rna.urmc.rochester.edu/RNAstructure.html https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/ProbKnot/ProbKnot.html
RNAstructure [44] 2010 Thermodynamics http://rna.urmc.rochester.edu/RNAstructure.html http://rna.urmc.rochester.edu/RNAstructureWeb/
RNAfold [36] 2011 Dynamic programming https://github.com/ViennaRNA/ViennaRNA http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
IPknot [50] 2011 Integer programming https://github.com/satoken/ipknot http://rtips.dna.bio.keio.ac.jp/ipknot/
contextFold [73] 2011 Structured-prediction learning https://www.cs.bgu.ac.il/∼negevcb/contextfold/ContextFold_1_00.zip https://www.cs.bgu.ac.il/∼negevcb/contextfold/
RNAshapes [26] 2014 Abstract shape analysis https://bibiserv.cebitec.uni-bielefeld.de/rnashapes https://bibiserv.cebitec.uni-bielefeld.de/rnashapes?id=rnashapes_view_webservice
pKiss [26] 2014 Abstract shape analysis https://bibiserv.cebitec.uni-bielefeld.de/pkiss https://bibiserv.cebitec.uni-bielefeld.de/pkiss?id=pkiss_view_webservive
SPOT-RNA [55] 2019 ResNet + biLSTM https://github.com/jaswindersingh2/SPOT-RNA https://sparks-lab.org/server/spot-rna
LinearFold [24] 2019 Dynamic programming + statistical learning https://github.com/LinearFold/LinearFold http://linearfold.org
LinearPartition [76] 2020 Dynamic programming + base pairing probabilities http://github.com/LinearFold/LinearPartition http://linearfold.org/partition
E2Efold [8] 2020 Transformer https://github.com/ml4bio/e2efold
rna-state-inf [71] 2020 Bi-LSTM https://github.com/dwillmott/rna-state-inf
SPOT-RNA2 [56] 2021 Ensemble of deep learning models https://github.com/jaswindersingh2/SPOT-RNA2 https://sparks-lab.org/server/spot-rna2
UFold [20] 2021 U-net https://github.com/uci-cbcl/UFold https://ufold.ics.uci.edu
MXfold2 [51] 2021 Deep learning + thermodynamic parameters https://github.com/keio-bioinformatics/mxfold2 http://www.dna.bio.keio.ac.jp/mxfold2/
2dRNA-Fold [39] 2021 Deep learning + reinforcement learning https://github.com/Urinx/2dRNA-Fold http://biophy.hust.edu.cn/new/2dRNA

Table 2. Dataset of curated and validated lncRNAs.

Name Species Length Year Measurement technology

NORAD#1 [11] H. sapiens 1,903 2021 nextPARS
NORAD#2 [11] H. sapiens 1,862 2021 nextPARS
NORAD#3 [11] H. sapiens 1,614 2021 nextPARS
CYRANO[27] H. sapiens 4,419 2020 SHAPE
MEG3 [68] H. sapiens 1,595 2019 SHAPE
RepA [35] M. musculus 1,630 2017 SHAPE + chemical probing
PAN [62] Human gammaherpes virus 8 1,077 2017 SHAPE-MaP
XIST [57] M. musculus 17,779 2016 SHAPE-MaP
lincRNAp21sense [9] H. sapiens 311 2016 SHAPE
lincRNAp21antisense [9] H. sapiens 303 2016 SHAPE
HOTAIR [58] H. sapiens 2,154 2015 SHAPE + chemical probing
MALAT1 [7] H. sapiens 8,415 2014 SHAPE
ROX2 [25] D. melanogaster 573 2013 SHAPE+PARS

are defined as

s+(b, p) = 1−
1

|M+|
∑

n∈M+

|b(n)− p(n)|,

s−(b, p) = 1−
1

|M−|
∑

n∈M−
|b(n)− p(n)|,

s(b, p) = 1−
1

|M |
∑
n∈M

|b(n)− p(n)|,

where the sets of paired and unpaired nucleotides are

M+ = {n : p(n) ≥ 1/2 + ε/2},

M− = {n : p(n) < 1/2− ε/2},

andM =M+ ∪M−. In this definition, ε is the uncertainty level around
the undetermined/no-measure score (1/2). That is, all the nucleotides with
scores in the range [1/2 − ε/2, 1/2 + ε/2] are ignored in the similarity
measure.

As the normalized probing scores are distributed in the [0,1] range, the
maximum/minimum value of the average similarities will generally not
be 1/0. This is because predicted structures are binary, preventing perfect
matchings with the real-valued probing scores. Therefore, a re-scaling step
must be done to take into account the best and the worst binary structures,

bb(n) =

1 if p(n) ≥ 1/2 + ε/2

0 otherwise

bw(n) = 1− bb(n).

Using the average similarities for these extreme cases, the normalized
MAS score is defined as

MAS(b, p) =
s(b, p)− s(bw, p)
s(bb, p)− s(bw, p)

This score was tested in several cases, which are provided as an interactive
notebook in the source code repository, section results.

4 Results

4.1 Large experimental comparison on RNA secondary
structure prediction

Figure 2 reports the results for the prediction methods evaluated on the
largest dataset (sce3k). The figure shows violin plots with the median on
the y-axis (blue diamond) of F1 (top) and MAS score (bottom) for all the
comparative methods in the x-axis. Methods withF1 lower than 0.10 were
not included in the analysis (E2Efold mostly predicted pseudoknots and
2dRNA-fold took a very large time to run for each sequence and could
predict only a very small number of sequences). The figure also shows
the corresponding coverage (gray bar in the background) for each method,
i.e. the percentage of sequences from the full dataset that was effectively
predicted by each method. It can be seen that most methods provided
predictions for all 3,023 sequences. The best methods achieved a median
F1 score of around 0.50: ProbKnot, RNAshapes, RNAfold, ShapeKnots
and RNAstructure. This result is expected considering that the reference
dot-bracket for this dataset was obtained with RNAfold and the other
methods with good performance share the same approach (thermodynamic
modeling and dynamic programming), or are even directly based on
RNAfold. The least performing method according to this metric achieved
aF1 score of around 0.20. With respect to the MAS score, when looking at
the similarity between experimental probing data and the predictions, most
methods achieved more stable predictive performances (low variance) with
median values around 0.60. According to this measure, which is not biased
towards any particular computational method used to derive the reference
dot-bracket, all methods have a median performance higher than 0.50.
Also, it can be seen that the MAS scores distribution for each method is
less dispersed than the corresponding F1 scores distribution, showing a
more consistent measurement across the different sequences in the dataset.

In order to provide a statistical analysis of results, we used Friedman
test and critical difference (CD) with post-hoc Nemenyi test (α =

0.05) [14]. The Friedman test showed that the differences in the F1 and
MAS scores distributions are statistically significant (p < 1E-15). The CD
diagram is shown in Figure 3. Here, the corresponding CD diagram forF1
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Fig. 2. Comparison of RNA prediction methods on the sce3k dataset. F1 (top), MAS score
(bottom).

Fig. 3. Critical difference diagram for the RNA prediction methods on the sce3k dataset
for F1 (top) and MAS score (bottom).

indicates that ProbKnot, RNAshapes and RNAfold are the best methods for
this dataset. Then there is a second group of statistically similar methods,
one of which is based on ML (MXfold2). Very interestingly, the rest of the
methods are well separated (different) among them. Regarding MAS, the
best method is LinearPartition, well-separated and followed by classical
methods and MXfold2, which are not statistically different among them.

4.2 Experimental comparison focused on lncRNAs

Figure 4 shows the comparison of prediction methods on the sce188
dataset, composed of 188 transcripts with lengths between 200 and 1,301
bases. The figure reports violin plots of the F1 (top) and MAS scores
(bottom) for all the comparative methods (x-axis). Methods withF1 lower
than 0.10 were not included. The figure also shows the corresponding
coverage (gray bar) for each method. In this case, almost all methods
could predict 100% of the sequences, except for UFold whose predictions
are restricted to a maximum of 600 nt per sequence. The best methods
according to F1 are, again, those sharing the same classical approach as
the method used in the reference structures. The rest of the methods have
F1 between 0.17 and 0.40, not that far from the best ones (F1 ≈ 0.50).

The MAS score shows that most methods are very close in
performance, between 0.50 and 0.60. Unlike the results obtained from
the sce3k dataset, the slightly wider dispersion observed here in the plots
indicates that there is more heterogeneity in the predictions of sce188,
which only includes transcripts predicted as lncRNAs. The Friedman
test indicates that differences in the F1 and MAS score are statistically
significant (p < 1E-15). However, given the smaller number of sequences,
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Fig. 4. Comparison of performance for the RNA secondary structure prediction methods
on the sce188 dataset. F1 (top), MAS score (bottom)
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Fig. 5. Paired/unpaired prediction rate between methods on the dataset sce188. Each value
of the heatmap shows how similar the predictions of two methods are on average.

the statistical power of the CD method is lower than that of the sce3k dataset
(see Supplementary Material 3, Figure S1).

Given the close results achieved by the methods in this dataset, the
similarity of each prediction was analyzed in more detail. To this end, for
each sequence the structures predicted by a pair of methods were compared
in terms of which nucleotides were predicted as paired or unpaired. The
average rate over the predictions obtained for each pair of methods is shown
with a pair-wise heatmap in Figure 5. These comparisons show that the
most similar methods are RNAstructure and ShapeKnots, which is very
reasonable since the last one is based on the same thermodynamic model.
This high similarity is in agreement with the previous results of F1 and
MAS score, as well as with the critical differences where both methods
are similarly ranked. The second most similar methods are LinearFold and
RNAfold, which is expected since the first method was proposed precisely
to improve the computational performance (from cubic to linear time) of
RNAfold without modifying the results. Interestingly, it can be seen that
the structures predicted by CONTRAFold, CentroidFold, IPknot, SPOT-
RNA and SPOT-RNA2 very frequently display high similarity between
them, and are different (<0.60) in comparison to the other methods.

Figure 6 shows the comparative results for the sce18 dataset.
Surprisingly here, all methods achieved a noticeably better performance
high. In sce18, most methods have very high median F1 (around 0.80),
with RNAfold and LinearFold showing a medianF1 = 0.86, very closely
followed by LinearPartition and ProbKnot (F1 = 0.83), RNAstructure
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Fig. 6. Comparison of RNA prediction methods on the sce18 dataset. F1 (top), MAS score
(bottom).

and ShapeKnot (F1 = 0.82), MXfold2 (F1 = 0.80) and SPOT-
RNA2 (F1 = 0.77). Importantly, these last two methods are ML-based,
suggesting that they are able to achieve good predictive performance for
lncRNAs. However, there is a large dispersion in the F1 plots, hinting
at a high heterogeneity in the predictions for the sce18 sequences. The
other methods achieved lower scores, which are between F1 = 0.50

(UFold) and F1 = 0.74 (SPOT-RNA). Regarding the MAS score, all
methods achieved median scores between 0.60 and 0.70, with more
compact predictions and less dispersion than F1. This indicates that all
methods, no matter the approach, can reach dot-bracket structures with
high correlation to the probing data. For this dataset, these results indicate
that ML-based methods achieved performances very close to the classical
approaches, and which are also considerably high for lncRNAs. This is an
impressive result for ML-based models in comparison to very well-known
and established methods for RNA structure prediction, making them very
competitive for this task (Supplementary Material 3, Figure S2).

In order to determine differences in the computational cost of the
methods, the running time of each method has been calculated based on
the sequences in the sce18 dataset (Supplementary Material 3, Figure
S3). For this calculation, all methods were run in the same hardware
conditions. These results show how the sequence length clearly impacts
on the computing time of each method. Almost all methods increase time
for longer transcripts with the same law, showing different exponential
behavior, with more cost for pKiss and ShapeKnots.

Finally, in order to understand why all methods had such high
performance on the sce18 dataset, we have measured the maximum
length of the hairpins present in the reference structures. The average
number of hairpins per sequence was 22.32 for sce3k, 7.48 for sce188
and 5.72 for sce18, while the average of the maximum hairpin length per
sequence (normalized by the sequence length) was 0.08 for sce3k, 0.16
for sce188 and 0.23 for sce18. Interestingly, sce18 sequences have the
fewest but longest hairpins compared to those found in the sce188 and
sce3k. We hypothesize that the sce18 secondary structures are more stable
and well-formed, and thus are easier to predict by any method. A possible
explanation may be that lncRNAs are more stable since their function is
more dependent on the structure, compared to mRNAs. This is in line with
previous findings showing that mRNAs are poorly structured [32].

4.3 Prediction analyses on a curated list of
well-characterized lncRNAs

To further evaluate the methods, we have tested the RNA structure
prediction with a set of lncRNAs whose structures have been
experimentally validated (details in Table 2). Figure 7-(left) reports violin
plots with MAS score, for each method in the x-axis. These results show
that most methods provide predictions with high similarity to probing

scores, with median values larger than 0.60, and for the least performing
methods the median similarities are around 0.50 for CONTRAFold,
CentroidFold, SPOT-RNA, SPOT-RNA2 and UFold.

In order to analyze the differences in the prediction of the curated
lncRNAs, Figure 7-(right) shows violin plots with the MAS score of
the methods for each lncRNA in the x-axis. In this figure, the lncRNAs
are ordered according to their lengths, from short to large. The median
similarities are around 0.60 for all lncRNAs, no matter the length of the
lncRNA to predict. Indeed, for the largest sequence (XIST) the median
MAS score is 0.61 and all methods are very close to this median. This
indicates that actually all methods and all approaches are capable of
predicting the XIST, and also PAN, pairing patterns considerably well
as measured by probing methods. It is also interesting to notice that MAS
scores are very similar for the three NORAD fragments at the three different
temperatures, which is expected given that the fragments resemble each
other and have a similar structural function [11]. In comparison, the F1

violin plots for this dataset (see Supplementary Material 3, Figure S4)
show a large dispersion among methods predictions, for example the
performance ranges from 0.10 to 0.80 for the same method depending on
the lncRNA to predict. This variance makes it hard to distinguish among
methods.

4.4 Detailed analysis of a curated lncRNA: NORAD

For an in-detail comparison across methods, we chose NORAD as a
leading case since it is dysregulated in various types of cancer and the
function is largely mediated by its structure. Figure 8 shows the results
for the prediction of the secondary structure of NORAD#1 at 37 ◦C or
all the methods reviewed here. NORAD#1 is a fragment of 1,903 bases in
length within NORAD, whose reference structure has been profiled in high
detail [11] using nextPARS pipeline [10]. The reference structure was built
with RNAstructure and the experimentally determined nextPARS scores
as constraints. For this sequence, 2dRNA-Fold could not be run because
of not enough RAM, and E2EFold and UFold because of restrictions
on sequence length. The figure shows in bars the resulting predictive
performances based on F1 and MAS score. In addition, it also shows the
normalized paired MAS, indicated with ‘+’, and the normalized unpaired
MAS, indicated with ‘−’.

The analysis of the F1 indicates that the best methods are
LinearPartition and pKiss, but with lowF1, closely followed by ProbKnot
and RNAstructure. It has to be noticed that the reference structure was
built with RNAstructure + nextPARS scores as constraints. According
to the MAS score, most methods were capable of correctly predicting
the 70% of the pairing in the sequence. Here rna-state-inf is the best
method, closely followed by ShapeKnots, RNAstructure, LinearPartition,
RNAfold, pKiss and MXFold2, which are all equally good performing.
The least performing methods reached a 0.45 of MAS score. The paired
and unpaired MAS scores are good indicators of the capability of methods
of correctly predicting both types of pairing in the sequence. For example,
all winning methods here are good predictors of paired nucleotides, while
methods with the lowest performance predict simpler structures and mostly
identify unpaired nucleotides.

For a more comprehensive comparison among methods, we performed
a deeper analysis of the RNA structures predicted by the top-3 best methods
and the one with the lowest performance (Figure 9). For this analysis,
the package draw_rna4 was used, which plots the structures and colors
them in a range from blue to yellow (5′ → 3′, respectively). For visual
comparisons, the same color indicates the same part of the sequence. It
is very interesting to see that, according to F1 (top) the 2nd best method
is pKiss, but it can be clearly seen that the resulting structure is quite

4 https://github.com/DasLab/draw_rna
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Fig. 7. Comparison of MAS score performance for the RNA secondary structure prediction methods on the curated lncRNAs dataset. Results grouped by prediction method (left); each dot
represents a lncRNA. Results grouped by sequence (right); each dot represents a prediction method.
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Fig. 8. Comparison of F1 and MAS scores for the RNA secondary structure prediction
methods on NORAD#1 at 37◦C.

different from the reference one. Moreover, the method with the lowest
F1 (top, right) seems to be more similar to the reference one than the 2nd
best method. Instead, the MAS score (bottom) provides a better ranking:
all 3-top methods are visually very similar to the reference one; and the
prediction of the method with the lowest performance (bottom, right) is
very different to the reference.

For the top-best method in Figure 10 we used the software
Circlecompare5 that compares two RNA structures (reference and
prediction) for the same sequence by showing the nucleotides in a circle. It
uses the following color scheme: green for pairs present in both predicted
and reference structure, red for pairs present in predicted structure only,
and black for pairs present in reference structure only. It can be seen that
there are more bases in green for LinearPartition, which is reflected by its
high F1 score. It also can be seen that rna-state-inf proposes different base
pairs, but most of the paired nucleotides in the reference are paired in the
prediction, which explains its high MAS score. Also, both methods predict
a high number of pair bases that are not part of the reference structure.
Moreover, most of the long-range pairings are different from those from
the reference, while local structure is more preserved.

The sequence of NORAD contains 12 recognizable and sequence-
similar NORAD repeat units (NRUs) that originated by tandem duplication
at the rise of mammals and still share sequence homology [65]. The
NRUs are ≈300 nt in length. Most NRUs contain one or two binding
sites for the two homologs of Pumilio (Pum) in mammals. NORAD-
regulated Pum targets are enriched in genes involved in cell division,
mitosis and chromosome number instability [64]. The individual NRUs
can be studied independently, facilitating isolation of specific interaction
partners. Figure 11 shows the comparison of MAS score performance for
the RNA secondary structure prediction methods of NRU1, NRU2, NRU3

5 https://rna.urmc.rochester.edu/Text/CircleCompare.html

and NRU4 within NORAD#1 at 37◦C. It can be seen that NRU1, NRU2
and NRU4 are hard to predict for all methods, reaching at best a similarity
around 0.50. Besides, NRU 3 is predicted by most methods with scores
near 0.80. The best one here were LinearFold, RNAfold, RNAshapes and
pKiss.

Several conserved elements, including a small and a larger hairpin
are peculiarly found in some NRUs and not others[64]. Thus, a possible
explanation between performance of the methods for the different NRUs
could be that, although most NRUs fold independently, there are occasional
long range interactions. In the case of NRU1, it was shown that there are
inter-NRU interactions between NRU1-10 [78]. Furthermore, it seems
that NRU2 and NRU4 fold mostly independently, but they also have
small interaction with regions outside them [11]. Instead the NRU3 folds
completely independently, thus it could be locally more structured than
the rest of the NRUs and that is why it is better predicted by most methods.

5 Conclusions
In this study we provided a comprehensive review and experimental
comparison of classical methods as well as the most recently proposed.
We used data sets validated by chemical probing methods, including a
novel benchmark with a compilation of well-characterized lncRNAs from
different species. Thus, our study also provides a novel public benchmark
to aid in the development and comparison of future approaches.

Most available secondary structures published were obtained with
computational prediction methods based on dynamic programming and
thermodynamics models, which sets upis an unfair basis of comparison
for methods based in any different approach. Therefore, we proposed a
novel score to assess the performance of methods exclusively based on the
chemical-probing data used for profiling RNA structures. The MAS score
has shown to be less biased, and thus a better measure for performance
comparison of secondary structure prediction methods.

Key Points
• We provide a comprehensive comparative assessment of existing

methodologies for lncRNA secondary structure prediction in the last
15 years.

• Each method has been explained and compared experimentally on the
same data set of curated lncRNAs.

• A new unbiased measure of performance is provided based only on
the chemical-probing data.

• This study will help the bioinformatics community in the development
and comparison of future approaches for lncRNA secondary structure
prediction.
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Fig. 9. In-depth analysis of structure predictions for NORAD#1 at 37◦C. Plots visualize the reference (left), the predictions of the top-3 methods (middle) and last prediction in the ranking
(right) according to F1 (top) and MAS (bottom). Same color indicates the same part of the sequence from 5′ (blue) to 3′ (yellow).

Fig. 10. Circular plot for the best method in predicting NORAD#1 at 37◦C according to
F1 (left) and MAS score (right). Pairs present in both predicted and reference structure
(green). Pairs present in predicted structure only (red). Pairs present in reference structure
only (black).
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Fig. 11. Comparison of MAS score performance for the RNA secondary structure
prediction methods of NRU1, NRU2, NRU3 and NRU4 within NORAD#1 at 37◦C.
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