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 35 

Abstract 36 

Integration of the evolving large-scale single-cell transcriptomes requires 37 

scalable batch-correction approaches. Here we propose a simple 38 

batch-correction method that is scalable for integrating super large-scale 39 

single-cell transcriptomes from diverse sources. The core idea of the method is 40 

encoding batch information of each cell as a trainable parameter and added to 41 

its expression profile; subsequently, a contrastive learning approach is used to 42 

learn feature representation of the additive expression profile. We demonstrate 43 

the scalability of the proposed method by integrating 18 million cells obtained 44 

from the Human Cell Atlas. Our benchmark comparisons with current 45 

state-of-the-art single-cell integration methods demonstrated that our method 46 
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could achieve comparable data alignment and cluster preservation. Our study 47 

would facilitate the integration of super large-scale single-cell transcriptomes. 48 

The source code is available at https://github.com/xilinshen/Fugue. 49 

 50 

Background 51 

Single-cell sequencing offers tremendous opportunities for biomedical 52 

research to explore the cellular ecosystem and molecular mechanisms [1]. 53 

Advances in single-cell technologies have spurred the establishment of 54 

several public repositories of single-cell data, including the Human Cell Atlas 55 

(HCA), the Single-cell Expression Atlas and the Mouse Cell Atlas [2, 3]. The 56 

HCA project is committed to curate millions to trillions of single-cells for 57 

constructing a comprehensive reference map of all human cells. As can be 58 

foreseen, integration of super large-scale single-cells across heterogeneous 59 

tissues from diverse sources will be a leading wave for deep exploration of 60 

biology [4, 5]. Therefore, scalable computational methods are crucial for 61 

integration of single-cell transcriptomes and subsequently their translation into 62 

biological significance. 63 

Batch effects are fundamental issues to be addressed for integration of 64 

single-cell transcriptomes. Batch effects are inevitable as single-cell data were 65 

generated by various groups with diverse experimental protocols and 66 

sequencing platforms [6]. Considerable progress has been made on 67 

batch-correction of single-cell expression. For instance, MNN [7], Scanorama 68 

[8] and BBKNN [9] are all based on mutual nearest neighbors (MNNs) 69 

identification were successfully applied to guide single-cell integration. The 70 
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Seurat integration [10] utilizes canonical correlation analysis to identify 71 

correlations across datasets and computes MNNs to correct data. Harmony 72 

[11] integrates datasets by clustering similar cells from different batches while 73 

maximizing the diversity of batches within each cluster. scVI [12] applies a 74 

deep learning model to learn shared embedding space among datasets for the 75 

elimination of batch effects. However, these methods are not designed for the 76 

integration of super large-scale single-cells. 77 

To satisfy this need, we present Fugue, a simple yet efficient solution for 78 

batch-correction of super large-scale single-cell transcriptomes. The method 79 

extended the deep learning method at the heart of our recently published 80 

Miscell approach [13]. Miscell learns representations of single-cell expression 81 

profiles through contrastive learning and achieves high performance on 82 

canonical single-cell analysis tasks including cell clustering and cell-specific 83 

markers inferring. In this study, we expand Miscell through encoding batch 84 

information as trainable parameters and adding them into expression profiles. 85 

In concept, the gene expression profiles of same cell from different batches 86 

could be seen as superposition of the same biological information and different 87 

batch information. Fugue incorporates addictive batch information as learnable 88 

parameters into gene expression matrix. The batch information can be 89 

properly represented after training. By taking batch information as trainable 90 

variable, Fugue is scalable in atlasing-scale data integration with fixed memory 91 

usage. 92 

We demonstrated the scalability and efficiency of Fugue by applying it to 93 

analyze 18 million single-cells obtained from HCA and benchmarked its 94 

performance on diverse datasets along with current state-of-the-art methods. 95 
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We showed that Fugue achieved favorably performance as compared with 96 

current state-of-the-art methods. The reference map of HCA dissected by 97 

Fugue demonstrated that it can learn smooth embedding for time course 98 

trajectory and joint embedding space for immune cells from heterogeneous 99 

tissues. 100 

  101 

Results 102 

Overview of Fugue 103 

Fugue integrates single-cells through adding batch information into expression 104 

profile and learns batch information by contrastive learning. Specifically, we 105 

construct Fugue as a deep learning-based feature encoder to learn dimension 106 

reduction representation of expression profile. Given a set of uncorrected 107 

single-cells (Figure 1A), Fugue embeds their batch information as a learnable 108 

matrix (i.e. batch embedding matrix) and adds them to the corresponding 109 

expression profile (Figure 1B). A DenseNet of 21 layers [14] is used as feature 110 

encoder to learn the additive expression profiles. The feature encoder is 111 

trained in a self-supervised manner through contrastive learning (Figure 1C) 112 

[15]. Contrastive loss minimizes the distance between the cell and its 113 

noise-added view, and maximizes the distance between different cells. The 114 

trained feature encoder is used to extract feature representations of 115 

single-cells (Figure 1D). We remove the batch embedding matrix from the 116 

input. As a result, only biological signals are retained in the embedding space. 117 

The representation could be utilized for downstream analysis such as 118 

single-cell cluster delineation (Figure 1E). Details are described in Methods 119 
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section. 120 

 121 

Benchmark evaluations 122 

On the simulation dataset of 30,000 cells of 3 cell types among 5 batches, 123 

each cell type was divided by batches (Figure 2A) before batch correction. 124 

After integration with Fugue, cells of the same types were well-mixed and cells 125 

of different types were dispersed across batches (Figure 2B). In addition, we 126 

ran Fugue on this simulation dataset after removing a specific cell type from 127 

four batches (See Methods and Supplementary Figure 1). The result 128 

showed that Fugue could maintain batch-specific cell types (Figure 2C). 129 

We used this simulation dataset to search for three hyperparameters that are 130 

adjusted for contrastive learning, including size of memory bank and 131 

momentum coefficient. The kBET [16] and ARI scores were applied to evaluate 132 

its performance (see Methods). Fugue was insensitive to variation of these 133 

hyperparameters in terms of ARI and kBET scores (Supplementary Figure 134 

1A and 1B). Data augmentations include random dropout and position 135 

shuffling. We set the dropout rate to 30% and random shuffle rate to 10% 136 

based on the value of ARI and kBET (Supplementary Figure 1C).  137 

We compared Fugue to 8 single-cell integration methods on the cell line (n = 138 

9,531) and PBMC (n = 28,541) datasets (See Methods, Figure 2D, G). Fugue 139 

yielded similar result as these 8 methods on UMAP plots (Figure 2E, H and 140 

Supplementary Figure 2,3). Quantitatively, Fugue achieved comparable 141 

kBET and ARI scores (Figure 2F, I). 142 
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 143 

Fugue could accurately remove batch effects  144 

We applied Fugue to integrate all available data from HCA repository (75 145 

cohorts totaling 18,056,192 cells) (Supplementary Table 1). The batch effect 146 

removing efficiency of Fugue was evaluated on three datasets included in HCA, 147 

including the census of immune project, the lung and the brain dataset. 148 

Common cell types of the census of immune project (cord blood, n = 133,264; 149 

bone marrow, n = 176,571) revealed a minimal overlap before integration 150 

(Supplementary Figure 4A). Fugue clustered cells into biologically coherent 151 

groups and removed batch-specific variations (Figure 3A), and UMAP plot 152 

was similar to the aforementioned benchmark methods (Supplementary 153 

Figure 4B-H). Fugue achieved comparable kBET and ARI scores as 154 

compared with these methods (Figure 3B). 155 

The C30.1 (n = 75,387) and C47 (n = 2,532) from lung dataset showed 156 

minimal overlap before batch correction (Figure 3C). After correction with 157 

Fugue, cells from different datasets were mapped into corresponding area 158 

(Figure 3D). The UMAP plot was consistent with the aforementioned 159 

benchmark methods (Supplementary Figure 5). Quantitatively, Fugue 160 

achieved comparable kBET and ARI scores with these methods (Figure 3F). 161 

Unsupervised clustering and cell types annotation revealed 11 cell types in the 162 

lung dataset, including monocytes, mast cells and ciliated cells (Figure 3E). 163 

Conventional cell markers [17, 18] were expressed uniquely in each cell 164 

cluster (Figure 3G), and invariant across batches (Figure 3H).  165 

We evaluated the batch removing efficiency on the brain dataset with the same 166 
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process applied for the lung dataset. The result also demonstrated that Fugue 167 

can robustly integrate cells from multiple studies (Supplementary Figure 6).  168 

 169 

Fugue captures the real batch information  170 

We hypothesize that sequencing samples of the same cohort are subjected to 171 

lower batch variation. Therefore, the batch embeddings of samples from the 172 

same cohort should be more similar than those from different cohorts. 173 

We extracted the batch embeddings of 373 samples from 75 cohorts in HCA. 174 

The result showed that samples from the same cohort had higher similarity of 175 

batch embeddings as compared with samples from different cohorts 176 

(Supplementary Figure 7A). We found that batch embeddings of 4 patients 177 

from the C2 cohort are almost identical (Supplementary Figure 7B), which 178 

was consistent with the previous report that there was no batch effect among 179 

these four patients [19]. For the census of immune project, we observed higher 180 

similarity of batch embeddings within the same batch than between batches 181 

(Supplementary Figure 7C). For the PBMC and tonsil tissue from C39 182 

subjected to the same sequencing protocol [20], we also observed high 183 

similarity among them, especially among samples from the same tissue 184 

(Supplementary Figure 7D).  185 

 186 

Fugue aligned precise immune cell subtypes in HCA 187 

Immune cells are highly homogeneous across tissues [21]. Therefore, Fugue 188 

should be able to map the same immune cell types together across HCA. 189 
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Forty-six clusters were inferred from HCA (n = 3,424,607) (Supplementary 190 

Figure 8A and Supplementary Table 2). Most clusters consist of multiple 191 

cohorts, while some come from specific organs (Supplementary Figure 8B). 192 

For example, 26 projects had over 100 cells in endothelial cell_1 cluster; C2 193 

was the only project associated with lymphatic tissue [19] and made up the 194 

majority of lymphatic endothelial cell cluster (endothelial cell_7) 195 

(Supplementary Figure 8B). 196 

We reclustered the immune cells (Supplementary Figure 9) corresponding to 197 

17 subtypes (Figure 4A). Different cell types were readily separable from each 198 

other, and dataset specific cell types were retained, such as in-vivo stimulated 199 

NKT cells (Figure 4A). Canonical markers were expressed in corresponding 200 

cell types (Figure 4B). For example, Pan-B cell markers CD79A and CD79B 201 

were expressed in B cell clusters. B cell precursor specific markers VPREB1 202 

and IGLL1 were expressed in the relevant cell type. We observed stable 203 

expression of marker genes among batches (Figure 4C, D and 204 

Supplementary Figure 10). For example, natural killer cell markers PRF1 and 205 

KLRD1 were expressed in all of the 27 cohorts (Figure 4D).  206 

 207 

Fugue integrates time course development trajectories 208 

On the embryonic mouse cardiac dataset, batch effects were observed among 209 

embryo development stage before correction (Figure 5A). Fugue integrated 210 

cells from different embryo periods (Figure 5B). We classified the single-cells 211 

into 5 cell types based on the specific cell markers (Figure 5C, D and 212 

Supplementary Figure 11). The FLE dimension reduction showed that 213 
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expression representation extracted from Fugue captured the embryonic 214 

developmental trajectories for each cell type (Figure 5E). Cells from 215 

embryonic (E) day 10.5, 13.5 and 16.5 were orderly arranged according to 216 

pseudo-time trajectory (Figure 5E). The expression patterns of canonical cell 217 

differentiation markers were consistent with developmental stages 218 

(Supplementary Figure 12). For instance, early erythrocyte markers GYPA 219 

and TFRC expressed highly in E10.5 erythrocytes and negatively correlated 220 

with pseudo-time (Supplementary Figure 12), which was consistent with the 221 

previous studies [22, 23]. 222 

We next recovered cell development trajectories during hematopoiesis from 223 

the census of immune project. FLE plot indicated clear overlap of the identified 224 

cell types from cord blood and bone marrow across pseudo-time trajectory 225 

(Supplementary Figure 13). Clear trajectories that quadrifurcate from 226 

hematopoietic stem cells (HSCs) into B cell, T cell, mono-dendritic and 227 

megakaryocyte-erythroid series were constructed (Figure 5F). The trajectories 228 

were ordered by cell development stages and branching by cell differentiation 229 

types (Figure 5G-J). 230 

 231 

Discussion and conclusions 232 

In this study, we attempt to tackle the batch effect removal issue in the rapidly 233 

developing single-cell transcriptomic with a simple yet effective solution. Fugue 234 

could be deployed as a scalable deep learning model to integrate single-cells 235 

of any magnitude with fixed memory. We provide evidence that Fugue 236 

showcases superior performance in terms of integrating millions of single-cells 237 
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from various sources. Fugue is expected to assemble all human cells to 238 

construct a comprehensive single-cell atlas. 239 

In application, we showcase the robustness of Fugue in super large-scale 240 

datasets integration. Specifically, Fugue was applied to integrate all available 241 

single-cells among HCA repository. Three datasets included in HCA were 242 

utilized to represent the data integrated effectiveness of Fugue, for that most of 243 

the benchmark methods cannot handle atlasing-scale datasets due to memory 244 

overflow. Moreover, there are currently no suitable indicators to assess the 245 

batch-correction performance of complex datasets with multiple distinct or 246 

dataset-specific cell types spanning dozens of batches. Fugue performed on 247 

par with current state-of-the-art single-cell integration methods in terms of 248 

batch-correction and cluster preservation performance. Fugue therefore offers 249 

better trade-offs between data integration performance and scalability, and it is 250 

a key advantage of Fugue to integrate super large-scale datasets. 251 

Furthermore, we show that Fugue could integrate millions of immune cells to 252 

reflect delicate cell functional status while retaining distinct cell subtypes. 253 

Additional analysis demonstrates that time course trajectories could be 254 

correctly constructed and ordered after single-cell integration by Fugue. The 255 

algorithm can thus facilitates the exploration of subtle biological differences 256 

among atlasing-scale datasets. 257 

A great deal of batch-correction methods learn batch information based on 258 

prior assumptions. For example, Combat assumes batches as a function of 259 

gene expressions [24]. Methods based on MNN learn batch information 260 

through paired cells between batches, and highly depend on the qualities of 261 

MNNs [7, 8]. Fugue is a hypothesis-free deep learning network. It simply 262 
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learns batch information through contrastive learning and does not require 263 

domain specific knowledge. The flexibility of this approach could be 264 

demonstrated through the integration of single-cells from HCA. For that explicit 265 

batch information are not always available from researchers, we employed 266 

sample labels as batch information for HCA projects. We demonstrated the 267 

compatibility of this configuration through benchmark the performance of 268 

Fugue with current state-of-the-art methods, for which accurate batch labels 269 

were set. The batch information learned by Fugue also show little variation 270 

within the same batch as compared with that between batches 271 

(Supplementary Figure 7). Therefore, the simple batch correction approach 272 

is flexible and can be a good candidate for multi-millions of single-cells where 273 

explicit batch information are not always available. 274 

Although immune cell markers have been studied extensively, the knowledge 275 

might be limited by their definition via a restricted set of organs or cell types. 276 

The integrated analysis of atlasing-scale single-cells enabled cross-organ 277 

comparisons and provide new perspectives for the understanding of marker 278 

genes. Based on the reference map of HCA, we found many conventional 279 

immune cell markers are expressed in nonimmune cell types. For example, 280 

conventional monocyte marker S100A9 was expressed in esophageal 281 

squamous epithelium cells (Epithelial cell_4) (Supplementary Figure 9), 282 

which was confirmed by previous studies [25, 26]. Canonical HSC marker 283 

SPINK2 was expressed higher in epididymal epithelial cells (Epithelial cell_7) 284 

than HSCs (Stem cell_1) (Supplementary Figure 9). The enrichment of 285 

SPINK2 in epididymal tissue was confirmed in the previous report [27].  286 

Fugue could be improved in several aspects. First, as an artificial intelligence 287 
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model, black-box nature of the approach is a limitation that should be resolved 288 

[28, 29]. We explored the batch embedding matrix and found that similar 289 

batches have more similar batch embeddings than dissimilar batches. It brings 290 

insights into the interpretability of batch information learned by Fugue. Second, 291 

as an unsupervised learning model, hyperparameters tuning might to some 292 

extent influence the performance of Fugue [30]. In our analysis, we proved the 293 

stability of Fugue to hyperparameters tuning (Supplementary Figure 1). We 294 

also used the same hyperparameters of model structure throughout the study 295 

to ensure the generalization of the result.  296 

In summary, we present Fugue, a simple yet efficient deep learning model for 297 

super large-scale single-cell transcriptomes integration. We anticipate Fugue 298 

will be helpful for researchers to transform growing scale of single-cell 299 

transcriptomes into the understanding of biology and disease, driving new 300 

ways for disease diagnosis and treatment. 301 

 302 

Methods 303 

Batch embedding  304 

The key idea of batch-effect removal is decoupling biological signals from 305 

nuisance factors of batch effects. We explicitly encoded batch information as a 306 

learnable batch embedding matrix (BE) and added them to expression matrix 307 

(E) to obtain expression matrix with batch embedding information (X = BE + E), 308 

subsequently performing feature representation learning on X. The batch 309 

embedding matrix BE was randomly initialized and updated during training. 310 

For the purpose of point-wise addition between BE and E, the dimension of 311 
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matrices BE and E must be identical.  312 

 313 

Network architecture and training 314 

We used DenseNet architecture [14] as feature encoder to learn expression 315 

embedding of single-cells. The DenseNet has 21 layers that are consisted of 4 316 

dense blocks. The DenseNet architecture is featured by concatenating all the 317 

outputs from preceding layers as input for the next layer to make feature 318 

transmission more efficient. We replaced convolutional layer of the DenseNet 319 

with linear layer to make it able to process gene expression matrix. 320 

Self-supervised learning with momentum contrast [15] was adopted to train the 321 

feature encoder. We applied multi-layer perceptron (MLP) as project head, 322 

which was demonstrated to be beneficial for contrastive learning [31]. 323 

 324 

Here we adapt contrastive learning for feature encoder development, through 325 

which the model was trained by constructing positive and negative pairs [32]. 326 

For a given integrated input Icell, a feature encoder represents it as Cq = fq (Icell), 327 

where fq is a query encoder network and Cq is a query sample. A key encoder 328 

network fk encode the noise-adding view of the input Icell+ as Ck+ (likewise, Ck+ = 329 

fq (Icell+)). One cell Cq and its noise-adding view Ck+ form a positive pair, and 330 

assemble with a different cell Ck- to form a negative pair. The contrastive loss is 331 

optimized through learning the same representation of the positive pairs and 332 

dissimilar representation of negative pairs:  333 
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where Ck- denotes a dictionary of the negative samples. The dictionary was 335 

built as a queue Ck1-, Ck2-, ..., Ckn-. The current mini-batch en queue and the 336 

oldest mini-batch de queue. We set the queue size to 10% of the training data. 337 

τ is a temperature hyper-parameter and was set to 0.2. We performed data 338 

augmentations through random zero out to 30% and shuffling to 10% of genes. 339 

These hyperparameters were determined through grid search (see 340 

Supplementary Figure 1). 341 

 342 

The parameters of query encoder �q were updated by back-propagation; the 343 

parameters of key encoder �k were updated according to �q: 344 

(1 )k k qm mθ θ θ← + −
, 345 

where m stands a momentum coefficient, which was set to 0.999. We trained 346 

the network at a learning rate of 0.01. The training was ended until loss did not 347 

improve over a specified number of epochs (see Supplementary Table 3).  348 

 349 

The network was trained through mini-batch stochastic gradient descent 350 

algorithm [33] with a weight decay of 1e-4. The convergence speed of deep 351 

learning model is affected by batch-size [34]. For that we integrated thousands 352 

to multi-millions single-cells, we set the size of mini-batch from 16 to 256, 353 

which was dependent on the volume of training data (Supplementary Table 354 
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3).  355 

 356 

At the stage of feature extraction, we applied the developed feature encoder fq 357 

as feature extractor. Only expression matrix Ecell was provided to fq: 358 

)(cell cellq EfF = , 359 

where Fcell is the feature representation of the single-cell transcriptome. 360 

 361 

Data sources 362 

Simulation dataset 363 

We simulated a total of 30,000 single-cell read counts using Splatter 364 

package[35]. The resultant simulation dataset contains 3 cell types; each cell 365 

type consists of 5 batches (Figure 2A). Each batch contains 2000 genes with 366 

a differential expression factor of 0.4. To estimate the performance of Fugue 367 

on batch-specific cell types detection, we manually removed cell type 1 from 368 

batches 2-5 and maintained them in batch 1 (Supplementary Figure 14). We 369 

named the resultant dataset as simulation_rm dataset. 370 

 371 

Cell line dataset 372 

This dataset consists of the cell lines of “Jurkat”, “293 T” and the 50/50 mixture 373 

of both cell lines [36]. The dataset is composed of 9,531 single-cells generated 374 

by 10x 3’ protocol. For mixture cell lines, cells were clustered with Louvain 375 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.12.472307doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.12.472307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

algorithm based on Scanpy pipeline. Cell clusters with high expression of XIST 376 

were annotated as “293 T” while others as “Jurkat”.  377 

 378 

Human peripheral blood mononuclear cell (PBMC) dataset 379 

The data included two batches of PBMC from five samples [37]. One sample 380 

was excluded from the analysis because it was stimulated in vitro. This dataset 381 

contains 28,541 single-cells, which could be grouped into B cells, CD4+ T cell, 382 

CD8+ T cell, NK cells, monocytes, megakaryocytes and dendritic cells. The 383 

cell labels were provided by the original publication [37].  384 

 385 

Human cell atlas 386 

We downloaded single-cell data from HCA portal [2] on 16 July 2021. 387 

Fifty-three projects (C1-C53) following HCA data processing pipeline were 388 

collected (Supplementary Table 1). These projects consist of 75 cohorts. We 389 

filtered out samples with available cell numbers less than 1000. A total number 390 

of 373 samples were maintained for downstream analysis. This dataset 391 

contains 18,056,192 cells from multiple organs, including blood, lung, brain 392 

and cardiac (Supplementary Table 1). We used the sample labels as batch 393 

information given that explicit batch information is not always available for 394 

every dataset. All of that 18,056,192 cells were used by Fugue for batch 395 

information learning. A total of 3,424,607 cells with more than 500 expressed 396 

genes were utilized to construct the reference map of HCA.  397 

 398 
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The following projects were selected for the assessment of dataset alignment 399 

and biological significance preservation performance of the reference map. 400 

The first dataset was the census of immune project (C1). The census of 401 

immune project consists of two batches that can be referred to as cord blood 402 

(C1.0) and bone marrow (C1.1). The two batches contain immune cells from 403 

diverse development statuses. We downloaded cell type labels from HCA 404 

repository on 28 August 2020. The lung dataset consists of C30.1 and C47. 405 

Both C30.1 and C47 came from lung tissue and have similar cell types [18, 38]. 406 

The brain dataset consists of C19, C28 and C32, which contain cells from 407 

different subsections of brain tissue with overlapping cell types among each 408 

other [17, 39, 40]. The embryonic mouse cardiac dataset consists of C18 and 409 

C20. C18 contains mouse cardiac cells from embryonic state of E10.5 and 410 

E13.5. C20 includes mouse cardiac cells from embryonic state of E16.5 . Only 411 

healthy embryos were taken into account in this analysis. Since the original 412 

author of C18 denotes batch effect exists between cells from E10.5 and E13.5 413 

mouse [41], the embryonic periods were employed as batch labels for the 414 

benchmarking methods. 415 

 416 

Data prepossessing 417 

We applied Scanpy (version 1.7.0) for data preprocessing. We used 418 

“highly_variable_genes” function with the default parameters to identify highly 419 

variable genes. A total of 1,959 and 2,085 HVGs were selected from the cell 420 

line and PBMC datasets, respectively. For HCA project, 14550 genes shared 421 

among datasets were selected.  422 
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 423 

For all of the aforementioned datasets, we normalized the count matrix to 424 

counts per million normalization (CPM) and took logarithmic transformation (i.e. 425 

log2(CPM+1)). Subsequently, the expression of each gene was scaled by 426 

subtracting its average expression then divided by its standard deviation. The 427 

scaled expression matrix was applied as inputs for the model. 428 

 429 

Benchmark methods 430 

We benchmarked the performance of Fugue with eight state-of-the-art batch 431 

correction methods, including Seurat V3, ComBat, Harmony, BBKNN, 432 

Scanorama, scVI, Pegasus L/S adjustment and INSCT. All methods were 433 

performed with the default parameters (see Supplementary Table 4 for 434 

detailed information) throughout the study. Seurat V3 ran out of memory on our 435 

server (maximum memory: 256 Gb) for dataset with more than 100,000 cells 436 

and therefore it was not evaluated on dataset >100,000 cells. For the census 437 

of immune project, cord blood and bone marrow were utilized as batch 438 

information. We employed different cohorts as batch information for the lung 439 

and brain datasets and embryonic development periods as batch information 440 

for the embryonic mouse cardiac dataset. We provided these methods with 441 

explicit batch information because it’s the general configuration and suitable 442 

for these methods [7-12]. 443 

 444 

Evaluation functions 445 
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We employed kBET acceptance rate [16] for the assessment of batch effect 446 

through Pegasus package [42]. The kBET acceptance rate measures whether 447 

batches are well-mixed in the local neighborhood of each cell. The resulting 448 

score ranges from 0 to 1, where a higher score means a better mix. We 449 

computed kBET scores based on each cell type and used the average score to 450 

evaluate the degree of batch mixing. The adjusted rand index (ARI) score was 451 

applied to evaluate batch correction method in terms of cell type mixing. The 452 

ARI score measures the percentage of matches between two label lists. The 453 

resulting score ranges from -1 to 1, where a high score denotes that the data 454 

point fits well in the current cluster. We used the Louvain community detection 455 

algorithm implemented in “tl.louvain” of Scanpy package (version 1.7.0) for 456 

cell clustering. In our study, Louvain algorithm would generate much more cell 457 

clusters than real cell types when the resolution was 0.5 and far fewer when 458 

the resolution was 0.01. Thus, we set the resolution parameter range from 0.5 459 

to 0.01 with a step of 0.01 and computed ARI score with sklearn package for 460 

each step. The maximum ARI score was employed as the final evaluation 461 

index. On account of BBKNN cannot give the corrected feature representation, 462 

we calculated the evaluation indexes in UMAP embedding space. The 463 

embedding was computed with the default parameters based on the same 464 

random seed through umap-learn package (version 0.4.6). For the census of 465 

immune project, we assessed the performance based on 20, 000 random 466 

sampled cells and averaged the scores of 10 replications. 467 

 468 

Cell marker inferring and cell type identification 469 
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The marker genes of cell clusters were calculated as mentioned in Miscell [13]. 470 

Specifically, we constructed a new deep neural network (denoted as F: Rn -> 471 

[0,1]) by freezing the parameters of the trained encoder and adding a single 472 

linear classifier at the end of it. The classifier was trained for cell cluster 473 

prediction. We used the importance score calculated by integrated gradient 474 

algorithm [43] as the surrogate metric for the impact of each gene on 475 

classification output. In specificity, the integrating gradient algorithm calculates 476 

the important score of the ith gene as the gradient of F(x) along the ith 477 

dimension, which is defined as: 478 

1

0

( ' ( '))
In ( ) :: ( ')i i i

i

F x x x
tegratedGrad x x x d

xα

α α
=

∂ + −= − ×
∂∫

 479 

The x and x’ are the actual and baseline expression levels respectively. We set 480 

x’ to 0. A higher importance score represents a more significant impact of gene 481 

for the specific cell cluster. We manually annotated cell types according to 482 

genes with the highest importance scores.  483 

 484 

External software 485 

Louvain community detection algorithm implemented in Scanpy package 486 

(version 1.7.0) was applied for cell clustering. We applied UMAP algorithm to 487 

visualize cells in a two-dimensional space if unspecified. UMAP failed on 488 

3,424,607 cells after 72 hours; thus t-Distributed Stochastic Neighbor 489 

Embedding (t-SNE) algorithm from FIt-SNE package was utilized to construct 490 

a global view of HCA embedding space. Force-directed layout embedding 491 

(FLE) from Pegasus package was applied for trajectories inferring.  492 
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 493 

Availability of data and materials 494 

The source code of Fugue is available at https://github.com/xilinshen/Fugue. 495 

The datasets supporting the conclusions of this article are publicly available 496 

through onlines sources. The simulation dataset was available at 497 

https://github.com/xilinshen/Fugue/tree/master/data; the cell line dataset was 498 

available at 499 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/j500 

urkat, 501 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/2502 

93t and 503 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/j504 

urkat:293t_50:50; the PBMC dataset was downloaded from 505 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96583; all available 506 

single cells of HCA repository was downloaded from 507 

https://www.humancellatlas.org/. 508 
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Figures 677 

Figure 1. Overview of Fugue. (A) Given a set of uncorrected single-cells, (B) 678 

Fugue embedded their batch information as a learnable matrix and added 679 

them to the expression profile for feature encoder training. (C) The feature 680 

encoder was trained with contrastive loss. (D) At the feature extraction stage, 681 

single-cell expression profiles were provided to the feature encoder to extract 682 

embedding representation. (E) The embedding representation could be 683 

utilized for downstream analysis such as visualization and cell clustering. 684 

Figure 2. Benchmark of batch-correction performance of Fugue across 685 

the simulation, cell line and PBMC datasets. (A) UMAP plot of cells from 686 

simulation dataset, which consists of 5 different batches and 3 cell types. (B) 687 

UMAP visualization of Fugue batch effect removing performance on the 688 

simulation dataset. (C) UMAP plot of Fugue batch effect removing 689 

performance on the simulation_rm dataset. (D) UMAP plot displays cells from 690 

the cell line dataset, which consists of 3 different batches and 2 cell types. (E) 691 

UMAP plot of Fugue batch effect removing performance on cell line dataset. (F) 692 

Quantitative assessments of different batch effect removal methods on cell line 693 

dataset. (G) UMAP plot displaying cells from PBMC dataset, which consists of 694 

2 different batches and 8 cell types. (H) UMAP plot of Fugue batch effect 695 

removing performance on PBMC dataset. (I) Quantitative assessments of 696 

different batch effect removing methods on PBMC dataset. For (A-E, G-H), 697 

cells are colored by batch (left panel) and cell type (right panel). 698 

Figure 3. Assessment of the batch-correction performance of Fugue. (A) 699 

UMAP plot of Fugue batch effect removing performance on the census of 700 
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immune project. Cells are colored by batch in the left panel and cell ontology 701 

label provided in the original publication in the right panel. (B) Quantitative 702 

assessments of different batch effect removal methods on the census of 703 

immune project. (C-E) UMAP plot depicting cells in the lung dataset before (C) 704 

and after (D-E) Fugue integration. Cells are colored by batch in (C-D) and cell 705 

cluster label in (E). (F) Bar plot depicting kBET scores of different batch effect 706 

removing methods on the lung dataset. (G) Expression of cell type markers 707 

across the feature embedding space. Dark and light colors represent low and 708 

high relative expression values, respectively. (H) Dot plot representing cell 709 

markers across batches. The size of each circle reflects the percentage of 710 

cells in a cluster where the gene is detected, and the color intensity reflects the 711 

average expression level within each cluster.  712 

Figure 4. Joint analysis of all immune cells across HCA repository with 713 

Fugue. (A) UMAP plot of the 17 immune cell types inferred from Fugue. Cells 714 

are colored by cell type labels. (B) Dot plot showing cell type markers across 715 

cell clusters. The size of each circle reflects the percentage of cells in a cluster 716 

where the gene is detected, and the color intensity reflects the average 717 

expression level within each cluster. (C-D) Violin plot deciphering expression 718 

levels of cell type markers for hematopoietic stem cells (C) and natural killer 719 

cells (D) across HCA cohorts. Cohorts with more than 1000 cells in each 720 

cluster were displayed. 721 

Figure 5. Joint analysis of Fugue on batch-correction and gene 722 

expression trajectory recovering during cell development. (A-B) UMAP 723 

plot of cells from the embryonic mouse cardiac dataset before (A) and after (B) 724 

Fugue integration. Cells are colored by batch. (C) UMAP plot of the embryonic 725 
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mouse cardiac dataset integrated by Fugue, colored by cell clusters. The 726 

surrounding circle plot from inner to outer shows the cell types, batch labels 727 

and pseudo-time scores of the 1% randomly downsampled cells. (D) Violin plot 728 

deciphering expression levels of cell type markers across cell clusters. The 729 

color intensity reflects the average expression level within each cluster. (E) 730 

FLE plot revealing time course trajectories of cardiac development across 731 

different cell types. Arrows indicate inferred cell state transition directions from 732 

early to late pseudo time. (F) FLE plot revealing cell state transition directions 733 

from HSC to all main blood lineages. (G-J) FLE plots of the main development 734 

trajectory from HSC to B cell, T cell, monocyte and erythrocyte, respectively. B 735 

cell series (G) were separation from HSCs towards B cell progenitors, 736 

precursors of B cells and matured naïve B cells. B cells also differentiate into 737 

mature B cells, plasma cells and memory B cells. T cell series trajectory (H) 738 

was started from HSCs, followed by naïve T cells and finally mature T cells and 739 

NK cells. Monocytes series trajectory (I) was started from HCA, and 740 

transferred into DCs and CD14+ and CD16+ mature monocytes. Erythrocyte 741 

series (J) differentiates from HSCs to megakaryocytes and erythroid cells. Pro, 742 

progenitor; Pre, precursor; HSC, hematopoietic stem progenitor cell; DC, 743 

dendritic cell; cDC, canonical dendritic cell; NK cells, natural killer cell; MSC, 744 

multipotent progenitor cell. 745 

 746 

Supplementary figure and table legends 747 

Supplementary Figure 1. Evaluation of Fugue’s robustness over changes 748 

of hyperparameters based on the simulation dataset. (A) Effect of 749 
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momentum and queue size on the performance of Fugue. (B) The changes of 750 

loss values versus epochs. Error bands are standard deviations determined 751 

across 10 runs. (C) The performance of Fugue over the choice of data 752 

augmentation ratios. 753 

Supplementary Figure 2. UMAP plot of batch effect removing performance 754 

on the cell line dataset across Seurat V3, ComBat, Harmony, BBKNN, 755 

Scanorama, scVI, Pegasus L/S adjustment and INSCT. Cells are colored by 756 

batch and cell type respectively. 757 

Supplementary Figure 3. UMAP plot of batch effect removing performance 758 

on the PBMC dataset across Seurat V3, ComBat, Harmony, BBKNN, 759 

Scanorama, scVI, Pegasus L/S adjustment and INSCT. Cells are colored by 760 

batch and cell label. 761 

Supplementary Figure 4. UMAP plot of the census of immune project before 762 

(A) and after (B-H) batch correction using ComBat, Harmony, BBKNN, 763 

Scanorama, scVI, Pegasus L/S adjustment and INSCT. Cells are colored by 764 

batch and cell type respectively. 765 

Supplementary Figure 5. UMAP plot of batch effect removing performance 766 

on the lung dataset across Seurat V3, Harmony, ComBat, Scanorama, 767 

Scanorama, Pegasus L/S adjustment, scVI, BBKNN and INSCT. Cells are 768 

colored by batch. 769 

Supplementary Figure 6. Assessment of the performance of Fugue on 770 

the brain dataset. (A-b) UMAP plot showing cells in the brain dataset before 771 

(A) and after (B-C) Fugue integration. Cells are colored by batch in (A-B) and 772 

cell cluster label in (C). (D) Bar plot depicting kBET scores of different batch 773 
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effect removing methods on HCA brain cohorts. (E) Expression of cell type 774 

markers across the integrated embedding space. Dark and light colors 775 

represent low and high relative expression values, respectively. (F) Dot plot of 776 

cell type markers across batches. The size of each circle reflects the 777 

percentage of cells in a cluster where the gene is detected, and the color 778 

intensity reflects the average expression level within each cluster.  779 

Supplementary Figure 7. The similarity across batch embedding 780 

representation of all samples in HCA repository. (A) Heatmap of cosine 781 

similarity of dimension reduction representations of the batch embedding 782 

matrix across all samples. Each red frame represents samples from one cohort. 783 

(B-D) show 3 representative projects from (A), namely C2, C1 and C39.   784 

Supplementary Figure 8. Fugue inferred cell clusters from HCA 785 

embedding space. (A) Importance scores of the top 5 marker genes for each 786 

cell cluster. Representative markers are displayed on the right side. (B) Bar 787 

plot displaying the cohort composition of cell clusters. 788 

Supplementary Figure 9. TSNE plot of all quality-controlled cells from HCA. 789 

TSNE plot in the top left corner is labeled by cell cluster labels. The others are 790 

colored by the expression level of marker genes of immune cells. Light and 791 

deep red represent low and high relative expression values, respectively.  792 

Supplementary Figure 10. Violin plot deciphering expression levels of cell 793 

type markers across immune cell subtype in HCA repository. Violins were 794 

colored by cohorts. Cohorts with more than 1000 cells were displayed. 795 

Supplementary Figure 11. Dot plot of cell type markers of cardiac cells 796 

across batches. The size of each circle reflects the percentage of cells in a 797 
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cluster where the gene is detected, and the color intensity reflects the average 798 

expression level within each cluster.  799 

Supplementary Figure 12. Correlation of pseudo-time and expression level of 800 

cell differentiation markers across cardiac cell types. The curves representing 801 

polynomial fits for each batch.  802 

Supplementary Figure 13. FLE embedding space of the census of 803 

immune project integrated by Fugue. Cells are colored by batch (A) and cell 804 

type (B-C). (B) and (C) displaying the major cell types in cord blood (B) and 805 

bone marrow (C), respectively. 806 

Supplementary Figure 14. UMAP plot of the simulated cells. (A-B) 807 

deciphering the simulation dataset and (C-D) deciphering the simulation_rm 808 

dataset, which was obtained by manually removing cell type 1 from batches 809 

2-5 and retaining them in batch 1.  810 

Supplementary Table 1. Detailed information of datasets from HCA 811 

repository. 812 

Supplementary Table 2. The 250 genes with the highest importance scores of 813 

HCA cell clusters were inferred from Fugue. Marker genes of each cluster 814 

were colored in blue. 815 

Supplementary Table 3. Detailed information of benchmark datasets, their 816 

gene filtering and hyperparameter settings of Fugue. 817 

Supplementary Table 4. Detailed information of the benchmark methods. 818 
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