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Abstract

Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established
their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the
effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and
clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming
process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such
as the availability and encoding of data resources, and the design of computational methods. This review summarizes
chemical structure based, network based, NLP based and hybrid methods, providing an updated and accessible guide to
the broad researchers and development community with different domain knowledge. We introduce widely-used molecular
representation and describe the theoretical frameworks of graph neural network models for representing molecular
structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative
experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning
models for accelerating DDIs prediction.
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Introduction

Polypharmacy is progressively becoming the prevalent therapy

by a patient for one or more conditions, especially for older

patients with many chronic health conditions, and this trend

continues to grow because of aging populations. For example,

67% of elderly Americans were taking five or more medications

[1]. This can be baffling because potential drug interactions

can alter the intended responses when patients taking multiple

drugs simultaneously, which results in unexpected side effects

or decreases clinical efficacy [2]. These unintended interactions

are widely referred to as drug-drug interactions (DDIs). As a

common problem during polypharmacy, DDIs are associated

with about 30% of all reported adverse drug effects that

becomes one of the most leading causes of trial failures in

drug discovery and clinical research [3; 4]. Take Ondansetron

(Zofran) and dofetilide (Tikosyn) as an example. The former

is a medication used to prevent nausea and vomiting, and the

latter is used for heart rhythm. When they are used together,

the amount of time between heartbeats can get too long. This

can lead to dizziness, fainting, and even death in severe cases.

As a result, predicting potential DDIs in advance is crucial for

drug development and pharmacovigilance.

Identifying the existence of DDIs is the first step to avoid

the potential adverse effects. Generally, DDIs can be broadly

categorized into pharmaceutical, pharmacokinetic (PK) or

pharmacodynamic (PD). Importantly, DDIs that primarily

cause a change in PK will consequently lead to a secondary

alteration in its PD. Thus, classifying DDIs’ types is the

further study that typically has been performed through

extensive experimental testing in pharmaceutical research [5],

which can help the scientific communities and manufacturers

further decrease toxicity and increase effectiveness for these

interactions [6]. However, more direct costs are incurred during
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Fig. 1. The taxonomy of computational methods with representative examples. The computational approaches can be divided into chemical structure

based, network based, NLP based and hybrid method, respectively. Chemical structure based methods learn the structural and chemical features of

molecules by using the similarity functions. These methods can be further classified into similarity based, molecular graph based and substructure based

methods. Network based methods that mainly rely on the topological characteristics of drugs in related networks integrate biological information from

different data sources, which can be further classified into graph embedding, link prediction and knowledge graph based methods. NLP based methods

adopt the unsupervised and pretraining strategies in natural language processing (NLP) to learn contextual information from large unlabeled molecular

datasets. Hybrid methods combine with multiple types of features in an efficient pattern.

long-period of clinical trials. Besides, DDIs have important

relation with combination therapies that are hard to explore

the space of combinations via high-throughput screening due to

the exceedingly large number of unique chemical combinations.

Collectively, these considerations highlight the benefits of

discovering novel computational methods for predicting DDIs.

In the past few years, people have seen a surge in DDIs

research due to the unprecedented success of deep and graph

learning. Various databases, approaches and models have

been proposed in the recent literature, urgently calling for a

comprehensive survey to focus the efforts in this flourishing

new direction. Few review articles cover machine learning

algorithms and recently developed deep and graph learning

models. Some surveys of databases and other resources

supporting drug discovery and DDIs extraction have also been

conducted recently [7; 8; 9; 10; 11; 12]. In this survey, we first

summarize the commonly adopted databases and molecular

representations related to DDIs. Then we present an overview

of computational methods for DDIs prediction and focus on

reviewing deep learning and graph neural network (GNN)

based methods. Moreover, we introduce several commonly-used

GNN models. Furthermore, we select several representations

baselines for comparative experiments on two benchmark

datasets, and the detailed experimental results are analyzed.

Finally, we make a conclusion to discuss the potential future

trends as well as promising research directions that could be

used to further improving DDIs prediction. To summarize, the

main contributions of this work are as follows:

• Structured taxonomy. As shown in Fig. 1, we contribute

a structured taxonomy to provide a broad overview of

computational methods, which categorizes existing works

from four perspectives: chemical structure based, network

based, NLP based and hybrid methods.

• Current progress. We systematically delineate the current

research directions on the topic of deep and graph learning

methods for DDIs prediction as illustrated in Table 1, and

we further investigate the comparison performance of these

representative baseline models as shown in Tables 3-5.

• Abundant resources. We have gathered a comprehensive

collection of resources dedicated to DDIs prediction. These

collections include open-sourced deep and graph learning

methods, available platform and toolkit, as well as an

important paper list. These resources can be accessed our

github1, which will be continuously updated.

• Future directions. We discuss the limitations of existing

works and suggest several promising future directions.

Data Sources

DDIs is not only known as a binary relationship but also

can be affected by numerous factors, such as chemical

substructures, targets and enzymes. The available datasets

collect multiple drug-related information including mechanism

of actions, protein structures and pharmacogenomic effects,

which provide great opportunity for scientific communities

to effectively develop novel methods to predict various drug

interactions. In this section, we provide a brief overview of

several commonly-used chemical and bioinformatics databases

for DDIs prediction as shown in Table 2.

1 https://github.com/xzenglab/

resources-for-DDIs-prediction-using-DL

https://github.com/xzenglab/resources-for-DDIs-prediction-using-DL
https://github.com/xzenglab/resources-for-DDIs-prediction-using-DL


Short Article Title 3

T
a
b
le

1
.
L
is
t
o
f
d
ee
p
a
n
d
g
ra
p
h
le
ar
n
in
g
m
o
d
el
s
fo
r
D
D
I
p
re
d
ic
ti
o
n
.

M
o
d
e
l

Y
e
a
r

In
p
u
t

R
e
p
r
e
s
e
n
t
a
t
io

n
A
r
c
h
it
e
c
t
u
r
e

T
a
s
k

C
o
d
e

D
e
e
p
D

D
I

[1
3
]

2
0
1
8

S
M

IL
E

S
S
tr

u
c
tu

ra
l

si
m

il
a
ri

ty
F

C
la

y
e
rs

B
in

a
ry

/
m

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
e
c
a
g
o
n

[1
4
]

2
0
1
8

S
M

IL
E

S
H

e
te

ro
g
e
n
e
o
u
s

n
e
tw

o
rk

E
n
c
o
d
e
r

+
d
e
c
o
d
e
r

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
L

R
D

A
[1

5
]

2
0
1
9

S
M

IL
E

S
D

ru
g

fe
a
tu

re
s

E
n
c
o
d
e
r

+
d
e
c
o
d
e
r

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

-

K
M

R
[1

6
]

2
0
1
9

D
ru

g
ID

M
u
lt

ip
le

d
ru

g
d
e
sc

ri
p
to

r
C

N
N

,
B

i-
L

S
T

M
+

a
tt

e
n
ti

o
n

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

-

M
R

-G
N

N
[1

7
]

2
0
1
9

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

W
e
ig

h
te

d
G

C
N

+
L

S
T

M
B

in
a
ry

/
m

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
H

C
A

D
D

I
[1

8
]

2
0
1
9

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

G
C

N
+

c
o
-a

tt
e
n
ti

o
n

B
in

a
ry

/
m

u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
3
I

[1
9
]

2
0
1
9

D
ru

g
ID

D
ru

g
fe

a
tu

re
s

E
n
c
o
d
e
r

+
a
g
g
re

g
a
to

r
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

K
G

-D
D

I
[2

0
]

2
0
1
9

D
ru

g
ID

K
n
o
w

le
d
g
e

g
ra

p
h

C
o
n
v
-L

S
T

M
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
D

IM
D

L
[2

1
]

2
0
2
0

D
ru

g
n
a
m

e
D

iv
e
rs

e
d
ru

g
fe

a
tu

re
s

D
N

N
M

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

G
o
G

N
N

[2
2
]

2
0
2
0

S
M

IL
E

S
M

o
le

c
u
la

r/
in

te
ra

c
ti

o
n

g
ra

p
h

G
N

N
+

a
tt

e
n
ti

o
n

M
u
lt

i-
c
la

ss
/
m

u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

K
G

N
N

[2
3
]

2
0
2
0

D
ru

g
ID

K
n
o
w

le
d
g
e

g
ra

p
h

G
N

N
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

B
io

B
E

R
T

[2
4
]

2
0
2
0

S
M

IL
E

S
E

m
b

e
d
d
in

g
B

E
R

T
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

S
k
ip

G
N

N
[2

5
]

2
0
2
0

D
ru

g
ID

S
k
ip

g
ra

p
h

M
P

N
N

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

C
A

S
T

E
R

[2
6
]

2
0
2
0

S
M

IL
E

S
S
u
b
st

ru
c
tu

re
E

n
c
o
d
e
r

+
d
e
c
o
d
e
r

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

E
P

G
C

N
-D

S
[2

7
]

2
0
2
0

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

G
C

N
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

H
O

G
C

N
[2

8
]

2
0
2
1

D
ru

g
ID

In
te

ra
c
ti

o
n

n
e
tw

o
rk

H
ig

h
-o

rd
e
r

G
C

N
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
U

F
F

IN
[2

9
]

2
0
2
1

S
M

IL
E

S
/
D

ru
g

ID
M

o
le

c
u
la

r
g
ra

p
h

+
k
n
o
w

le
d
g
e

g
ra

p
h

M
P

N
N

+
T

ra
n
sE

B
in

a
ry

/
m

u
lt

i-
c
la

ss
/
m

u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

S
u
m

G
N

N
[3

0
]

2
0
2
1

S
M

IL
E

S
/
D

ru
g

ID
K

n
o
w

le
d
g
e

g
ra

p
h
/
su

b
g
ra

p
h

G
N

N
+

a
tt

e
n
ti

o
n

M
u
lt

i-
c
la

ss
/
m

u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
IR

A
C

L
E

[3
1
]

2
0
2
1

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

G
C

N
+

C
o
n
tr

a
st

iv
e

le
a
rn

in
g

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

S
S
I-

D
D

I
[3

2
]

2
0
2
1

S
M

IL
E

S
S
u
b
st

ru
c
tu

re
G

A
T

+
C

o
-a

tt
e
n
ti

o
n

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

A
A

E
s

[3
3
]

2
0
2
1

D
ru

g
ID

K
n
o
w

le
d
g
e

g
ra

p
h

A
d
v
e
rs

a
ri

a
l

a
u
to

e
n
c
o
d
e
rs

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

G
N

N
-D

D
I

[3
4
]

2
0
2
2

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

G
A

T
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
F

F
G

N
N

[3
5
]

2
0
2
2

S
M

IL
E

S
+

m
o
le

c
u
la

r
g
ra

p
h

M
u
lt

i-
ty

p
e

fe
a
tu

re
G

N
N

+
B

iG
R

U
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

G
C

N
M

K
[3

6
]

2
0
2
2

D
ru

g
ID

D
D

I
g
ra

p
h

+
d
ru

g
fe

a
tu

re
s

G
C

N
+

L
in

e
a
r

tr
a
n
sf

o
rm

a
ti

o
n

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

-

D
e
e
p
D

ru
g

[3
7
]

2
0
2
2

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

R
G

C
N

B
in

a
ry

/
m

u
lt

i-
c
la

ss
/
m

u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

L
R

-G
N

N
[3

8
]

2
0
2
2

D
ru

g
ID

B
io

m
e
d
ic

a
l

n
e
tw

o
rk

G
C

N
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
A

N
N

-D
D

I
[3

9
]

2
0
2
2

D
ru

g
ID

B
io

m
e
d
ic

a
l

n
e
tw

o
rk

S
D

N
E

+
a
tt

e
n
ti

o
n

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
G

A
T

-D
D

I
[4

0
]

2
0
2
2

D
ir

e
c
te

d
g
ra

p
h

S
o
u
rc

e
/
ta

rg
e
t

e
n
c
o
d
in

g
S
o
u
rc

e
/
ta

rg
e
t

G
A

T
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

G
M

P
N

N
[4

1
]

2
0
2
2

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

G
a
te

d
M

P
N

N
B

in
a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

S
T

N
N

-D
D

I
[4

2
]

2
0
2
2

S
M

IL
E

S
S
u
b
st

ru
c
tu

re
E

n
c
o
d
e
r

+
d
e
c
o
d
e
r

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

d
e
e
p
M

D
D

I
[4

3
]

2
0
2
2

D
ru

g
ID

S
u
b
-n

e
tw

o
rk

s
R

G
C

N
E

n
c
o
d
e
r

+
d
e
c
o
d
e
r

M
u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

R
A

N
E

D
D

I
[4

4
]

2
0
2
2

D
ru

g
ID

D
D

I
n
e
tw

o
rk

R
o
ta

tE
+

n
e
tw

o
rk

e
m

b
e
d
d
in

g
B

in
a
ry

/
m

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
e
S
ID

E
-D

D
I

[4
5
]

2
0
2
2

F
in

g
e
rp

ri
n
ts

G
e
n
e

e
x
p
re

ss
io

n
s

D
N

N
M

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

S
A

-D
D

I
[4

6
]

2
0
2
2

S
M

IL
E

S
S
u
b
st

ru
c
tu

re
D

-M
P

N
N

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
S
A

N
[4

7
]

2
0
2
2

S
M

IL
E

S
S
u
b
st

ru
c
tu

re
T

ra
n
sf

o
rm

e
r-

li
k
e

fr
a
m

e
w

o
rk

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

L
a
G

A
T

[4
8
]

2
0
2
2

D
ru

g
ID

K
n
o
w

le
d
g
e

g
ra

p
h
/
su

b
g
ra

p
h

L
in

k
-a

w
a
re

G
A

T
B

in
a
ry

/
m

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
o
lo

rm
e
r

[4
9
]

2
0
2
2

2
D

st
ru

c
tu

re
s

M
o
le

c
u
la

r
g
ra

p
h

sp
a
ti

a
l

st
ru

c
tu

re
A

tt
e
n
ti

o
n

+
S
ia

m
e
se

n
e
tw

o
rk

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

M
D

D
I-

S
C

L
[5

0
]

2
0
2
2

D
ru

g
ID

D
ru

g
fe

a
tu

re
s

A
tt

e
n
ti

o
n

+
C

o
n
tr

a
st

iv
e

le
a
rn

in
g

M
u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

R
2
-D

D
I

[5
1
]

2
0
2
2

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

D
e
e
p

e
rG

C
N

+
F
e
a
tu

re
re

fi
n
e
m

e
n
t

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

B
io

D
K

G
-D

D
I

[5
2
]

2
0
2
2

S
M

IL
E

S
M

u
lt

ip
le

d
ru

g
fe

a
tu

re
s

A
tt

e
n
ti

o
n

+
D

N
N

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

-

A
M

D
E

[5
3
]

2
0
2
2

S
M

IL
E

S
S
e
q
u
e
n
c
e

+
A

to
m

ic
g
ra

p
h

M
P

A
N

+
T

ra
n
sf

o
rm

e
r

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
D

K
G

[5
4
]

2
0
2
2

S
M

IL
E

S
/
D

ru
g

ID
K

n
o
w

le
d
g
e

g
ra

p
h

E
n
c
o
d
e
r-

d
e
c
o
d
e
r

+
G

C
N

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

3
D

G
T

-D
D

I
[5

5
]

2
0
2
2

3
D

st
ru

c
tu

re
s

M
o
le

c
u
la

r
g
ra

p
h

+
p

o
si

ti
o
n

in
fo

rm
a
ti

o
n

3
D

G
N

N
+

te
x
t

a
tt

e
n
ti

o
n

B
in

a
ry

/
m

u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
S
N

-D
D

I
[5

6
]

2
0
2
3

M
o
le

c
u
la

r
g
ra

p
h

S
u
b
st

ru
c
tu

re
D

u
a
l-

v
ie

w
e
n
c
o
d
e
r

+
d
e
c
o
d
e
r

B
in

a
ry

c
la

ss
ifi

c
a
ti

o
n

L
in

k

D
G

N
N

-D
D

I
[5

7
]

2
0
2
3

S
M

IL
E

S
M

o
le

c
u
la

r
g
ra

p
h

+
su

b
st

ru
c
tu

re
D

ir
e
c
te

d
M

P
N

N
+

su
b
st

ru
c
tu

re
a
tt

e
n
ti

o
n

M
u
lt

i-
c
la

ss
c
la

ss
ifi

c
a
ti

o
n

L
in

k

K
G

2
E

C
a
p
su

le
[5

8
]

2
0
2
3

D
ru

g
ID

K
n
o
w

le
d
g
e

g
ra

p
h

G
C

N
+

C
a
p
su

le
M

u
lt

i-
la

b
e
l

c
la

ss
ifi

c
a
ti

o
n

L
in

k

https://bitbucket.org/kaistsystemsbiology/deepddi
https://github.com/mims-harvard/decagon
https://github.com/prometheusXN/MR-GNN
https://github.com/AstraZeneca/chemicalx
https://gitlab.com/peng10/d3i
https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction
https://github.com/YifanDengWHU/DDIMDL
https://github.com/Hanchen-Wang/GoGNN
https://github.com/xzenglab/KGNN
https://github.com/dmis-lab/biobert
https://github.com/kexinhuang12345/SkipGNN
https://github.com/kexinhuang12345/CASTER
https://github.com/AstraZeneca/chemicalx
https://github.com/kckishan/HOGCN-LP
https://github.com/xzenglab/MUFFIN
https://github.com/yueyu1030/SumGNN
https://github.com/isjakewong/MIRACLE
https://github.com/kanz76/SSI-DDI
https://github.com/dyf0631/AAE_FOR_KG
https://github.com/NWPU-903PR/GNN-DDI
https://github.com/kaola111/mff
https://github.com/wanwenzeng/deepdrug
https://github.com/zhanglabNKU/LR-GNN
https://github.com/naodandandan/DANN-DDI
https://github.com/F-windyy/DGATDDI
https://github.com/kanz76/GMPNN-CS
https://github.com/zsy-9/STNN-DDI
https://github.com/NWPU-903PR/MTDDI
https://github.com/DongWenMin/RANEDDI
https://github.com/GIST-CSBL/DeSIDE-DDI
https://github.com/guaguabujianle/SA-DDI
https://github.com/Hienyriux/MSAN
https://github.com/Azra3lzz/LaGAT
https://github.com/IsXudongZhang/Molormer
https://github.com/ShenggengLin/MDDI-SCL
https://github.com/linjc16/R2-DDI
https://github.com/wan-Ying-Z/AMDE-master
https://github.com/Blair1213/DDKG
https://github.com/hehh77/3DGT-DDI
https://github.com/microsoft/Drug-Interaction-Research/tree/DSN-DDI-for-DDI-Prediction
https://github.com/mamei1016/DGNN-DDI
https://github.com/Blair1213/KG2ECapsule


4 Xuan et al.

Table 2. The widely used databases for DDI prediction.

Database Publication year Num. of drug Num. of drug-related pairs Latest update Link

KEGG [59] 1995 11,147 324,183 DDIs V104.1, 2022-11-01 Link

DrugBank [60] 2006 1,706 191,808 DDIs V5.1.9, 2022-01-03 Link

SIDER [61] 2008 1,430 139,756 drug-side effect pairs V4.1, 2015-10-21 Link

TWOSIDES [62] 2012 645 4,649,441 DDIs - Link

OFFSIDES [62] 2012 1,332 18,842 drug-event associations - Link

BIOSNAP [63] 2018 1,332 41,520 DDIs - Link

KEGG

KEGG database is originally used to discover utilities of the

biological system and high-level functions, especially large-scale

molecular datasets generated by genome sequencing and other

high-throughput experimental technologies. As an integrated

database with sixteen resources, it was broadly classified into

systems, genomic, chemical and health information, such as

KEGG PATHWAY and KEGG DRUG. As for KEGG DRUG, it

collects multiple drug information of approved drugs and unifies

them according to their chemical structures. Specifically, each

entry is identified by the drug number and associated with

KEGG original annotations (e.g., drug metabolism), which

results in 1,925 approved drugs and their 56,983 interactions

spanning 11,147 drugs and 324,183 interactions respectively.

DrugBank

DrugBank is a free-to-access and online database that collects

drugs, drug targets, their mechanisms and interactions.

Version 1.0 started in 2006 and the latest version has been

updated to 5.1.9 in 2022. At present, it contains 14,944 drug

entries, including 2,729 approved small molecule drugs, 1,564

approved biologics (e.g., proteins and allergenics) and over

6,713 experimental drugs including discovery-phase. Generally,

given two drugs with their SMILES sequences, the final goal is

to predict their interaction type (i.e., binary, multi-class and

multi-label classification). DrugBank V5.1.4 is widely-used in

comparison experiment, and it contains 1,706 drugs and 191,808

drug pairs with 86 DDI types.

SIDER

Side Effect Resource collects multiple information from

marketed drugs and their side effects to provide a more

comprehensive view of actions of drugs and their adverse

reactions. It can predict the potential side effects of drug

candidates according to their binding fingerprints, chemical

structures and other chemical properties. Meanwhile, it

combines side effect information with other resources in

chemical biology, which will greatly benefit pharmacology and

medical research. Its current version 4.1 includes 1,430 drugs,

5,868 side effects and 139,756 drug-side effect pairs.

TWOSIDES

The TWOSIDES databases collect polypharmacy side effects

that are related to individual one in the drug pairs

or higher-order drug combinations. Overall, it contains

868,221 associations between 59,220 pairs of drugs and 1,301

adverse events. Additionally, it contains 3,782,910 significant

associations for which the drug pair has a higher side-effect

association score, evaluated by the proportional reporting

ratio (PRR) [64], than those of the individual drugs alone.

Specifically, it contains 645 drugs and side effects caused by

63,473 combinations of different drugs. Generally, given two

drugs with their SMILES sequences, the final goal is to predict

all side effects (i.e., multi-label classification).

OFFSIDES

The OFFSIDES database collects 438,801 off-label side effects

between 1,332 drugs and 10,097 adverse events. Off-label means

no record on the US Food and Drug Administration (FDA)’s

official drug label while on-label means the opposite. The drug

label lists in average 69 on-label adverse events. And it listed

an average of 329 high-confidence off-label adverse events for

each drug. Moreover, it recovers 38.8% (i.e., 18,842 drug-event

associations) of SIDER associations from the adverse event

reports.

BIOSNAP

The BIOSNAP dataset collects various types of interactions

between FDA-approved drugs by constructing a biological

network. Nodes represent drugs and edges represent drug

interactions. This dataset contains 1,322 approved drugs with

41,520 labelled DDIs that are extracted from drug labels and

scientific publications.

Molecular Representation

The representation of drug molecule is an crucial part in

drug-related tasks, including DDIs prediction. For example,

Tranylcypromine is an inhibitor of the enzyme monoamine

oxidase [65], functioning nonselectively and irreversibly, and

thus it is also employed clinically as an antidepressant and

anxiolytic agent in the treatment of mood and anxiety

disorders. Take its SMILES (Simplified Molecular Input Line

Entry System) [66] format C1C(C1N)C2=CC=CC=C2 as an

example, Tranylcypromine is represented by six commonly-used

molecular representation as shown in Fig. 2.

Sequences

As the most frequently-used molecule descriptor, SMILES is a

string of characters as shown in Fig. 2(A), where each atom

is encoded by a respective ASCII symbol, and chemical bonds,

branching as well as stereochemistry are represented by specific

symbols in SMILES strings. The SMILES sequence is capable

of converting the chemical structure into a spanning tree by

utilizing a longitudinal-first traversal tree algorithm to generate

a sequence of characters. A variety of deep learning models,

such as recurrent neural networks, are able to employ their

internal state (memory) to process variable length sequences of

inputs [67; 68; 69], using SMILES sequences as input to extract

the chemical context via various natural language processing

https://www.genome.jp/kegg/drug/
https://go.drugbank.com/
http://sideeffects.embl.de
https://tatonettilab.org/resources/nsides/
https://tatonettilab.org/resources/nsides/
http://snap.stanford.edu/biodata/
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Fig. 2. A diagram illustrating six commonly-used molecular representation approaches, including: (A) one-dimensional (1D) sequence-based

representation; (B) 2D graph-based representation; (C) 3D representation; (D) DDI network; (E) heterogeneous graph and (F) knowledge graph.

techniques, including Mol2Vec [70] and FCS [71]. Sequence-

based representations tend to be compact, memory-efficient,

and easily searchable.

2D graph

A more direct way to representing drug molecules is through

2D graph-based representation (i.e., molecular graph) as shown

in Fig. 2(B). In particular, we denote 2D graph as G2D =

(X,E), X ∈ RN×d represents the atom attribute matrix,

where N denotes the number of nodes and d denotes the

dimensionality of node feature, and E are characterized by

the type of chemical bonds between the atoms, including

single, double, triple and aromatic bond. Specifically, Figure

3 shows an example of the molecular graph representation of

Tranylcypromine. First, the SMILES sequence is transformed

into its 2D structures using RDKit tool. Predefined atomic

features are then assigned to each node based on its atom

number. In a molecular graph, each node contains a 78-

dimension initial feature vector to encode 5 types of atomic

features, including atomic symbol, adjacent atoms, adjacent

hydrogens, implicit value and aromaticity. Finally, we obtain

the molecular graph representation of Tranylcypromine that

consists of atom number (i.e., total number of atoms), atomic

features and edge features (i.e., edge list). This representation

allows us to extract the structural information from a molecular

graph. We then typically apply a transformation function T2D

to the topological graph. Given a 2D graph G2D or molecular

graph obtained from its SMILES sequence via RDKit [72], its

representation H2D can be computed from a 2D GNN model:

H2D = 2DGNN(T2D(X,E)). (1)

Usually, message passing neural networks (MPNN) [73] known

as one of the classic 2D GNN models are designed to

accomplish the encoding of graph-based methods. Since 2D

graph is usually stored in the form of adjacency matrices.

The utilization of 2D GNN not only allows for faster and

accurate combination of properties between two adjacent atoms

or chemical bonds, but it also allows the weights to be optimized

in the message passing process. With comparison to sequence-

based approaches, graph-based representations are easy to

extract the structural information via graph convolutional

operations, where bond weights can be updated and optimized

in message-passing networks.

3D graph

Many methods use sequence- and graph-based representations

of molecules as the inputs, such as SMILES sequences and

molecular graphs. Although these methods can effectively

preserve the structural information of drug molecules, they

can not capture well the inter-binding relationships between

ligands and receptors, especially biologically meaningful in

3D relationships, because the 3D coordinates of all atoms in

the ground-state molecule are critical to various applications,

including molecular property prediction [74] and molecular

conformer ensembles [75]. Here, 3D graph as shown in Fig.

2(C) represents the spatial arrangements of each atom in the 3D

space, containing a list of atoms with atom types and atomic

coordinates. Generally, each molecule with n atoms is expressed

as an undirected graph G = (V, E), where V = {vi}ni=1 is the set

of vertices symbolizing atoms and E = {eij |(i, j) ∈ |V| × |V|}
is the set of edges representing inter-atomic bonds. Each node

vi ∈ V indicates the atomic attributes (e.g., the element type),

and each edge eij ∈ E describes the connection between vi

and vj , and is labeled with its chemical type. Additionally,

we also assign virtual types to the unconnected edges. For

3D geometry graph, each atom in V is embedded in the 3-

dimensional space with a coordinate vector c ∈ R3, and the

full set of positions (i.e., the conformation where atoms are

represented as their Cartesian coordinates) can be represented

as C = [c1, c2, ..., cn], where ci ∈ R3. Then we generally apply
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Fig. 3. An example of the molecular graph representation of Tranylcypromine by using RDKit.

a transformation function T3D on the geometry graph. Given a

geometry graph G3D = (X,C), its representation H3D can be

obtained via a 3D GNN model:

H3D = 3DGNN(T3D(X,C)). (2)

DDI network

DDIs can be associated with biological, chemical, and

phenotypic information about drugs. The drug-drug interaction

network (DDI network) is proposed to learn the potential

associations between drug molecules. Generally, the DDIs

prediction problem is formulated as a missing link prediction

task by constructing a DDI network with drugs as nodes

and known interactions as edges. Specifically, drugs should

be represented as feature vectors via interaction profile from

known interactions to build prediction models. As shown in

Fig. 2(D), let A, B, C, ..., H be a set of given drugs, the

drug interaction profile, which is a binary vector indicating the

presence or absence of interaction between drugs (e.g., A←→E,

A←→G), can be represented as an interaction network.

Heterogeneous graph

Heterogeneous graph (HetG) contains a wealth of information

with structural relations (i.e. edges) among nodes of various

types, as well as unstructured content associated with each

node [76]. For example, HetG can be expressed as to

involve many other types of biological entity relationships in

the process of predicting DDIs. Considering these different

associations can enhance the prediction performance. In

general, the HetG associated with DDIs is expressed as a

graph G = (V,E,OV , RE), where V and E denote the sets

of nodes and links, respectively. OV and RE represent the

set of object types and that of relation types, respectively.

Furthermore, each node is associated with heterogeneous

contents (e.g., attributes). Specifically, the HetG denotes

relations between different pairs, including drugs and targets,

drugs and side-effects, drugs and diseases. For instance, Fig.

2(E) illustrates the biological heterogeneous graph centered

around drug Fulvestrant, where edges with distinct colors

denote different relations, and arrows indicate the direction of

information flow.

Knowledge graph

Recently, knowledge graphs (KGs), which are a form of

structured human knowledge, have been gaining increasing

attention from both academic and various aspects of the

drug discovery domain [77]. For example, KGs can be

utilized to better integrate multiple entity types and diverse

association relations between biological entities. This approach

allows for the extraction of high-order semantic features

to improve DDIs prediction. KGs can be represented by

a structured representation of facts, which comprised of

entities, relationships, and semantic descriptions. Generally,

a knowledge graph is denoted by G = (V, E,F), where E, R
and F are sets of entities, relations and facts, respectively.

A fact is denoted as a triple (h, r, t) ∈ F . As shown in Fig.

2(F), entities (i.e., nodes) with different color and alphabet

represent real-world biological objects (e.g., drug, target and

side-effect), and relationships (i.e., edges) depict the connection

between entities, where semantic descriptions of entities and

their relationships encompass types and properties with a

clearly defined meaning, including Drug Disease, Drug Target

Gene, and Drug Brite. As a topical concrete application,

KGs have been utilized in helping to combat the COVID-

19 pandemic [78; 79]. Additionally, there are few existing

knowledge graph covering various aspects of the drug discovery

process, including Hetionet [80], DRKG [81], BioKG [82],

PharmKG [83], OpenBioLink [84] and Clinical Knowledge

Graph [85]. Note that a comprehensive review is beyond the

scope of this work and readers who are interested are directed

to a dedicated review [86].

Models

The DDIs prediction is to develop a computational model that

receives two drugs with an interaction type as inputs and

generates an output prediction indicating whether there exists

an interaction between them. As introduced in previous section

(i.e., Molecular Representation), drug molecules generally use

RDKit to convert its SMILES sequence into molecular graphs

with nodes as atoms and edges as chemical bonds. Specifically,

a graph for a given SMILES is denoted by G = (V,E), where

V is the set of N nodes represented by a d-dimensional vector,

and E is the set of edges represented as an adjacency matrix

A. In a molecule graph, xi (resp., xj) ∈ V is the i (resp.,

j)-th atom and eij ∈ E is the chemical bond between the xi

and xj . Owing to the non-Euclidean and translation invariance,

GNNs have been proposed to replace traditional convolution

networks in order to extract drug feature representations from

chemical molecular graph. In the case of GNN, the process of

learning drug representation is essentially the message passing

between each node and its neighboring nodes. Thus we further

systematically review four types of GNN models for encoding

molecular representations into continuous vectors, as shown

in Fig. 3, including graph convolutional network, message

passing neural network, graph attention network and graph

auto-encoder.

Graph convolutional networks

Graph convolutional networks (GCNs) are a class of neural

networks specifically designed for graph-structured datasets.

Advances in this direction are often categorized as spectral-



Short Article Title 7

E
S

A

D

M

P

G

B

D C

N

D
ru

g
 D

is
e
as

e

Gene Cellular

Component

Drug Target 

Gene

S

A

D
M

P
G

B D

D
ru

g
 

D
is

e
as

eGene Cellular

Component

Drug 

Brite S

A

M

P
G

B

D

H=2

H=1

A. GCN

C

CC

C

C C

C

C

N
V1

V2

V3

V4

V5

V6

V7

V8

V9

V0

B. MPNN

V3 V4V2

V0

V1

h1
(T)

h2
(T)

h0
(T)

h3
(T) h4

(T)

hg

V3 V4V2

V0

V1

h1
(t)

h2
(t)

h0
(t+1)

h3
(t) h4

(t)

Graph attention Graph attention

SMILES Input layer Attentive layers Attentive layers Task layers

C. GAT

Drug E

Drug F

Drug G

Drug H

Drug A

Drug B

Drug C

Drug D

Drug E

Drug F

Drug G

Drug H

Drug A

Drug B

Drug C

Drug D

Bipartite graph Link predictionGraph auto-encoder

D. GAE

E
n
co

d
er

D
eco

d
er

Z
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and spatial-based approaches. Spectral-based approaches learn

compact representations of graph elements, their attributes

and supervised labels as shown in Fig. 4(A). Following the

original paper of GCN [87], the input of multi-layer GCN is

the node feature matrix X ∈ RN×d and the adjacency matrix

A ∈ RN×N that represents the connection of nodes. The

layer-wise propagation algorithm can be obtained as below:

H
l+1

= σ(D̃
−1/2

ÃD̃
−1/2

H
(l)

W
(l)

), (3)

where Ã = A + IN is the adjacency matrix of an undirected

graph G with added self-connections, and IN represents the

identity matrix, D̃ is diagonal matrix with D̃ii =
∑

jÃij and

W (l) is a layer-specific trainable weight matrix. Here, σ(·)
denotes an activation function (e.g., ReLU(·) = max(0, ·)).
And H(l) (resp., H(l+1)) ∈ RN×D represents the matrix of

activations in the l (resp., l + 1)-th layer, respectively. We

suppose that H(0) = X. The output Z ∈ RN×F (F is the

number of output features for every node) can be obtained as
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below:

Z = σ(D̃
−1/2

ÃD̃
−1/2

XΘ), (4)

where Θ ∈ RF×d represents the matrix of filter parameters.

In contrast, spatial-based approaches [88] define convolutions

directly on the graph by propagating and aggregating node

representations from neighboring nodes in the vertex domain,

as opposed to spectral-based GCN which depends on the

specific eigenfunctions of the Laplacian matrix. Following

KGNN [23], the proposed method learns latent representations

of drugs and their neighborhood entities embedding between

drug pairs from the constructed KG. Fig. 4(A) shows an

example of a 2-layer KGNN of the given G node (green) in

a KG. Note that besides the immediate neighbors (e.g., B, E

and P), it also extends KGNN to 2-layer (H=2) to extract both

high-order structures and semantic relations. Generally, given a

node v at the k-th depth and its graph convolution is computed

by:

h
k
N(v) ← AGGREGATEk

(
{hk−1

u , ∀u ∈ N (v)}
)
, (5)

h
k
v ← σ

(
W

k · CONCAT(h
k−1
v ,h

k
N(u))

)
, (6)

where each node v ∈ V aggregates the representation vectors

of all its immediate neighboring nodes u ∈ N (v) in the

current depth via some learnable AGGREGATE operation.

Then it combines the node’s current representation hk−1
v with

its aggregated neighborhood representation hk−1
N(v)

, and finally

passes the combined vector to a fully-connected layer with a

nonlinear activation function σ(·), followed by a normalization

step. And the output of final representation at depth K are

denoted by zv = hK
v .

The aggregator functions include mean, LSTM , and

pooling aggregators. The mean aggregator can be simplified

as follows:

h
k
v ← σ

(
W ·MEAN({hk−1

v } ∪ {hk−1
u , ∀u ∈ N (v)})

)
, (7)

AGGREGATE
pooling
k = max

(
{σ(Wpoolh

k
ui

+ b), ∀ui ∈ N (v)}
)
.

(8)

Message passing neural network

Message passing neural network (MPNN) is a typical type

of GNNs that maps an undirected graph G to a graph-level

vector hG using Message passing and readout. As depicted

in Fig. 4(B), message passing is first used to update node-

level features (i.e., V0) by aggregating messages from their

neighbor nodes (i.e., V1, V2 and V3). Following that, the readout

process is designed to generate a graph-level feature vector by

aggregating all the node-level features from a molecule graph.

Finally, a label is predicted for the graph based on the graph-

level feature vector. Concretely, the Message passing consists

of T steps. On each step t, node-level hidden feature h
(t)
i

and messages m
(t)
i associated with each node vi are updated

using message function Mt and node update function Ut. Their

definitions are as follows.

m
t+1
i =

∑
vj∈N(vi)

Mt(h
(t)
i ,h

(t)
j , eij), (9)

h
t+1
i = Ut(h

(t)
i ,m

t+1
i ), (10)

where N(vi) represents the set of neighbors of vi in the graph G,

and h
(0)
i is set to the initial atom features xi. The readout then

uses a readout function R to obtain a graph-level feature vector

based on the node-level features at the final step as follows.

hg = R({h(T )
i |vi ∈ G}). (11)

The message function Mt, node update function Ut, and

readout function R are all learned differentiable functions.

Graph attention network

Traditionally, GCN assigns the same weight to each neighbor

node, and not every neighbor node has the same importance.

Thus, graph attention network (GAT) is proposed to introduce

a graph convolution model based on self-attention mechanism,

which incorporates a graph attention layer in its architecture

as shown in Fig. 4(C). According to the original paper of

GAT [89], a set of node features x ∈ RF is used as input of

GAT layer, and a linear transformation is applied to each node

based on a weight matrix W ∈ RF×F
′

, where F and F
′

are

the dimensions of the input and output nodes, respectively.

Moreover, attention coefficients between a node and its 1-hop

neighbors are adopted to obtain the output node as follows:

eij = α(Wh⃗i,Wh⃗j), (12)

where eij represents the importance of node j to node i. To

ensure that the coefficients are comparable across different

nodes, they are normalized across all choices of j using the

softmax function as follows:

αij = softmaxj(eij), (13)

the non-linearity function σ is finally applied to compute the

output node h⃗
′

i by:

h⃗
′

i = σ(
∑
j∈Ni

aijWh⃗j), (14)

while a basic operation of attention is multi-head. Simply, it

is to repeat the previous operation multiple times, but the

parameters that need to be trained are different each time,

so that we can extract more information. The process of

multi-head can be computed by:

h⃗
′

i =
K∏

k=1

σ(
∑
j∈Ni

a
k
ijW

k
h⃗j), (15)

where K is the number of heads.

Graph auto-encoder

Graph auto-encoder (GAE) has been widely used in the field

of unsupervised learning on graph-structure data. Obtaining

the suitable embeddings to represent nodes in the graph is not

trivial, GAE adopt the encoder-decoder structure to realize

the goal and to apply to the downstream tasks, such as link

prediction. If we view drugs as nodes and DDI as links in

a graph, DDIs prediction can be considered as a task to

complete a DDI adjacency matrix. As shown in Fig. 4(D), the

encoder represents drugs into scalars and decoders use these

scalars to rebuild the whole graph by predicting the existence

of a link between a pair of nodes/drugs. The encoder can be

viewed as representation methods and decoder can be viewed

as classifiers. Generally, GAE employs GCN as an encoder
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Fig. 5. The pipeline of deep and graph learning methods for DDIs prediction. In general, drugs and their relevant information such as ID, name, and

SMILES sequences are obtained from accessible data sources like DrugBank and TWOSIDES dataset. These drugs can then be optionally encoded into

feature vectors using various molecular representation methods, such as molecular graph representation. The resulting representations, such as similarity

matrices or 2D graphs, are subsequently fed into suitable models, such as Graph Neural Networks (GNNs), to generate interaction results or predicted

scores based on the specific prediction tasks.

to obtain latent representations or embedding of nodes. This

process can be expressed as follows:

Z = GCN(X,A), (16)

where Z represents the latent representations of all nodes, X

and A represent the feature matrix of the node and adjacency

matrix, respectively. Here X and A as input are then fed into

GCN function, and we have:

GCN(X,A) = ÃReLU(ÃXW0)W1, (17)

where Ã = D−1/2AD−1/2, W0 and W1 represent parameters

to be learned. In short, GCN is equivalent to a function that

takes node features and adjacency matrix as input and outputs

node embedding. After that, GAE uses the inner-product as a

decoder to reconstruct the original graph, the computation of

reconstructed adjacency matrix Â can be formulated by:

Â = σ(ZZ
T

), (18)

in order for the reconstructed adjacency matrix to be as close

to the original adjacency matrix as possible. Because the

adjacency matrix determines the structure of the graph.

Prediction tasks

Due to the increasing amount of data and advanced algorithms,

DL has led to breakthroughs in various domains [90; 91; 92; 93],

including in the application of DDIs and drug-related prediction

tasks [94; 95; 96; 97; 98]. Fig. 5 shows an illustrative pipeline

of several DL methods.

In the beginning, this line of work develop effective

representation method (see Section 3) to capture high-

level hidden embeddings from various public datasets (see

Section 2). Different from traditional machine learning

based methods that heavily rely on the handcraft feature

and domain knowledge, these approaches can learn more

abstract information via deep architectures (see Section 4)

without manually selecting and tuning features [99; 100],

and the learned latent embeddings are finally used to

predict on downstream tasks. There are many different types

of classification tasks that may be encountered in DDIs

prediction and specialized approaches to modeling that may

be used for each, including binary, multi-class and multi-label

classification.

Classification based predictive modeling involves assigning

a class label to input sample. Binary classification refers to

predicting whether interactions exist without determining their

specific type, and multi-class classification involves predicting

the specific type of DDIs between drug pairs. Following [29]

in the model training, we generally optimized the model

parameters by minimizing the cross-entropy loss in the binary

and multi-label classification tasks, as described below:

L1 = −[yijlogŷij + (1− yij)log(1− ŷij)], (19)

where ŷij denotes the interaction label for drug pair (di, dj) in

binary classification task, and in multi-label task, each element

yij is the one-hot vector with 86 elements (e.g., 86 DDI types

in DrugBank dataset).

Multi-label classification involves predicting one or more

DDIs type for each drug pair, the loss is defined as follows:

L2 = −
Nc∑
c=1

yclogŷc, (20)

where Nc is the number of multi-class DDI types, yc ∈ 0, 1

describes whether current type c is the same as the true label of

sample pair, and ŷc indicates the probability that the observed

sample (di, dj) belongs to type c.
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Progress and Taxonomy of Computational
Approaches

Computational approaches mainly design effective algorithms

to discover patterns by using public datasets retrieved from

clinical texts [101], electronic health records [102; 103], and

social media [104]. These methods can be roughly divided

into chemical structure, network based, NLP based and hybrid

methods. A Taxonomy of the different methods is shown in Fig.

1. Furthermore, we summarize and formulate 46 state-of-the-

art deep and graph learning models in the recent years using a

unified symbolic system in Table 1.

Chemical structure based methods

The vast majority of chemical structure based methods rely

on similarity based, molecular graph, and substructure based

approaches, respectively.

Similarity based

Theses methods are based on the assumption that similar drugs

may perform similar DDIs. They first extract some similarities

from molecular structures [105], and various properties (e.g.,

phenotypic [106], functionality [107], and side effects [108])

as features for model training. Then they adopt classifiers to

predict potential DDIs. For example, DeepDDI [13], which

consists of structural similarity profile generation pipeline and

deep neural network (DNN), is proposed to use the structural

information to classify 86 DDIs types. MLRDA [15] is proposed

to effectively exploit multiple drug features by leveraging a

novel unsupervised disentangling loss CuXCov. Similarly, a

knowledge-oriented DNN model is developed by KMR [16] to

discover the interaction information among multiple features.

Furthermore, D3I [19] is presented to conduct cardinality-

and order-invariant high-order DDIs prediction. DDIMDL [21]

is constructed by the similarity assumption, and it built a

multi-modal DL framework with multiple drug features to

predict DDI events. A novel DL-based framework named

DeSIDE-DDI [45] is developed to show more concern in

interpretation on underlying genes, and it leveraged drug-

induced gene expression signatures to engineer dynamic drug

features by using a gating mechanism. Recently, a multi-type

DDI prediction model named MDDI-SCL [50] is presented by

supervised contrastive learning and three-level loss functions.

Molecular graph

Recent advances in artificial intelligence and technologies

provide a set of potentially promising GNNs based approaches

for drug-related prediction tasks, including molecular property

[109], and molecular interactions [110]. Naturally, drug

molecules can be encoded by graph with atoms as nodes and

chemical bonds as edges. Graph convolution neural networks

(GCNs) have been proposed to extract node-level or graph-level

features in various constructed graph [111]. For example, MR-

GNN [17] is proposed to use multiple graph convolution layers

to extract node features from different neighboring nodes in a

structured entity graph. Moreover, MHCADDI [18] leverages a

co-attentional mechanism to combine the type of side-effect and

the molecular structures to obtain drug-level representation.

EPGCN-DS [27] adopts a GCN based framework for type-

specific DDI identification from molecular structures. GNN-

DDI [34] learns k-hops drug representations its molecular graph

via a five-layer GAT encoder. MFFGNN [35] combines the

topological structure in molecular graphs with the interaction

relationship between drugs and the local chemical context in

SMILES sequences. Furthermore, Molormer [49] takes the two-

dimension (2D) structures of drugs as input and encodes the

molecular graph with spatial information based on a lightweight

attention mechanism. DeepDrug [37] captures the intrinsic

structural information of a compound by utilizing relational

GCN module. Recently, R2-DDI [51] further learns the drug

representation by designing a relation-aware feature refinement

framework.

Substructure based

Different from the aforementioned methods (i.e., MR-GNN)

that takes the whole chemical structures into account,

more recent efforts have attempted to leverage GNN for

powerful feature extraction of drug substructures. A chemical

substructure representation framework named CASTER [26]

encodes the functional substructures of drugs. SSI-DDI [32]

operates directly on the raw molecular graph representations

to identify pairwise interactions between their corresponding

substructures. A gated MPNN (GMPNN) [41] learns chemical

substructures with different sizes and shapes from the molecular

graph representations. A substructure-aware tensor model,

referred as to STNN-DDI [42], learns a 3D tensor to characterize

a substructure-substructure interaction space. SA-DDI [46]

develops a directed MPNN with attention mechanism to extract

the size- and shape-adaptive substructures. A Transformer-like

framework (MSAN) [47] extracts substructures via attention

mechanism to associate atoms with learnable pattern vectors.

DSN-DDI [56] employs local and global representation learning

modules iteratively, and learns drug substructures from

intra-view and inter-view simultaneously. DGNN-DDI [57]

exploits the molecular structure and interaction information

between chemical substructure via a co-attention mechanism.

Furthermore, incorporating geometric information into GNNs

to benefit some molecular prediction tasks has recently

gained research attention [112], and 3D structures of drug

molecules also contribute to DDIs tasks, where 3DGT-DDI

[55] adopts 3D structural information of molecular graph and

position information to improve the model performance, which

can deeply explore the effect of drug substructure on DDI

relationship.

Network based methods

In general, network based approaches infer the novel DDIs

via label propagation [113; 114], multiple sources [115] or

newly calculated features [116]. With the increasing availability

of large biomedical network and the rapid development of

deep learning, some studies attempt to incorporate with

various advanced techniques, including graph embedding, link

prediction, and knowledge graph.

Graph embedding

Various graph embedding algorithms have been proposed to

acquire potentially effective network-based features, including

matrix factorization-based methods (e.g., GraRep [117], HOPE

[118], FGRMF [119], BRSNMF [120]) that utilize the adjacency

matrix as the input to learn latent embeddings from matrix

factorization and random walk-based methods (e.g., DeepWalk

[121], node2vec [122] and struc2vec [123]) that first generate

sequences of nodes through random walks and then feed

the sequences into the model to learn node representations,

and neural network-based methods (e.g., Line [124], SDNE

[125] and GAE [126]) that adopt different neural architectures
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and use various graph information as input. More detailed

introduction of graph embedding on biomedical networks refer

to [127]. Recently, GCNMK [36] obtains the embeddings of

drugs by constructing two DDI graphs as the graph kernels.

Link prediction

Meanwhile, some GNN approaches cast the prediction as a

link prediction problem on DDI graph or network. Previously,

Decagon [14] is presented to develop a graph auto-encoder

approach for multirelational link prediction on a multi-modal

graph that consists of multiple interactions (e.g., drug-protein

target interactions). In addition to aggregate information from

direct interactions in biological network, a skip similarity

approach named SkipGNN [25] that receives neural messages

from two-hop neighbors and direct neighbors in the interaction

network. Analogously, DANN-DDI [39] builds multiple drug

feature networks and learns drug representations from these

networks by using the graph embedding method. HOGCN [28]

is introduced to adopt a higher-order GCN to gather different

features from the higher-order neighborhood for biomedical

interaction prediction. A GNN based on graph structure

and initial features, named LR-GNN [38], constructs the

link representation by designing a propagation algorithm to

capture the node embedding. Furthermore, DGAT-DDI [40]

is the first approach for predicting asymmetric interactions

among drugs, and it designs a directed GAT to learn the

embeddings of the source and the target role. deepMDDI [43]

learns the topological features of DDI network by combining

RGCN encoder with similarity regularization of multiple drug

features. Recently, a relation-aware network embedding model,

abbreviated RANEDDI [44], extracts the multirelational

information and relation-aware network structure information

together.

Knowledge graph

Existing GNN approaches for DDIs typically depend on

one source of information, while using information from

multiple sources could help improve predictions [128; 54].

Particularly, knowledge graph (KG) has greatly stimulated

research on various domains, including relation inference and

recommendation [129]. In our knowledge, KG-DDI [20] is the

first specialized for DDIs task that embeds the nodes in the

constructed KG using various embedding approaches. Another

KG embedding framework (AAEs) [33] uses adversarial

autoencoders based on Wasserstein distances and Gumbel-

Softmax relaxation. Furthermore, KGNN [23] successfully

adopts GCNs with neighborhood sampling to explicitly extract

the neighborhood relations. More recently, subgraph structures

have been found to contain rich information for many graph

learning tasks. SumGNN [30] further uses KG to extract

tractable pathway by designing a graph summarization module

on subgraphs. And a link-aware graph attention method called

LaGAT [48] generates multiple attention pathways for drug

entities based on various drug pair links in KG. DDKG [54]

further learns the drug embeddings from their attributes in

the KG, and then simultaneously considers both neighboring

node embeddings and triple facts by attention mechanism.

KG2ECapsule [58] integrates capsule network to explicitly

model the multi-relational DDI data based on biomedical KG.

NLP based methods

As training DNNs from scratch often requires a large number

of labeled data which are expensive to acquire in real-world

scenarios, inspired by the recent success in natural language

processing (NLP), pre-trained models have been proposed

to learn universal molecular representations from massive

unlabeled molecules and fine-tuned on downstream tasks with

task-specific labeled data. BioBERT [24] is first introduced

to investigate how the pre-trained language model BERT

[130] are pre-trained using large-scale unlabeled molecular

databases and then fine-tuned for adaption to biomedical text

mining. Subsequently tremendous efforts have been devoted

to pre-trained language model for biomedical prediction tasks,

including property prediction [112], molecular generation [131],

peptide and HLA (pHLA) binding prediction [132]. More

systematic introduction of molecular pre-trained models refer

to [133].

Hybrid methods

Despite the remarkable progress gained by previous methods,

improving the prediction accuracy is still crucial. Hybrid

methods is proposed to combine with two or multiple types

of existing methods in an efficient pattern. For example,

GoGNN [22] extracts features from both structured entity

graphs and DDI network in a hierarchical way via dual-

attention mechanism. MUFFIN [29] jointly learns the drug

representation from molecular structure and biomedical KG.

BioDKG-DDI [52] adaptively integrates three different types of

drug features, molecular structure, drug global information and

drug functional similarity representation to predict novel DDIs.

Recently, contrastive learning has been successfully applied in

the application of bioinformatics, including gene regulatory

interactions [134], and drug-target interaction [135]. A novel

unsupervised contrastive learning method named MIRACLE

[31] is introduced, and it treats a DDI network as a multi-

view graph where each node in the interaction graph represents

a drug molecular graph instance. AMDE [53] jointly encodes

2D graph feature and 1D SMILES sequence by using message

passing attention network and Transformer, respectively.

As illustrated in Table 1 in chronological order, we present

different deep and graph learning methods. Specifically, the

columns of Model, Input, Representation, Architecture, Task,

and Code represent the name, data format as the input of

model, encoding form of input data, detailed architecture or

technology adopted by the proposed model, functions can be

implemented by the model, and available link of source code,

respectively. The methods listed in Table 1 are also appeared

in the taxonomy in Figure 1.

Discussion

To comprehensively investigate the predictive performance of

deep and graph learning models, we compared the experimental

results of surveyed methods under binary, multi-class and

multi-label classification tasks, respectively. In the following

sections, we first introduce the benchmark datasets, then

present the detailed of evaluation metrics under different

prediction tasks, and finally analyze the comparison results.

Benchmark dataset

We chose DrugBank and TWOSIDES datasets as benchmark

datasets owing to their wide use across many studies. For the

binary classification task, it always assigned a label ”1” or ”0”

to indicate whether an interaction occurs between each pair of

drugs in DrugBank and TWOSIDES datasets. For the multi-

class classification task, the DrugBank dataset contains 191,808
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DDI triplets with 1,706 drugs and 86 types of pharmacological

relationships between drugs [56]. Following the same criterion

in Decagon [14], the interaction types with <500 triplets

were removed, resulting in 4,576,287 DDI triplets with 963

interaction types in the TWOSIDES dataset. For the multi-

label classification task, the TWOSIDES dataset contains 645

drugs (nodes) and 46,221 drug-drug pairs (edges) with 200

different drug side effect types as labels. For each edge, it may

be associated with multiple labels. Following Decagon [14], it

kept 200 commonly-occurring DDI types ranging from Top-600

to Top-800 to ensure every DDI type has at least 900 drug

combinations. As reported in KG2ECapsule [58], it extracted

the drug relation from the description of drug-interaction in

DrugBank dataset. The aim was to categorize the types of DDI

relations into two groups based on this extracted information.

Following the same data split scheme in GMPNN [41], the

benchmark dataset was split into train, validation, and test

sets using a ratio of 6:2:2. Negative samples were randomly

generated at a ratio of 1:1, meaning that they consisted of drug

pairs that had not appeared in the positive samples.

Evaluation metrics

Generally, we denote the true label and predicted values of

DDIs by y and ŷ, respectively. For the binary classification

prediction, experiment results are reported with the following

four metrics across the 5-folds. Area under the precision-recall

curve (AUPRC) is the area under the plot of the precision

rate against recall rate at various thresholds, accuracy (ACC)

is defined as the number of correct predictions divided by the

number of total predictions, area under the receiver operating

characteristic (AUROC) is the area under the plot of the

true positive rate against the false positive rate at various

thresholds, and F1 score is the harmonic mean of precision

and recall. The corresponding mathematical calculation is

represented as follows.

Precision =
TP

TP + FP
, (21)

Recall = TPR =
TP

TP + FN
, (22)

FPR =
FPR

FP + TN
(23)

ACC =
TP + TN

TN + TP + FN + FP
, (24)

F1− score =
2TP

2TP + FN + FP
, (25)

where TP , FP , TN and FN denote the value of true positive,

false positive, true negative and false negative, respectively.

The AUPRC curve is drawn based on the values of FPR and

TPR, where the x-axis is TPR and the y-axis is FPR. This is

in contrast to AUROC curves, where the x-axis is FPR and

the y-axis is TPR.

For the multi-class classification prediction, we follow

DeepDDI [13] and consider the following metrics, including

mean accuracy, macro precision, macro recall and macro

F1. Macro metrics are used to reflect the average performance

across different interaction types. For example, macro precision

is defined as the average of the precision values of different

interaction types. Their definitions are as follows:

Mean accuracy =
1

l

l∑
i=1

TPi + TNi

TPi + FNi + FPi + TNi

, (26)

Macro recall =
1

l

l∑
i=1

TPi

TPi + FNi

, (27)

Macro precision =
1

l

l∑
i=1

TPi

TPi + FPi

, (28)

Macro F1 =
2(Macro precision)(Macro recall)

(Macro precison) + (Macro recall)
, (29)

where l is the number of DDI interaction types. In addition,

to considering both precision and recall, we selected the

threshold value, which achieves the maximum value of F1 in

each interaction type, as the type-specific threshold.

For multi-label classification prediction, we follow SumGNN

[30] and a group of metrics is used to measure the

prediction, including ROC-AUC, PR-AUC, Accuracy (ACC)

and F1-score. ROC-AUC is the average area under the

receiver operating characteristic curve as ROC − AUC =∑n
k=1 TPk∆FPk, where k represents kth true-positive and

false-positive operating point (TPk, FPk). PR-AUC is the

average area under precision-recall curve PR − AUC =∑
k=1 n∆Reck, where k is kth precision/recall oprating point

(Preck, Reck). For each side effect type, the performance is

individually calculated and use the average performance over

all side effects as the final result.

Results

In this section, we compared state-of-the-art deep and graph

learning models under binary, multi-class and multi-label

classification prediction task, respectively. Table 3 shows the

comparison results of 30 models under binary classification

task on two benchmark datasets. The performance of DDIs

prediction achieved by these models were all measured in

terms of AUPR, ACC, AUROC and AUC under 5-fold cross-

validation. The greater these evaluation metrics the better

the prediction. Although the division of the training and test

sets could be specific to models, such an evaluation is still

statistically significant. Specifically, from the observation we

found that RANEDDI (AUPRC = 0.9894) and KGNN (AUPRC

= 0.9892), which belong to network based methods, achieve

the best and second-best AUPRC performance compared with

chemical structure based and hybrid methods on DrugBank

datasets. This is because these methods (i.e., RANEDDI

and KGNN) can explore multi-relational information contained

in the DDI network or knowledge graph, while the graph

embedding approaches like DeepWalk, GraRep, DeepDDI or

substructure based method (e.g., CASTER) only learn from

similar drug features or chemical structural information. Note

that DANN-DDI obtains the best ACC result of 0.9962 over

all models, and R2-DDI achieves the best performance in

terms of AUROC and F1 score. Meanwhile, experimental

results on TWOSIDES dataset show that DSN-DDI, recently

published chemical structure based model, achieves better

performance than other baseline models on all evaluation

metrics. Particularly, the ACC, AUROC and F1 result of DSN-

DDI is 0.9883, 0.9990 and 0.9883, respectively. Interestingly,

the comparison indicates that network based methods (e.g.,

DANN-DDI and RANE-DDI) show similar performance to

chemical structure based methods (e.g., R2-DDI), while hybrid
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Table 3. Performance evaluation under binary classification task.

Method Year AUPRC ACC AUROC F1 Remarks

Dataset 1: DrugBanka

DeepWalk [121] 2014 0.9070 0.8349 0.9181 0.8357 Network based method

GreRep [117] 2015 0.9115 0.8443 0.9230 0.8461 Network based method

LINE [124] 2015 0.8915 0.8280 0.9092 0.8318 Network based method

SDNE [125] 2016 0.8782 0.8303 0.9029 0.8373 Network based method

GAE [126] 2016 0.7403 0.7491 0.8085 0.7889 Network based method

struc2vec [123] 2017 0.8672 0.7882 0.8735 0.7962 Network based method

KG-DDI [20] 2019 - 0.7867 0.7867 0.7843 Network based method

KGNN [23] 2020 0.9892 0.9561 0.9912 0.9566 Network based method

AAEs [33] 2021 0.7899 - 0.9480 - Network based method

DANN-DDI [39] 2022 0.9709 0.9962 0.9763 0.9692 Network based method

DGAT-DDI [40] 2022 0.943 0.886 0.951 0.884 Network based method

RANEDDI [44] 2022 0.9894 - 0.9898 0.9562 Network based method

AMDE [53] 2022 - 0.9763 0.9901 0.9760 Network based method

DeepDDI [13] 2018 0.828 - 0.844 0.772 Chemical structure based method

KMR [16] 2019 0.9568 0.9219 0.9512 0.9191 Chemical structure based method

CASTER [26] 2020 0.829 - 0.861 0.796 Chemical structure based method

SSI-DDI [32] 2021 0.9814 0.9447 0.9838 - Chemical structure based method

MFFGNN [35] 2022 0.9681 - 0.9539 0.9254 Chemical structure based method

DeepDrug [37] 2022 0.98 - - 0.94 Chemical structure based method

GMPNN [41] 2022 - 0.9530 0.9846 - Chemical structure based method

SA-DDI [46] 2022 - 0.9623 0.9880 0.9629 Chemical structure based method

MSAN [47] 2022 - 0.9700 0.9927 0.9704 Chemical structure based method

R2-DDI [51] 2022 - 0.9815 0.9970 0.9816 Chemical structure based method

3DGT-DDI [55] 2022 - - 0.970 - Chemical structure based method

DSN-DDI [56] 2023 - 0.9694 0.9947 0.9693 Chemical structure based method

MIRACLE [31] 2021 0.9234 - 0.9551 0.8360 Hybrid method

BioDKG-DDI [52] 2022 - 0.9370 0.9830 0.9390 Hybrid method

Dataset 2: TWOSIDESb

MR-GNN [17] 2019 - 0.7623 0.85 0.7788 Chemical structure based method

MHCADDI [18] 2019 - - 0.8820 - Chemical structure based method

SSI-DDI [32] 2021 - 0.7820 0.8585 0.7981 Chemical structure based method

DeepDrug [37] 2021 - - - 0.84 Chemical structure based method

GMPNN [41] 2022 - 0.8283 0.9007 0.8408 Chemical structure based method

SA-DDI [46] 2022 - 0.8745 0.9317 0.8835 Chemical structure based method

R2-DDI [51] 2022 - 0.8615 0.9149 0.8731 Chemical structure based method

DSN-DDI [56] 2023 - 0.9883 0.9990 0.9883 Chemical structure based method

a The performance on DrugBank dataset of DeepDDI was directed from CASTER results, and that of DeepWalk, GreRep, LINE, SDNE, GAE, struc2vec

and KG-DDI were reported from KGNN results, and that of other methods were directly obtained from original papers. The division of the train and

test set might be different for each model.
b The performance on TWOSIDES dataset of MR-GNN, MHCADDI, SSI-DDI, GMPNN and SA-DDI were reported from DSN-DDI results, and that of

other methods were directly obtained from original papers. The division of the train and test set might be different for each model.

methods show stable performance on DrugBank datasets under

binary classification task.

In the multi-class classification task, we chose the DrugBank

dataset as benchmark dataset owing to its wide use across

many studies and collected 10 deep and graph learning models

into the comparison list, which is shown in Table 6. From

this table, we found that chemical structure based methods

significantly outperform network based and hybrid methods on

most metrics. More specifically, Molormer achieved the best

score of 0.9667 on mean accuracy, DGNN-DDI achieved the

macro recall and macro F1 score of 0.9788 and 0.9616 compared

to other methods, respectively. In addition, we can see that

chemical structure based methods achieved stable performances

across all metrics. For example, the macro recall of GMPNN

and SA-DDI are 0.9725 and 0.9746, respectively. These

results demonstrate that they achieved similar performance

with DGNN-DDI, indicating that they belong to substructure

based methods. This is a very encouraging result. The reason

could be that (i) DDIs are fundamentally caused by chemical

substructure interactions, especially in multi-class classification

tasks that focus on atom similarity and key substructures; (ii)

more effective strategies are proposed by these methods to

specifically detect substructures with irregular size and shape,

which can further enhance the representation capability of the

model. In addition, the multi-class classification task is more

difficult than the binary classification task.

In the multi-label classification task, we chose DrugBank

and TWOSIDES datasets as benchmark datasets and compared

11 deep and graph learning models as shown in Table

5. From this table, we observed that KG2ECapsule and

SumGNN consistently outperformed other methods in all

evaluation metrics. In particular, KG2ECapsule improves over

the strongest baselines with respect to PR-AUC by 2.71%, ACC

by 1.03%, ROC-AUC by 2.8% and F1 by 2% on DrugBank
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Table 4. Performance evaluation under multi-class classification task.

Method Year Mean accuracy Macro precision Macro recall Macro F1 Remarks

Dataset 1: DrugBanka

DeepWalk [121] 2014 0.8000 0.8220 0.7101 0.7469 Network based method

LINE [124] 2015 0.7506 0.6870 0.5451 0.5804 Network based method

Decagon [14] 2018 0.8719 - - 0.5735 Network based method

KG-DDI [20] 2019 0.8923 0.7945 0.7667 0.7666 Network based method

KGNN [23] 2020 0.9127 0.8583 0.8170 0.8291 Network based method

SkipGNN [25] 2020 0.8583 - - 0.5966 Network based method

SumGNN [30] 2021 0.9266 - - 0.8685 Network based method

LaGAT [48] 2022 0.9604 - - 0.9289 Network based method

DeepDDI [13] 2018 0.8371 0.7275 0.6611 0.6848 Chemical structure based method

DDIMDL [21] 2020 0.8852 0.8471 0.7182 0.7585 Chemical structure based method

SSI-DDI [32] 2021 0.8965 0.8763 0.9321 0.8993 Chemical structure based method

GMPNN [41] 2022 0.9485 0.9346 0.9725 0.9495 Chemical structure based method

SA-DDI [46] 2022 0.9565 0.9472 0.9746 0.9573 Chemical structure based method

Molormer [49] 2022 0.9667 0.9419 0.9270 0.9311 Chemical structure based method

MDDI-SCL [50] 2022 0.9378 0.8804 0.8767 0.8755 Chemical structure based method

DGNN-DDI [57] 2023 0.9609 0.9472 0.9788 0.9616 Chemical structure based method

MUFFIN [29] 2021 - 0.9648 0.9495 Hybrid method method

a The performance on DrugBank dataset of DeepWalk, LINE, DeepDDI, KG-DDI and KGNN were reported from MUFFIN results, and that of Decagon

and SkipGNN were obtained from SumGNN results, and that of GMPNN, SA-DDI and SSI-DDI were obtained from DGNN-DDI results, and that of

other methods were directly obtained from original papers.

Table 5. Performance evaluation under multi-label classification task.

Method Year PR-AUC ACC ROC-AUC F1 Remarks

Dataset 1: DrugBanka

DeepWalk [121] 2014 0.4782 0.6163 0.6501 0.5861 Network based method

LINE [124] 2015 0.4923 0.6374 0.6926 0.6190 Network based method

KGNN [23] 2020 0.8587 0.7947 0.8602 0.7945 Network based method

KG2ECapsule [58] 2023 0.8858 0.8050 0.8882 0.8145 Network based method

Dataset 2: TWOSIDESb

DeepWalk [121] 2014 0.6160 - 0.8708 - Network based method

LINE [124] 2015 0.6043 - 0.8621 - Network based method

node2vec [122] 2016 0.8887 - 0.9066 - Network based method

Decagon [14] 2018 0.9060 - 0.9172 - Network based method

KG-DDI [20] 2019 0.6527 - 0.8906 - Network based method

KGNN [23] 2020 0.6584 - 0.8948 - Network based method

SkipGNN [25] 2020 0.9090 - 0.9204 - Network based method

SumGNN [30] 2021 0.9335 - 0.9486 - Network based method

DeepDDI [13] 2018 0.5032 - 0.8301 - Chemical structure based method

MUFFIN [29] 2021 0.7033 - 0.9160 - Hybrid method

a The performance on DrugBank dataset of DeepWalk, LINE and KGNN were reported from KG2ECapsule results.
b The performance on TWOSIDES dataset of DeepWalk, LINE, node2vec, Decagon, KG-DDI, KGNN and SkipGNN were reported from SumGNN

results, and that of DeepDDI was obtained from MUFFIN results, and that of other methods were directly obtained from original papers.

dataset, respectively. The reason for this is that KG2ECapsule

is capable of modeling the triplets and integrating the relations

of edges into embedding. Meanwhile, on TWOSIDES dataset,

SumGNN achieved at least 2.45% on PR-AUC, 2.82% on

ROC-AUC higher performance than other methods. This

justifies that SumGNN is more effective to harness the external

knowledge via subgraphs. More interestingly, with comparison

to other KG based methods (e.g., KGNN and KG-DDI),

we found that KG2ECapsule and SumGNN can consistently

outperform them on both datasets, which indicates that simply

adopting KG embeddings as well as neighborhood sampling

are insufficient to fully harness the KG information for DDIs

prediction. Moreover, network based methods achieved better

performances in the multi-label classification task.

Challenge and Opportunities

Deep and graph learning techniques have distinct advantages

over traditional machine learning methods in tackling the

computational drug discovery. Although many studies focus

on the prediction of DDIs and high prediction performance

have been proposed, there still remains several challenges and

promising future directions as follows.

Dataset imbalance

Most deep and graph learning models in drug discovery

pipeline need large amounts of data for model training and

validation. The lack of enough known DDIs and experimentally

validated negative samples are major obstacles for deep and
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graph learning models to have positive influence on DDIs

prediction, especially in the application of real-world scenarios.

For example, the imbalanced data for different relations in

certain case are very sparse with respect to side-effect type,

which will lead to poor generalizability for model performance.

Meanwhile, current DDI benchmark datasets only include a

small number of labeled (resp., positive) samples, in which

the quality of data is not guaranteed and the dataset might

be imbalanced for the lack of negative samples of drug-drug

pair. As for unlabeled samples, most methods regard them

as negative samples and sample the same number of negative

drug pairs from non-interacting DDIs for model training. These

methods overlook the fact that unlabeled samples may contain

potential positive data, which would adversely influence the

model performances. How to choose high-quality data and how

to address insufficient training data remain challenges.

Multimodal representation

The potential of computational drug discovery lies in the

variety of multiple data modalities that provide complementary

information [136]. Deep and graph learning models using

multimodal data will have considerable advantages over

unimodal counterparts since the multimodal data offer

complementary perspectives. Existing studies usually focus

on the single modal data. For example, graph- or

substructure-based method pay more attention to the molecular

data containing structural information, while network-based

approaches only consider the relationship between drug and

relation in the drug level, neglecting the atom level of the pair

interaction between drugs. These methods do not fully use other

data modalities, such as drug-target interactions, drug-disease

associations, protein pathways and evidences from electronic

medical records, such information may be also highly related

to DDIs and their induced adverse reactions. Thus, how to

effectively utilize diverse and heterogeneous biological data is

worth of exploring.

High-order drug associations

Identifying the potential associations between drugs and related

entities (e.g., diseases and microbe) is pivotal to understanding

the underlying disease mechanisms and facilitating personalized

treatments. In the past few years, most methods have been

proposed to concentrate on predicting pair-wise associations,

such as drug-drug, drug-protein, drug-microbe and drug-disease

interactions, these methods deal with them separately and

fail to provide in-depth insights into high-order association

patterns. For example, many diseases are closely related

to various microbes, which interact with a variety of

drugs in complex way, and the causal links between drugs,

gut microbes and diseases require a workflow to uncover

their intricate interactions. Such a workflow of triple-wise

drug-microbe-disease associations can be regarded as high-

order drug associations prediction. Meanwhile, high-order

associations prediction is a fundamental task in multiple

domains, including knowledge graphs, recommendation systems

and bioinformatics. There is an urgent need to seek ways

to develop effective methods for predicting high-order drug

associations to speed up the process of drug discovery.

Model interpretability

Deep and graph learning techniques offer great potential in

many fields, but they are often essentially ”black boxes” that

are unable to provide confidence and actionability for the

predicted results. As an essential process in drug discovery,

DDIs prediction aims to identify and quantify the risks related

to the usage of drugs for a better understanding of adverse drug

effects and the pathogenic mechanisms. The latent embedding

obtained by current deep and graph learning models is limited

to capturing implicit correlations of the data, which is hard to

provide reasonable explanations for the predicted interactions.

Thus, the idea model should understand how the algorithms are

constructed, what each layer learns, and what the embeddings

represent. Meanwhile, interpretability and evidence support are

essential for prediction methods in biomedical applications. It

is also worthwhile to further focus on interpretability and to

improve the reliability of predicted results.

Generative AI Models

Recent advances in generative AI models, such as ChatGPT2,

have shown remarkable success on a variety of domains.

From Transformer to BERT to ChatGPT, the continuous

advancement of generative AI models has opened up a new

era of AI. These generative AI models are trained on large-

scale datasets, providing a reasonable parameter initialization

for a wide range of downstream applications, including natural

language processing [137], computer vision [138], and graph

learning [139]. Moreover, generative AI models have been

deployed in various stages of the drug development pipeline

[10], ranging from AI-assisted target selection and validation to

molecular design and chemical synthesis. In the near future, it is

anticipated that generative AI models would be able to generate

realistic data that can be used to identify potential DDIs. This

data can then be utilized to improve existing models or create

new models that are more effective at addressing the challenges

mentioned above. By combining the power of generative AI

models and advanced deep and graph learning techniques, it is

conceivable to develop better models for predicting DDIs.

Platform and toolkit

To further speed up the drug discovery process and enable more

people with different scientific backgrounds to get involved

in research, many researcher and communities have been

committed to the development of platform and toolkit based on

machine learning and deep learning methods. Table 6 illustrates

the widely-used platform and toolkit for biomedical application.

Specifically, DeepChem aims to provide a high quality open-

source toolchain that makes deep learning in drug discovery,

materials science, quantum chemistry, and biology more

accessible. DGL-LifeSci is a DGL-based package for various life

science applications with graph neural networks and provides

various functions. DeepPurpose is a deep learning-based

molecular modeling and prediction toolkit involving many

downstream tasks , (e.g., compound property prediction, and

protein function prediction). TorchDrug is a machine learning

platform designed for drug discovery that covers various

techniques from GNNs, geometric deep learning, KGs, deep

generative models, and reinforcement learning. PaddleHelix

is a bio-computing tool that takes advantage of the machine

learning approaches, especially DNNs, for facilitating the

development of the following areas, including drug discovery,

vaccine design, and precision medicine. ADMETlab 2.0 [140] is

an improved version of the widely used ADMETlab, which is

2 https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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Table 6. List of widely-used platform and toolkit for biomedical application.

Name Year Release Updates Application examples Website

DeepChem 2017 V2.7.1
√

Molecular property prediction

Drug-target binding affinity prediction

Physical properties prediction

Protein structure analysis and descriptors extraction

Number counting of cells in a microscopy image

Link

DeepPurpose 2020 V0.1.5
√

Drug target interaction prediction

Drug property prediction

Drug-drug interactions prediction

Protein-protein interaction prediction

Protein function prediction

Antiviral drugs repurposing for SARS-CoV2 3CLPro

Repurposing using customized training data

Link

PaddleHelix 2020 V1.1.0
√

Large-scale pre-training models of compounds and proteins

Molecular property prediction

Drug-target affinity prediction

Molecular generation

RNA design

Drug-drug synergy prediction

Link

DGL-LifeSci 2021 V0.3.1
√

Property prediction

Generative models

Protein-ligand binding affinity prediction

Reaction prediction

Link

TorchDrug 2021 V0.2.0
√

Property prediction

Pretrained molecular representations

Molecule generation

Retrosynthesis

Knowledge graph reasoning

Link

ADMETlab 2021 V2.0
√ Absorption, Distribution, Metabolism,

Excretion and Toxicity (ADMET) prediction
Link

ChemicalX 2022 V0.1.0 × Drug-drug interactions prediction

Drug pair scoring task
Link

used to systematical evaluation of ADMET properties. While

fewer work are specialized for developing the platform or

toolkit on DDIs prediction. To our knowledge, one such work

named ChemicalX is a deep learning library for drug-drug

interaction, polypharmacy side effect, and synergy prediction,

and also includes state-of-the-art DNN architectures that solve

the drug pair scoring task, with implemented methods covering

traditional SMILES sequence based techniques and MPNN

based models. However, these platforms and toolkits, which are

mainly developed by individuals, do not have any maintenance

or update schedule in place. As a result, they will become

increasingly obsolete as the underlying programming framework

and deep learning models continue to evolve.

Conclusions and Outlook

In this work, we provided a comprehensive review of deep and

graph learning methods for drug-drug interactions prediction.

We categorized existing approaches into traditional machine

learning, deep learning and graph neural network (GNN)-based

methods. We introduced data sources and summarized the

widely-used molecular representation as well as some classic

GNN model on DDIs prediction. To the end, we discussed

the current challenges of existing deep and graph learning

methods and suggested potential research directions for further

development in DDIs prediction. In conclusion, the rapidly

growth of deep and graph learning techniques has brought

new opportunities for biomedical applications, including

drug-related prediction tasks. However, the bottlenecks of

these technologies, such as imbalance dataset, the issues of

multimodal representation and high-order drug associations

prediction, and the lack of or limited interpretability of the

model impedes their application and further affects their

prediction performance. Therefore, there is an urgent need to

further develop and evaluate intelligent deep and graph learning

models in realistic drug discovery scenarios in order to reach its

full potential.

Key Points

• Structured taxonomy. As shown in Fig. 1, we contribute

a structured taxonomy to provide a broad overview of

computational methods, which categorizes existing works

from four perspectives: chemical structure based, network

based, NLP based and hybrid methods.

• Current progress. We systematically delineate the current

research directions on the topic of deep and graph learning

methods for DDIs prediction as illustrated in Table 1, and

we further investigate the comparison performance of these

representative baseline models as shown in Tables 3-5.

• Abundant resources. We have gathered a comprehensive

collection of resources dedicated to DDIs prediction. These

https://deepchem.io
https://github.com/kexinhuang12345/DeepPurpose
https://github.com/PaddlePaddle/PaddleHelix
https://github.com/awslabs/dgl-lifesci
https://torchdrug.ai
https://admetmesh.scbdd.com
https://github.com/AstraZeneca/chemicalx
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collections include open-sourced deep and graph learning

methods, available platform and toolkit, as well as an

important paper list. These resources can be accessed our

github3, which will be continuously updated.

• Future directions. We discuss the limitations of existing

works and suggest several promising future directions.
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