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Abstract
Viruses are the most ubiquitous and diverse entities in the biome. Due to the rapid growth of newly identi�ed viruses, there is an urgent need for
accurate and comprehensive virus classi�cation, particularly for novel viruses. Here, we present PhaGCN2, which can rapidly classify the taxonomy of
viral sequences at family level and supports the visualization of the associations of all families. We evaluate the performance of PhaGCN2 and
compare it with the state-of-the-art virus classi�cation tools, such as vConTACT2, CAT, and VPF-Class, using the widely accepted metrics. The results
show that PhaGCN2 largely improves the precision and recall of virus classi�cation, increases the number of classi�able virus sequences in the Global
Ocean Virome dataset (v2.0) by 4 times, and classi�es more than 90% of the Gut Phage Database. PhaGCN2 makes it possible to conduct high-
throughput and automatic expansion of the database of the International Committee on Taxonomy of Viruses. The sourcecode is freely available at
https://github.com/KennthShang/PhaGCN2.0 .

Key Points
PhaGCN2 can rapidly classify the taxonomy of viral sequences at family level and supports the visualization of the associations of all families.

PhaGCN2 largely improves the precision and recall of virus classi�cation, increases the number of classi�able virus sequences in the Global
Ocean Virome dataset (v2.0) by 4 times, and classi�es more than 90% of the Gut Phage Database.

PhaGCN2 makes it possible to conduct high-throughput and automatic expansion of the database of the International Committee on Taxonomy
of Viruses.

Background
As the most abundant biological entities on Earth, viruses can hijack organisms from every branch of the tree of life. They play critical roles in host
mortality, metabolism, physiology, and evolution, impacting marine biogeochemical cycling and shaping the Earth’s microbiomes [1-5]. David
Baltimore established a virus classi�cation system based on messenger RNA (mRNA) synthesis-the Baltimore classi�cation system [6]. Similarly,
based on the virus host, viruses can be classi�ed into four types, namely, animal viruses, fungi viruses, plant viruses, or bacteriophages [7]. Based on
these different classi�cation features, some virus databases have been established, such as plant and fungi virus database—DPVweb [8], coronavirus
database—ViPR [9], in�uenza and coronavirus database—GISAID [10], and comprehensive virus databases that are publicly available resource and
updated weekly—ViralZone [11] and Virxicon [12]. 

Culture-independent next-generation sequencing technologies have recently been used to explore the tremendous diversity of the virosphere from
multiple samples [13-15]. With rapid expansion of viral genome databases, these advances have led the International Committee on Taxonomy of
Viruses (ICTV) to present a consensus statement suggesting a shift from the “traditional” classi�cation criteria—for example, virion morphology and
single- or multiple-gene phylogenies—toward a genome-centered, and perhaps one day largely automated, viral taxonomy [16]. 

The virus classi�cation mainly relies on the manual classi�cation and de�nition of virologists, which is too slow to classify millions of viral genome
sequences. For example, despite millions of virus sequences in IMG/VR [15, 17], there are only about 10,550 types of classi�ed viruses in the ICTV
2021 report (hereafter ICTV2021). Therefore, there is an urgent need for a virus classi�cation method that can rapidly and accurately classify these
new viral genome sequences and align computational classi�cations with ICTV-rati�ed taxa [18]. 

In our previous work, we present a semi-supervised machine learning model, named PhaGCN [19], based on a graph convolutional network (GCN).
There are two main components in PhaGCN: convolutional neural network (CNN) encoder and GCN classi�er. First, the CNN encoder will encode
contigs from different lengths into 256-dimensional embedding vectors. Each vector represents the motif-related patterns captured from the DNA
sequences. Second, a knowledge graph is built to connect known phages in the RefSeq database and the test phages. Each node in the graph
represents a phage, and the edges between phages represent sequence and protein-composition based similarity. We use the embedding vectors
outputted from the CNN encoder as the node features and apply protein organization and protein similarity to de�ne the edges. Finally, the semi-
supervised GCN is applied on the knowledge graph to utilize both known phages and test phages for training. However, the current version can only
conduct the classi�cation virus under Caudovirales [19]. More importantly, ICTV will frequently adjust its taxonomy criteria according to the progress
of research, such as deleting old families, adding new families, and moving members from one family to another. The continuous change of the
reference and the emergence of novel viruses are impeding the accuracy and sensitivity of automatic prediction. In particular, most learning-based
models must specify the label set (e.g. family labels), which will not accommodate viruses from new families [20]. Thus, a method that can possibly
recognize new families is needed to support automatic virus classi�cation.  

Here, we present PhaGCN2 to align computational classi�cations with ICTV-rati�ed taxa by automatically upgrading the database. PhaGCN2 can
predict the taxonomy of viral sequences at the family level and accurately identify the members of the novel virus families that have not yet been
de�ned in ICTV. We compare PhaGCN2 with the state-of-the-art virus classi�cation tools (vConTACT2 [21], CAT [22], and VPF-Class [23]) using widely
accepted metrics such as precision, recall, and required computing resources. The experimental results show that our method is superior to the
existing methods. 

Material And Methods

https://github.com/KennthShang/PhaGCN2.0
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Datasets and benchmarked tools

            The main datasets and tools used or evaluated in this paper are listed as follows (table 1 and table 2): 

Table 1.Datasets  
Datasets Years Habits Description
ICTV2021 2021  The 2021 ICTV Virus Metadata Resource

https://ictv.global/filebrowser/download/468

ICTV2020 2020  The 2020 ICTV Virus Metadata Resource

https://ictv.global/filebrowser/download/467

GPD 2021 Human gut Lawley et al. (2021) created the Gut Phage Database (GPD), a collection of 142,809 non-redundant viral genomes (length>10
kb) obtained by mining 28,060 globally distributed human gut metagenomes and 2,898 reference genomes of cultured gut

bacteria [14].

(Gut Phage
Database)

http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/

GOV2.0 2019 Ocean Gregory et al. (2021) established an ~12-fold expanded global ocean DNA virome dataset (GOV2.0) of 195,728 viral
populations, now including the Arctic Ocean, and validated that these populations form discrete genotypic clusters [13].

(global ocean
DNA virome
dataset)

https://data.iplantcollaborative.org/dav/iplant/commons/community_released/iVirus/GOV2.0/

MGV 2021 Human stool Nayfach, et al. (2021) assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810
publicly available human stool metagenomes, naming the dataset as MGV [28].

(Metagenomic
Gut Virus)

https://github.com/snayfach/MGV

DOV 2021 Oyster Jiang et al. (2021) established a Dataset of Oyster Virome (DOV) that contains 728,784 non-redundant viral operational
taxonomic unit (vOTU) contigs and 3,473 high-quality viral genomes, enabling the first comprehensive overview of viral

communities in oysters [27].

(Dataset of
Oyster
Virome)

https://ngdc.cncb.ac.cn/gsub/submit/bioproject/subPRO010366/overview

Test RNA
database

2016
and

2018

invertebrate
and

vertebrate

Shi et al. 2016 [29] profiled the transcriptomes of over 220 invertebrate species sampled across nine animal phyla and reported
the discovery of 1,445 RNA viruses, including some that are sufficiently divergent to comprise new families. And in 2018, using
a large-scale meta-transcriptomic approach, they discovered 214 vertebrate-associated viruses in reptiles, amphibians,
lungfish, ray-finned fish, cartilaginous fish and jawless fish [30].

https://static-
content.springer.com/esm/art%3A10.1038%2Fnature20167/MediaObjects/41586_2016_BFnature20167_MOESM439_ESM.xlsx

 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-018-0012-
7/MediaObjects/41586_2018_12_MOESM3_ESM.xlsx

 

 

https://ictv.global/filebrowser/download/468
https://ictv.global/filebrowser/download/467
http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/
https://data.iplantcollaborative.org/dav/iplant/commons/community_released/iVirus/GOV2.0/
https://github.com/snayfach/MGV
https://ngdc.cncb.ac.cn/gsub/submit/bioproject/subPRO010366/overview
https://static-content.springer.com/esm/art%3A10.1038%2Fnature20167/MediaObjects/41586_2016_BFnature20167_MOESM439_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-018-0012-7/MediaObjects/41586_2018_12_MOESM3_ESM.xlsx
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Table 2. The benchmarked tools   
Tools vConTACT2 CAT VPF-Class
Years 2019 2019 2021

Author Sullivan, M. B.et.al. Dutilh, B. E.et.al. Pons, J. C.et.al
Description vConTACT2 is a tool to perform taxonomy classification of

viral genomic sequence data. It is designed to cluster and
provide the taxonomic context of viral metagenomic

sequencing data [21].

CAT is a comparison-based species classification tool for
metagenomic contigs. It first conducts gene calling,
then maps the predicted ORFs against the nr protein
database, and finally classifies entire contigs based on

classification of the individual ORFs [22].

VPF-Class is a tool that can
conduct host prediction and
taxonomic classification of

viruses. It is a comparison-based
metagenomic contig annotation

tool [23].

(https://bitbucket.org/MAVERICLab/vcontact2/wiki/Home) (https://github.com/dutilh/CAT) (https://github.com/biocom-
uib/vpf-tools)

 

Sequences preprocessing before building the protein database

When training the CNN [24] model, to ensure that the number of samples sequence at the family-level is enough, we need to remove small families
before building the database. The �lter condition is length≧1700bp (To make sure the sequence contains enough information), family members≧8
(To ensure that each family contains at least seven training sequences and one validation sequence), and ACGT contigs (skipping contigs with non-
ACGT characters (e.g NNN gaps)).

Statistical information 

We select random number of sequences to quantify the usage of computing resources. The sequences are randomly chosen using a random number
generator in python. Run time was measured with the “/usr/bin/time” command available in Linux. Peak memory was measured with the
“/usr/bin/free -h” command available in Linux. The Knowledge Graph network was visualized with Gephi [25] (v.0.9.2; https://gephi.org/) software.
The others are drawn by R.

Method optimization of PhaGCN and PhaGCN2

In addition to predicting families under only Caudoviruses, there are still some important limitations in PhaGCN that have not been addressed.
Because ICTV will frequently adjust its taxonomy criteria according to the progress of research, such as deleting old families, adding new families, and
moving members from one family to another. The continuous change of the reference and the emergence of novel viruses are impeding the accuracy
and sensitivity of automatic prediction. In particular, most learning-based models must specify the label set (e.g. family labels), which will not
accommodate viruses from new families [20]. In view of this, we have made the following improvements to PhaGCN, including (1) updating with ICTV
and using prodigal to build reference database under the entire virus realm, (2) using network graph to show the clustering relationship among family
members, and (3) the prediction of novel viral families (family_like) based on the topology of the network (outlier nodes). 

Identi�cation of family_like nodes in the PhaGCN2 network 

Despite the efforts of ICTV in providing continuous updates of taxonomic classi�cation system for viruses, existing taxonomic groups are not
adequate to keep pace with fast accumulation of diverse viruses. Thus, PhaGCN2 allows users to use ‘family_like’ classi�cation to discovery possibly
new taxonomic groups. Speci�cally, PhaGCN2 applies GCN to conduct prediction for all nodes in the graph. If a test node has a predicted family label
'A' and is not a one-hop neighbor of any training node, it is de�ned as "A_like". Thus, we have family_like nodes for different families. A closer look
shows that many of these nodes can form connected components by themselves that are not part of the bigger network. Examples of those clusters
(clusters  -  ) are shown in Fig. S1. These components tend to represent new taxonomic groups that have not been included in the current
classi�cation system. Some ‘family_like’ nodes can also form paths with characterized viruses (training node) as exempli�ed by cluster   in Fig. S1.
Following the de�nition of 'family_like' nodes, the distance between them and any training node must be bigger than 2 (i.e. 2 edges at least). 

Results
Improvements of PhaGCN2

In summary, PhaGCN2 contains three major improvements comparing to the previous version (Table S1), including (1) updating with ICTV and using
prodigal to build reference database under the entire virus realm (Table S2), (2) using network topology to assist outlier recognition, and (3) assigning
outlier nodes to family_like. The improvements in (2) and (3) enable PhaGCN2 to automatically suggest new families, which removes the limitation on
�xed set of labels in commonly used supervised learning models. These improvements allow PhaGCN2 to obtain more accurate predictions than the
original version, with the precision (equation (1)) increased from 73.19% to 83.91%, the recall (equation (2)) increased from 87.92% to 89.30%, and F1

(equation (3)) increased from 79.88% to 86.52% (Table S3). The detailed descriptions can be found in the following sections.
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Database construction. The PhaGCN protein database is constructed by manually downloading protein sequences from National Center for
Biotechnology Information (NCBI). There are two potential disadvantages to use the old database. First, the number of proteins is limited by the
update of the RefSeq protein database. Second, users need to map the proteins to their original genomes sequence-by-sequence, which is tedious and
error-prone. To establish a faster and more user-friendly pipeline to construct the database, we apply Prodigal [26] to conduct gene �nding and protein
translation based on the up-to-date ICTV database, with the latest ICTV2021 containing 10,550 viruses. PhaGCN2 with the database constructed by
Prodigal was compared with the original PhaGCN database using 8,760 virus sequences (length>8000bp) in DOV (Dataset of Oyster Virome) [27]. The
results reveal that 98.46% of the predictions are consistent, indicating that using Prodigal to establish a protein database is reliable (Table S2). Now,
users can align computational classi�cations with ICTV-rati�ed taxa by the function of training virus classi�cation database in PhaGCN2.

Network visualization. Similar to vConTACT2, PhaGCN2 can also output the virus family clustering network. This gives us an intuitive understanding
of the relationship between different virus families and family members. In addition to visualizing the family relationship, we also use the network
topology to identify possible new families, which consist of subgraphs with weak connection with nodes from ICTV. First, we identify outliers, which
are test viruses (nodes) not connected to any viruses from ICTV (Figure S1A, red dots). Often these outliers are from new families but they were
assigned to the prede�ned families (Figure S1B, green dots) due to the design limitation of the supervised learning algorithm. 

Family-like prediction. To support the automatic identi�cation of new families, we assign these outliers as family_like (probably belong to another
family which is close to a reference family). For instance, if a node is predicted to be Lipothrixviridae_like, it means that this node is close to
Lipothrixviridae, but it is not recommended to be cluster it into the same family. To verify the feasibility of predicting outlier as family_like, we use the
ICTV2020 virus to build a protein database, and use the newly added viruses from ICTV2021 (including 2,636 viral reference genomes after
�ltrating) as the test data. Detailed prediction results are shown in Table S3. The precision and recall after integrating this function for each family is
shown in Table S4.

Among the 2,636 newly added viruses, 339 of them belong to families that are not de�ned in ICTV2020 and thus their labels do not exist in our training
data. PhaGCN2 assigned 204 viruses as family_like in total. Among these sequences, 167 test sequences are members of real novel families
of ICTV2021 or the families not included during ICTV2020 training. Therefore, the precision of family_like label is 81.86% (167/204), and the recall is
49.26% (167/339). Among the 167 true family_like labels, 153 viruses are de�ned in ICTV2021 as Genomoviridae (a novel family in ICTV2021), but
they were predicted as Geminiviridae (the same order under Geplafuvirales with Genomoviridae) in PhaGCN. Now, PhaGCN2 predicts them as
Geminiviridae_like, which means these viruses probably belong to a family closely related to Geminiviridae. The other 37 test sequences were
mistakenly annotated as family_like, as they are family members in the ICTV2020 list according to ICTV2021. For example, some viruses are
Myoviridae in ICTV2021, but were predicted as Drexlerviridae (the same order under Caudovirales with Myoviridae) by PhaGCN. Now,
PhaGCN2 recognize them as Drexlerviridae_like. Notably, although they are classi�ed under Myoviridae according to the ICTV2021 criteria, they belong
to a new genus under the family, which have no edges to the members of Myoviridae in ICTV2020. In fact, most of the 37 test sequences are classi�ed
a new genus in ICTV2021. 

Comparison with the state-of-the-art tools

In order to have a comprehensive evaluation of PhaGCN2, we compare PhaGCN2 with vConTACT2, CAT, and VPF-Class using six widely used metrics,
precision (equation (1)), recall (equation (2)), F1-score (Balanced Score, equation (3)), consistency (equation (4)) computing speed, and peak memory.



Page 6/13

Table 3. Comparison of PhaGCN2 with the state-of-the-art virus classification tools

Tools PhaGCN2 vConTACT21 CAT VPF-Class2

Test Data 96033(ICTV2021)
True Positive 8379 1616 6928 3803
False Positive 260 704 825 1026
False Negative 965 3098 1851 855
Precision 96.99% 69.65% 89.36% 78.75%
Recall 89.67% 34.28% 78.92% 81.64%
F1-score 93.19% 45.95% 83.82% 80.17%
1RNA virus genomes were excluded from vConTACT2 test data evaluation as it was designed for only DNA virus classification.

2The Orthornavirae virus genomes were excluded from VPF-Class test data evaluation as it was designed for only DNA virus and RT virus classification. We only count
the result that both the membership ratio and confidence score are high than 0.2 as the positive result of VPF-Class.

3Virus genomes longer than 1700 bp in the ICTV2021 were used as the test data for the evaluation of all the software. 

Consistency: To compare the consistency of the prediction made by the three tools, we take the ICTV2021 data (9603 viral genomes sequence, known
reference viruses) as test data. As show in Figure 1A, the number of viruses of predicted by both vConTACT2 and PhaGCN2 are 2248, and 1494 of
them are identical, with a consistency value of 66.46% ((739+755)/(1199+1049)) (Detailed information is listed in Table S5). The number of viruses
predicted by both PhaGCN2 and CAT are 6752, and 5090 of them are identical, with a consistency value of 75.39% ((739+4351)/(1199+5553)). The
number of viruses predicted by both vConTACT2 and CAT are 1266, and 777 of them are identical, with a consistency value of 61.37%
((739+38)/(1199+67)). There are 1199 sequences predicted by all three tools with 739 having the same prediction, leading to a consistency value of
61.63% (739/1199).

 Then we further take GOV2.0 (including 482,522 virus genome sequences and most of them are novel viruses) as the test data. The paper of
GOV2.0 provided the ready-to-use results of vConTACT2 prediction [13]. Thus, we only ran PhaGCN2 and CAT to predict the GOV2.0 (VPF-Class is not
included in the test as its slow calculation). vConTACT2 only acquired 47,839 predictions (9.91%), CAT predicted 170,200 viruses (35.27%),
and PhaGCN2 acquired 199,833 predictions (41.41%). As shown in Figure 1B, the number of viruses predicted by both vConTACT2 and PhaGCN2 are
20,287, and 16,958 of them are identical, with a consistency value of 83.59% ((3205+13753)/(5441+14846))  (Detailed information is listed in
Table S6). The number of viruses predicted by both PhaGCN2 and CAT are 13,996, and 5,694 of them are identical, with a consistency value of 40.68%
 ((3205+2489)/(5441+8555)). The number of viruses predicted by both vConTACT2 and CAT are 10780, and 5,893 of them are identical, with a
consistency value of 54.67%  ((3205+2688)/(5441+5339)). There are 5,441 sequences predicted by all three tools, and 3,205 sequences have the
same results, with a consistency of 58.90% (3205/5441). These results show that these tools have similar consistency for known viruses. But when
focusing on unknown viruses, alignment-based classi�cation methods such as CAT has lower consistency with other tools. 

Precision, recall, and F1-score: As mentioned above, when using the newly added viruses from ICTV2021 as the test data. the recall and precision of
PhaGCN2 are 89.30% and 83.91%, respectively (Table S1). Here, we further tested PhaGCN2, vConTACT2, CAT, and VPF-class on all the ICTV2021
sequences collected in the PhaGCN2 database, and compared the obtained predictions with the classi�cation of ICTV2021 (Table 3). As shown in
table 3, PhaGCN2 achieves the best performance, with 10% higher F1-score than the second-best tool CAT. In particular, PhaGCN2’s precision and recall
are 7% and 11% higher than CAT, respectively. The results show that PhaGCN2 largely improves the precision and recall of virus classi�cation over the
state-of-the-art tools. The detailed results are shown in Table S5. 

The elapsed time and peak memory: In addition, we recorded the elapsed time and peak memory of the three tools. We randomly selected 1000, 5000,
and 10000 sequences from GPD [14] for testing (Figure 2). PhaGCN2 is faster than vConTACT2 but slower than CAT. vConTACT2 has a high memory
usage in the step of calculating similarity networks, while PhaGCN2 and CAT consumes less memory.

Analysis of the sequences without predictions

As mentioned above, while using the newly added virus from ICTV2021 as the test data, there are 1,492 sequences with predictions and 1,142
sequences without prediction. In our analysis of 1142 sequences without predictions (Table S7), 992 of them are from newly added families by
ICTV2021 and thus cannot be predicted by PhaGCN2. Of the remaining 150 sequences, 80 are new genera under known families. We speculate that
these new genera cannot be predicted because the different genera in these families are of low similarity. In addition, 49 sequences are missed.
Although they are not new genera, they are not trained by PhaGCN2 because the sample size of this genus in the 2020 training set was too small
(genera member < 8). For the remaining 21 sequences, we cannot determine the cause for the time being. However, compared with the total 2,634 test
sequences, the number is acceptable.

Furthermore, we examined the protein-level similarity between newly added sequences in ICTV2021 with and without predictions against the reference
genomes (ICTV2020 training data) using Diamond blastx, and compared their similarity distributions. As shown in Figure S2, the protein sequence
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identity distributions are signi�cantly different between the two groups. Among them, virus sequences with relatively low variability and identity about
54.8% are likely to be predicted by PhaGCN2. However, highly variable sequences with identity lower than 37.4% have a low probability of prediction.
Detailed results are shown in Table S8.

Possibility of genus-level prediction

Same as vConTACT2, PhaGCN2 can also draw the network diagram. We use the metagenomes of about 1700 human gut microbiome DNA
viruses [28] as the test data and map the network with the results of PhaGCN2. Due to the space limitation, we only show the results of the 10 largest
families in the database (Figure 3A). It is obvious that virus nodes of the same families cluster closely. To visualize clusters at genus-level, we
investigated the genera in the most abundant family—Siphoviridae. Again, the top 16 genus members in Siphoviridae were visualized using different
colors in Figure 3B. We can see that some genera, Pahexavirus, Skunavirus, and Ceduovirus, were clustered within themselves. However, some genera
(such as Triavirus, Phietavirus, Bioseptimavirus, Dubowvirus, and Peeveelvirus) were mixed together (Figure 3B). This suggests that they are
not different enough for PhaGCN2 to predict them as different genus.

Investigation of public data using PhaGCN2

GPD and GOV2.0 represent two completely different viral habitats. In this section, we use PhaGCN2 to classify the GPD and GOV2.0 database. After
removal of the ineligible sequences, they are left with 142,333 (in all 142809) and 328,173 (in all 482522), respectively. As shown in Figure 4, the
overall recall of GPD and GOV2.0 is 91.9% and 40.8% respectively. The higher proportion of the unknown viruses in GOV2.0 is far more than GPD,
indicating that viruses in the ocean has not been fully explored, with a large portion still under the iceberg. When only focusing on the classi�ed
categories (without unknown), Siphoviridae, and Myoviridae account for 54.5%, and Siphoviridae_like and Myoviridae_like account for 31.1% in GPD. In
contrast to GPD, Siphoviridae, and Myoviridae account for 28.9%, and Siphoviridae_like and Myoviridae_like account for 40.4% in
GOV2.0. If other families under Caudovirales, such as Podoviridae and Herelleviridae, are included, 99.16% of the phages in the human gut are
Caudovirales, while 94.8% in the ocean. It means that Caudovirales is the majority of both GPD and GOV2.0 at the order level, but GPD and GOV2.0 is
quite different at the family level. Detailed results are shown in Table S9 and Table S5. 

We further applied PhaGCN2 to classify 2202 quali�ed RNA virus genomes from the study of invertebrate and vertebrate viromes [29, 30]. There are
1094 sequences with predictions, and only six virus genomes are predicted to be non-RNA viruses. The top 3 families are Marnaviridae, Dicistroviridae,
and Nodaviridae, and they account for 18.7% in total. However, there are up to 52.5% of viruses cannot be taxonomically classi�ed to a known viral
family, which shows that our understanding of RNA virosphere is still very limited. The detailed results are shown in Table S10 and Figure S3.

Furthermore, according to the classi�cation and site information of GOV2 at the family level, we plotted the distribution abundance maps of
Myoviridae and Siphoviridae at different sites and depths (Figure 5). As shown in Figure 5, the closer to the equatorial region and upper ocean, the
higher the proportion of Myoviridae is. In contrast, the proportion of Siphoviridae in the two poles is higher than in the equator. This means that viruses
from different families may have evolved unique adaptations to the different niches over a long period. The detailed longitude, latitude, and content
data are shown in Table S11.

Discussion
vConTACT2 is a widely recognized tool for virus classi�cation using a combination of ClusterONE [31], hierarchical clustering [32], and Markov cluster
algorithm (MCL)-generated protein clusters [21]. The advantage of this method is that it can accurately predict the genome classi�cation of large DNA
phages with multiple ORFs and frequent recombination. However, its performance deteriorates for phage contigs that contain fewer protein clusters.
PhaGCN integrates the protein-cluster-based features into a more powerful machine learning model based on graph convolutional network and thus
achieves higher accuracy with less computing resources. However, PhaGCN is limited to only phages, limiting its utility to comprehensive virus
taxonomic classi�cation. PhaGCN2 removes this limitation by augmenting the learning model and reference database. PhaGCN2 can be applied to all
types of viral metagenomic data and automatically produces family-level taxonomic classi�cation of both DNA and RNA viruses. In addition, it can
suggest new viral families based on the network topology. Alignment-based classi�cation methods such as CAT or comprehensive BLAST [33] rely
only on the alignment result, and simply infer species’ classi�cation based on majority votes. Although CAT is the second accurate tool in identifying
known viruses (Table 3), alignment-based tools are not optimized for classifying novel or highly diverged viruses. VPF-Class can conduct host
prediction and taxonomic classi�cation of viruses, but it only can classify dsDNA, ssDNA, and retroviruses.

Compared to CAT, vConTACT2, and VPF-Class, one limitation of PhaGCN2 is that is cannot conduct taxonomic classi�cation below family [34].
Although our method can be extended to genus-level prediction, the small number of members of many genera are not su�cient to train a generalized
learning model. Removing this limitation is our future work. An ideal genus-level classi�cation tool should address some additional challenges. First,
the number of genera is signi�cantly larger than the families. Currently, there are about 2200 genera based on ICTV’s report. In addition, the number of
genomes in the genera form a highly imbalanced distribution, posing challenges for rare genus classi�cation. Third, some genera under the current
ICTV standard are too similar to be distinguished effectively (Figure 3B).  Because our work focuses on family-level classi�cation, presenting the
detailed comparison of current tools at genus level is beyond the scope of this work. With the continuous growth of the ICTV reference data set and
the adjustment of ICTV on close-related genera, prediction at the genes-level will be more feasible. 
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Like other learning-based models, PhaGCN2’s performance also relies on the quality of the training data. Due to the bias in sequencing, current training
data does not systematically cover different taxonomic groups. Although PhaGCN2 leverages network topology to suggest novel families, its
prediction ability on new families is limited. The detection rate of unknown virus sequences with identity less than 37.4% is usually very low (Figure
S2). One possible strategy to enhance classi�cation of new viral families is to conduct iterative prediction using PhaGCN2. First, we can conduct
predictions on all viral genome data (such as IMG/VR [15]) using PhaGCN2. Then, we can add the newly predicted Family_like
members into the training data to increase the capacity of PhaGCN2 on identifying more members of new families. The iterative training and
searching is likely to increase the ability of PhaGCN2 on new family detection. We will investigate this in our future work.

However, for those "dark matter" sequences with no or very low similarity, it may be an impossible task to do a de novo viral classi�cation. First, we
can't evaluate the accuracy of predictions. Second, without any homologs, it is di�cult to characterize the structure or function of their genomes. No
matter how many sequences are identi�ed, they are still "dark matter". 

Finally, as PhaGCN2 does not predict whether the input sequence belongs to the virus or the host cell, we strongly recommend using viral sequences
as input to PhaGCN2. In other words, virus identi�cation tools (such as DIAMOND [35], Virsorter2 [36], etc.) should be used to remove non-viral
sequences before PhaGCN2 is applied. 

Declarations
AVAILABILITY

The source code of PhaGCN2 is available via: https://github.com/KennthShang/PhaGCN2.0. 

SUPPLEMENTARY DATA

Figure 1. Venn diagram of consistency among the results of three virus classi�cation software. A: The test data: 9603 ICTV2021 sequences. B: The
test data :482,522 GOV2.0 sequences [13]. The number without parentheses is the number of sequences with predictions, the number in parentheses is
the number of sequences with the same prediction by the corresponding tools, the percentage is the consistency between two tools or among three
tools.

Figure 2. Comparison of the elapsed time and peak memory between PhaGCN2, vConTACT2, and CAT. 1000, 5000, and 10000 represent the number of
test genome sequences.

Figure 3. The clustering effect of PhaGCN2 network diagram at family-level and genes-level. The topological structures of A and B are identical. The
test data is MGV [28]. The top 10 families in the A are marked with different colors. low_abundance without staining represents other low abundance
families. B speci�cally shows different genera in Siphoviridae. High-abundance genera (number of members≧10) are marked with different colors,
low_abundance is marked with light green, representing other low-abundance genera in Siphoviridae; other_family represents non-Siphoviridae.

Figure 4. Comparison of family-level composition in GPD and GOV2.0 based on PhaGCN2 predictions.The pie chart shows the percentage of each
family in the GPD and GOV2.0 database based on PhaGCN2’s results. Low_abundance represents the total number of families with a low number (less
than 0.5% of the total number); unknown represents the unpredicted number; the others represent each section. The total test sequences of GPD and
Gov2.0 are 142809 and 482522, respectively.

Figure 5. Distribution comparison of the Myoviridae and Siphoviridae viral populations of GOV2 with latitude and depth.The color depth in the map
represents the percentage of Myoviridae and Siphoviridae in the total virus species in the sample site. The sampling depth from left to right is 5m-15m,
15m-150m, and 150m-1000m respectively.

Figure S1. The network diagram comparison before and after applying "family_like". A: visualization of the network of PhaGCN2. B: visualization of
the network of PhaGCN. The enlarged portion of the red box is in the upper right corner. Database_virus (purple dots): the reference genomes from
ICTV 2020. Test_virus (green dots) and family_like (red dots) are the test data (2,636 newly added viruses in ICTV2021 comparing to ICTV2020).
Database_virus (purple dots): training nodes. Test_virus (green dots): a test node that is directly connected with training node. 'Family_like' (red dots):
a test node that is not adjacent to any training node.

Figure S2. Comparison of protein sequence identity between test sequences (with and without predictions by PhaGCN2) and the reference
genomes. N: sequences without predictions; Y: sequences with predictions. 

Figure S3. Family-level composition of RNA viruses based on PhaGCN2 predictions.The pie chart shows the percentage of each family in 2202
novel RNA virus genomes from the study of invertebrate and vertebrate viromes [29, 30] based on PhaGCN2 results. Low_abundance represents the
total number of families with a low number; unknown represents the sequences without predictions; the others represent each section. The total test
sequences of RNA virus datatabase is 2202.

Supplementary Table 1: Method optimization of PhaGCN2 comparing to PhaGCN

https://github.com/KennthShang/PhaGCN2.0
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Supplementary Table 2: Comparison of the database construction methods between PhaGCN and PhaGCN2

Supplementary Table 3: Comparison of PhaGCN2 with PhaGCN

Supplementary Table 4: Comparison of PhaGCN2 with PhaGCN for each virus family (ICTV2020)

Supplementary Table 5: Comparison among the results of three virus classi�cation software (vConTACT2, PhaGCN2, and CAT)

Supplementary Table 6: Detailed predictions using four tools (vConTACT2, PhaGCN2, CAT, and VPF-tools)

Supplementary Table 7: Analysis of sequences without predictions

Supplementary Table 8: Diamond blastx results of ICTV2021 newly added genomes against the ICTV2020 reference genomes

Supplementary Table 9: Detailed predictions of GPD using PhaGCN2

Supplementary Table 10: Detailed predictions of 2202 novel RNA virus genomes from the study of invertebrate and vertebrate viromes

Supplementary Table 11: Station information of GOV2.0 and its corresponding virus family percentage

Supplementary Data are available at BIB online.
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Figure 1

Venn diagram of consistency among the results of three virus classi�cation software. A: The test data: 9603 ICTV2021 sequences. B The test data
:482,522 GOV2.0 sequences . The number without parentheses is the number of sequences with predictions, the number in parentheses is the number
of sequences with the same prediction by the corresponding tools, the percentage is the consistency between two tools or among three tools.

Figure 2

Comparison of the elapsed time and peak memory between PhaGCN2, vConTACT2, and CAT. 1000, 5000, and 10000 represent the number of test
genome sequences.
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Figure 3

The clustering effect of PhaGCN2 network diagram at family-level and genes-level. The topological structures of A and B are identical. The test data is
MGV . The top 10 families in the A are marked with different colors. low_abundance without staining represents other low abundance families. B
speci�cally shows different genera in Siphoviridae. High-abundance genera (number of members≧10) are marked with different colors,
low_abundance is marked with light green, representing other low-abundance genera in Siphoviridae; other_family represents non-Siphoviridae.

Figure 4

Comparison of family-level composition in GPD and GOV2.0 based on PhaGCN2 predictions.The pie chart shows the percentage of each family in the
GPD and GOV2.0 database based on PhaGCN2’s results. Low_abundance represents the total number of families with a low number (less than 0.5%
of the total number); unknown represents the unpredicted number; the others represent each section. The total test sequences of GPD and Gov2.0 are
142809 and 482522, respectively.
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Figure 5

Distribution comparison of the Myoviridae and Siphoviridaeviral populations of GOV2 with latitude and depth.The color depth in the map represents
the percentage of Myoviridae and Siphoviridae in the total virus species in the sample site. The sampling depth from left to right is 5m-15m, 15m-
150m, and 150m-1000m respectively.
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