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Abstract
The unanimous agreement that cellular processes are (largely) governed by interactions between proteins has led to
enormous community efforts culminating in overwhelming information relating to these proteins; to the regulation
of their interactions, to the way in which they interact and to the function which is determined by these interac-
tions.These data have been organized in databases and servers. However, to make these really useful, it is essential
not only to be aware of these, but in particular to have a working knowledge of which tools to use for a given
problem; what are the tool advantages and drawbacks; and no less important how to combine these for a particular
goal since usually it is not one tool, but some combination of tool-modules that is needed. This is the goal of
this review.
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PROTEIN^PROTEIN
INTERACTIONS
Proteins are parts of complex networks or pathways

rather than isolated entities. The different levels of

complexity of biological systems arise not only from

the number of the proteins (genes) of the organism,

but also from combinatorial interactions among them

as well as from alternative splicing, and chemical and

structural alterations of the proteome [1]. Cellular

processes are largely governed by different types of

interactions between proteins, and the function of

a protein can be better understood considering

its interactions. The broad recognition of the

importance of characterizing all protein interactions

in a cell has rendered the development of experi-

mental and computational techniques to detect and

predict interacting protein partners. Experimental

methods can be divided into two categories:

(i) Screening large scale protein interactions involves high-

throughput experiments where each protein

encoded in the genome of interest is expressed

and exhaustively probed for mutual interactions

by assays such as the yeast two hybrid systems
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(Y2H) [2, 3], protein-fragment complementa-

tion assay (PCA) [4, 5], affinity purification [6],

phage display libraries [7] indicating physical

interactions. Protein/DNA microarrays [8, 9],

and ‘synthetic lethals’ (genes whose simulta-

neous knockout is lethal to the organism [10])

are also important since they provide functional

association between proteins.

(ii) Screening specific protein interactions where the

experiments may be individually designed to

identify and validate a small number of specific-

ally targeted interactions [11]. Studies of

specific protein interactions can provide struc-

tural information, kinetic and dynamic charac-

terization [12]. The methods include X-ray

crystallography [10], NMR spectroscopy

[10], fluorescence resonance energy transfer

(FRET) [13] and surface plasmon resonance

(SPR) [14].

In this review, we provide a comprehensive

organized list of available (i) web servers and tools to

analyze protein–protein interactions and protein–

protein interfaces and (ii) large-scale experimental

and computational databases. For each section, we

present a table listing these, with several discussed in

the text. We highlight the merits and shortcomings

of these for particular applications and provide

two case studies to illustrate how to use a tool-

combination toward specific problems. Our goal

here is to provide a useful guide.

Protein^protein interaction databases
While most protein–protein interaction (PPI)

databases present experimentally verified interac-

tions, some contain computationally predicted

interactions and some both. Apart from physical

associations, some databases also provide indirect

associations (e.g. functional gene links) while

others provide interactions at the domain level.

All databases grow rapidly as the pace of interac-

tion–detection experiments, genome sequencing

and the number of proteins with solved structures

increase.

The Database of Interacting Proteins (DIP) is a

catalogue of experimentally determined PPIs [15].

Each interacting pair contains accession codes link-

ing to public protein databases. In October 2008,

it contained 57 099 interactions between 20 244

proteins for 244 organisms. The Biomolecular

Interaction Network Database (BIND) [16], is a

collection of records documenting molecular inter-

actions. It includes high-throughput data submissions

and hand-curated information gathered from the

literature which covers 188 517 interactions. BIND

records are created from experimental interactions

published in at least one peer-reviewed journal.

The Molecular Interactions Database (MINT) [17]

focuses on experimentally verified protein interac-

tions with emphasis on proteomes from mammalian

organisms. In October 2008, the database contained

111 847 interactions spanning 30 organisms (25 204

mammalian, 7412 C. elegans, 23 375 D. melanogaster,
44 813 Yeast interactions). The Munich Information

Center for Protein Sequences (MIPS) [18] is a

collection of genome and protein sequence data-

bases. It includes a S. cerevisiae specific protein

interaction database containing 15 488 interactions

(9103 physical, 6385 genetic, September, 2004),

annotated through nine different high throughput

analyses. The BioGRID General Repository for

Interaction Datasets [19], is a comprehensive com-

pilation of genetic and physical interactions for

22 organisms. It contains 99 104 non-redundant

physical and 52 672 non-redundant genetic interac-

tions (October, 2008). Table 1 lists some of the

available PPI databases in alphabetical order.

The second column gives the source organisms of

the PPIs. The third column indicates the interaction

detection methods used: high and low throughput

experiments (EH, EL), interactions coming from the

literature (Lit) and computational prediction (P).

The interaction type can be direct (physical) or

indirect (functional, genetic), as shown in the sixth

column. The database compilation method and the

characteristics provided in the table can indicate

a measure of confidence in the interactions. By using

this table, the most appropriate database for a

specific problem can be chosen. For validated

protein interactions, curated databases such as

BIND, BioGRID, DIP and MINT are useful. In

the absence of experimental data or to enrich the

dataset with possible protein interactions, predicted

protein–protein interaction can be used. Some

examples of these databases are PRISM, OPHID

and 3D-partner. For a specific organism, for example

human, HPRD, HPID and MIPS are favored. If

binding site information is needed, PSIbase and

DOMINE are useful, since they indicate where the

two proteins interact. However, in general, com-

bination of several databases is preferred in protein

interaction analyses.
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INTERFACESARETHEREGIONS
WHERE PROTEINS INTERACT
The region where two protein chains come into

contact is the binding site; or for both sides,

an interface. In order to identify interface residues

and regions that line the protein surfaces, it is essential

to know the structures of the proteins. Surface

residues are usually determined by calculations of the

surface area which is accessible to the solvent [20–22]

or distance-based calculations taking into account

how close the two proteins are to each other [23–25].

In order to understand binding principles, proper-

ties which distinguish interfaces (or, binding sites)

from the rest of the protein surface need to be

characterized [20–22, 24–43]. Protein interfaces have

greater residue conservation and tend to be planar or

well packed depending on the type of interaction.

The stability and specificity of the interacting protein

pairs relate to the presence of H-bonds, electrostatic

interactions, van der Waals forces, salt bridges and

hydrophobic attractions. Although rare in protein

interfaces, disulphide bonds provide rigidity and

stability in the interactions [44]. Residue composi-

tion usually differs between transient and obligate

complexes: the former relying more on salt bridges

and hydrogen bonds, whereas the latter more on

hydrophobic interactions [21, 22, 37]. However,

recent studies on transient/obligate complexes have

shown that obligate interfaces are not more hydro-

phobic than transient ones due to the presence

of water-mediated interactions [45, 46]. Physical

binding is further governed by shape and chemical

complementarity [37, 39, 47, 48], molecular flex-

ibility and environmental conditions. In agreement

with the broadly-accepted notion that binding and

folding are similar processes [40–42], structural

comparison between highly populated folds and

highly populated binding sites illustrates that inter-

face regions are generally structurally similar to cores

of globular proteins [49].

Protein^protein interface databases
Protein interfaces have long been studied at both

the protein level and the domain level. They have

Table 1: Databases of protein^protein interactions in alphabetical order

Web server and link Organism Detection
type

Curation Structure Interaction
type

Number of
interactions
(as of
December 2008)

BIND [16] http://bind.ca No species
restriction

EH, EL, Lit Yes No Both 58 266 (as of
September 2004)

BioGRID [19] http://www.thebiogrid.org/ No species
restriction

EH, EL, Lit Yes No Both 152 150

DIP [15] http://dip.doe-mbi.ucla.edu/ No species
restriction

EH Yes No Direct 57 330

DOMINE [123] http://domine.utdallas.edu/
cgi-bin/Domine

No species
restriction

EL, P No Yes Direct 20 513

HPID [124] http://wilab.inha.ac.kr/hpid/ Human EH, EL, Lit, P ^ No Both N/A
HPRD [125] http://www.hprd.org/ Human EH, EL, Lit Yes No Direct > 30 000

(as of 2006)
IntAct [126] http://www.ebi.ac.uk/intact/site/

index.jsf
No species

restriction
EL, Lit Yes No Direct 115 757

MINT [17] http://cbm.bio.uniroma2.it/mint/
index.html

No species
restriction

EH, EL, Lit Yes No Direct 111 847

MIPS [18] http://mips.gsf.de/proj/ppi/ Mammals EH, EL, Lit Yes No Direct > 1800
OPHID [127] http://ophid.utoronto.ca/ophidv2.201/ Human EH, EL, P ^ No Direct 424 066
PRISM [106] No species

restriction
P ^ Yes Direct > 100 000

PSIbase [23] http://psibase.kobic.re.kr/ No species
restriction

EL No Yes Direct N/A

STRING [122] http://string.embl.de/ No species
restriction

EH, Lit, P No No Both > 50 million

3D-partner [128] http://3D-partner.life.nctu.edu.tw No species
restriction

P ^ Yes Direct N/A

The compilation methods and their characteristics are given.The source organism, detection type, whether curated or not, structure availability,
interaction type and number of interactions can be found in the columns. See text for notation
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been represented in interface data sets and deposited

into databases such as PiBASE [50], InterPare [51],

SCOWLP [52], 3DID [53], SCOPPI [54]

and PRINT [49]. Table 2 lists some widely used

interface databases. The first column lists the

databases. The next columns give the attributes of

the databases; which domain definition is used,

where the dataset is extracted from (interface level,

either chains or domains, peptidic or solvent

mediated), whether interfaces are classified or not

and which thresholds are used in defining the

interfaces. Below, we provide some useful attributes

of several of the frequently used databases.

PIBASE is a comprehensive database of structu-

rally determined protein interfaces formed between

domain pairs. Domain–domain interfaces are gener-

ated by distance calculation with a default threshold

of 6.05 Å to allow water mediated contacts. The

generated domain interfaces are filtered by an

accessible surface area (ASA) threshold (300 Å2)

and for duplicated domain–domain interactions.

The dataset is characterized by geometric, physico-

chemical and topological properties. PIBASE also

provides the contact topology of the domains, polar

versus nonpolar ASAs, etc. [50]. InterPare uses

three methods to generate domain–domain inter-

faces which highly overlap [51]: (i) atomic distance

calculation, (ii) ASA and (iii) Voronoi Diagram,

a computational geometry method. 3DID contains

domain–domain interactions annotated with GO

functions. One can query the database to retrieve a

network of interacting domains. For each domain–

domain interaction, the server provides residue pairs

with favorable interactions [53]. In the new release of

the 3DID, peptide mediated interactions are also

available. By defining interaction types, the authors

are able to obtain the different interfaces used by

a specific domain. Currently, it contains 115 559

domain–domain interfaces classified into 4887

unique interface types. 829 hand-curated domain-

peptide interactions enrich the database [55].

SCOPPI is a database of structurally classified protein

interfaces. To extract protein interfaces, atomic

distances are used and SCOP is used for domain

classification. In addition to multiple sequence

alignment, SCOPPI applies structural alignment to

the SCOP families. The domain–domain binding

regions, named faces, are clustered by sequence and

structure resulting in approximately 8400 interface

types [54]. SCOWLP is a database of detailed

domain–domain interfaces enriched with peptidic Ta
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interfaces and solvent mediated contacts. Solvent

mediated contact residues are named ‘wet spots’ [52].

It also classifies binding sites of each domain

hierarchically leading to 9334 binding regions over

2561 domain families. 65% of the families in the

database contain more than one binding site [56].

PRINT is a database of chain level interfaces

extracted from the Protein Data Bank (PDB) [57].

These PPIs are clustered by structural similarity.

On February 2006, there were 49512 interfaces

which were clustered into 8205 unique interface

structures. Interface interaction types are deposited

in PRINT and annotated as crystal or biological

interfaces, obligate or non-obligate, homo- or

hetero-interfaces. For each individual interface,

information on GO annotations, SCOP domains,

interaction type, residue propensities and structural

cluster are given [49]. PPIDB is a periodically

updated database which differs from the others by

allowing user defined thresholds to extract interface

residues.

The physical and chemical properties
of protein^protein interfaces
Numerous studies aim to obtain the general patterns

of protein binding sites. In a pioneering work by

Jones and Thornton [22], 59 different PPIs were

divided into four groups: homodimers, enzyme–

inhibitor complexes, antibody complexes and

hetero-complexes. The complexes were character-

ized by six properties: size and shape, complemen-

tarity, residue interface propensities, hydrophobicity,

segmentation, secondary structure and conforma-

tional changes. Homodimer interfaces preferred

hydrophobic residues and had relatively large surface

areas. Heterodimer complexes were less hydro-

phobic. The interfaces of homodimers, permanent

hetero-complexes and enzyme–inhibitor complexes

were more complementary than antigen–antibody

complexes. In spite of significant differences, a

distinct pattern for protein interfaces compared

to the rest of the surfaces was not identified [22].

Larsen et al also studied protein recognition mechan-

isms on a dataset of 136 homodimeric proteins,

observing that one-third of the interfaces have a

distinguishable large hydrophobic core, polar con-

tacts and water-mediated interactions [35]. Amino

acid propensity is another important property which

can be used to distinguish interaction types. Ofran

and Rost explored six types of PPIs, homodimers

versus heterodimers, transient versus permanent

dimers and same domain versus different domain

interfaces. Using only amino acid composition and

residue-contact preferences, 63–100% accuracy was

achieved in interaction type prediction [58].

Structural features of interfaces
For strong interactions, good shape complementarity

is crucial. The chemical character of protein

interfaces is similar to the average protein surface,

whereas their packing density is close to the density

of the protein core. On average, the accessible

surface area of interfaces is 1600 Å2 [37]. Chakrabarti

and Janin [28] analyzed 70 protein complexes. They

considered small binding regions as single patch

and large binding regions as multipatches. Bahadur

et al. split interfaces into core and rim. The core

region is buried in the interface; the rim contains

solvent accessible residues [59]. Interface core regions

were found to be similar to the protein interior in

residue frequency; rims to protein surface.

Protein surfaces are not flat rather they are filled

with pockets, crevices and indentations [60]. Cavities

that remain unfilled after the complementary protein

associates are unfilled pockets. Complemented

pockets are the result of two well fitted protein

partners [61], as in the key and lock model. Com-

plemented pockets frequently pre-exist binding.

In an analysis of 18 protein complexes with

complementary pockets whose unbound structures

are known, 16 of the pockets were found to pre-

exist in the unbound state [24]. The pockets’ size,

shape and functional group distribution are critical in

protein engineering and designing new peptides/

proteins that will selectively bind to these regions.

Conservation of the interfaces
Valdar and Thornton analyzed six homodimers

observing that interface residues are more conserved

than the rest of the surface [62]. Caffrey et al.
extended this observation on a larger dataset [63].

However, analysis of surface and interface patches

did not show a significant difference. Using their

Bayesian approach to estimate residue conservation,

Tseng and Liang noticed that residue substitution

rates in protein cores are significantly different than

those in solvent-exposed surfaces of the proteins

[64]. Conservation alone is insufficient to reliably

predict protein binding sites, but it can be combined

with other interface properties. Tools to extract

conservation profiles of surface residues can be very

helpful for large-scale characterization of functional

regions in proteins. ConSurf [65, 66] is a web server,
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which incorporates several phylogenetic-based algo-

rithms [67] to predict conservation scores of residues

for a given protein structure. The SCORECONS

web server scores residue conservation in multiple

sequence alignment [68]. In the absence of structural

data, SCORECONS is preferred. Otherwise,

Consurf is very useful given its options and visual

interface.

Energetic distribution in the interfaces: hot spots
The energetic contribution of residues in protein

interfaces are not distributed uniformly. Some key

‘hot spot’ residues can contribute dominantly to

the binding free energy. Experimentally, hot spot

residues are identified via Alanine Scanning

Mutagenesis; if a residue has a significant drop in

binding affinity when mutated to alanine it is labeled

a hot residue. Thorn and Bogan [69] deposited hot

spots from alanine scanning mutagenesis experiments

in the ASEdb database. BID [70] is another database

of experimental hot spots, which collects all available

experimental data related to hot spots in protein

interfaces. However, these databases cover only a

small portion when compared to available PPIs.

In the absence of experimental data, computational

methods can be used for hot spot detection [71].

These computational hot spots are either deposited

in large scale databases or the methods are presented

as web servers. The hot spot related databases/web

servers are listed in a subsection of Table 3. The first

column gives the available databases and servers; next

columns list the strategy and techniques to identify

hot spots, such as experimental or computational

alanine scanning, and machine learning, respectively.

Some of the servers are based on energy calculation

[72–74]. Robetta and FoldX are two examples of

energy-based hot spot prediction tools. Robetta

mutates side chains to alanine and it repacks the side

chains, which are within 5 Å radius sphere of the

mutated residue. The rest of the protein remains

unchanged. The change in the binding free energy is

calculated by an energy function [75]. FoldX mutates

systematically side chains between two proteins

(or protein–peptide) to alanine and the rest of the

complex is relaxed. Then, the change in the binding

energy is calculated [76]. These predicted changes

in binding energies are used to label the residues as

hot spots. Molecular dynamics (MD) studies have

also been used [77–79]. MD simulations of 11

protein complexes indicate that anchoring residues in

protein interfaces have limited mobility and have a

tendency to be hot spots [79]. In a related work,

Moreira et al. supported the O-Ring hypothesis,

which proposes that hot spots are protected from

bulk water by a surrounding rim region by using

MD simulations [80]. MD analysis of computational

alanine scanning of the human growth hormone

receptor complex agrees well with the experimental

hot spots [72]. Despite their success, MD-based

methods are computationally expensive when com-

pared to other methods. As an alternative, conserva-

tion is a property that can be used. Structurally

conserved residues and hot spots correlate signifi-

cantly [81–83]. These hot spots are also buried and

tightly packed [82] resulting in densely packed

clusters of networked hot spots called ‘hot regions’.
Another residue conservation-based method is avail-

able in HotSprint. Residue conservation alone is not

sufficient to identify hot spots. Some amino acids are

preferred as hot spots, such as Arg, Tyr and Trp [27].

HotSprint combines the three properties, conserva-

tion, ASA and residue propensity, to detect hot

spots of available protein–protein interfaces [84].

KFC predicts computational hot spots by a machine

learning approach. It uses structural features such as

atomic contacts and H-bonds and gives a binary

answer whether a residue is a hot spot or not [85].

Recently, a neural network-based approach using

interface features such as sequence profiles, solvent

accessibility and evolutionary conservation has been

employed in computational hot spot prediction

(an adaptation of ISIS) [86]. If we compare these

databases/web servers, the experimental databases

ASEdb and BID are limited in size. On the other

hand, the energy-based methods Robetta and FoldX

are appropriate for specific interactions providing

accurate estimation of free energy changes. For

prediction on large-scale data KFC and Hotsprint are

preferred because of their computational effective-

ness and comparable performance. In general, all of

the databases/servers require protein structure,

except ISIS. Although it does not perform better

than the computational alanine scanning method

[74, 75], in the absence of structural information

or binding partner it is useful for hot spots

prediction [86].

Finally, although there are no strict rules, proper-

ties like binding site size, residue frequency, shape

complementarity, conservation, presence of hot spots

and hydrophobicity can help in predicting binding

sites fairly accurately. Thus, analyses of binding sites

and characterization of protein interfaces are useful,
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Table 3: Web servers/tools for characterization of protein interfaces

Physical and chemical properties
Web server/tool and link Reported characteristics Results Visual interface

CASTp [60] http://cast.engr.uic.edu Pockets & cavities Residue ASA, Residue Volume 3D (JMol, Chime)
ConSurf [65] http://consurf.tau.ac.il/ Conservation info based of multiple sequence

alignment or protein structure.
Conservation score Yes ( JMol)

GALINTER [130] (source code is available upon request) Protein^protein interfaces Spatial alignment according to the vector representations of van der
Waals interactions and hydrogen bonds based on their geometry

No

LIGPLOT [131] http://www.biochem.ucl.ac.uk/bsm/
ligplot/ligplot.html

Non-covalent interactions of protein complexes H-bonds, hydrophobic forces and their strengths, atomic ASA. 2D

MAPPIS [132] http://bioinfo3d.cs.tau.ac.il/MAPPIS/ Protein^protein binding sites Common spatial arrangements of physico-chemical properties like
H-bond donor, acceptor, aliphatic, aromatic, hydrophobic.

3D (JMol)

MolSurfer [133] http://projects.villa-bosch.de/mcm/
software/molsurfer

protein^protein and protein^DNA/RNA
interfaces.

Complementarity, hydrophobicity and electrostatic potential. 3D (WebMol)

MultiBind [132] http://bioinfo3d.cs.tau.ac.il/MultiBind/ Small ligand binding sites Common spatial arrangements of physico-chemical properties like
H-bond donor, acceptor, aliphatic, aromatic, hydrophobic.

2D

PIC [134] http://crick.mbu.iisc.ernet.in/�PIC/ Non-covalent interactions of protein complexes hydrogen &disulphide bonds, hydrophobic, ionic & aromatic-
aromatic interactions, ASA.

3D (RasMol, JMol)

ProFace [135] http://202.141.148.29/resources/bioinfo/
interface/

Protein^protein interfaces Interface area, surface area, fraction of non-polar atoms, non-polar
interface area, residue propensity, fraction of buried atoms.

3D (Rasmol, Chime)

ProTherm [136] http://gibk26.bse.kyutech.ac.jp/jouhou/
Protherm/protherm.html

Thermodynamic parameters of wild type and
mutant protein.

Gibbs free energy change, enthalpy change, heat capacity change,
transition temperature Mutated residue numbers

No

PROTORP http://www.bioinformatics.sussex.ac.uk/
protorp/

Non-covalent interactions of protein complexes. Interface ASA, percentage polar atom in interface and on surface,
planarity, eccentricity, secondary structure info, hydrogen and
disulfide bonds, salt bridges, gap volume, gap volume index.

No

Q-SiteFinder [137] http://bmbpcu36.leeds.ac.uk/qsitefinder/ Ligand binding site Site volume, protein volume 3D (Chime, Mage)
ScoreCons [68] http://www.ebi.ac.uk/thornton-srv/

databases/cgi-bin/valdar/scorecons_server.pl
Conservation info based on multiple sequence
alignment.

Conservation score No

SurfNet [138] http://www.biochem.ucl.ac.uk/�roman/
surfnet/surfnet.html

Surfaces and void regions. Computation of gaps, clefts, cavities and binding sites, van der Waals
surfaces

3D (Rasmol, Raster3D,
Sybyl)

Hot spot databases and prediction servers Strategy Availability Technique

ASEdb [27] http://nic.ucsf.edu/asedb/ Experimental Database Alanine scanning
BID [70] http://tsailab.tamu.edu/BID/ Experimental Database Collection of several

experimental techniques.
FoldX [76] http://foldx.crg.es/ Energy-based Tool and server Computational alanine

scanning
HotSprint [84] http://prism.ccbb.ku.edu.tr/hotsprint/ Conservation, accessibility, residue propensity Database Empirical formula
ISIS [95] http://cubic.bioc.columbia.edu/services/isis/ Sequence-based Tool Machine learning
KFC [85] http://kfc.mitchell-lab.org/ Atomic contacts, residue size, H-bond Server Machine learning
Robetta [74] http://robetta.org/submit.jsp Energy-based Server Computational alanine

scanning

In the first part, theweb servers and tools for physical and chemical properties of protein interfaces are listed.The hot spot related databases/web servers are listed in the second part where the hot spot detection
strategy, the availability and the used technique are given, respectively.
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and help in improving computational prediction of

protein–protein interactions and in designing drugs

and inhibitors binding to interrupt these interactions.

Table 3 is a comprehensive list of the servers,

databases and tools, which characterize the physico-

chemical properties of interfaces.

BIOLOGICALVERSUS CRYSTAL
COMPLEXES
Entries in the PDB can have artifacts of crystal-

lization; that is, some of the complexes would not

occur in solution or in their physiological states.

Determining which contacts are biological and

which are not is often difficult, particularly when

the oligomeric state of the protein is uncertain or

unknown [62]. These crystal packing interactions

can cause noise in analyses. A number of studies

addressed the problem of distinguishing between

biological and crystal packing contacts. Below, some

methods are presented to distinguish crystal and

biological interfaces.

In the PDB files, BIOMT records, describing

how to compute the coordinates of multimers from

the explicitly specified single repeating unit, can be

used to build quaternary structures. Henrick and

Thornton defined crystal packing by assigning a

cutoff value (400 Å2) in the buried surface area.

Structures passing this requirement are deposited in

the PQS server [87]. Crystal structures often have

smaller interfaces when compared to biological

interfaces. Other studies used different cutoff values

to distinguish crystal contacts. Although interface size

is the most important feature to identify crystal

packing contacts, it is not the sole criterion. There

are cases with large interface sizes, yet are biologically

irrelevant; examples include the crystal contact in

porcine adenylate kinase having an ASA of 2600 Å2,

and pancreatic ribonuclease crystals with interface

size of 1800 Å2 [88]. Based on the assumption that

biological interfaces are more conserved than non-

biological interfaces, Valdar and Thornton [89]

suggested that crystal interfaces can also be distin-

guished by residue conservation. They combined

both the size and conservation information of the

binding sites, achieving an accuracy of 98.3% on

their training set. Overall, biological interactions are

more conserved and larger than crystal ones [90, 91].

Since the amino acid composition of the protein

surface differs from the interface, if the binding site

composition is similar to the rest of the protein

surface, this interaction is a crystal packing candidate

[90]. In the conserved domain interaction approach

[92], interacting domain pairs are clustered. If two

or more cluster members have similar interface

locations, these interfaces possess a conserved bind-

ing mode (CBM). Conserved modes are used to

distinguish biological from crystal interactions. When

tested on interacting globin pairs the accuracy reached

90%. In addition, multiple feature-based approaches

are also available; one of them is NOXclass, which is a

machine learning-based approach. In NOXclass, six

different interface properties are used to distinguish

crystal versus biological contacts: interface area,

interface area ratio, amino acid composition, a

correlation between surface and interface region,

gap volume index and conservation score of the

interface. NOXclass distinguishes biological and non-

biological interfaces with an accuracy of 91.8% based

on three parameters (interface area, interface area ratio

and area-based amino acid composition) [93]. In a

recent method, called DiMoVo, Bernauer et al. used

machine learning-based approach with Voronoi

tessellation to distinguish biological and crystal

complexes [94]. Table 4 lists the available servers/

tools that classify PPIs as crystal or biological

according to the above properties where the second

column describes the strategy of the servers/tools for

classification and last column gives information about

the results. Among these servers/tools PQS is widely

used for distinguishing crystal complexes; however, it

is based on ASA and there are counter examples of

crystal complexes having large interface size. Another

server PreBi is appropriate for homodimers, but the

current server is found to be slower than the others.

NOXclass with its high accuracy, multiple features

and computational effectiveness has been found to

be useful. DiMoVo’s performance is also compatible

with other servers.

BINDING SITE PREDICTION
With no strict quantitative rules to point to the

binding mechanism, characteristics of the protein

interfaces such as conservation, residue propensity,

residue order, geometric and electrostatic comple-

mentarity are useful. The combination of multiple

protein interface features is successful in discriminat-

ing binding sites from the rest of the protein surface.

Prediction methods use various features such as

structure, sequence and physicochemical properties

of protein interfaces [95, 96]. These features can be

224 Tuncbag et al.



utilized in different methods such as machine

learning-based and empirical scoring functions.

Most of these prediction methods use known

binding sites for parameterization or training.

Prediction also depends on the choice of the training

dataset: reliable, diverse and non-redundant gold

standard datasets are crucial for a successful training of

a prediction method [97]. Table 5 lists several servers

to predict binding sites. The first column lists the

binding site prediction servers. The second column

provides the binding site prediction method. In the

third column, the binding site properties that are

analyzed for the predictions are given. Below, we

provide a brief review of some of these servers.

ProMate is a scoring function-based approach

to identify the location of protein–protein binding

sites [98]. The algorithm was trained on a hetero-

meric transient protein–protein complexes, thus it is

most suitable for predicting such interaction inter-

faces. Amino acid propensities, residue conservation,

pairwise amino acid distribution, temperature factors

and geometric properties are extracted and optimized

to choose the best combination. The location of

the interface for about 70% of the proteins was

predicted correctly [99]. Another prediction algo-

rithm, PINUP, combines side chain energy score,

conservation score and residue interface propensity

reaching 44.5% prediction accuracy. Bradford et al.
use a support vector machine (SVM) approach

combined with surface patch analysis to predict

protein–protein binding sites. The SVM is trained on

binding site properties (surface shape, conservation,

electrostatic potential, hydrophobicity, residue inter-

face propensity and solvent accessible surface area) to

distinguish interacting patches from non-interacting

patches. PPI-Pred correctly predicts binding site

location in 76% of the 180 dataset proteins [100].

Another algorithm that makes use of patch score

calculation to predict binding sites is SHARP2.

Six binding properties scores (solvation potential,

hydrophobicity, accessible surface area, residue

interface propensity, planarity and protrusion) are

combined for prediction [101].

There are two neural networks-based web

servers: SPPIDER, which is based on solvent acces-

sibility [102] and cons-PPISP based on sequence

information and solvent accessibility [103]. Zhou and

Qin combined the raw scores of cons-PPISP,

PINUP and ProMate web servers and built a

meta-web server, meta-PPISP with increased accu-

racy [104]. When the performances of the web

servers are compared on two different sets (Enz35

dataset and CAPRI targets), the same rankings are

derived (from top to down meta-PPISP, PINUP,

ProMate, cons-PPISP, SPIDDER and PPI-Pred).

meta-PPISP outperforms other servers [104].

Different from the other servers, PRISM predicts

the binding site of two proteins using known

template interfaces. It searches for the left and right

binding sites of the template interfaces on the two

Table 4: Web servers/tools for classification of protein^protein interactions

Web server/tool and link Strategy Result

CPASS [139] http://bionmr-c1.unl.edu/CPASS_OV/CPASS.htm Comparison of ligand-defined active sites. Function assignment
DiMoVo [94] http://cgal.inria.fr/DiMoVo/ Machine Learning-based classification withVoronoi

tessellation using interface area, residue and contact
frequencies, Voronoi volumes, etc.

Biological versus crystal

NOXclass [93] http://noxclass.bioinf.mpi-inf.mpg.de/ SVM-based classification using interface area, ratio
of interface area to surface area, amino-acid
composition, correlation between interface and
surface, gap volume index, conservation

Percentage whether the
complex is obligate,
non-obligate or
crystal packing.

PINS [140] http://pins.ornl.gov/ Random forest classifier using residue propensity and
contacts, interface area, disulphide and H-bonds,
conservation, packing density, etc.

Biological versus crystal

PISA[141] http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html Free energy calculation Biological versus crystal
Pita [142] http://www.ebi.ac.uk/thornton-srv/databases/pita/ Scoring based on crystal symmetry operators. Biological versus crystal
PQS [87] http://www.ebi.ac.uk/msd-srv/pqs/ Interface size, symmetry operators to form complex Biological versus crystal
PreBi [143] http://pre-s.protein.osaka-u.ac.jp/�prebi/ Degree of shape and physicochemical complementarity Biological versus crystal
ProFunc [144] http://www.ebi.ac.uk/thornton-srv/

databases/ProFunc/
Sequence and structure comparison Functional annotation

of proteins

The columns describe the strategy of the servers/tools for the classification and provide information relating to the type of the obtained results,
respectively.
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target proteins by structural matching. If one target

matches the left partner and the other matches

the right of the same interface template, these two

targets are predicted to interact through this region

[105, 106].

PROTEIN^PROTEIN DOCKING
Docking is the procedure to find the best bound state

for given 3-D structures of two (or more) proteins.

The docking problem is difficult since there are

many potential ways in which proteins can interact,

and protein surfaces are flexible. Computational

methods were developed to discover the best fit

between two proteins and these methods are

presented as docking servers/software packages.

Several methods ranked well in the CAPRI

(http://capri.ebi.ac.uk) community competition.

Among these, Z-Dock [107], Gramm-X [108],

DOT [109] and ClusPro [110] perform global

searches based on fast Fourier transform (FFT)

correlation approach. Although the FFT-based initial

global search methods are similar, the refinement and

filtering steps differ for each server. For example,

ClusPro [110] first selects the docked conformations

with favorable desolvation and electrostatics proper-

ties, and then these filtered structures are clustered

using a hierarchical pairwise RMSD algorithm.

Clustering is followed by energy minimization step

and refinement by SmoothDock [111]. On the other

hand, the top predictions of Gramm-X [108] are

subjected to the conjugate gradient minimization

with a smoothed Lennard-Jones potential. For the

resulting minimized predictions, soft Lennard-Jones

potential, evolutionary conservation of predicted

interface, statistical residue–residue preference,

volume of the minimum, empirical binding free

energy and atomic contact energy are calculated and

used for the application of the SVM filter trained on

a benchmark set [112]. The retained predictions

are re-scored by a weighted sum of these potential

terms. Different from these FFT correlation

approaches, PatchDock and SymmDock [113, 114]

employ the geometric hashing method as the initial

search process. The docked conformations are

ranked according to a geometric shape comple-

mentarity score. Being computationally faster than

other web servers, PatchDock also provides the user

an option for submitting potential binding sites of

the receptor and ligand. If the binding sites are

known, these can yield more accurate results.

In addition to those docking servers that perform

global searches, RosettaDock [115] performs a local

docking search requiring a reasonable starting

Table 5: Servers for binding site prediction

Web server Method Binding site properties

cons-PPISP [103] http://pipe.scs.fsu.edu/ppisp.html Neural network Solvent accessibility and sequence information
Firestar [145] http://firedb.bioinfo.cnio.es/Php/FireStar.php Scoring function Sequence and structural alignments
InterProSurf [146] http://curie.utmb.edu/ Scoring function Solvent accessible surface area, propensity of interface residues
Meta-PPISP [104] http://pipe.scs.fsu.edu/meta-ppisp.html Neural network Combining scores derived from three other servers; ProMate,

PINUP, cons-PPISP
Patch Finder Plus [147] http://pfp.technion.ac.il/ Neural network Surface concavity, surface area, amino acid frequency and

composition, hydrogen-bonding potential, sequence
conservation

PINUP [98] http://sparks.informatics.iupui.edu/PINUP/ Empirical scoring
function

Side chain energy score, conservation score and residue
interface propensity

PI2PE [148] http://pipe.scs.fsu.edu/ Neural network Combining three servers,WESA [149], cons-PPISP [103],
DISPLAR [150]

PPI-Pred [100] http://bioinformatics.leeds.ac.uk/ppi-pred Support vector
machine

Conservation, electrostatic potential, hydrophobicity,
propensity of interface residues, surface shape and solvent
accessible surface area

PRISM [106] http://prism.ccbb.ku.edu.tr/prism/ Scoring function Geometric complementarity, conservation
ProMate [99] http://bioportal.weizmann.ac.il/promate/ Scoring function Amino-acid propensities, pairwise amino-acid distribution,

residue conservation and geometric properties
SHARP2 [101] http://www.bioinformatics.sussex.ac.uk/

SHARP2/sharp2.html
Patch score

calculation
Solvation potential, hydrophobicity, accessible surface area,
residue interface propensity, planarity and protrusion

SiteEngines [151] http://bioinfo3d.cs.tau.ac.il/SiteEngine/
http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine/

Scoring function Structural matching, physico-chemical properties and shapes

SPPIDER [102] http://sppider.cchmc.org/ Neural network Solvent accessibility

In the columns, themethod and the binding site properties used in the prediction are given, respectively.
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conformation. The starting conformation may well

be created by any of the servers listed above.

The submitted initial docking predictions are refined

by a Monte Carlo approach including rigid-body

moves and side-chain optimization. A list of selected

docking servers/software packages is provided in

Table 6. The first column lists the docking

servers/softwares. The second and third columns

give information about the docking method and

filtering/refinement stages, respectively.

CASE STUDIES
p53-53BP2 Interface
To provide practical examples that reflect the data on

protein interactions and interface classification, we

illustrate how a database of protein interfaces from

the ones explained in the text is used for character-

ization of the p53-53BP2 protein interface. p53 is

one of the major tumor suppressor proteins, which

interacts with many other proteins, and 53BP2 is the

binding protein partner of p53. We start by querying

the PRINT database with this interface, pdbID

1ycs. 1ycs has only one interface, which is formed

between chains A (p53) and B (53BP2) [49]. Figure 1

illustrates the complex and highlights the interface

between chain A and chain B. The interface region is

illustrated in sphere representation. The rest of the

protein is drawn as ribbon diagram using VMD

[116]. The coordinates of the interface residues can

be downloaded from the PRINT database in PDB

format. PRINT provides information on this protein

interface (1ycsAB) such as interface area (calculated

by Naccess [117] as 1500 Å2), gap volume (calculated

by Surfnet as 3304 Å3). PRINT also provides the

Table 6: Servers for protein^protein docking which rankedwell in the CAPRI competition

Web server/software and link Docking method Filtering and refinement

BDOCK [152] http://www.biotec.tudresden.de/�bhuang/
bdock/bdock.html

FFT correlation based on shape complementarity,
degree of burial and conservation

Altering the docking solutions
with a scoring function

ClusPro [110] http://nrc.bu.edu/cluster/ FFT correlation using DOT [109] Filtering with empirical potential
and clustering, refinement by
SmoothDock [111]

DOT [109] http://www.sdsc.edu/CCMS/DOT/ FFT correlation based on electrostatics and shape
complementarity

Refinement by energy
minimization

FireDock [153] http://bioinfo3d.cs.tau.ac.il/FireDock/ None (refinement server) Refinement using an energy
function

GRAMMX [108] http://vakser.bioinformatics.ku.edu/
resources/gramm/grammx

FFT correlation based on shape complementarity,
hydrophobicity and smoothed potentials

Clustering and knowledge-based
scoring

HADDOCK [154] http://www.nmr.chem.uu.nl/haddock/ Data-driven docking approach based on
biochemical and/or biophysical interaction data

None

HEX [155] http://www.csd.abdn.ac.uk/hex/ Spherical polar Fourier correlations None
MolFit [156] http://www.weizmann.ac.il/

Chemical_Research_Support//molfit/home.html
FFT correlation based on chemical and shape

complementarity
Clustering of the predicted
conformations

PatchDock [114] http://bioinfo3d.cs.tau.ac.il/PatchDock/ Geometric hashing and pose-clustering Ranking according to a geometric
shape complementarity score

PyDock [157] http://mmb.pcb.ub.es/PyDock/ FFT based on electrostatics and desolvation energy Ranking using an energy function
RosettaDock [115] http://rosettadock.graylab.jhu.edu/ Local docking by Monte Carlo search Ranking using an energy function,

clustering
ZDOCK [107] http://zlab.bu.edu/zdock/index.shtml FFT correlation based on shape complementarity,

desolvation energy and electrostatics
Refinement by energy
minimization

3D-Dock [158] http://www.sbg.bio.ic.ac.uk/docking/ FFT correlation using FTDOCK [159] Clustering, refinement of side-
chains using Multidock [159]

Information relating to the dockingmethod and filtering/refinement stages can be found in the columns, respectively.

Figure 1: An example of protein^protein interfaces
(interface region between p53 and its binding protein
53BP2).
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interaction type (using NOXclass). 1ycsAB is found

to be a biological interface with a probability of 85%

and non-obligate with a probability of 76%. Further,

PDBsum [118] indicates that there are nine H-bonds

between the chains. HotSprint gives the average

conservation score of this interface as six highlighting

the computational hot spots, suggesting that this

interface is moderately conserved [84].

Interactions of HRAS
Ras proteins are key regulators of eukaryotic cell

growth, functioning in signal transduction pathways.

They bind GDP/GTP and have intrinsic GTPase

activity. Experimental evidence illustrates the

importance of HRAS switch I (residues 25–40) and

switch II (residues 57–75) regions in binding to its

interaction partners [119–121]. With the goal of

characterizing this protein and its network interac-

tions, the interactions of HRAS are obtained using

STRING [122], which is a database of known and

predicted PPIs. STRING integrates interaction data

from high-throughput experiments (DIP, BIND,

MINT and GRID databases), co-expression, geno-

mic context and prior knowledge. Its summary

network for the experimentally validated interactions

is given in Figure 2A.

In order to locate the binding regions responsible

for interactions in the network, several binding site

prediction web servers can be used. PPI-Pred [100]

provides a list of probable interface residues in the

three highest scoring patches. The highest scoring

patch successfully overlaps both the switch I and

switch II regions of HRAS. The predicted patch is

displayed in Figure 2B. The predicted best patch of

SHARP2 [101], which uses patch score calculation as

the prediction method, corresponds to the switch I

region of HRAS. The two web servers which use

neural networks in the predictions are SPPIDER

[102] and cons-PPISP [103]. Cons-PPISP prediction

includes switch I region, whereas SPPIDER includes

both switch I and switch II regions of HRAS. The

predicted interacting residues with SPPIDER are

shown in Figure 2B.
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Figure 2: (A) HRAS interaction network visualized by STRING [122]. (B) The predicted interacting residues of
HRAS (1bkd_R) using SPPIDER and PPI-Pred are displayed as spheres in white and silver color, respectively.The black
spheres represent the residues that are common to bothweb servers. Predictions of SPPIDER and PPI-Pred web ser-
vers overlap both Switch I and Switch II regions of HRAS.

Key Points
� Characterization and prediction of binding sites are crucial to

studies of protein interactions. This review provides a compre-
hensive and organized list of the available databases and web
servers of protein binding sites and their characteristics
outlining how the tool was constructed, its advantages and
drawbacks. In addition, it further provides examples how to use
tool-combinations toward particular goals.

� These resources canbe used to: (i) analyze the physico-chemical
properties of interfaces and differentiate between biological
complexes and crystal contacts and (ii) predict binding sites
in protein structures and of the docked structures of two
individual proteins.

� In conclusion, a combination of such resources is expected
to help biologists explore protein interactions, relate these to
cellular processes, and design drugs to target the ‘druggable’ sites.
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