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Abstract: The effectiveness of computational drug repositioning techniques has been further 
improved due to the development of artificial intelligence technology. However, most of the 
existing approaches fall short of taking into account the non-Euclidean nature of biomedical data. 
To overcome this problem, we propose a geometric deep learning (GDL) framework, namely 
DDAGDL, to predict drug-disease associations (DDAs) on heterogeneous information networks 
(HINs). DDAGDL can take advantage of complicated biological information to learn the feature 
representations of drugs and diseases by ingeniously projecting drugs and diseases including 
geometric prior knowledge of network structure in a non-Euclidean domain onto a latent feature 
space. Experimental results show that DDAGDL is able to identify high-quality candidates for 
Alzheimer’s disease (AD) and Breast neoplasms (BN) that have already been reported by 
previously published studies, and some of them are not even identified by comparing models. 
Keywords: drug repositioning, geometric deep learning, heterogeneous information network, 
drug-disease association prediction, Alzheimer’s disease, Breast neoplasms.  

 

Introduction 

Traditional drug research and development is a long process mean that requires higher costs and 
its benefits are estimated that less than a dollar after return on average. Unfortunately, very few 
drugs end up on the market not even including when the drug was approved [1]. However, various 
rare diseases are still on the rise, to threaten human health. Take AD as an example, more than 40 
million people have AD worldwide, and it will increase even more, but no specific medications 
have been licensed for use in individuals with mild cognitive impairment [2].  

Drug repositioning (also called drug repurposing) is a promising strategy to discover new 
indicators for approved or experimental drugs, which offers vast advantages to accelerating the 
development of new drug [3]. In recent years, many computational-based methods for discovering 
new indicators of approved drugs have been developed to improve the efficiency of drug 
discovery and development [4-8]. Generally, these approaches for in silico drug repositioning can 
be classified into three categories, including network-based [9, 10], matrix factorization-based [11, 
12], and deep learning-based approaches [13, 14]. 

Network-based approaches predict unknown DDAs by learning characteristics of drugs and 
diseases from integrated multiple drug-related networks. For instance, deepDR [10] first integrates 
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a heterogeneous network that includes drug-disease, drug-side-effect, drug-target and seven drug-
drug networks, and then obtains the features of drugs and diseases by a multi-modal deep 
autoencoder to fuse each network information, and finally uses a variational autoencoder to infer 
indicators for approved drugs. Matrix factorization-based approaches can decompose the high-
dimensional association matrix into the product of two low-dimensional matrices to recommend 
candidates for diseases. DTINet [12] obtains low-dimensional vector representations by a compact 
feature learning algorithm from a heterogeneous network with a variety of drug-related networks 
and then discovers new interactions for drugs and targets. However, these approaches generally 
fail to take into account the non-Euclidean nature of biomedical data to capture more impactful 
features for DDA prediction, and then the features propagated through biological networks are 
more susceptible to biological association network data and noise.  

Recently, deep learning approaches have been particularly successful when dealing with 
biological data with underlying Euclidean structure [6, 8, 15-19]. As more and more biological 
data are discovered, these biological data not only include invariant biological attributes, such as 
the amino acid sequence of proteins, the base sequence of RNA molecules and the molecular 
structure of drugs, but also their network structure information should be considered, i.e. non-
Euclidean nature. However, this information cannot be computed by previous deep learning. 
Therefore, geometric-based deep learning techniques, which can capture the features of biological 
data with non-Euclidean nature by projecting these data into a latent feature space, are starting to 
receive more attention. DRHGCN [14] adopts multiple graph convolutional layers to capture the 
embedding representations of drugs and diseases from three networks including the drug-disease, 
drug-drug similarity and disease-disease similarity networks. Although effective, it is limited by 
the over-smoothing of the graph convolutional network, and it is difficult to fully capture the 
feature representation of drugs and diseases for a more accurate predicting DDAs. 

In this paper, a novel drug repositioning framework, called DDAGDL, is developed by using 
geometric deep learning in a HIN. DDAGDL can not only cope with non-Euclidean data and high-
dimensional biological association data from biological heterogeneous networks, but also select 
the optimal feature space to improve the expression ability of feature representations of drugs and 
diseases. DDAGDL projects the biomedical data with non-Euclidean nature into the latent feature 
space to capture the feature representation of each biomedical molecule (i.e., drugs, proteins and 
disease) across multiple biological networks. Based on geometric deep learning, DDAGDL then 
judges an optimal projection for drugs and diseases by multiple neural network propagation. 
Experiment results on three benchmark datasets demonstrate the superior performance of 
DDAGDL when comparing it with several state-of-the-art drug repositioning models. Furthermore, 
we have also conducted the case studies to show the usefulness of DDAGRL in predicting novel 
DDAs by validating the top-ranked drug candidates predicted by DDAGRL for AD and BN. Our 
findings indicate that most of drug candidates are with high quality, as they have already reported 
by previously published studies, and some of them are not even found in the prediction results of 
the other comparing models. In this regard, leveraging geometric deep learning provides us an 
alternative view to address the problem of drug repurposing by properly handling the non-
Euclidean nature of biomedical data, which has been ignored by most of existing prediction 
models. In conclusion, we believe that our work opens a new avenue in drug repositioning with 
new insights gained from geometric deep learning. 
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Results 

Overview of DDAGDL 
DDAGDL is composed of three steps. Frist, DDAGDL calculates the biological attribute of all 
biomedical data in the HIN. Second, three biomedical molecules are projected into the latent 
feature space according to the biological attribute and the geometric prior knowledge of network 
structure in a non-Euclidean domain to further obtain more influential feature representations for 
drugs and diseases, in which DDAGDL judges the best projection space for drugs and diseases by 
multiple neural network propagation. After that, DDAGDL infers new interactions between drugs 
and diseases by the scores predicted of the XGBoost classifier.  

Comparison with state-of-the-art drug repositioning models 
To accurately evaluate the performance of DDAGDL, we first use a ten-fold cross-validation (CV) 
scheme. In particular, a benchmark dataset is divided into 10 subsets, each subset is alternatively 
taken as a testing set while the remaining subsets as the training set, in which randomly sampled 
non-interacting pairs that the number of matches equal to the known drug-disease pairs is held out 
as negative samples. In addition, the experimental results are shown in the Supplementary material. 
More importantly, we have compared DDAGDL with three state-of-the-art models for drug 
repositioning, including deepDR [10], DTINet [12], and DRHGCN [14]. A variant of DDAGDL, 
i.e., DDAGDL-A, is implemented, which only considers the biological attribute of drugs and 
diseases, to study the influence of the geometric deep learning strategy for identifying the 
relationships between biomedical entities.  

Regarding the setting of parameters involved when training these drug repositioning models on 
three benchmark datasets, we adopt the default parameter settings for the competing models, i.e., 
deepDR, DTINet, and DRHGCN, as recommended in their public codes for a fair comparison. 

The experimental results of 10-fold CV on B-dataset, C-dataset and F-dataset are presented in 
Tables 1, 2 and 3, and Figure 2. We note that DDAGDL surpasses the all-comparison algorithms 
across three benchmark datasets in terms of ACC, MCC, F1-score, and AUC. In this regard, we 
guess this is a strong indicator for applying to the discovery of new indications, due to DDAGDL 
is preferred over state-of-the-art models. The comparison results show that DDAGDL performs a 
superior performance in terms of the average AUC across three benchmark datasets, as it has 
better by 6.10%, 2.54%, 7.61% and 5.00% than deepDR, DRHGCN, DDAGDL-A and DTINet, 
respectively.  

In addition to its superior AUC, DDAGDL is also more robust than the other drug repositioning 
models as indicated by their evaluation scores. Take DTINet as an example, DDAGDL performs 
better by 25.22%, 37.69% and 58.76% than DTINet in terms of the average Accuracy, MCC and 
F1-score. In doing so, the distinguished performance of DDAGDL has demonstrated again, that it 
can adapt different datasets and achieve the best condition to infer new candidate compounds. We 
also note that DTINet has lower recall scores and higher precision scores, the main reason for that 
phenomenon is that over-fitting of the model results in an inability to accurately identify the true 
sample class. Similarly, deepDR and DRHGCN are for this reason. However, we need the model 
can provide more true positive samples as a useful reference for the drug research task, DDAGDL 
may have better advantages from a real demand perspective.  
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Although DDAGDL yields the best performance in terms of several evaluation metrics, an in-
depth analysis is conducted of the results in Tables 1, 2 and 3 from another perspective. Regarding 
the lower performance of deepDR and DTINet for DDA prediction, the reasons accountable are as 
follows: (1) they need multiple types of drug-related network data to capture the features of drugs 
and diseases, and it is difficult to meet for a general dataset. (2) inferring unknown associations by 
relying on the similarity of the relationships between drugs and diseases, which ignores the role of 
molecular location information in the association network. (3) missing the biological signature of 
the molecule. In doing so, this approach makes it difficult to learn hidden information in HINs. 
DDAGDL not only takes into account the biological attributes, but also the geometric prior 
knowledge of network structure in a non-Euclidean domain is learned by the geometric deep 
learning strategy, its prediction ability is improved to better discover new DDAs in a more 
comprehensive manner. Moreover, DRHGCN achieves the second-best performance on all three 
benchmark datasets due to the fact that it uses GDL to mine drug and disease features, but suffers 
from over-smoothing and the resulting molecular features cannot be better expressed. In other 
words, the features learned will tend to be consistent, to lead the classifier to be difficult to 
distinguish. Hence, DDAGDL can better solve this flaw by multiple neural network propagation 
for each biomedical node when capturing their feature representations of them in a projected latent 
feature space.  

In summary, these results indicated that considering the geometric prior knowledge of network 
structure in a non-Euclidean domain into DDA prediction is not a trivial task, while the geometric 
deep learning procedure of DDAGDL can simultaneously and effectively capture the underlying 
feature representations in the HIN, and further to improve the accuracy of DDA prediction.  

Table 1. Experimental results of the various models under 10-fold CV on the B-dataset. 

Models Accuracy MCC F1-score 
Recall Precision F1-score 

deepDR 0.6015 0.2987 0.2345 0.8814 0.3704 
DTINet 0.5865 0.2994 0.1783 0.9710 0.3012 

DRHGCN 0.7553 0.5118 0.7345 0.7675 0.7501 
DDAGDL 0.7670 0.5343 0.7795 0.7606 0.7699 

Table 2. Experimental results of the various models under 10-fold CV on the C-dataset. 

Models Accuracy MCC F1-score 
Recall Precision F1-score 

deepDR 0.7696 0.6035 0.5450 0.9894 0.7022 
DTINet 0.5683 0.2692 0.1370 0.9974 0.2401 

DRHGCN 0.8124 0.6583 0.6552 0.9558 0.7772 
DDAGDL 0.8420 0.6843 0.8499 0.8369 0.8432 

Table 3. Experimental results of the various models under 10-fold CV on the F-dataset. 

Models Accuracy MCC F1-score 
Recall Precision F1-score 

deepDR 0.7501 0.5609 0.5241 0.9564 0.6762 
DTINet 0.5420 0.2081 0.1118 0.1000 0.1545 

DRHGCN 0.7783 0.5993 0.5938 0.9418 0.7279 
DDAGDL 0.8443 0.6889 0.8520 0.8394 0.8455 
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Figure 2. The ROC curves w.r.t. the overall performance of all comparing models on three 
benchmark datasets, and they are presented in subfigures (a)-(c), respectively. 

Non-Euclidean nature influence on the performance of DDAGDL 
To better study the influence of the GDL strategy for drug repositioning, we have also constructed 
two variants of DDAGDL, i.e., DDAGDL-N and DDAGDL-A. In particular, DDAGDL-N merely 
contains network structure information, and its biological attributes are replaced by random 
Gaussian distribution initialization. DDAGDL-A is a model without network structure information, 
and simply uses biological attribute characteristics to train the prediction model. The XGBoost 
classifier with the same parameters as DDAGDL is applied to generate these two variant models, 
and then evaluated under 10-fold CV. The experimental results obtained from three benchmark 
datasets are presented in Tables 4, 5 and 6 and Figure 3, where several things can be noted. On the 
one hand, any variant cannot achieve desired performance in drug repositioning. In particular, 
DDAGDL performs better by 7.60% and 12.01% than DDAGDL-A and DDAGDL-N in terms of 
the average AUC across three benchmark datasets. One should that the evaluation metrics of 
DDAGDL-N are the lowest among DDAGDL’s variants. In this regard, only relying on the 
association network information may not be sufficient enough to accomplish the task of drug 
repositioning. On the other hand, DDAGDL-A shows a smaller margin in performance against 
DDAGDL-N in each evaluation metric. In particular, HINGRL-B performs better by 2.76%, 
5.54%, 3.18%, 2.55% and 2.85% than HINGRL-A in terms of Accuracy, MCC, Recall, Precision 
and F1-score, respectively. This phenomenon suggests that the attributes of biomolecules are 
equally important as network structures, and should be taken into account when predicting the 
relationships between unknown drugs and diseases.  

 
Table 4. Experimental results of performance comparison on the B-dataset. 

Models Accuracy MCC F1-score 
Recall Precision F1-score 

DDAGDL-N 0.7215 0.4430 0.7179 0.7231 0.7205 
DDAGDL-A 0.7502 0.5004 0.7513 0.7497 0.7504 

DDAGDL 0.7670 0.5343 0.7795 0.7606 0.7699 
Table 5. Experimental results of performance comparison on the C-dataset. 

Models Accuracy MCC F1-score 
Recall Precision F1-score 

DDAGDL-N 0.7550 0.5101 0.7540 0.7559 0.7548 
DDAGDL-A 0.7761 0.5526 0.7856 0.7713 0.7782 

DDAGDL 0.8420 0.6843 0.8499 0.8369 0.8432 
Table 6. Experimental results of performance comparison on the F-dataset. 

Models Accuracy MCC F1-score 
Recall Precision F1-score 

DDAGDL-N 0.6746 0.3495 0.6705 0.6760 0.6730 
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DDAGDL-A 0.7077 0.4160 0.7010 0.7106 0.7052 
DDAGDL 0.8443 0.6889 0.8520 0.8394 0.8455 

 

 
Figure 3. The ROC and PR curves are obtained by two variants of DDAGRL over three 
benchmark datasets in the ablation study, and they are presented in subfigures (a)-(d), respectively. 

Case studies 
To demonstrate the capability of DDAGDL in practically discovering potential DDAs, we have 
conducted additional experiments on the B-dataset. In particular, all proven relationships between 
drugs and diseases are used to construct the training dataset and then DDAGDL is used to predict 
new candidate drugs for diseases. To delve into the experimental results of DDAGDL, we have 
presented the following two case studies for Alzheimer’s disease (AD) and Breast neoplasms (BN).  

In table 4, the top 10 candidates discovered by DDAGDL for the potential treatment of AD, 
where 6 candidate compounds are evidenced in the relevant literature. Moreover, the candidate 
drugs for BN are also predicted by DDAGDL, and the top 10 results are presented in Table 5, of 
which 5 drug candidates are evidenced to be related to BN in the relevant literature.  

To evaluate the superior performance of DDAGDL, we also have conducted the case studies on 
the other state-of-the-art models, the experiment results of which are shown in Supplementary 
material. In particular, the deepDR and DRHGCN models are selected to predict the candidate 
drugs for AD and BN on B-dataset. These experiment results of which are shown in 
Supplementary material. We note that deepDR and DRHGCN models have poor performance for 
discovering new candidate compounds. DRHGCN is the second-best model in the comparative 
experiment, only three candidates for AD are proved by the relevant literature in the top 10 results 
predicted, and eight candidates for BN fail to prove by the relevant literature. One should that the 
predicted scores of DRHGCN are lower than that of DDAGDL, which makes it difficult to 
accurately provide a reference for medical research. As a network-based model, when predicting 
AD drug candidates, only 2 of the top 10 results predicted by deepDR have been verified by 
relevant literature, while for BN's drug candidate prediction, only one of them has been proved. 
One should that the predicted scores of deepDR are close to zero, which makes it difficult to 
discover new indications for approved drugs. Furthermore, we have performed an in-depth 
analysis of the experimental results from the perspective of a model designed. Regarding deepDR 
producing weak generalization ability, the reason accountable is that the model merely learns the 
features by relying on previous associations. For the disease to be predicted, the trained model is 
limited by whether the association of the input test is similar to the known association. Unlike 
deepDR, our model can convert the association data into a distinguishable space to obtain the 
features for drugs and diseases. The above analysis confirms that by using the GDL strategy to 
learn latent feature representations, DDAGDL can be a useful tool for drug repositioning due to its 
promising performance.  
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Table 7. The top 10 candidate drugs predicted by DDAGDL for AD. 

Disease Drugs Scores Evidence (PMID) 

Alzheimer’s disease 

phenytoin 0.89  16781825 
valproic acid 0.88  19748552 
risperidone 0.87  33176899 

chlorpromazine 0.86  N/A 
carbamazepine 0.86  28193995 

fluoxetine 0.84  30592045 
cocaine 0.82  N/A 

methotrexate 0.81  32423175 
diazepam 0.81  N/A 

diphenhydramine 0.80  N/A 
 

Table 8. The top 10 candidate drugs predicted by DDAGDL for BN. 
Disease Drugs Scores Evidence (PMID) 

Breast neoplasms 

methylprednisolone 0.94 12884026 
valproic acid 0.92 30075223 

cocaine 0.91 N/A 
nifedipine 0.88 N/A 
phenytoin 0.86 22678159 

simvastatin 0.86 33705623 
amiodarone 0.86 N/A 
sirolimus 0.84 32335491 

ethinyl estradiol 0.83 N/A 
betamethasone 0.83 N/A 

 

Discussion 

Drug repositioning is a promising strategy to discover new indicators of approved drugs, and 
thereby can improve traditional drug discovery and development, especially for previously 
untreated diseases. Recent advances in biomedical sciences, together with the development of 
artificial intelligence techniques, have further improved the effectiveness of computational drug 
repositioning approaches, which considerably facilitate the identification of top-ranked drug 
candidates by evaluating novel associations between drugs and diseases. In this work, we propose 
a new framework, namely DDAGDL, to predict DDAs by using geometric deep learning over a 
heterogeneous information network. More specifically, DDAGDL first integrates three kinds of 
drug-related networks, including drug-disease network, drug-protein network and protein-disease 
network, to compose a heterogeneous biomedical network, and a HIN is generated by further 
incorporating the biological knowledge of drugs, diseases and proteins. Second, DDAGDL makes 
use of complicated biological information to learn the feature representations of drugs and 
diseases with a geometric deep learning strategy, which allows DDAGDL to properly project 
drugs and diseases onto a latent feature space by additionally considering the geometric prior 
knowledge of network structure in a non-Euclidean domain. Finally, an XGBoost classifier is 
adopted by DDAGDL to complete the task of predicting DDAs. Experimental results demonstrate 
that DDAGRL yields a superior performance across all the three benchmark datasets under ten-
fold cross-validation when compared with state-of-the-art prediction models in terms of several 
independent evaluation metrics. This could be a strong indicator that DDAGRL can effectively 
learn the feature representations of drugs and diseases by projecting complicated biological 
information, characterized by its non-Euclidean nature, onto a latent space with geometric deep 
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learning. Hence, DDAGRL is capable of making full use of the geometric prior knowledge of HIN, 
and thereby enhancing the quality of feature representations of drugs and diseases. Furthermore, 
we have also conducted case studies to show the usefulness of DDAGRL in predicting novel 
DDAs by validating the top-ranked drug candidates predicted by DDAGRL for Alzheimer’s 
disease and Breast neoplasms. Our findings indicate that most of the drug candidates are of high 
quality, as they have already been reported by previously published studies, and some of them are 
not even found in the prediction results of the other comparing models. In this regard, leveraging 
geometric deep learning provides us an alternative view to address the problem of drug 
repurposing by properly handling the non-Euclidean nature of biomedical data, which has been 
ignored by most of the existing prediction models. In conclusion, we believe that our work opens a 
new avenue in drug repositioning with new insights gained from geometric deep learning. 

In summary, the above experimental results have demonstrated the promising performance of 
DDAGDL in drug repositioning. On the one hand, DDAGDL simultaneously takes into account 
the attribute of biomolecules and network structures with non-Euclidean nature to obtain the 
feature representations of drugs and diseases. To be more specific, the traditional biological 
attributes have translation invariance in the Euclidean domain, which is limited by its lack of 
flexibility and weak expression ability, making it difficult to improve the accuracy of drug 
repositioning models. On this basis, we additionally consider the geometric prior knowledge of 
network structure in a non-Euclidean domain by making use of the GDL strategy to mine more 
underlying biologically meaningful characteristics, which further enhances the ability to express 
drug and disease features. On the other hand, DDAGDL improves the defects of existing GDL 
strategies. Specifically, DDAGDL first constructs the optimal projection space of each 
biomolecule by calculating the optimal number of propagation layers in neural networks, and then 
captures their feature representation from these spaces, which further improves the accuracy of our 
model in drug repositioning.  

Although the experiment results have demonstrated the promising performance of DDAGDL, 
there are still some limitations to be addressed in the next work. First, known association network 
data comes from manually collected databases, which are easily introduced into noise to affect the 
training results. Therefore, we will construct a subgraph for each biomolecule to learn their 
representations. Second, we will introduce more types of association networks such as drug-drug 
association network [20] and drug-target association network [21], to enrich the HIN, from which 
DDAGDL is able to learn more expressive network representations of drugs and diseases.  

 

STAR Methods 

Datasets 
To evaluate the performance of DDAGDL, three actual datasets are adopted to construct three 
HINs respectively, i.e., B-dataset, C-dataset and F-dataset. Each dataset contains three kinds of 
biological networks, i.e., drug-disease, drug-protein, and protein-disease networks. For B-dataset 
and F-dataset are collected from previous studies [16, 22, 23], in which B-dataset contains 18,416 
DDAs, 3,110 drug-protein associations and 5,898 protein-disease associations, and F-dataset 
involves 1,933 DDAs, 3,243 drug-protein associations and 54,265 protein-disease associations. 
Moreover, C-dataset is also constructed by Luo et al.’s instruction [24], it contains 2,532 DDAs, 
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3,773 drug-protein associations and 10,734 protein-disease associations. The drug-protein 
associations and protein-disease associations are downloaded from the DrugBank database [25] 
and the DisGeNET database [26], respectively.  

Construction of HIN 
To better describe the procedure of DDAGDL, we have introduced a three-element tuple, i.e. 
HIN(𝑽𝑽,𝑪𝑪,𝑬𝑬), where 𝑽𝑽 = {𝑉𝑉𝑑𝑑𝑑𝑑 ,𝑉𝑉𝑝𝑝𝑑𝑑 ,𝑉𝑉𝑑𝑑𝑑𝑑} is a set of drugs (𝑉𝑉𝑑𝑑𝑑𝑑), proteins (𝑉𝑉𝑝𝑝𝑑𝑑), diseases (𝑉𝑉𝑑𝑑𝑑𝑑) 
that are involved to construct a HIN, 𝑬𝑬 = {𝐸𝐸𝑑𝑑𝑑𝑑 ,𝐸𝐸𝑑𝑑𝑝𝑝,𝐸𝐸𝑝𝑝𝑑𝑑} represents the drug-disease network 
(𝐸𝐸𝑑𝑑𝑑𝑑) , the drug-protein network (𝐸𝐸𝑑𝑑𝑝𝑝) , the protein-disease network (𝐸𝐸𝑝𝑝𝑑𝑑) , 𝑪𝑪 =
[𝐶𝐶𝑑𝑑𝑑𝑑;𝐶𝐶𝑝𝑝𝑑𝑑;𝐶𝐶𝑑𝑑𝑑𝑑]𝑇𝑇 ∈ ℝ|𝐕𝐕|×𝑑𝑑 denotes the calculated biological attributes for all nodes in HIN, where 
|𝑽𝑽| is the number of all nodes. Moreover, 𝑁𝑁 and 𝑀𝑀 are used to denote the number of drugs and 
diseases, the adjacency matrix of HIN is defined as 𝑨𝑨 ∈ ℝ|𝑽𝑽|×|𝑽𝑽|.  

Calculating biological attributes 
Regarding the biological attributes for drugs, diseases and proteins, three different computer 
algorithms are used. We collect three kinds of biological knowledge, i.e., the Simplified Molecular 
Input Line Entry System (SMILES) [27] for drugs, the sequence information of proteins, and 
Medical Subject heading (MeSH) descriptors of diseases. In addition, disease biological attributes 
based on disease phenotype by using MimMiner [28], and drug biological attributes based on 
chemical structures [24] are used as an alternative when using C-dataset, respectively.  

To facilitate calculation when geometric deep learning, we first have performed the RDkit 
toolkit [29] to obtain the biological attributes 𝐶𝐶𝑑𝑑𝑑𝑑 by calculating the SMILES of drugs. Second, 
the biological attributes 𝐶𝐶𝑑𝑑𝑑𝑑  are obtained based on the MeSH descriptors by Guo et al.’s 
instruction [30]. After that, the sequence information of proteins is divided into four classes 
according to the nature of the side chain, i.e., (Ala, Val, Leu, Ile, Met, Phe, Trp, Pro), (Gly, Ser, 
Thr, Cys, Asn, Gln, Tyr), (Arg, Lys, His) and (Asp, Glu), and then a 3-mer algorithm [31-35] is  
used to obtain the biological attributes 𝐶𝐶𝑝𝑝𝑑𝑑. Finally, all biological attributes 𝑪𝑪 obtained are unified 
into 64-dimension by an autoencoder scheme [36].  

Extracting feature representations 
Traditional deep learning cannot effectively learn non-Euclidean data, such as biological gene 
protein data, chemical composition structure data and biological association network data. The 
recent rise of geometric deep learning makes it easier to study the associations between biological 
entities. In order to better meet our research problem, we design a geometric deep learning 
algorithm based on a graph convolutional neural network to extract feature representation for 
drugs and diseases, which can project the geometric prior knowledge of network structure with 
non-Euclidean data into a latent feature space to obtain a more influential of feature 
representations for drugs and diseases. In particular, a general graph convolutional neural network 
[37] is defined as: 
 𝑿𝑿(𝑙𝑙+1) = 𝜎𝜎(𝑳𝑳𝑿𝑿(𝑙𝑙)𝑾𝑾1

(𝑙𝑙)) (1) 
where 𝑳𝑳 = 𝑫𝑫�−1/2𝑨𝑨�𝑫𝑫�−1/2  denotes the normalized Laplacian matrix, 𝑨𝑨� = 𝑨𝑨 + 𝐼𝐼  is an adjacency 
matrix with added self-loops, 𝑫𝑫�𝑑𝑑𝑖𝑖 = ∑ 𝑨𝑨�𝑑𝑑𝑖𝑖𝑖𝑖  represents a degree matrix. 𝑾𝑾1 as a random weight 
matrix, 𝜎𝜎(⋅) is an activation function and 𝑙𝑙 represents the number of layers for the neural network. 
In this work, we define the first layer 𝑿𝑿(0) = 𝑪𝑪, and assume 𝑾𝑾1 is the identity matrix and 𝜎𝜎(⋅) is 
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an identity function according to Wu et al. [38] and Li et al. [39]. Hence, Eq. (1) can be 
reconstructed as the following form. 
 𝑿𝑿(𝑙𝑙+1) = 𝑳𝑳𝑿𝑿(𝑙𝑙) (2) 

When the neural network layer 𝑙𝑙 is large enough [40]. the Eq. (2) is considered as: 
 𝑿𝑿𝑙𝑙 = 𝑳𝑳𝑙𝑙𝑪𝑪 (3) 
where 𝐿𝐿𝑙𝑙 is the change matrix after more than one layer in neural networks. In other words, the 
operation of multiple neural network propagations can be regarded as the transformation form of 
the biological feature matrix 𝑪𝑪.  

In order to make up for the inherent over-smoothness caused by the defect of the graph 
convolutional network, we calculate the optimal number of neural network propagation layers for 
each biomedical entity to better learn their representation. Let us introduce a function 𝐾𝐾  to 
calculate the optimal number of the layer 𝑙𝑙 for node 𝑣𝑣𝑑𝑑(𝑣𝑣𝑑𝑑 ∈ 𝑽𝑽).  

 𝐾𝐾(𝑣𝑣𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚{ 𝑙𝑙: ||𝑳𝑳𝑣𝑣𝑖𝑖
(∞) − 𝑳𝑳𝑣𝑣𝑖𝑖

(𝑙𝑙)||2 < 𝛿𝛿},𝐾𝐾(𝑣𝑣𝑑𝑑) > 0 (4) 

where 𝛿𝛿 is a parameter (𝛿𝛿 > 0), and || ⋅ ||2 denotes the function with two-norm. To better deal 
with the features after multiple neural network propagation, we design an attention function to 
aggregate 𝑙𝑙 kinds of features. After that, Eq. (3) can be translated as follow. 

 𝑿𝑿𝑣𝑣𝑖𝑖
(𝑙𝑙) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚�𝑿𝑿𝑣𝑣𝑖𝑖� (5) 

 𝑿𝑿𝑣𝑣𝑖𝑖 = [𝑳𝑳𝑣𝑣𝑖𝑖
(0)𝑪𝑪𝑣𝑣𝑖𝑖 ,𝑳𝑳𝑣𝑣𝑖𝑖

(1)𝑋𝑋𝑣𝑣𝑖𝑖
(1),⋯ , 𝑳𝑳𝑣𝑣𝑖𝑖

(𝑙𝑙)𝑋𝑋𝑣𝑣𝑖𝑖
(𝑙𝑙)], 𝑙𝑙 = 𝐾𝐾(𝑣𝑣𝑑𝑑) (6) 

Moreover, we add the initial feature, i.e. the biological feature 𝑪𝑪, to enhance the expression of 
features in the course of the multiple neural network propagation. For instance, 

 𝑳𝑳𝑣𝑣𝑖𝑖
(1)𝑋𝑋𝑣𝑣𝑖𝑖

(1) = (1 − 𝜆𝜆)𝑳𝑳𝑣𝑣𝑖𝑖
(1)𝑋𝑋𝑣𝑣𝑖𝑖

(1) + 𝜆𝜆𝑳𝑳𝑣𝑣𝑖𝑖𝑪𝑪𝑣𝑣𝑖𝑖 (7) 

Regarding the attention function, its function is as a pooling layer to aggregate all features, the 
details as: 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚′ = 𝒉𝒉𝑇𝑇𝑅𝑅𝐴𝐴𝐿𝐿𝐿𝐿(𝑾𝑾𝟐𝟐𝑿𝑿𝑣𝑣𝑖𝑖 + 𝑏𝑏) (8) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚 = 𝑒𝑒𝑒𝑒𝑝𝑝(𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴′)
∑𝑒𝑒𝑒𝑒𝑝𝑝(𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴′)

 (9) 

where 𝑾𝑾2  is a 𝑙𝑙 × 𝑙𝑙  weight matrix, 𝑏𝑏  is bias and 𝒉𝒉  is a parameter according to Xiao et al.’ 
description [41]. At last, a (𝑁𝑁 + 𝑀𝑀) × 𝑑𝑑  matrix 𝑿𝑿  is constructed to denote the feature 
representations of drugs and diseases.  

Identifying new DDAs 
After extracting the feature representations of drugs and diseases from the projected feature space, 
DDAGDL next aims to predict the relationships between drugs and diseases on the base of their 
learned representations. In particular, we first use a typical machine learning classifier, i.e. 
XGBoost [42], to complete the task of DDA prediction. Then, we compose a set of drug-disease 
pairs denoted as 𝐹𝐹 = {(𝐹𝐹𝑑𝑑 ,𝑦𝑦𝑑𝑑)}(1 ≤ 𝑚𝑚 ≤ |𝐹𝐹|), where 𝐹𝐹𝑑𝑑 denote the concatenated feature vector of 
the 𝑚𝑚-th drug-disease pair, 𝑦𝑦𝑑𝑑 ∈ {0,1} represent the label of this pair and the value of 𝑦𝑦𝑑𝑑  is 1 if 
connected and 0 otherwise. 𝐹𝐹𝑑𝑑  is the concatenation of 𝑿𝑿𝒅𝒅𝒅𝒅  and 𝑿𝑿𝒅𝒅𝒅𝒅 , which are the respective 
representation vectors of drug 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 ∈ 𝑉𝑉𝑑𝑑𝑑𝑑 and disease 𝑉𝑉𝑖𝑖𝑑𝑑𝑑𝑑 ∈ 𝑉𝑉𝑑𝑑𝑑𝑑. Furthermore, a result matrix 𝑹𝑹 is 
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introduce to collect the prediction scores between drugs and diseases whose associations are 
unknown in advance.  
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