
Briefings in Bioinformatics, 2022, pp. 1–11

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Contrastive learning-based computational
histopathology predict differential expression of cancer
driver genes

Haojie Huang,1 Gongming Zhou,1 Xuejun Liu,2 Lei Deng,1 Chen Wu,3

Dachuan Zhang3,∗ and Hui Liu2,∗

1School of Computer Science and Engineering, Central South University,410075, Changsha, China, 2School of Computer Science and

Technology, Nanjing Tech University, 211816, Nanjing, China and 3The third affiliated hospital of Soochow University, 213100,

Changzhou, China
∗Correspondence should be mainly addressed to Hui Liu: hliu@njtech.edu.cn. Correspondence may also be addressed to

zhangdachuan@suda.edu.cn.

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation: Digital pathological analysis is run as the main examination used for cancer diagnosis. Recently, deep
learning-driven feature extraction from pathology images is able to detect genetic variations and tumor environment, but
few studies focus on differential gene expression in tumor cells.
Results: In this paper, we propose a self-supervised contrastive learning framework, HistCode, to infer differential gene
expression from whole slide images (WSIs). We leveraged contrastive learning on large-scale unannotated WSIs to derive
slide-level histopathological features in latent space, and then transfer it to tumor diagnosis and prediction of differentially
expressed cancer driver genes. Our extensive experiments showed that our method outperformed other state-of-the-art
models in tumor diagnosis tasks, and also effectively predicted differential gene expression. Interestingly, we found the
genes with higher fold change can be more precisely predicted. To intuitively illustrate the ability to extract informative
features from pathological images, we spatially visualized the WSIs colored by the attention scores of image tiles. We found
that the tumor and necrosis areas were highly consistent with the annotations of experienced pathologists. Moreover, the
spatial heatmap generated by lymphocyte-specific gene expression patterns was also consistent with the manually labeled
WSIs.

Key words: Whole slide image, Contrastive learning, Differential gene expression, Cancer driver gene, Computational
histopathology, Convolutional neural network

Key Messages

• Self-supervised contrastive learning was applied to large-scale unlabeled digital pathology images and extracted tile-level

features, which were then aggregated to build the slide-level features via attention pooling. Adversarial negative samples were

generated to pose challenge that drove the self-supervised learning to capture informative representation from large-scale

unlabeled tiles.

• The computational pathological features have been shown highly predictive of both tumor diagnosis and differential gene

expressions. Interesting, the prediction accuracy was positively correlated to fold-change level, which indicated that dramatic

variation of underlying molecule expression pattern would be more reflected in phenotypic features.

• We explored the model interpretability via spatial deconvolution, and colored each tile according to its normalized attention

scores. The spatial localization of high attention-scored tiles showed high consistence to the distribution of tumor tissues

and immune infiltrating cells annotated by an experienced pathologist.

Introduction

With the advancement of scanner and imaging technology,

pathology glass slides are increasingly digitized and computational

histopathology analysis has emerged as a new standard of

diagnostic workflow. Digital histopathology promotes the

efficiency and accuracy of pathologists in disease diagnosis and

clinical grading.

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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By virtue of the power of automatic feature extraction,

deep learning is increasingly used to extract features from

pathology images for multiple subsequent applications. Some

deep learning-based models used pathological images to

predict the prognosis of cancer patients, such as colorectal

cancer[1, 2], hepatocellular carcinoma[3], pancreatic ductal

adenocarcinoma[4] and even panCancer[5]. Some studies

focused on classification of tumor subtypes and treatment

efficacy by deep computational pathology analysis[6, 7, 8, 9].

For example, Li et al. proposed a classification model without

manual annotations by fusing multi-scale features extract from

unlabeled patches tiled from whole slide images[10]. Saltz et al.

studied a variety of cancer types and proposed a computational

staining method based on deep learning, which can deconvolve

the spatial structure of tumor infiltrating lymphocytes[11].

Gheisari et al. combined convolution deep belief network and

feature encoding from WSIs to classify neuroblastoma[12].

The aforementioned studies promoted the application of

digital pathology to routine clinical diagnosis and prognosis.

However, these studies were limited to the diagnostic

and prognostic value, the potential of digital pathological

images has not been fully mined. The development of

high-throughput sequencing technology generated large-scale

multi-omics datasets. Based on the assumption that specific

micromolecular patterns will be reflected in histological

morphology and cell phenotype, some studies begun the

exploration of pathological image features to infer molecular

patterns. For example, Kather et al. used deep neural network

to predict a wide range of gene mutations from histology

images, which verified and quantified the relationship between

genotype and phenotype in cancer cells[13]. Yu et al. found

that, in most cancers, there is a general association between

histological morphology features and genetic mutations[14].

Chen et al. combined the histopathology features and molecular

patterns to improve the diagnosis and prognosis of cancer

patients[15]. Coudray et al. further predicted gene mutations

based on the histopathological features derived for the

classification task of non-small cell lung cancer subtypes by

using deep convolution network[16]. In addition, a lot of

studies have demonstrated the applicability of computational

pathology to predict microsatellite instability[17, 18, 19, 20]

and detect mitosis[21, 22, 23, 24].

To further explore the relationship between gene expression

profiles and histopathological features, we propose a new

framework, HistCode, to exploit the histopathology images

by self-supervised contrastive learning to infer the differential

gene expression in tumor cells. More precisely, we applied

adversarial contrastive learning to extract tile-level features,

and then aggregated the features to produce the slide-level

latent representation by attention pooling. The slide-level

representations were transferred to multiple downstream tasks,

including tumor diagnosis and differential gene expression

prediction. For systematically evaluating our proposed method,

we conducted extensive experiments to demonstrate the

expressiveness of computational histopathological features,

including tumor diagnosis, quantitative analysis of differential

gene expression and spatial localization of lymphocytes. The

experimental results fully verify that our model is superior to

state-of-the-art models in tumor diagnosis task. We visualized

the whole slide images by the attention scores of tiles, and found

that the tumor and necrosis area are highly consistent with the

annotation of pathological experts, which strongly solidified the

capacity of HistCode to extract the informative features from

pathological images. Next, we verified the ability of HistCode to

predict differential gene expression. Interestingly, we observed

that the genes with higher fold change can be more precisely

predicted. The activation map generated by lymphocyte marker

gene expression level was also consistent with the labeled slide

by an experienced pathologist. To our best knowledge, we are

the first to apply computational pathology for differential gene

expression analysis. We believe our work would yield inspiring

insights into digital pathological analysis and greatly extend its

clinical application.

Materials and methods

Whole slide image

All hematoxylin and eosin-stained digital slides (frozen tissue)

were downloaded from TCGA via the Genomic Data Commons

Data Portal. We collected two solid tumors, breast and lung

cancer, in our study, because there are enough samples for us

to establish solid model, as well as for systematic evaluation.

From TCGA-BRCA project, we gathered 1,979 WSIs from

1,094 breast cancer patients, including 1,580 tumor samples

and 399 normal samples. We also collected the breast cancer

slides from CPTAC-BRCA project, which had 642 WSIs from

134 participants. This CPTAC-BRCA dataset was used as an

independent test set to verify the generalizability of our model.

The lung cancer dataset comes from the project TCGA-LUSC

and TCGA-LUAD. There are in total 2,168 WSIs from 1,010

patients, including 1,577 tumor WSIs and 591 normal WSIs.

Only the slide with a magnification greater than 20* were

included in this study. The slide-level diagnosis provided by

TCGA database were used as ground truth for classification

labels.

Slide annotation

A pathologist with more than ten-year experience was asked

to manually annotate a few slides. The annotated slides were

used for the validation of spatial localization of tumor and

necrosis area, as well as tumor infiltrating lymphocytes. During

annotation, the pathologist was blinded with regard to any

molecular or clinical feature.

RNA-seq dataset

The RNA-seq datasets from TCGA are used for differential

expression analysis. We selected the patients with both tumor

and normal pathology images, and obtained 153 matched

samples for breast cancer. Genome-wide expression profiles in

fragment per kilobase million with upper-quartile normalization

(FPKM-UQ) were used for differential gene expression analysis.

Cancer driver genes

In this study, we focused on the cancer driven genes, as their

differential expression is the drive force for the generation and

proliferation of tumor cells. The driver genes is obtained from

the compendium of cancer driver genes curated by Mart́ınez-

Jiménez et al[25]. From the total of 568 driver genes, we chose

the ones that has been reported high cumulative number of

non-synonymous mutations. As a result, we filtered out top

200 most mutational driver genes included in our differential

expression analysis.
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Fig. 1. Illustrative flowchart of HistCode framework. There were three steps, slide proprocessing, contrastive learning-based pretraining (dark red box)

transfer learning to downstream tasks (blue box). The cyan lines represented backward propagation messages, and red lines represented the generation

process of adversarial negative samples.

Image processing
Due to the high dimensionality of the whole slide images (up

to 100,000×100,000 pixels), we tessellated slides into small-

size squares (tiles) so that they are ready as input of deep

learning model. Before tiling, we read slides using python

library openslide[26] and used the Otsu algorithm[27] to select

areas that contained enough tissue cells. The threshold 8 was

used to detect tissue. After exclusion of white background,

the slide was tessellated to 128×128µm (256×256 pixels) tiles.

Of note, we only stacked the coordinates of each tile and the

slide metadata using the hdf5 hierarchical data format. Next,

those tiles where the surface area covered by tissue cells is less

than 100 were removed. Finally, we got 14,705,914 tiles from

TCGA-BRCA slides, 5,888,085 tiles from CPTAC-BRCA slides,

and 12,769,300 tiles from TCGA-Lung slides. To eliminate the

influence of different staining condition and imaging protocol of

different WSI datasets, we applied color normalization on tiles.

Differential expression analysis
We calculated the fold change of each gene in tumor relative

to normal tissues. Because the absolute expression levels of

different genes vary in large scope, especially when the gene

expression level of normal tissue is close to 0, fold change give

rise to instability. To overcome this problem, we scaled the fold

change by log10(fc + 1)[28] for each gene per patient. Apart

from the quantitative prediction of differential expression level,

we also cast the problem into binary classification task. If the

| log2(fc)| is more than 1.5[29], the label of corresponding gene

was set to 1, and 0 otherwise.

HistCode framework

Our HistCode framework included three modules, as shown

in Figure 1. First, the self-supervised contrastive learning is

used to learn latent representation of tiles. Next, we leveraged

the gated-attention pooling to aggregate the tile-level features

to build slide-level features. In the downstream tasks, we

transferred the slide-level features to tumor diagnosis and

differential gene expression prediction.

Contrastive learning for feature extraction

As we have only slide-level labels (tumor or normal), supervised

learning is not applicable to extract features of tiles. We

adopted self-supervised pretraining on large-scale unannotated

tiles to obtain tile-level features. In this study, the adversarial

contrastive learning, AdCo[30], is adopted for pretraining.

We have also tested another contrastive learning methods,

SimCLR, and found AdCo achieved better performance in

downstream tasks.

Formally, denote the input tile as by xi, we used CNN

as the backbone network fθ to transform tiles into latent

representation hi = fθ(xi), which is then projected into

embedding qi by a multi-layer projection. The contrastive

learning is to train the network parameter θ to discriminate

query sample qi from a set K of negative samples. The

contrastive loss was defined as:

L = −
1

N

N∑
i=1

log
exp(qiqi

′
/τ)

exp(qiq
′
i/τ) +

∑K
k=1 exp(qimk/τ)

(1)

where q′i is the embedding of augmentation of the same

instance xi, which is considered as the positive sample for the

query qi, and τ is a positive value of temperature.

Inspired from adversarial learning, AdCo aims to generate

challenging negative samples to be distinguished from query

samples. Mathematically, AdCo takes the embedding of all

samples as negative adversaries and updates the negative

samples to maximize the contrastive loss, so that the

adversarial negative samples were push closer to query samples.

A memory bank is maintained to stack the negative samples.

So, we have the following min-max problem:

θ
∗
,M∗ = arg min

θ
max
M

L(θ,M) (2)

in which M represents the set of dynamically updated

adversarial negative samples, which can be regarded as a set of

model parameter M. During the training process, the network

parameter θ is updated along the descending direction of the

gradient, while M is updated along the ascending direction of
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the gradient. So, the parameter θ and M is alternately updated

as below:

θ ← θ − λθ
∂L(θ,M)

∂θ
(3)

mk ← mk − λmk

∂L(θ,M)

∂mk

(4)

As the size of total tiles is too large to be loaded into

memory, we randomly select a percentage of tiles from each

slide and stacked them in the memory bank. This is reasonable

because pathology tiles has relative low information density

compared to natural picture. The final goal of the solution is

to achieve the saddle point. The adversarial negative samples

forced the encoder to capture essential information of each

image to discriminate it from others.

In our implementation, ResNet50 was used as the backbone

network. We used only the first four main layers (the output

of the last layer is 1024), and load the pre-trained weights on

ImageNet. Two fully-connected layers were added to the model.

In the training process, SGD[31] was used as optimizer. The

learning rate of the backbone network is set to 0.03. The weight

decay is set to 0.0001, and the momentum is set to 0.9.

Feature aggregation

For downstream tasks, we need to aggregate the tile-level

features to derive the slide-level features. In addition to widely

adopted max-pooling and mean-pooling, we also introduced

gated-attention pooling[32] to aggregate tile-level features.

There is a trainable aggregation strategy based on attention

mechanism. Let H = {h1, ..., hL} be L tile-level embedding of a

slide, the gated-attention pooling is actually the instance-level

weighted average pooling:

z =
L∑
i=1

aihi (5)

in which

ai =
exp(wT (tanh(V hi)

⊙
sigm(Uhi)))∑L

j=1 exp(w
T (tanh(V hj)

⊙
sigm(Uhj)))

(6)

where U and V are learnable parameters,
⊙

is an element-

wise multiplication and sigm() is the sigmoid non-linearity.

The gating mechanism introduces a learnable non-linearity that

potentially removes the troublesome linearity in tanh.

Tumor diagnosis

Given the learned slide-level representation, we applied transfer

learning to conduct downstream tasks. For the tumor diagnosis

task, we used a fully connection layer and a softmax layer. The

slide features were fed into the fully-connected layer, and the

softmax layer output the probability indicating that the input

slide included tumor tissues or not. We used argmax to obtain

the prediction probability, and then used the cross entropy as

loss function to calculate the loss between the slide label yi and

the prediction label ŷi:

LTD = −
S∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (7)

in which S is the total number of slide included in the tumor

diagnosis task. Note that during the downstream task, only

the parameters of the gated-attention pooling and downstream

linear layers were updated, while the the parameters in the

contrastive learning module were frozen.

Differential expression prediction

Since the differential gene expression is actually the change

of transcriptional level in tumor cells compared to normal

cells, we chose a number of tiles that were most possibly

located in tumor and normal tissues to predict differential

gene expression. The attention weights learned in the tumor

diagnosis task were indicative of whether the tiles contains

tumor cells or not, we leveraged the learned attention weights

to select tiles. More precisely, we sorted the tiles according

their attention weights in descending order, and then selected

the l highest tiles and l lowest tiles. In our study, l takes 100.

Next, the embedding of the l highest and lowest tiles were

averaged, respectively. Finally, the two averaged embeddings

were concatenated. Taking the concatenated embedding as

input, we used a linear regression model for each gene to predict

its differential expression level. The linear model include only a

fully connected layer with 1024 input nodes and 1 output node.

The MSE (mean squared error) was used as loss function:

LDE =
1

Q

Q∑
i=1

(yi − ŷi)2 (8)

where yi is the RNA-seq derived differential expression level,

and ŷi is the predicted one, Q is the total number of genes

included in the differential expression task. In our practice,

we found that single fully connected layer can achieve good

performance in the downstream tasks.

Results

Tumor diagnosis
For tumor diagnosis, we performed a classification task to

predict the slide-level labels. For both breast and lung cancer

datasets, we adopted 5-fold cross validation to evaluate model

performance. For each fold, the slides were split into three

subsets at the level of patients, and 80% slides were used for

training, 10% for validation and 10% for testing. The model

performance was reported by the mean predicted accuracy on

testing set of 5-fold cross-validation.

On TCGA-LUNG cohort, our method achieved accuracy

0.963 and ROC-AUC 0.976. Moreover, we compared our

method to three other competitive methods, including MIL-

RNN[33], ABMIL[32], DSMIL[10]. As shown in Table 1, our

method outperformed these competitive methods by at least 4%

accuracy. The results show that HistCode successfully extract

the features from pathological images for tumor diagnosis.

Table 1. Performance comparison of HistCode and competitive

methods on TCGA-LUNG cohort

Method Accuracy AUC

MIL-RNN[34] 0.8619 0.9107

ABMIL[32] 0.9000 0.9551

DSMIL[35] 0.9268 0.9633

Max pooling 0.8930 0.8846

Mean pooling 0.9114 0.9073

HistCode 0.9630 0.9765

Also, we explored the impact of different tile-level feature

aggregation strategies. we presented the ROC curve and

precision-recall curves of three aggregation strategies on

the TCGA-LUNG cohort in Figure 2. It can be found

that the gated-attention pooling acquired significantly better
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Fig. 2. ROC curves and precision-recall curves achieved by our method for tumor diagnosis task on TCGA-LUNG cohort. It shows that gated-attention

pooling of tile-level features improves the performance, compared to max-pooling and mean-pooling

performance than mean-pooling, while max pooling performed

relatively poor.

On TCGA-BRCA cohort, our model achieved ROC-AUC

0.965 and accuracy 0.960, as shown in Figure 3. To verify the

generalizability of our model, we trained the model on TCGA-

BRCA cohort, and then used it to predict the slide labels of

CPTAC-BRCA cohort. On CPTAC-BRCA cohort, our model

obtained ROC-AUC value 0.962 and accuracy 0.931. This result

strongly verified the robustness of our method.
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Fig. 3. ROC curves and precision-recall curves achieved by our method

for tumor diagnosis task on TCGA-BRCA cohort.

Differential gene expression prediction
Based on the attention weights derived from the tumor

diagnosis, we chose a number of tiles with highest and lowest

attention weights to established the slide-level feature for

differential expression prediction (see method), so that the

resulting features integrated both tumor and normal tiles.

For the regression task of differential expression levels, we

used Pearson and Spearman correlation coefficient as evaluation

metrics. On the TCGA-BRCA cohort, almost all genes yield

significant prediction results. The average Pearson correlation

coefficient of all test genes is 0.185 (p-value<0.01). Also, we

observed inter-gene variation of the coefficients. Among the

200 tested genes, the Pearson coefficient of 84 genes is more

than 0.20, and 39 genes is more than 0.40. The distribution of

coefficients was shown in Figure 4 (a). To verify the reliability

of the differential expression prediction, we compared our

prediction results with random baseline. For this purpose, we

generated random numbers within the 5%-95% range of the real

differential expression (logarithm transformed fold changes)

across all samples for each gene, and then calculated the

correlation coefficient between the random baseline and the

real differential expression levels. As shown in Figure 4 (a),

we noticed the correlation coefficients followed nearly Gaussian

distribution (µ=0 and σ=0.15), which is far from the results of

our prediction results. The statistical test verified the difference

between our prediction and random generation is strongly

significant (p-value=2.39e-17, Wilcoxon rank sum test).
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Fig. 4. The frequency distribution of cancer driver genes with respect to

correlation coefficients between the predicted differential expression levels

and real ones, compared to random guess. The differential expression

levels were predicted by slide-level pathological features on TCGA-BRCA

cohort.

We went further to run hypotheses test for each gene

to check whether the predicted differential expression levels

were significantly different from random baseline. The bilateral

Wilcoxon test with Benjamin-Hochberg multiple testing

correction was conducted for each gene. Among the 200 cancer

driver genes, 88% (n=176) genes were verified (p-value<0.05).

Moreover, we cast the differential expression prediction to

binary classification problem, by discretizing fold change levels.

If the | log2(fc)| was more than 1.5, the gene was regarded

as significantly up-regulated or down-regulated and its label

was set to 1, and 0 otherwise. Upon the same slide-level

features and linear prediction model, we just replaced the

output layer by two nodes and used softmax activation function

for classification task. For most of 200 cancer driver genes,

their differential expression can be significantly predicted, as

shown in Figure 5. The predictive accuracy 0.9 account for

more than 33 percent genes(n=66). There are 60 percent

genes(n=119), their prediction accuracy was more than 0.8.

This result also supported that our method achieved notably
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performance in predicting differential gene expression using

computational pathological features.
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Fig. 5. The frequency histogram of cancer driver genes with respect

to their prediction accuracy of differential expression. The differential

expression was cast to a binary classification task, and the prediction was

based on the slide-level pathological features on TCGA-BRCA cohort.

Contrastive learning and attentive pooling improved
performance
To verify the contrastive learning-based feature extraction

improve the performance of downstream task, we compared

our method to supervised model without pretraining. For

this purpose, we used the ResNet50 network pretrained on

ImageNet as backbone to extract feature from tiles, and

attention pooling was applied for feature aggregation. For the

differential expression prediction task, we reported Pearson and

Spearmen coefficients in Figure 6. When attention pooling was

applied, the AdCo-based contrastive learning performed better

than ResNet50-based feature extraction (AdCo+attention vs

ResNet50+ attention).

Meanwhile, we investigated the impact of gated-attention

mechanism. First, in the tumor diagnosis classification task, we

have validated attention-pooling outperformed mean-pooling

and max-pooling. Here, we verified its improvement of

performance on regression task. Without loss of generality, we

took into account contrastive learning-derived and supervised

learning-derived tile-level feature. As shown in Figure 6,

attention-pooling achieved better prediction accuracy than

mean-pooling, for both AdCo-based and ResNet50-based

features.

Fold-change level positively correlated to prediction
accuracy
With the assumption that molecular pattern underlies the

histological morphology, we speculated that the change of

expression level can be reflected in the pathological feature.

More intuitively, greater change of gene expression level leads

to more significant pathological feature change that can be

captured by our model. To verify this viewpoint, we checked

the fold-change levels is correlated to the prediction accuracy

of differential expression. Therefore, we drew boxplot of fold-

change levels with respect to Pearson coefficients, as shown in

Figure 7. Overall, the prediction accuracy (Pearson coefficient)

is positively correlated to the fold-change level. In particular,

for the driver genes with prediction accuracy greater than

0.2, the mean fold changes was 2.602, while the genes with

prediction accuracy less than 0.2, the mean fold change was
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Fig. 6. Comparison of the models with pretraining versus without

pretraining, as well as attention pooling versus mean-pooling. The

performance was evaluated on the differential expression prediction task.

only 2.198. For those genes with prediction accuracy greater

than 0.5, the mean fold-change level reached 3.241. Therefore,

we drew the conclusion that our model actually captured the

underlying molecular features dominated by gene expression

patterns.

5
~o

0.0 0. 1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
Pearson Coeff ic i ent

Fig. 7. Boxplot of fold changes with respect to predictive performance

of differentail expression. The cancer driver genes were binned according

to the correlation coefficients of predicted and real differential expression

levels.

Frequently mutated and immune-related genes were
well predicted
For further verification of our model, we checked whether

the differential expression of frequently mutated driver genes

are well predicted or not. Besides, as tumor immune

microenmironment reflected the interaction between immune

system and tumor evolution, we also considered the immune-

related genes. From the list of ten frequently mutated genes in

breast cancer[34], we got four genes, PIK3CA, MYC, PTEN

and GATA3, which overlapped with compendium of cancer

driver genes. We also selected four genes, CD3D, CD3E, CD3G,

CD247, that encode the subunits of T lymphocyte glycoprotein

CD3 receptor[35]. For B cell population, its marker gene CD19

was included.
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The results are shown in the figure 8. It can be seen that

the differential expression patterns of these frequently mutated

and immune-related genes can be significantly predicted. In

particular, the genes related to immune cells achieved the

average Pearson correlation coefficient 0.624. For CD19 gene,

the predicted fold changes showed strongly positive correlation

to RNA-seq results.
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Fig. 8. Scatter plots of predicted and real differential expression levels for

4 frequently mutated genes in breast cancer and 5 immune-related genes.

For each gene, the Pearson coefficient was also shown.

For TCGA-BRCA cohort, we inspected the biological

functions of top 5 best predicted genes among all 200

driver genes, including Elf3, SRGAP3, FGFR2, BRCA2

and FANCD2. Among them, BRCA2 (p-value=2.3e-7) is

the notorious susceptibility gene to breast cancer and

ovarian cancer[36], and involved in cell cycle control, gene

transcription regulation, DNA damage repair, apoptosis and

other important processes[37]. Also, FGFR2 (p-value=4.8e-

4) plays an important role in regulating cell proliferation,

survival, migration and differentiation, and can induce mitosis

and promote the occurrence of cancer[38]. Elf3 (p-value=1.2e-

6) plays an important role in development, differentiation

and transformation[39]. SRGAP3 (p-value=7.9e-6) regulate

cytoskeleton and participate in cell migration[40]. FANCD2(p-

value=5.7e-6) protein is necessary to ensure efficient replication

of common fragile sites[41].

Finally, we selected 50 most predicted genes for enrichment

analysis. The results are shown in Figure 9. Among the top

10 enriched signaling pathways, we found the PI3K pathway,

MAPK pathway and EGFR signaling that have been reported

abnormal activation in breast cancer.

Interpretability and spatial localization
Human-readable interpretability of the extracted feature from

pathology images can validate that the predictive power of our

model kept in line with well-known morphology annotated by

experienced pathologist. Our slide-level prediction of tumor

diagnosis was made by identifying and aggregating tile-level

Fig. 9. Enrichment analysis on KEGG signaling pathway based on top

50 genes of which differential expression were predicted.

features that are of high diagnostic importance (high attention

score). The derived attention scores are highly indicative of

localization of tumor area. To visualize and interpret the

relative importance of each region of the WSIs, we generated

the attention heatmap by normalization of attention scores and

spatial deconvolution of tiles to original slide. Fine-grained

attention heatmap were evaluated by aligning to annotated

tumor and necrosis, normal areas by pathologist. As shown

in Figure 10, the attention heatmap reflected the spatial

localization of highly diagnostic tissues, which were coincident

with the boundary of tumor&necrosis and normal tissues

delineated by the pathologist. Visiting tiles of both high and

low attention scores within a slide would convey more human-

readable pathological feature. So, we visualized a few tiles

selected according attention scores, and found that the tiles

with low attention scores are mostly normal tissue, while those

with high attention scores were dominately covered by tumor

cells.

Beyond the spatial localization of tumor tissue, differential

gene expression also allowed us to visualize the spatial

distribution of immune infiltrating cells. For this purpose,

we chose the immune cell marker genes for further analysis.

As T lymphocytes and B lymphocytes infiltrating to tumor

tissue play main anti-cancer effect, we selected several genes

specific to T and B lymphocytes. For T lymphocyte, we chose

CD3D and CD247 genes that encode T lymphocyte receptor

glycoprotein CD3. For B lymphocyte, the CD19 gene was

chosen. Besides, we used another tumor suppressor gene PTEN

for comparison. For each gene, we generated the slide-level

heatmap using the attention scores of each tiles derived from

the differential expression prediction models specific to this

gene. Meanwhile, we asked the pathologist to manually label

the tumor area, which was used as reference boundary of the

spatial distribution of immune infiltrating cells.

As shown in Figure 11, the heatmap of CD3D and CD247

marker genes indicated that T lymphocyte mostly located at

the tumor area. For the CD19 gene reflecting B lymphocyte

localization, we observed similar spatial distribution to T

lymphocyte. The observation was consistent to the fact that

immune cells infiltrated to solid tumor to kill cancer cells by

recognition of neoantigen. In contrast, the PTEN expression

showed quite different spatial distribution. Interestingly, we

found that PTEN gene showed high expression levels in normal

tissue relative to tumor tissue.
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High attention score tiles

Fig. 10. Spatial localization of tumor area of implied by attention mechanism compared to pathologist annotations. The heatmap (left middle) was

generated by spatial deconvolution of tiles to original slide (left top), and each tile was colored according to its normalized attention score. The area

circled by red lines were tumor&necrosis area (left bottom) annotated by an experienced pathologist. The right column showed some representative tiles

with highest and lowest attention scores.

(a) Annotation

 

(b) CD3D

 

(c) CD247

 

(d) CD19

 

(e) PTEN

 

Fig. 11. Spatial localization of tumor area and cells labeled by marker genes. The tumor area was labeled by an experienced pathologist. The localization

of T lymphocytes and B lymphocytes was predicted by their marker genes.

Discussion and Conclusion

Genetic testing has been an important clinical examination

for tumor subtyping and targeted drug delivery. However,

due to technology and cost reasons, genetic testing has

not become clinically spread, especially in developing

countries. The rapid advancement of digital pathology

motivated the application of computational pathology to

infer genetic mutations, microsatellite instability and tumor

microenvironment. Following the rationale that the change

of cell and tissue phenotype is driven by the variation of

gene expression pattern, we have explored the computational

pathology-based prediction of differential expression of cancer

driver genes. In general, the hematoxylin and eosin-stained

digital slides contained both tumor and normal tissues, this

allow us to infer differentially expressed genes from pathological

feature from single whole slide image. In fact, we have
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shown that the fold-change levels positively correlated to

prediction accuracy. This indicated that dramatic variation

of underlying molecule expression pattern would be more

reflected in phenotypic features, which in turn allow us to infer

differential expression.

The inference from pathological feature to molecule patterns

mainly depends on the powerful feature extraction capacity of

deep learning. Although weakly-supervised deep learning has

been applied in a few studies for computational pathology, self-

supervised contrastive learning showed superior performance in

representation learning, but has not been exploited in mining

digital pathology. Our study verified the contrastive learning-

based pretraining significantly improved the performance in

downstream classification (tumor diagnosis) and regression

(differential expression) tasks. We speculate that contrastive

learning can capture fine-grained information in learning to

acquire similar features for tile-level positive pair but dissimilar

from a set of negative tiles. In contrast, weakly-supervised

learning may only extract information for slide-level instance

classification.

The bulk RNA-seq dataset is the standard for differential

expression analysis, which has been widely used to identify up-

regulated and down-regulated genes in tumor cells compared

to normal cells. However, bulk sequencing lost the spatial

localization of tumor and normal tissues. The spatial

deconvolution of marker gene expression to histopathology

images greatly help to visualize the spatial distribution of

tumor and normal cells, especially the immune infiltrating cells.

Looking forward, computational pathology would promote the

spatial visualization of tumor immune microenvironment.

In summary, we developed a self-supervised contrastive

learning framework, HistCode, to infer differential gene

expression from pathology images. Our extensive experiments

showed that contrastive learning-based pretraining effectively

improved the downstream task, including tumor diagnosis

and differential expression prediction. We have also shown

informative spatial visualization of tumor and specific gene

expression by leveraging the tile-level attention scores learned

by our model. We believe that our study would yield inspiring

insight into computational pathology.
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