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Abstract
Recent advances in massively parallel sequencing technology have created new opportunities to probe the hidden
world of microbes. Taxonomy-independent clustering of the 16S rRNA gene is usually the first step in analyzing mi-
crobial communities. Dozens of algorithms have been developed in the last decade, but a comprehensive benchmark
study is lacking. Here, we survey algorithms currently used by microbiologists, and compare seven representative
methods in a large-scale benchmark study that addresses several issues of concern. A new experimental protocol
was developed that allows different algorithms to be compared using the same platform, and several criteria were
introduced to facilitate a quantitative evaluation of the clustering performance of each algorithm. We found that
existing methods vary widely in their outputs, and that inappropriate use of distance levels for taxonomic assign-
ments likely resulted in substantial overestimates of biodiversity in many studies.The benchmark study identified our
recently developed ESPRIT-Tree, a fast implementation of the average linkage-based hierarchical clustering
algorithm, as one of the best algorithms available in terms of computational efficiency and clustering accuracy.

Keywords: pyrosequencing; 16S rRNA; taxonomy-independent analysis; massive data; clustering; microbial diversity
estimation; human microbiome

INTRODUCTION
Complex microbial communities contribute to many

biological processes, including biogeochemical activ-

ities critical to life in all environments on earth and

maintenance of human health. High-throughput

sequencing technologies now allow researchers to

circumvent earlier constraints of studying micro-

bial communities via cultivation-based techniques.
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These recent technological developments can gen-

erate millions of sequences in a single sequencing

run, and open new opportunities to probe the

hidden world of microbes with unprecedented

resolution [1–3].

Although shotgun metagenomic studies are also

developing rapidly, 16S rRNA analysis remains a

widely accepted and powerful tool for studying mi-

crobial community dynamics at high resolution.

Existing algorithms for classifying microbes using

16S rRNA sequences can be generally categorized

as taxonomy dependent or taxonomy independent.

In taxonomy-dependent analysis, query sequences

are compared against a database, then assigned

to the organisms of the best-matched reference

sequences (e.g. using BLAST [4]). Because the

vast majority of microbes have not yet been formally

described, these methods are inherently limited by in-

completeness of reference databases [5]. Taxonomy-

dependent analysis is usually performed for the

purpose of sequence annotation. In contrast, taxon-

omy-independent analysis (TIA) compares query se-

quences against each other to form a distance matrix,

followed by clustering to group sequences into op-

erational taxonomic units (OTUs) with a specified

amount of variability allowed within each OTU.

Various ecological metrics can then be estimated

from the frequency of each OTU in order to char-

acterize a microbial community or to compare com-

munities. The analysis does not rely on any reference

database, and hence can enumerate novel uncultured

and potentially pathogenic microbes, not just organ-

isms that have already been cultured and sequenced.

Many different algorithms have been developed in

the past decade for TIA [6–12]. Significant efforts

were devoted to developing new algorithms that

enable microbiologists to keep pace with the unpre-

cedented growth of genomic data sets available

today. However, many existing algorithms, although

widely used by the biology community, have been

benchmarked only informally or on limited data sets.

A recent report suggests that different methodolo-

gies, and even small changes in algorithm parameters

for the same methodology, can result in substantially

different binning outcomes [13]. We have also

observed major discrepancies in the number of

bins, and of which sequences fall into the same

bin, depending on the particular algorithm. The in-

consistency in binning algorithms utilized in various

studies makes it difficult to interpret and compare

research findings from different research groups.

A benchmark study that forms the basis for identify-

ing the most appropriate algorithm for a particular

application is therefore urgently needed.

A major obstacle to benchmarking is that for com-

plex microbial communities there is no ground-truth

information about what species are actually in the

community. In addition, the criteria that have been

previously used for quantitative assessment of algo-

rithm performance have several important draw-

backs. Traditionally, TIA was performed to

estimate the biodiversity of a microbial community.

Consequently, previous work mainly focused on the

ability of different algorithms to recover the same

number of OTUs (defined at certain distance

levels) that were present in a mock community gen-

erated from a limited number of known 16S rRNA

sequences [6, 12]. There are two problems with this

criterion. First, the total number of clusters is a global

statistics that provides no information on how each

sequence is grouped (for example, one might recover

22 OTU clusters from 22 species, but sequences

from different species might be grouped in the

same OTU). In addition to microbial diversity esti-

mation, TIA is used to analyze millions of sequences

to identify lists of OTUs that separate clinically or

biologically relevant states (e.g. OTUs that separate

lean and obese individuals or different sites on the

body) [14–16]. Incorrect grouping of sequences into

OTUs can therefore have a major impact on down-

stream data analysis. Second, due to the use of

different formulations to compute the distances be-

tween clusters, the numbers of OTUs generated by

different algorithms at the same nominal distance

levels are not directly comparable. Consequently,

using OTU numbers as the sole criterion to evaluate

TIA algorithms is limited and potentially misleading.

In this article, we present a review of existing

algorithms in current, widespread use by the micro-

biology community for TIA, and conduct a compre-

hensive benchmark study that addresses several issues

of concern. We develop an experimental protocol to

compare different algorithms using the same plat-

form, and introduce several criteria including nor-

malized mutual information (NMI) [17] and F-

score [18] to facilitate a quantitative evaluation of

the clustering performance of each algorithm.

Because this article is primarily intended for micro-

biologists, we present several toy examples and simu-

lation studies performed on both artificially

generated and real world data sets to illustrate the

behavior of different algorithms. We find that
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existing methods, even when applied to the same

data sets, can lead to substantially different results,

and that many astoundingly high biodiversity esti-

mates reported in the literature appear to be over-

estimates resulting from the inappropriate use of

distance levels for defining OTUs. Our benchmark

study identifies ESPRIT-Tree, a fast implementation

of the average linkage-based hierarchical clustering

algorithm, as one of the best TIA algorithms available

in terms of computational efficiency and clustering

accuracy. We hope that the results presented here

will enable microbiologists to better understand the

issues involved in analyzing large 16S rRNA data sets

and provide them with a guideline for choosing a

proper TIA algorithm for their particular research

question.

LITERATURE SURVEY
Existing TIA algorithms generally consist of two

major modules: (i) computing pairwise distances be-

tween sequence pairs and (ii) grouping sequences

into OTUs at various distance levels. In some algo-

rithms (e.g. ESPRIT [6], mothur [9], MUSCLEþ

DOTUR [19]) the two steps are performed sequen-

tially, whereas in others (e.g. ESPRIT-Tree [8],

CD-HIT [7] and UCLUST [10]) they are performed

simultaneously. In this article, we mainly focus on

sequence data sets where the number of sequences is

on the order of 106 (about the number currently

obtained in a single 454 Titanium run). The algo-

rithms implemented sequentially generally cannot

handle such massive data because, as an intermediate

step, they compute a distance matrix, the size of

which is proportional to the square of the number

of sequences. However, computational efficiency is

not the only consideration. Many existing algorithms

are tradeoffs between computational efficiency and

accuracy. We present below a brief description of

how each algorithm works. Table 1 summarizes

some existing algorithms commonly used by the mi-

crobial community for TIA.

One of the most commonly used methods in the

first step (pairwise distance calculations) is multiple

sequence alignment (MSA), which incorporates

information about sequence homology into the dis-

tance calculation [19, 20]. The optimal MSA is an

NP-complete problem (i.e. it has been proven to be

a ‘hard’ problem that cannot be solved in reasonable

time for large numbers of sequences). Although

significant improvement has been made in the last

decade to reduce computational complexity of MSA

(e.g. MUSCLE [21] and MAFFT [22]), it remains

computationally intractable to perform MSA on mil-

lions of sequences. In addition, the use of MSA to

align hypervariable regions of 16 S rRNA gene has

not yet been well justified. MSA was originally

designed to infer homologous segments of input se-

quences with the underlying assumption that input

sequences share recognizable evolutionary similarities

at the level of the primary sequences. This assump-

tion may not hold for 16 S rRNA-based studies that

target hypervariable regions of rRNA genes from

highly diverse microbial communities. In a simula-

tion study presented below using real 16 S rRNA

sequences derived from a seawater sample, we

observed that many sequences are from distantly

related OTUs with large genetic distances. MSA

aims to minimize the sum of pairwise alignment

scores. In order to align a large number of highly

diverse sequences, the alignment quality of closely

related sequences is sacrificed, leading to a severe

overestimation of genetic distances and microbial

diversities. Moreover, the harder MSA tries to min-

imize the sum of pairwise scores by aligning unre-

lated sequences, the larger distances between closely

related sequences can be. By definition, the optimal

MSA algorithm yields the lowest score. This suggests

that MSA is not suitable for analyzing hypervariable

regions of rRNA genes to estimate microbial diver-

sity, even if the optimal MSA could be performed.

One possible way to address these issues with

MSA is to align input sequences against a prealigned

reference database. The representative methods in-

clude RDP/Pyro [5], NAST [23] and a profile-based

algorithm included in the well-known mothur pipe-

line [9, 24]. Because a reference database can be

maintained off-line, the computational complexity

of these algorithms grows only linearly with respect

to the number of input sequences. However, unlike

generic MSA algorithms, these algorithms share a

problem with those used for taxonomy-dependent

analysis: their performance depends heavily on the

completeness of a reference database, and also on

the quality of the alignment of the sequences in

that database. Since most bacterial genomes have

not been sequenced yet, a large proportion of

input sequences from unknown microorganisms

may not be able to find significant hits and can

only be aligned to distantly related reference se-

quences, leading to inaccurate estimates of pairwise

distances. We performed a simulation study that
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suggests that although fixed aligners work well for

known sequences, they perform poorly for novel

sequences that are not closely related to those already

represented in a reference database.

CD-HIT, UCLUST and ESPRIT use pairwise

sequence alignment (PSA) to obtain optimal pairwise

alignments of 16 S rRNA sequences and to compute

similarities between sequence pairs. Whereas many

MSA algorithms (e.g. MUSCLE) can only be de-

ployed using a single processor, PSA allows for par-

allel computing and provides much more flexibilities

in algorithm design. Moreover, simulation studies

have shown that by eliminating heuristics in se-

quence comparison, PSA provides a much more

accurate estimate of microbial richness than MSA

[6, 12]. A frequent criticism of PSA is that currently

implemented methods do not take RNA secondary

structure information into consideration. However,

in the benchmark study presented below, we found

that, compared to profile-based MSA algorithms,

excluding secondary-structure information does not

have a significant impact on clustering performance.

Existing algorithms can also be categorized based

on the clustering method they use to group se-

quences into OTUs at various levels of sequence

identity. The two most commonly used methods

are hierarchical clustering (HC) and greedy heuristic

clustering (GHC). HC is a classic unsupervised learn-

ing technique that has been used in numerous

biomedical applications [25]. The major drawback

of HC is its high computational and space complex-

ity. The standard implementation has an O(N2) com-

plexity, where N is the number of input sequences.

DOTUR is probably the first published HC algo-

rithm widely used by the microbiology community

[11]. DOTUR, however, cannot handle the ex-

tremely large data sets available today. The main

reason it does not scale is that it needs to load a

distance matrix into memory before clustering.

Given one million reads, a full distance matrix can

be as large as 7500 GB. Even if we remove duplicate

sequences and sequence pairs that have a pairwise

distance larger than a specified value (say 0.1), the

resulting distance matrix in a sparse format can still be

several hundred gigabytes in size, which is too large

to be directly loaded into the memory of most com-

puters. To address this issue, we recently developed a

new clustering algorithm, referred to as Hcluster,

within the ESPRIT framework to handle large-scale

complete-linkage and single-linkage HC operations.

Unlike conventional methods, Hcluster groups

sequences into OTUs on the fly (i.e. reading one

distance at a time), whereas keeping track of linkage

information. A large-scale experiment was con-

ducted that showed that Hcluster works well with

one million reads [14]. Hcluster has already been

incorporated in the mothur pipeline. One limitation

of Hcluster is that one still needs to generate a full or

Table 1: Some existing algorithms commonly used by the microbiology community forTIA

Method Function supported Alignment
method

Clustering
methoda

Using
reference
database

Generating
distance
matrix

Computational
complexity

Space
complexity

DOTUR Clustering N/A HC N Y O(N2) O(N2)
Mothur Sequence alignmentþclustering Profile based

MSA method
HC Y Y O(N2) O(N2)

ESPRIT Sequence alignmentþclustering PSA HC N Y O(N2) O(N2)
ESPRIT-Tree Sequence alignmentþclustering PSA HC N N O(N1.2) O(N)
NASTb Sequence alignment Profile based

MSA method
N/A Y Y O(N) O(N2)

RDP/Pyro Sequence alignmentþclustering Infernal aligner HC Y Y O(N2) O(N2)
CD-HIT Sequence alignmentþclustering PSA Greedy heuristic

clustering
N N O(N1.2) O(N)

UCLUST Sequence alignmentþclustering PSA Greedy heuristic
clustering

N N O(N1.2) O(N)

MUSCLE Sequence alignment MSA N/A N Y O(N4) O(N2)

aComplete linkage is the defaultmethodinDOTUR,mothur,ESPRITandRDP/Pyro.ESPRIT-Tree supports only average linkage. bNASTonly supports
the sequence-alignment step. By aligning query sequences against a database, its computational complexity grows linearly with respect to the
number of sequences.However, according to the NASTwebsite, it aligns at a rate of approximately10 sequences perminute.N/A¼not applicable;
N¼ no;Y¼ yes.
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sparse distance matrix before clustering. Although

ESPRIT uses complete linkage as the default

option, it provides a separate function that allows

users to perform average linkage, but its memory

footprint is much higher than Hcluster. ESPRIT

uses kmer statistics (i.e. frequencies of ‘words’ of a

specified length in the sequence) to remove unneces-

sary sequence alignments. However, its space and

computational complexities remain O(N2).
Greedy heuristic clustering (e.g. CD-HIT [7] and

UCLUST [10]) processes input sequences one at a

time, avoiding the expensive step of comparing all

pairs of sequences. Given a predefined threshold, an

input sequence is either assigned to an existing cluster

if the distance between the sequence and a seed (the

sequence representing that cluster) is smaller than the

threshold, or becomes a new seed for a new cluster

otherwise. Consequently, the computational com-

plexity of greedy heuristic clustering is O(MN),
where M is the number of seeds. Usually M<<N,

and hence greedy heuristic clustering is computa-

tionally much more efficient than HC. CD-HIT

and UCLUST are the only two algorithms that we

are aware of that can process millions of reads on a

desktop computer. Mathematically speaking, greedy

heuristic clustering partitions the input space into a

set of closed balls where the distances between se-

quences and their associated seeds are smaller than a

predefined threshold. However, there is no guaran-

tee that the true clustering structure can be recovered

from such partitions. Also, because sequences are se-

quentially processed, adjacent clusters may be over-

lapped. That is, the distance between a sequence and

its assigned seed is not necessarily smaller than the

distance between that sequence and any other seed

(i.e. if the search were continued, a better match

might be found). CD-HIT was originally designed

to reduce the size of a large database to speed up a

database search [7]. However, it is not designed for

uncovering clustering structures, and the perform-

ance for that purpose has not yet been benchmarked.

In the study presented below, we show that although

CD-HIT and UCLUST run several orders of mag-

nitude faster than a HC algorithm, their ability to

group sequences into the correct clusters is much

worse.

We recently developed a new online learning-

based algorithm, referred to as ESPRIT-Tree [8],

which simultaneously addressed the space and com-

putational issues with conventional HC algorithms.

The basic idea is to partition an input sequence space

into a set of subspaces using a partition tree con-

structed using a pseudo-metric, then to recursively

refine a clustering structure in these subspaces. As

with CD-HIT and UCLUST, ESPRIT-Tree does

not need to generate a distance matrix. All of the

operations are executed on the fly, and the distances

are computed only when they are needed.

ESPRIT-Tree achieves a similar accuracy to the

standard average linkage HC algorithm but with a

computational complexity comparable to CD-HIT

and UCLUST.

EXPERIMENTS
Multiple sequence alignment versus
pairwise sequence alignment
We performed two simulation studies to investigate

how different sequence alignment methods affect the

performance of a TIA algorithm.

First, we tested how divergent sequences are in a

representative biological sample. MSA assumes that

input sequences share recognizable evolutionary

homology at the level of primary sequences along

their whole length. It has been reported that micro-

bial communities are much more diverse than ex-

pected [19, 20], which suggests that the underlying

assumption of MSA might not be valid because parts

of the sequence are not homologous due to inser-

tions and deletions, or because so much change has

occurred that bases that are the same are as likely to

be the same by coincidence rather than because they

are derived from a common ancestor. This effect is

especially severe with short sequences that focus on

the most variable parts of the 16 S rRNA gene. To

demonstrate this effect, we performed a simulation

study where we calculated the pairwise distances of

the V6 sequences of a seawater sample by using the

Needleman–Wunsch algorithm, and plotted a histo-

gram of the distances in Figure 1A. We report that

only about 2% of sequence pairs have a genetic dis-

tance smaller than 0.1. In other words, for every two

randomly selected sequences, there is a 98% prob-

ability that they are from two distantly related

OTUs. Note that if MSA were used, the histogram

would be further skewed towards the right.

Second, we performed a simulation study to dem-

onstrate how the presence of a large proportion of

highly diverse sequences affects the alignment of se-

quences with small genetic distances. We randomly

selected two sequences with a distance of 0.06 com-

puted based on pairwise alignment, then performed a

Benchmark study of algorithms for taxonomy independent analysis 111



multiple sequence alignment of the two sequences

together with 100 sequences randomly selected from

the seawater data using MUSCLE with default par-

ameter settings, and recorded the pairwise distance

calculated between the first two sequences based on

their alignment in the resulting MSA. The experi-

ment was repeated 100 times using the same ini-

tial pair of sequences. The distances are plotted in

Figure 1B. We can see that the pairwise distances

computed based on MSA are much larger than

0.06. The maximum distance is 0.22 and the average

is 0.09 (SD¼ 0.03). This can be explained by the fact

that MSA is designed to minimize the sum of pair-

wise scores. In order to align the 100 highly diverse

sequences, the alignment quality of the first two se-

quences had to be sacrificed, leading to an inflated

estimate of genetic distances. Note that we include

only 100 randomly selected sequences in this experi-

ment. With additional distantly related sequences

and/or if these sequences were even more diverse,

the calculated distance between the first two se-

quences would be even larger. This leads to an inter-

esting observation: whether two sequences are from

the same OTU should be physically determined by

their sequence composition. Now by using MSA,

the distance between two sequences, and also their

assignment to the same or different OTUs, also de-

pends on sampling depth (i.e. the number of se-

quences sampled) and the environment from which

they are extracted (i.e. how diverse other sequences

are), which is highly undesirable. In ‘Benchmark

study on human gut data’ section, we performed add-

itional tests on a human gut microbiota data using

other criteria (NMI score and number of OTUs),

and found that due to its inability to align highly di-

verse sequences MSA performed significantly worse

than PSA.

HC versus greedy heuristic clustering
We performed a simulation study using a toy ex-

ample to illustrate the algorithmic behaviors of hier-

archical and greedy clustering methods. The data set

was generated from two distinct Gaussian distribu-

tions (Figure 2A). The data points are distributed in a

two-dimensional space, and the pairwise distances

can be computed precisely, which enables us to visu-

alize clustering results and to remove the compound-

ing factor of using different alignment methods. By

using Euclidean distance and average linkage, HC

successfully recovered the true clustering structure

as expected (Figure 2B). In contrast, greedy heuristic

clustering performed poorly, although it did group
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Figure 1: (A) Sequence pairs with distances less than 0.10 only account for a small fraction of all possible pairs
(2.25% in this example). (B) Pairwise distances between the same pair of sequences computed based on multiple se-
quence alignments containing different sequences in the rest of the alignment are much larger than the constant
value of 0.06 computed by using pairwise sequence alignment, and vary over a wide range, from 0.06 to 0.22 (i.e. se-
quences that are really 6% different can appear 22% different due to the MSA procedure). The experiment was
performed on the 53R seawater sample downloaded from [19].
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samples into clusters (Figure 2C). For example, the

green and yellow groups contain data points that

originally came from the two different distributions.

Also, we notice that the blue and green clusters have

some overlaps. In other words, the blue points in the

‘green’ territory have smaller distances to the ‘green’

seed than to the ‘blue’ seed. In summary, the two

methods have their own advantages and disadvan-

tages: greedy heuristic clustering is computation-

ally very efficient whereas HC is more accurate.

However, if computational resource allows, HC is

clearly the method of choice. These effects are espe-

cially important when one tries to determine the

significance of relatively rare taxa that distinguish be-

tween physiological states: incorrect cluster assign-

ment could cause an investigator to miss taxa that

really do associate with a disease if they are assigned

to the wrong cluster frequently enough to obscure

the signal.

Complete linkage versus average linkage
If HC is considered, one needs to decide which link-

age function is used to define distances between clus-

ters. Single linkage is rarely used in TIA due to its

chaining effect. Complete linkage (CL) is the default

setting in DOTUR and ESPRIT, whereas ESPRIT-

Tree uses average linkage (AL). Huse et al. [12] con-

ducted a simulation study to compare the number of

OTUs generated by the two linkage functions at the

0.03 distance level against the species-level ground

truth of an artificially generated data set, and found

that AL yielded a much more accurate estimate of

the number of OTUs than CL. However, as we

mentioned in the introduction, the total number of

OTUs is not a proper criterion to evaluate a TIA

algorithm. CL differs from AL in how distances be-

tween clusters are computed when two clusters are

merged. However, the numbers of OTUs generated

by the two methods at the same distance level are

not directly comparable. To illustrate this, we present

a two-dimensional example in Figure 3, where each

node represents a sequence. In order to merge the

two clusters, the distance levels required in CL and

AL are 3d and 2d, respectively. This problem is not

straightforward for UCLUST and CD-HIT, as the

result depends on the order of the sequences pre-

sented to the algorithms. If sequence ‘a’ is selected

as a seed, the threshold is 3d, and if sequence ‘b’ is

used as a seed, the threshold is 2d. Although

UCLUST and CD-HIT do not support CL and

AL, the distance levels required by the two methods

to merge two clusters are somewhere between those

used by CL and AL, which we verified in a bench-

mark study (Figures 5 and 7). The above example
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Figure 2: A toy example that illustrates the algorithmic behaviors of the HC and greedy heuristic clusteringmeth-
ods. (A) The data set was generated from two distinct Gaussian distributions; (B) HC successfully recovered the
true clustering structure; (C) greedy heuristic clustering performed poorly, and the result depended on selected
seeds. At the same dissimilarity level, the two approaches behave differently.
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Figure 3: A toy example illustrates that distance
levels required to merge the same pair of clusters are
different for AL, CL and greedy heuristic clustering.
Each node represents a sequence.
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suggests that there is no single threshold that works for

all methods. This is a crucial issue when comparing

the microbial diversities detected in different studies,

but has largely been ignored by the microbiology

community.

Benchmark study on human gut data
We performed a benchmark study to evaluate the

performance of seven existing TIA algorithms using

a real-world data set. The data set was originally used

to study the connection between obesity and altered

composition of the human gut flora [26]. It contains

about 1 100 000 sequences with an average length of

219 nucleotides, covering the V2 hypervariable

region of the 16 S rRNA gene collected from the

stool samples of 154 individuals. This is the most

comprehensive 16 S rRNA based survey of the

human gut microbiota published as of this writing.

The seven algorithms we compared include most

TIA algorithms currently used by the microbiology

community: CD-HIT, UCLUST, ESPRIT with

CL and AL, mothur (profile-based MSAþAL using

the SILVA database), MUSCLEþAL and ESPRIT-

Tree. We did not include tests of pipelines that wrap

these methods as the results are the same. In order to

examine how PSAþCL and PSAþAL perform

compared to other methods, we used a loose kmer

threshold of 0.8 in ESPRIT to remove unnecessary

sequence alignments. We also tested ESPRIT with

the default kmer threshold of 0.5, and found that

both thresholds yielded almost identical results

(P> 0.3). For CD-HIT and UCLUST, the clustering

outcomes typically depend on the order of sequences

presented to the algorithms. One default setting is to

order input sequences based on their lengths, al-

though a more biologically plausible choice is to

order them based on their abundances (with prefix

matching so that a sequence and shorter sequences

that occur entirely within that sequence are con-

sidered to be the same sequence). Both choices

yielded similar results in our simulations. Here, we

only present the results obtained by using the default

settings. For all other algorithms, the default param-

eters were used.

One of the major obstacles of a benchmark study

is the lack of ground-truth information for perform-

ance evaluation. To overcome this difficulty, we

constructed a reference database from the RDP-II

database [5] using TaxCollector [16], where each

reference sequence was fully annotated. We then

ran a MegaBlast search of the gut data against the

reference database, and used a stringent criterion to

retain the annotated sequences: >97% identity over

an aligned region >97% of the total length of the

sequences. This resulted in a total of about 750 000

reads classified into 671 species and 283 genera. We

then applied the seven methods to the annotated

sequences, and used the commonly used NMI cri-

terion [17] to evaluate how the outcome of a TIA

algorithm agreed with the ground truth. NMI pen-

alizes two types of errors: wrongly assigning se-

quences with the same species label into different

OTUs, and assigning sequences with different species

labels into the same OTUs. NMI¼ 1 means that a

clustering result completely agrees with the ground

truth, and NMI¼ 0 means that sequences are ran-

domly assigned. In order to minimize statistical vari-

ations, the experiment was repeated 20 times. In

each iteration, 30 000 reads were randomly extracted

from the annotated data set, the seven methods were

used to group the sequences into OTUs at various

distance levels ranging from 0.01 to 0.15, a NMI

score was computed at each distance level by using

the species or genus labels of the input sequences

as the ground truth, and the maximum NMI scores

and the number of species and genera of the 30 000

reads were recorded. Although retaining only the

sequences that can be confidently annotated some-

what simplified the problem, the experimental

protocol is unbiased toward any particular clustering

method. Figure 4 depicts the abundance of the spe-

cies represented by one of the test data sets. The

simulated data contains high, medium and low abun-

dance components (i.e. a long tail), which is similar

to those observed in a real microbial community, and

is much more complicated than our previously used

mock community generated from 43 known 16 S

rRNA sequences [6, 12].

Figure 5A depicts the NMI scores of six methods

as a function of ten distance levels, averaged over the

20 runs. The maximum NMI score of MUSCLEþ

AL is 0.66, which is much worse than all other

methods, and its results were omitted to better visu-

alize the results of other methods. We observe that

all curves have a bell shape, which can be explained

by the fact that when a distance level is small, se-

quences belonging to the same species are partitioned

into different clusters, and when a distance level is

large, sequences belonging to different species are

grouped into the same clusters. By definition, both

result in lower NMI scores. We also observe that the

NMI curves obtained by different methods peak at
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different distance levels, for instance, 0.04 for

ESPRIT-Tree and ESPRIT-AL, 0.08 for ESPRIT-

CL, 0.05 for CD-HIT and 0.06 for UCLUST. These

differences are due to the different methods used

in each algorithm to define the distance between

two clusters. The peak positions of CD-HIT and

UCLUST are somewhere between those of

ESPRIT-AL and ESPRIT-CL, which is consistent

with the discussion presented in ‘Complete linkage

versus average linkage’ section (Figure 3). The above

observation suggests that the NMI scores obtained at

the same distance level are not directly comparable.

We thus proceeded to compare the maximum NMI

score of each method (Figure 5B), which by defin-

ition corresponds to the best clustering result that a

method can achieve. We observe that (i) ESPRIT-

AL performed similarly to ESPRIT-CL, although

they peaked at the different distance levels;

(ii) ESPRIT-Tree performed similarly to ESPRIT-

AL, and significantly better than CD-HIT and

UCLUST (P-value <10–5 based on a Student’s

t-test), which is consistent with the result presented

in ‘HC versus greedy heuristic clustering’ section;

(iii) mothurþAL performed much better than

CD-HIT and UCLUST, but slightly worse than

ESPRITþAL. We should emphasize that because

the test data sets contain only sequences that can

be confidently annotated by the RDP database, the

experimental procedure favors mothur (which calcu-

lates pairwise distances by aligning input sequences

against a prealigned reference database). The under-

lying assumption of mothur is that pairwise distances

between novel sequences can be accurately estimated
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from the reference sequences. The following simu-

lation study shows that this might not be the case.

We used one of the V2 annotated data sets. We first

mapped each query sequence to its closest reference

sequence in the SILVA database and removed the

top 100, 200, 500 and 1000 best-matched sequences

from the database. We then applied mothur to the

test data set by using these incomplete databases, and

computed the corresponding NMI scores. We report

that the clustering quality of mothur drops substan-

tially as the number of removed sequences increases

(Figure 6). It should be noted that by removing 1000

out of 14 900 reference sequences, only 6.7% of the

database is missing. The above results suggest that

although the profile-based MSA algorithm may be

able to capture homologous and secondary-structure

information, it does not work well for novel se-

quences that are not well represented in a refer-

ence database. Moreover, even for the annotated

data, ESPRITþAL performed slightly better than

mothurþAL, suggesting that, compared to profile-

based MSA approaches, the information loss due to

excluding secondary-structure information in PSA

does not have a detrimental impact on clustering

results.

We repeated the above analysis by using the genus

assignments as ground truth, and observed similar

results (Figure 7). Again, MUSCLEþAL performed

much worse than other methods (the maximum

NMI score¼ 0.53), and its results was omitted for

display purposes.

One of the main purposes of TIA is to estimate the

biodiversity of a microbial community. In the micro-

biology literature, sequences with <3% and 5% dis-

similarity are typically assigned to the same species

and genus, respectively [26–28]. When comparing

microbial diversities from different studies, micro-

biologists rarely pay sufficient attention to the com-

putational algorithms employed. We found that the

use of different methods can have a drastic impact on

diversity estimates. As shown in Table 2, the num-

bers of OTUs observed at the 0.03 distance level are

much larger than the ground truth, and vary over a

wide range depending on the method employed.

Sequencing errors were previously considered to be

the main source for severe overestimation of micro-

bial diversity [12,29]. However, we observe from

Table 2 that except for MUSCLEþAL, the typical

numbers of OTUs obtained by each method at the

peak positions are always much closer to the ground

truth than those obtained at the 0.03 and 0.05 dis-

tance levels. This suggests that the overestimation is

not mostly due to sequencing error, but to incorrect

interpretation and use of sequence identity thresholds

and methods for measuring distance. The above ob-

servation supports a previous result reported in [13]

that the commonly used 3% and 5% are not optimal

for defining species and genus-level OTUs. Among

the seven methods, ESPRIT-Tree and ESPRIT-AL

yielded the most accurate estimates. Interestingly,

although ESPRIT-CL has the best NMI score, the

number of OTUs and NMI scores obtained by

ESPRIT-CL have larger variations than those

obtained by ESPRIT-AL (P< 10–6 and <2 x 10–5,

respectively, by F-test). This surprising result may

arise because intercluster distances calculated using

an average are typically more robust to outliers and

to random variation than those calculated using a

maximum.

In addition to employed computational algo-

rithms, the distance levels for defining OTUs are

also dependent on targeted hypervariable regions,

as different parts of the ribosome evolve at different

rates. To demonstrate this, we applied ESPRIT-Tree

to the reads extracted from V2 [30], V4 [31], V6

[30], V3–5 [32], V6–9 [32] and near full-length

16 S rRNA genes [33]. We found that the NMI

scores peak at different distance levels ranging from

0.02 to 0.06 (Figure 8). Although the peak positions

do not always coincide with the locations where the
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estimated numbers of OTUs equal to the numbers of

species in the test data sets, they are quite close. This

interesting observation merits further investigation,

as it suggests that NMI scores could be used to find

thresholds that lead to groups that comply optimally

with known taxonomy (rather than groups that are

based on guesses about rates of evolution in different

regions, which may be taxon specific).

Although the number of OTUs is one criterion to

be considered when comparing different methods, it

is more informative to examine how the sequences

originating from the same species are grouped. Here,

we used the F-score [18] to compare clustering qual-

ity. The F-score considers both the precision p and

the recall r, where p is the number of correct assigned

sequences divided by the number of all sequences

grouped into one OTU and r is the number of

correct assigned sequences divided by the number

of sequences that should be grouped into one

OTU. Mathematically, the F-score is computed as

F¼ 2pr/(pþr). The F-score can be interpreted as a

weighted average of the precision and recall, where

an F-score reaches its best value at 1 and worst score

at 0. Although a NMI score grades the overall clus-

tering quality, an F-score shows the quality of indi-

vidual clusters. Since the sequences labeled as the

same species can be scattered into multiple clusters,

an F-score was calculated for each cluster and the

maximum score was used as the F-score for a species.

Figure 9 reports the number of species identified

by ESPRIT-Tree, CD-HIT and ULCUST with

F-scores exceeding 0.9, 0.8, 0.7, 0.6 and 0.5, respect-

ively. The test data set we used here contains 366 spe-

cies. ESPRIT-Tree recovered 164 species with a

high accuracy (F-score >0.9) covering 48% of the

total sequences, whereas UCLUST identified
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Figure 7: (A) NMI scores of six methods evaluated at 10 distance levels. (B) Boxplots of the maximum NMI scores
of six methods.Genus assignments of input sequences were used as the ground truth.

Table 2: The numbers of OTUs observed at the 0.03 and 0.05 distance levels and at the peak positions for the
seven methods

ES-CL ES-AL ES-Tree UCLUST CD-HIT mothurþAL MUSCLEþAL

0.03 level 2139 (31) 1045 (19) 1137 (30) 1446 (28) 920 (23) 2893 (37) 9508 (533)
0.05 level 702 (10) 241 (7) 268 (6) 392 (13) 314 (9) 729 (17) 8523 (377)
Peak position species 270 (52) 402 (9) 400 (9) 183 (16) 243 (7) 444 (12) 13712 (301)
Peak position genus 204 (14) 190 (5) 176 (7) 163 (5) 243 (7) 444 (12) 13712 (301)

Thenumbers of species andgenera averaged over the 20 testdata sets are 371�7 and170� 5, respectively.The number in theparenthesis is one SD.
ESPRIT-Tree and ESPRIT-ALyielded themost accurate estimates ofmicrobial diversity among the sevenmethods.

Benchmark study of algorithms for taxonomy independent analysis 117



133 species covering only 22% of the total input

sequences at this level. A total of 260 species (87%

of the total sequences) were identified with an

F-score >0.5 for ESPRIT-Tree, which outper-

formed UCLUST by 55 in the number of species

and 26% in total coverage. These results are in agree-

ment with that presented in the toy example in

Figure 2, where GHC partitioned the samples from

the same cluster into several sub-clusters dependent

on selected seeds.

Computational complexity
The massive amount of data generated by high-

throughput sequencing technologies poses serious

challenges to existing algorithms. In addition to ac-

curacy, computational complexity is an important

issue. Figure 10 reports the CPU times of

ESPRIT-Tree, UCLUST and CD-HIT, applied to

gut data sets with numbers of sequences ranging

from 1000 to 1 100 000. The analyses were per-

formed on an Intel E5462 2.8 GHz processor. Due

to the need to generate an intermediate distance

matrix, it is computationally expensive for all other

methods to process one million sequences on a desk-

top computer. In terms of computational efficiency,

UCLUST performs the best, closely followed by

ESPRIT-Tree. However, all three methods have a

quasilinear computational complexity of O(N1.2). It

took ESPRIT-Tree about 11 h to process 1 100 000

reads to generate OTUs at 10 distance levels (0.01–

0.1). We have previously applied ESPRIT-CL to the

same gut data set using 100 processors, which

required almost 100 h.
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CONCLUSION
Although there is an urgent need to develop ad-

vanced algorithms to process massive sequence

data, it is equally important to validate the perform-

ance of new approaches. Because there have been

few comprehensive benchmark studies using the

same data sets, the shortcomings of many existing

methods have not yet been fully recognized by the

microbiology community. In this article, we pre-

sented a survey of existing algorithms currently

used by the community, and conducted a compre-

hensive benchmark study that compared seven rep-

resentative methods using both real and simulated

date. We showed that (i) existing methods can

yield vastly different results and (ii) many microbial

diversity overestimates reported in the literature are

due to the inappropriate use of distance levels for

defining taxonomies. When we evaluated sequence

alignment methods, both MSA- and PSA-based

methods appeared to have advantages and disadvan-

tages. Due to computational constraints and their

inability to align highly diverse sequences, generic

MSA algorithms are not suitable for analyzing mas-

sive 16 S rRNA tag sequence data sets. Although the

fixed-alignment methods overcome the computa-

tional burdens of sequence alignment by aligning

input sequences against a reference database, their

performance is limited by the incompleteness and

alignment quality of existing databases (although

these methods will improve as these reference data-

bases improve, and are still useful for other analyses,

such as phylogenetic tree building, not considered

here). Although currently available PSA-based clus-

tering methods ignore secondary structures, they

provide more reliable estimates of pairwise distances

by removing problems associated with heuristics

involved in sequence comparison. When we com-

pared clustering methods, we found that classic HC

is superior to greedy heuristic clustering in terms of

clustering accuracy. The standard HC algorithm,

however, does not scale well for handling millions

of sequences available to date. We have recently

developed a new online learning-based HC algo-

rithm, referred to as ESPRIT-Tree, which simultan-

eously addresses the space and computational issues.

The algorithm exhibited a close-to-linear time and

space complexity comparable to greedy heuristic

algorithms, and achieved a similar accuracy to the

standard HC algorithm. We further found that

although both complete and average linkages per-

form similarly in terms of clustering accuracy, aver-

age linkage is numerically more stable (i.e. the

number of OTUs and NMI scores estimated by

AL have smaller variations). Our studies suggest

that the distance levels for defining OTUs at various

phylogenetic levels are moving targets, and depend

on both the hypervariable region that is sequenced

and the deployed algorithm. An indiscriminate ap-

plication of the commonly used OTU definitions

can lead to inaccurate estimates that could obscure

real biological patterns, especially for rare taxa that

can be critical in disease and in biogeochemical pro-

cesses. We thus suggest that microbiologists perform

an internal validation study using known sequences

extracted from their own data to estimate a distance

level that might offer a more accurate estimate.

Some caveats of the present analysis are worth

mentioning. First, the field of metagenomics is evol-

ving rapidly, and there are many other applications

for sequence data and clustering approaches that

remain to be compared, so the present study

should not be seen as exhaustive. Although we

tried to compare different algorithms fairly on the

same platform, we did not vary the parameters, but

simply relied on the default parameters chosen by the

authors of each software package. Second, the

BLAST-based bootstrapping approach for assessing

accuracy seems to be a good compromise between

real-world and simulated data. A generic TIA
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algorithm, by definition, does not rely on any data-

base (except for profile-based methods). Hence, the

results reported here should be able to generalize

well on real-world data. However, we need to em-

phasize that there is currently no way to directly

assess the performance of existing methods on un-

known reads. We hope that the observations pre-

sented in this article will help researchers to better

understand the complexities involved in various

sequence analysis methods, and to choose one

appropriate to their study.

Key Points

� TIA is generally considered as the first step in performingmicro-
bial community analysis. Many existing algorithms, though
widely used by the biology community, have not yet been fully
benchmarked and vary widely in their outputs.

� This article presents a comprehensive benchmark study that
addresses several issues of concern.Multiple sequence alignment
is not suitable for analyzing massive 16S rRNA tag sequences,
and pairwise sequence alignment yieldsmuchmore reliable esti-
mates of microbial diversities; the performance of fixed
alignment-based methods is limited by the incompleteness and
the alignmentqualityof existing databases; classic HC is superior
to greedy heuristic clustering in terms of clustering accuracy;
the average linkage method is numerically more stable than the
complete linkagemethod.

� The distance levels for defining taxonomies at various phylogen-
etic levels are a moving target and depend on both the hyper-
variable region that is sequenced and the deployed algorithm.
Many astoundinglyhighbiodiversityestimatesreported in the lit-
erature appear to be overestimates resulting from the inappro-
priate use of distance levels for defining taxonomies. One
possibleway to alleviate this issue is to perform an internal valid-
ation study using known sequences to estimate a distance level
thatmay offer a more accurate estimate.

� Thebenchmark study identified ESPRIT-Tree, a fast implementa-
tion of the average linkage-based HC algorithm, as one of the
best algorithms available in terms of computational efficiency
and clustering accuracy.
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