
Atoolbox for developing bioinformatics
software
Kristian Rother,Wojciech Potrzebowski, Tomasz Puton, Magdalena Rother, EwaWywial and Janusz M. Bujnicki
Submitted: 23rd March 2011; Received (in revised form): 17th May 2011

Abstract
Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software
development in an academic setting is often unsystematic, which can lead to problems associated with maintenance
and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt,
and technical measures that directly improve bioinformatic programming have not been described comprehensively.
We have examined 22 software projects and have identified a set of practices for software development in an
academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experi-
mentalists), and to promote higher quality and maintainability of the resulting programs. This article describes
12 techniques that facilitate a quick start into software engineering.We describe 3 of the 22 projects in detail and
give many examples to illustrate the usage of particular techniques.We expect this toolbox to be useful for many
bioinformatics programming projects and to the training of scientific programmers.

Keywords: software development; programming; project management; software quality

INTRODUCTION
Software is one of the most visible results of bio-

informatics research and development. Several

recent articles underline the importance of quality

code for a real, long-lasting benefit for science:

Hannay et al. [1] showed that although scientists gen-

erally appreciate a systematic approach to program-

ming, there is a lack of formal training. Merali [2]

concludes that although the time spent programming

by scientists has increased, the practice to write and

test software has not co-evolved resulting in prob-

lems with code transparency, maintainability and

reproducibility, also see Figure 1A. But what can

scientists actually do to improve their programming

style?

Professional programmers have been applying

methodologies for developing software, which have

evolved considerably during recent years. Some take

a formally rigid approach, where planning, im-

plementation, and testing phases follow each other

linearly, or where strict quality criteria and manage-

ment processes are defined. These ideas are found

in the waterfall model [3], the ISO 9000 family of

standards [4], and others. On one hand, such pro-

cesses are being applied in the software industry from

small low-risk projects to projects involving hun-

dreds of developers and severe financial liabilities

or health damage in case of a software failure.

On the other hand, waterfall-like models have

been criticized as too clumsy in many situations.

Kristian Rother is a software developer, bioinformatics trainer and Certified Scrum Master at the AMU Poznan. He has also

contributed to the Biopython and Pycogent software libraries.

Wojciech Potrzebowski is a structural bioinformatician modeling macromolecular complexes at the IIMCB in Warsaw. He is

developing algorithms working on 3D electron density maps.

Tomasz Puton is a structural bioinformatician working on procedures for RNA 2D structure prediction. He is the main developer of

the software package for Statistical Geometry.

Magdalena Rother is the main developer of the ModeRNA software for RNA 3D structure modeling. She is also developing

procedures for evaluating structural models.

EwaWywial is a structural bioinformatician working on homology modeling and phylogenetic analyses of protein structures.

Janusz M. Bujnicki is a research group leader of a combined theoretical/experimental laboratory. He has supervised numerous

software development projects in structural bioinformatics of RNA and proteins.

Corresponding author. Kristian Rother, Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology,

Collegium Biologicum, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland. Tel: þ48 607095012;

Fax: þ48 22 5970715; E-mail: krother@genesilico.pl

BRIEFINGS IN BIOINFORMATICS. VOL 13. NO 2. 244^257 doi:10.1093/bib/bbr035
Advance Access published on 29 July 2011

� The Author 2011. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com



As an alternative, the Agile Manifesto has been de-

veloped, proposing a lighter software development

approach [5]. In brief, it states that (i) working soft-

ware is the most important, (ii) change is a constant

in programming and plans need to be adjusted, (iii)

face-to-face communication among developers and

customers is crucial for success, and (iv) software can

be developed incrementally, by creating working

versions in short intervals. These principles have

manifested itself in development models like Scrum

[6], XP [7] and Crystal [8]. All Agile methods have in

common that development practices are continuous-

ly adjusted to meet the demands of the team and

project. A hands-on guide can be found at [9].

Agile methods have been successfully applied to de-

velop biomedical software, e.g. InterPro [10] is being

developed using Scrum. In an article by Kane et al.
[11], there is a detailed analysis of the underlying

processes and protocols. The authors conclude that

an iterative approach is better suited for bioinformat-

ics software development than a linear process.

However, recalling the initial problem of de-

veloping good software [2] (Figure 1A), these success

stories are not representative. One reason is that

adopting an Agile development model requires

time dedicated to organizational matters. A number

of best practices for scientific managers have been

given by Baxter et al. [12], including valuable hints

on project management, but telling little what can be

done to improve a program. In practice, there is a

plethora of techniques for planning, implementing

and testing software, but literature is lacking that an-

swers this question to researchers, students or group

leaders without a background in computer science

and software engineering.

Over the past 5 years, we needed to develop a

series of scientific programs that were working,

maintainable and easy to explain. Instead of adopting

one methodology as a whole, we explored particular

techniques one by one. In this article, we review 22

software projects and the engineering practices that

we have been using.

Figure 1: Problems and solutions in developing scientific software. (A) Typical statements indicating a unsystematic
development approach. (B) User stories are paper cards that help to chop a programming project into smaller
manageable tasks. (C) Use cases are a formal way of describing a step-by-step solution to a difficult problem.
(D) A frequent release cycle provides users with incrementally improved versions of a program, allowing to react
on user feedback quickly.

A toolbox for developing bioinformatics software 245



BIOINFORMATICS SOFTWARE
PROJECTS
Between 2006 and 2011, we have conducted a

number of bioinformatic software projects. We

have divided them into projects that have resulted

in peer-reviewed publications (Table 1), and unpub-

lished work (Table 2). The published work includes

the Voronoia program for analyzing protein packing

[13], the eMovie plugin for creating movies with

PyMOL [14], the Protmap2D program for analyzing

protein contact maps [15], the knotted2nested web

server for removing RNA pseudoknots [16], the

LaJolla program for structural alignment of RNA

[17], the ModeRNA program for RNA 3D structure

prediction [18], the Modomics database on RNA

modifications [19], the REPAIRtoire database on

DNA repair pathways [20], and the IGERS tool to

for predicting DeltaG values of biological reactions

[21]. In Table 1, we have listed the number of

citations for these programs (including eventual

earlier publications), although their number strongly

depends on the focus of the project and publication

date. The 12 unpublished projects in Table 2 include

5 projects where the software development has been

largely or fully completed and manuscripts are cur-

rently being prepared for publication (I–V); three

suspended projects (StatGeo, VI–VIII), which can

be reactivated dependent upon funding availability

and four additional (technically finished) projects

(IX–XII), which, at present, are not expected to

result in any follow-up work, because of project

prioritization.

The 22 projects involve programming libraries,

command-line tools, graphical applications, web

databases, web servers (allowing submission of data

and calculation), or a mixture of these. In total,

18 projects were implemented in Python and one

in each Java, R and Cþþ. Additionally, one project

is a Python/Delphi hybrid. The duration of the

projects was between one month and four years.

Table 1: Properties of published software projects

Project Voronoia Modomics EMovie ProtMap2D K2N LaJolla IGERS ModeRNA REPAIR

Developers 5 12 4 2 4 5 5 7 9
Colocalized groups 2/1/1/1 6/4/1/1 3/1 2 2/1/1 3/1/1 4/1 5/2 5/2/1/1
Duration (months) 24 60 6 24 6 6 36 42 36
Releases 3 6 1 ? 1 3 1 8 1
Language Del/Py Py Py Py Py Java Py Py Py
License CS/PyL CS GPL CS GPL GPL PyL GPL CS

Program library � � � � � � � � �

Command-line app � � � � � � � � �

GUI application � � � � � � � � �

Web database � � � � � � � � �

Web server � � � � � � � � �

User Stories � � � � � � � � �

Example data � � � � � � � � �

CRC sheets � � � � � � � � �

UML � � � � � � � � �

Repository � � � � � � � � �

Ticket system � � � � � � � � �

Coding guidelines � � � � � � � � �

Code reviews � � � � � � � � �

Unit tests � � � � � � � � �

TTD. � � � � � � � � �

Cookbook � � � � � � � � �

Release cycle � � � � � � � � �

Completed � � � � � � � � �

Actively developed � � � � � � � � �

Would do it again � � � � � � � � �

Reference [13] [19] [14] [15] [16] [17] [21] [18] [20]
Published in 2003 2006 2007 2007 2007 2009 2010 2011 2011
PubMed citations 18 41 6 0 6 n.a. 0 0 0

REPAIR, REPAIRtoire database; Del, Delphi; Py, Python; CS, closed source; PyL, Python Licens; GPL, General Public License. ‘Would do it again’
refers to whether a majority of developers would like to work on a similar project in a similar way.The bold columns (‘Voronoia’ and ‘ModeRNA’)
indicate two case studies discussed in detail in the text.The number of citations was extracted from PubMed, if available.

246 Rother et al.



Around 2–12 people have been involved in each

project, including cooperating experimentalists,

other domain experts, undergraduate students and

group leaders. Typically, some developers were

more active than others, e.g. undergraduate students

performing auxiliary tasks.

Below, we present three of the projects in detail.

To highlight alternative outcomes, we have chosen

one project that was scientifically successful but ran

into engineering problems, one where we consider

both the scientific and engineering part successful,

and one that we consider well-engineered but was

stopped for strategic reasons.

Case study 1:Voronoiaça tool for
packing analysis
The Voronoia software is used to analyze packing

densities and cavities in protein structures [13]. It

consists of a core program for calculations written

in Delphi, a graphical front-end written in Python,

and a web interface created using Java. These three

parts have been developed by one senior and two

junior programmers in their favorite languages.

The program itself [13] and several analyses using

the program have been published [22–25], so it can

be considered a scientific success.

Nevertheless, when we tried to adapt Voronoia to

RNA structures, we ran into problems. For example,

no developer had access to all of the source code,

there were multiple gaps in the code documentation

and no recent nor automated testing. Moreover,

it was not certain which version of the source

code included the most recent bugfixes and, finally,

most of the initial developers had left the laboratory.

These factors accumulated to a considerable impedi-

ment that made a further continuation of the project

unlikely. This example prompted us to improve the

way we write programs.

Case study 2: ModeRNAça software
for RNA comparative modeling
A few years later, our group developed the

ModeRNA software for modeling of RNA 3D

structures [18] based on the comparative modeling

approach that has been successfully applied to pro-

teins for many years. Our program was used to build

Table 2: Properties of unpublished software projects

Project StatGeo I II III IV V VI VII VIII IX X XI XII

Developers 4 4 7 4 4 5 26 4 4 4 2 3 2
Colocalized groups 3/1 3/1 3/3/1 3/1 2/2 4/1 20/6 2/2 4 2/1/1 2 2/1 2
Duration (months) 2 30 36 30 24 36 24 12 5 6 1 4 1
Releases 1 1 1 4 3 3 3 3 1 16 1 1 1
Language Py Py Py Py Py Cþþ Py Py Py Py Py R Py
License GPL CS CS CS CS CS GPL GPL GPL CS GPL CS GPL

Program library � � � � � � � � � � � � �

Command-line app � � � � � � � � � � � � �

GUI application � � � � � � � � � � � � �

Web database � � � � � � � � � � � � �

Web server � � � � � � � � � � � � �

User Stories � � � � � � � � � � � � �

Example data � � � � � � � � � � � � �

CRC sheets � � � � � � � � � � � � �

UML � � � � � � � � � � � � �

Repository � � � � � � � � � � � � �

Ticket system � � � � � � � � � � � � �

Coding guidelines � � � � � � � � � � � � �

Code reviews � � � � � � � � � � � � �

Unit tests � � � � � � � � � � � � �

Test-driven development � � � � � � � � � � � � �

Cookbook � � � � � � � � � � � � �

Release cycle � � � � � � � � � � � � �

Completed � � � � � � � � � � � � �

Actively developed � � � � � � � � � � � � �

Would do it again � � � � � � � � � � � � �

Manuscript in prep � � � � � � � � � � � � �

StatGeo, Statistical Geometry; Py, Python; R,R statistics package; CS, closed source; PyL, Python Licens; GPL,General Public License.‘Would do it
again’ refers to whether a majority of developers would like to work on a similar project in a similar way.The first column (‘StatGeo’) indicates the
case studydiscussed in detail in the text. All projects except the first havebeen anonymized in order to protectunpublishedworkby the respective
authors.

A toolbox for developing bioinformatics software 247



more than 9000 tRNA models using template struc-

tures and target-template alignments. It includes a

large library of structural fragments and can handle

115 different post-transcriptionally modified nucleo-

tides. ModeRNA was written in Python and uses

the PyCogent [26], BioPython [27] and NumPy

libraries.

The implementation was conducted by two junior

programmers coached by one senior programmer

and supervised by a project leader. The junior pro-

grammers worked on the code independently, while

the senior programmer concentrated on reviewing

code, the architecture of the software, and writing

tests. At the beginning, the project was decomposed

into a set of elementary operations, e.g. ‘add a methy-

lation to a given nucleotide’. During the first half

year, prototype scripts for individual tasks were writ-

ten, based on the elementary tasks. Subsequently, a

object-oriented architecture was created, using CRC

sheets and Test-Driven Development (TDD). Tests

were also added during debugging and adding

further features. To date, ModeRNA contains 507

test functions, covering 90% of the overall code. In

critical phases of development (e.g. debugging and

refactoring stages, as well as for benchmarking), User

Stories were collected and placed on a well-visible

pin board to keep track of progress. Eight subsequent

releases have been produced in two-month intervals.

A scripting interface was designed, and all its func-

tions documented online in a cookbook-style

manual. ModeRNA is available as a programming

library and executable at http://iimcb.genesilico.pl/

moderna.

In our opinion the project is a major scientific and

engineering success. A couple of follow-up publica-

tions have been written [[28], BiB (Rother M,

Rother K, Puton T, Bujnicki JM, submitted for pub-

lication), Bioinformatics (Rother M, Milanowska K,

Puton T, Jeleniewicz J, Rother K, Bujnicki JM, in

press)]. Additionally, several lab members have started

to customize ModeRNA functions for their own pur-

poses or have joined the development team. The soft-

ware reached a technical state where development can

be taken over by another person with limited help

from the original developers.

Case Study 3: a library for statistical
geometry calculations
Our group has developed software in co-operation

with The Centre for Integrative Bioinformatics

at Vrije Universitet (IBIVU) in Amsterdam,

implementing the statistical geometry in sequence

space algorithm [29–31]. We wrote it as a replace-

ment for the no-longer-maintained GEOMETRY

program [32], and it was essential for projects being

realized in the lab to have an extendable imple-

mentation. The program was implemented in the

Python programming language. It intensively uses

the PyCogent library [26], and the NumPy package

for numerical calculations (http://numpy.scipy.org).

The final implementation was validated with

real-world data and cross-validated against the

GEOMETRY program [32]. The entire implemen-

tation was conducted by one junior programmer

with the supervision of two senior programmers—

one of them in direct daily contact and the other in

remote sporadic contact (i.e. checking the source

code repository, making comments and minor

changes in the source code). The TDD approach

was used, i.e. tests were written prior to the code

itself. The tests contain four times as many lines of

code than the implementation itself and cover 76%

of the code. Although the TDD approach initially

required lots of time, it saved a large amount of

debugging time and provided a solid base for effect-

ive code optimization. In fact, the final implementa-

tion of the algorithm was around 80 times faster than

our first working version when evaluating a set of

tRNA sequences.

The program was completed within 45 days.

It reproduces data from the literature, and was used

to conduct calculations for our own data sets.

Although the project has not been published yet,

we think it is successful from an engineering point

of view: a reliable and transparent implementation

has been created that can be used at a later time,

and the entire project was brought to a quick and

clean ending.

METHODS FORDEVELOPING
SOFTWARE
In the course of the 22 programming projects, we

have applied a ‘toolbox’ of development techniques

that helped us with planning our programming

projects, improving software quality, delivering the

outcome to users, and training junior programmers

‘on the job’. Tables 1 and 2 summarizes which

technique was used in which project. Below,

12 techniques for teams of fewer than 12 people

are explained in detail.

248 Rother et al.



User stories
When starting a programming project, the com-

plexity of the task may at first seem overwhelming,

especially for an inexperienced programmer. What

helps is to divide the project into smaller tasks. To do

this, we wrote down required features, also called

User Stories (see Figure 1B). Each User Story de-

scribes something that has an added value for users; it

should be brief enough to fit on a note pad (the card

should not be bigger than 300 � 500—if the descrip-

tion does not fit one needs to start over again [9]).

The description does not need to include technical

details, but the list should be complete. User Stories

that depend on many unknown factors should be

minimally discussed. This way of documenting is

not to be confused with writing up Use Cases,

which are much more detailed text documents.

When using User Stories, we kept them perman-

ently visible (e.g. on a pin board). Completed tasks

were moved to a separate ‘done’ section, allowing to

grasp progress immediately. User Stories have the

advantage that they can be prepared in almost no

time, and provide a ‘promise for conversation’

[9]—a starting point for further discussion about

technical details, priorities, or responsibilities.

Collecting example data
When developing a verbal definition of program fea-

tures into an implementation, it is essential to know

exactly what kind of data the program will use.

A practical approach is to gather explicit input files

that the program can be run with. It is easier to use

simplified examples for which the prospective output

is known than big real-life data sets. Such example

input/output pairs define the functionality from User

Stories, task cards or tickets more accurately. This is a

good occasion to decide on input/output formats of

the program, and cooperation with potential users is

very useful at this point. As the program grows,

border cases like ambiguous input, big files or

wrong data can be added to the examples. Having

explicit input and output data helps to break down

the problem into smaller parts and to design main

functions of a program by developing intermediate

input data for each of them. One can then describe

detailed program steps between a given input/output

pair as a Use Case (see Figure 1C) to break down

a complex problem further. Eventually, example

input/output data is a valuable base for creating

automated tests (in particular acceptance tests, see

section on testing below).

A prominent use of example data is the FR3D

program for calculation of RNA base pairs, its web-

site essentially being a showcase of exemplars [33].

Biopython [27] includes a set of files for each major

component. In ModeRNA, many of the programs

functions were first developed for the PDB structure

1EHZ that we almost knew by heart after a while.

Also, we are using hundreds of example files cover-

ing as many situations as possible. In all of these

scenarios, example data is a valuable resource to de-

scribe a program’s functionality, but not its architecture,
which is covered in the next section.

Class-responsibility-collaboration cards
After dividing the functionality of a program into

smaller units, the same can be done for a program’s

architecture. In practice this means to define com-

ponents (e.g. classes, modules, packages, etc.) and

to assign responsibilities to them. One way to

document the architecture as it develops is to

write class-responsibility-collaboration (CRC)

cards, which consist of a single page for each com-

ponent. Every CRC card includes: the name of the

component (i.e. its title) at the top of the sheet; on

the left side the function of that component; and on

the right side the names of other components, which

the titled component depends on to perform its

function.

We found CRC cards useful to define a few cen-

tral components in order to write the first prototype

and adjusting details later, rather than writing CRC

cards for the entire software in advance. Also, we

wrote CRC cards during cleanup stages to check

whether for each User Story there is at least one

responsible component and whether there are any

duplicate responsibilities. Finally, one can verify

whether the implementation is in accordance with

the CRC cards and the cards should be updated ac-

cordingly, not the implementation [34].

Unified modelling language diagrams
The unified modelling language (UML) is a sophis-

ticated instrument used in the software industry to

formalize a technical system. It is capable of illustrat-

ing complex program subsystems graphically. Of

these, we have used only Use Case and Class dia-

grams. Use Case diagrams represent ‘What a system

does’, using actors, their goals (Use Cases), and

dependencies between them. The diagram helps dis-

cussing a program outline among programmers or

with the principal investigator. We have used Use

A toolbox for developing bioinformatics software 249



Case diagrams early in a project to explicitly check

whether each User Story was represented in our draft

of the system. Class diagrams represent classes, their

attributes, methods and relationships between them.

Similar to CRC sheets, they facilitate the discovery

of circular dependencies and redundant responsibil-

ities between program components. Apart from that,

we have used Class diagrams in place of Entity–

Relationship diagrams for database design, essentially

because the Django framework used in the

Modomics [19] and REPAIRtoire [20] projects im-

plements the data model as Python classes.

According to [35] these two components of the

UML language are used the most, and Use Case

diagrams scored highest in usefulness for communi-

cation with a client (e.g. when there is no program

to show yet). We found that both kinds of diagrams

can be explained easily to other bioinformaticians.

Other elements of UML may be useful, but despite

their benefits there is a risk of over-specifying a

program via UML, termed as ‘Death by UML

Fever’ [36].

Repositories
A code repository (also termed version control)

manages files that are being used and modified by

different persons. Programmers can use it to ex-

change program code and other files systematically.

The code repository keeps track of which is the most

recent version of a particular file and notices when-

ever two persons try to change the same version of a

file and prevents changes that overwrite each other.

Moreover, a project can be reverted to any earlier

state. Multiple independent subprojects called

branches can be managed simultaneously [37]. The

files in the repository are not restricted to program

code, but can include example input/output data,

planning documents or related publications as well.

Therefore, a code repository can be useful for any

research project, even if no programming is

involved.

To produce reproducible scientific results using

software, it is required to test, protocol what has

been done, and to recognize and track program

bugs [12]. A repository is crucial for controlling

exactly which version of a software, which set of

input files, and which parameters were used to pro-

duce a specific set of results, and at what time. When

a bug is found—especially if it is several years old—it

is practically impossible to rebuild a previous state of

the program without a repository.

Commonly used code repositories are Concurrent

Versions System (CVS), Subversion (SVN) and more

recently GIT and Mercurial. Space for publicly ac-

cessible repositories is frequently offered for free. A

code repository also helps with data backup—instead

of maintaining backups of the working copies of all

users, it is sufficient to backup the repository.

Ticketing systems
Planning results in a number of well-defined tasks

also referred to as tickets. To keep track of the pro-

gress in a project, the tickets can be displayed in a

place visible for all developers. Ticketing systems

allow programmers to assign priorities and the

person in charge to each ticket. In the course of a

project, further tickets can be created (e.g. bug re-

ports). The main purpose of a ticketing system is to

prevent important tasks from being forgotten, which

becomes critical especially as the number of people

involved in the development increases. A ticketing

system can be as simple as a Wiki page or a pin board.

There is a number of applications, for example

TRAC or TestTrack that manage tickets electronic-

ally and automatically e-mail reports to assigned

developers.

According to our experience, an online ticketing

system is most useful when there is a large physical

distance between developers. One of our projects

was dominated by use of TRAC, which allowed

the two main developers to maintain a well-

structured collaboration over 2 years despite the

fact that they met in person only twice. Another

situation where tickets paid off was in the

Modomics project [19], when feature requests and

tasks for data curators accumulated, but for some

time it was not clear who would take care of them.

Coding guidelines
To enhance the readability of source code and avoid

common coding errors, a document with coding

guidelines can be used. Such guidelines define a con-

vention for naming variables, functions, classes and

files, where and how to write comments and exclude

certain language constructs. These constraints go

beyond the mere syntactical rules of a programming

language. Applied consequently, guidelines help

keeping code readable for others (or yourself at a

later date), because they prevent developers from

overadjusting code to their personal preferences.

We have applied the PEP8 coding guidelines for

Python, and the pylint tool that evaluates

250 Rother et al.



conformance of source code with PEP8 on a scale of

up to 10 points. This introduces a competitive aspect

that makes the otherwise boring task of cleaning up

code more attractive. Another effect of the PEP8

guidelines is that they discourage using complex lan-

guage constructs, keeping in mind a quote by Brian

Kernigan: ‘Everyone knows that debugging is twice

as hard as writing a program in the first place. So if

you’re as clever as you can be when you write it,

how will you ever debug it?’.

Code reviews
Typically, the level of experience in a programming

team varies. We grouped junior and senior program-

mers working together in pairs. One technique that

we have used in almost every such coach–trainee pair

is internal review of the code. The junior program-

mers would implement a program. When the pro-

gram approached a first working version, a senior

colleague (or co-developer) would inspect the code

and return it with comments written into the code

itself. The review pointed out inefficient implemen-

tation, poor readability or structure and praise things

done well. Cohen [38] gave helpful recommenda-

tions for code reviews. For instance, no more than

300–500 lines of code should be reviewed per hour.

Comments written by the author of the code facili-

tate following the code during the review. For the

review to be successful, a prompt and constructive

reply is more important than an in-depth analysis of

the entire code. On one hand, reviewing code writ-

ten by junior level programmers can be an important

component of their training. On the other hand,

reviews by an experienced programmer for another

may stimulate fruitful discussion and help solving

difficult situations. Additionally, an external person

might be able to provide more independent feedback

than a teammate.

Write test code
Tests are necessary to check whether a given imple-

mentation is correct. Insufficient testing hampers de-

velopment of many programs. According to Jacob

Kaplan-Moss, one of the main authors of the suc-

cessful Django web framework [39], ‘code without

tests is broken by design’. Moreover, manual testing

is prone to errors and the time needed to manually

test the code of large programs usually exceeds the

time needed to write it. The solution is to automate

the tests.

There are various ways of testing code automatic-

ally and there exist dedicated testing utilities. Usually

smaller units like functions or classes are tested on

their own. This approach is known as unit testing.

There are many unit-testing utilities in different pro-

gramming languages (including JUnit in Java and the

unit-test module in Python). Another way of testing

is writing and running acceptance tests. These tests

check whether a program as a whole works ‘as

advertised’. Acceptance tests compare program runs

on sample input and check whether the output

meets certain criteria. Very often acceptance tests

are based on User Stories and there can be many

acceptance tests to ensure that the program is work-

ing as expected. Running test sets gives developers

an objective measure of progress (i.e. how much of

the program works). It is important to understand

that both the program and the test code may contain

bugs that cause an automatic test to fail. Fortunately,

the test code is often not very complex, and it is

therefore easier to assure that the test works cor-

rectly. Testing is not only limited to testing classes

and functions—there exist various frameworks cap-

able of testing user interfaces of both web and graph-

ical applications. One of them is Selenium, which

allows automatic testing of web applications. For

testing GUI applications, one can use for example

Abbot—a JAVA GUI testing framework. It is even

possible to test random number generators by

controlling seed values in the test environment. An

extensive list of testing frameworks can be found

at [40].

Tests are also crucial when a given implementa-

tion needs to be cleaned up (refactored) or its speed is

to be optimized. They allow other developers to

check the status of the code quickly and define the

expected features of a program in the most precise

way possible. Over time, automatic testing allows for

faster development, because repeated manual testing

of already existing features is replaced by the much

faster automatic procedure (see Figure 2). Large test

suites can be found for example in the ModeRNA

program [18] and the PyCogent [26] and BioPython

[27] libraries.

TDD
Intuitively, one would first implement a program

and then test it. This design is called the ‘test-after’

approach [41]. The inverse method, when a pro-

grammer writes tests first and then the implementa-

tion, is known as TDD. In TDD a test function is

A toolbox for developing bioinformatics software 251



written only for the part of the code that is going to

be written next. Using TDD the design of an entire

program can be guided in a divide-and-conquer

schema (see Figure 3). When completed, tests usually

contain sufficient information to start coding. If not,

larger or more complicated parts should be divided

into smaller units and additional tests should be writ-

ten. An advantage of TDD is that it creates a strong

motivating force for programmers; in order to write

a test, they need to understand the entire problem.

Since writing tests requires fully understanding the

specification, developers are better prepared and

more focused during the implementation [42]. It

has been reported that TDD is slower, but produces

more reliable code [43].

While TDD is understood mainly as a design ap-

proach, we found the concept of writing tests first

valuable for debugging as well. Each time a bug was

found, we added a test function to check whether

the bug has been fixed. This way, the code could

incrementally be made more reliable without having

to be concerned about the same bug twice.

Releasing the program frequently
One of the most crucial steps is the delivery of a

program to users. The trade-off between releasing

a software early and deferral to enhance functionality

or improve quality has been extensively studied [44].

Still, many imperfections are noticed only after the

release, e.g. when real-world input data turns out to

be more problematic than the examples used for

testing.

The Agile Manifesto [5] recommends a simple yet

effective solution: produce multiple incrementally

improved versions of the program instead of trying

to get everything right the first time (see Figure 1D).

The releases of the program can be given to users

allowing to collect feedback and include suggestions

in subsequent releases. We have applied both regular

release cycles of 2–12 weeks and irregular ones,

where the release was made when the developers

agreed it was time. Although building the release

produced some overhead, we found it beneficial be-

cause it allowed to keep a project focused on goals

instead of moving along a blind alley.

There are many configuration management tools

like make or ant available that help with preparing

releases, although some depend on the programming

language, such as distutils (Python), or Maven (Java).

This process can be automated by Continuous

Integration tools that build a new release every

time code changes are sent to a repository [45].

Cookbook documentation
A software cookbook is a collection of practical

usage examples of a software library or scripting en-

vironment. Instead of lengthy descriptions, it con-

tains code using the library that can be copied and

executed directly. For instance, the secondary struc-

ture of a tRNA can be calculated by ModeRNA

with the instructions:

from moderna import *

m ¼ load_model(‘1QF6.pdb’, ‘B’)

print get_secstruc(m)

We made many such examples readily available,

and they consist the main part of the documentation.

Cookbooks are used to document the Biopython

[27], BioPerl [46], BioJava [47] and Pycogent

libraries [26]. The latter uses Sphinx, a tool that

can automatically test whether the code examples

work in the intended way. As users of these libraries,

the cookbooks allowed us to find out quickly what

the software does and how to use it.

It needs to be noted that in order to avoid exces-

sive code duplication in the examples, the program

library needs a well-designed programming interface

(API). Using design patterns, in particular the Façade

pattern, helps to create an usable interface. As devel-

opers, we found creating and maintaining cookbook

documentation less work than a full text manual.

Figure 2: Saving time by writing tests. The left col-
umns in each section indicate the rough relative
amount of time spent in the manual testing/debugging
approach (MT), right columns indicate the time using
automatic tests orTDD.

252 Rother et al.



Roles and responsibilities in a
development team
It is crucial to recognize that good collaboration of

the people involved is a prerequisite for success.

Divergent points of view are important for creative

work, but they can also lead to misconceptions,

interpersonal friction and delays in the development.

To avoid such troubles, we maintained in many pro-

jects a document that answered the questions ‘what is

the project about?’ and ‘who is doing what?’. This

project plan was kept either as wiki page, Google

document or a file in the repository. An example

project plan containing a brief project summary,

and a list of tasks with initials of assigned persons is

available as a supplementary file.

We found several roles appear repeatedly in dif-

ferent teams. The supervisor usually defined the

scope of a programming project (features), decided

on the product form (e.g. distribution, operating

system, etc.) and managed the development team

(see also Figure 4A). Involved users helped to com-

municate requirements to the programmers (e.g. as

User stories), provided real-world data for testing,

tested preliminary versions of the program and re-

ported bugs (see also Figure 4B). Our observation

was that user participation compels programmers to

express themselves understandably that helped the

project to stay on track. When one programmer

was more experienced than the other, both often

collaborated in a teacher–trainee setup (see

Figure 4C). The coach programmer dissected tasks

into smaller units for implementation, reviewed

code, recommended algorithmic or architectural

solutions and eventually wrote test functions.

Figure 3: Schema of TDD.The idea of TDD is to write a program in a number of iterations, where test functions
are written first. The tests set the frame in which each component can be developed independently. If a particular
task is difficult, the problem should be divided, and new tests defined for the subcomponents. The charm of TDD
is that at each step the test functions allow to monitor the process objectively.

A toolbox for developing bioinformatics software 253



The trainee in turn was in full responsibility of the

code. Often, the coach was also responsible to iden-

tify impediments affecting the project as a whole as

well as for shaping constructive interaction of all

team members. This function corresponds to that

of Scrum Master in Scrum [6], while the supervisors

role is also termed Product Owner in that context.

In our experience, these roles served as a point of

reference that helped team members orient them-

selves. We did not stick to them all the time, but it

was clear when further communication was neces-

sary, e.g. when the coach was about to edit a train-

ees’ code.

DISCUSSION
In the 22 programming projects presented initially,

we have applied 12 techniques. The projects in

Table 1 have been successful in that they have re-

sulted in peer-reviewed publications. Despite their

differences in project duration, type of software

and team size they had two things in common:

first, the team composition with one or two core

developers as in Case studies 1–3 is representative

for all projects. Such a scenario has been described

as a ‘surgical programming team’ [48], and we found

it worked for 2–12 people involved. For larger

teams, coordination quickly gets more complicated

[8]. In fact, in one of our programming projects

(VI from Table 2), temporarily 26 people were

involved, but the number of active persons dropped

quickly, and in the end progress stopped completely.

The second common trait in the 22 projects was

that most of them were written in Python.

Nevertheless, the methods described above can be

applied with any programming language. Only

when specific software tools are involved, one

needs to identify their equivalents in ones’ favorite

language (e.g. Maven is a build tool that cooperates

well with Java, while make is more common with

C/Cþþ developers). One lesson we took from the

Voronoia project is that using more than one pro-

gramming language in a project can become a liabil-

ity. However, there are examples where this is

justified, namely applications such as PyMOL,

which uses C for the time-critical parts and Python

for the user interface [49].

Summarizing our observations, we think the tech-

niques were most useful in three situations:

(1) When starting a project, formalizing tasks on

cards, gathering example data or writing a short

project summary helps developers to agree on a

common set of ideas. This can prevent people

running into different directions. CRC sheets

and simple UML diagrams facilitate initial

design decisions that shorten the path to the

first working prototype. They leave however

room for changes in the program architecture,

which may be necessary as the project develops.

(2) During an ongoing project, consequent usage of

a repository, automatic tests, frequent releases,

code reviews or coding guidelines help maintain-

ing high-quality code. Automatic tests rationalize

time spent on testing the same things over and

over. Repositories and releases eliminate the

problem of finding the right program version

or single files. Reviews and code analysis pre-

vent the program from becoming a black box.

Together, all these techniques propagate code

that is more reliable, reusable and readable.

(3) When training bioinformaticians, a repertoire of

development techniques can be used to give

helpful and precise yet simple instructions.

Advice like ‘Could you add some tests to

module X?’, ‘Does the class Y do the same as

on the CRC sheet?’ or ‘Let’s do a code review of

Z’ guides a student toward problem solving (and

Figure 4: Responsibilities of people developing soft-
ware in archetypical constellations. (A) supervisor/
employee (B) user/programmer (C) programming in a
teacher/trainee setup.

254 Rother et al.



keeps the smart ones from reinventing the

wheel). For a supervisor, checking a repository

or test set is a valuable tool to gain awareness of

students’ progress. Working in coach–trainee

pairs (even if occasionally) is a key to teach

good programming style.

Thus, should one try and include all described

methods into the next best project at once? The

data in Tables 1 and 2 do not contain a project

that uses all methods. We are not convinced that

one should generally try to use all tools available in

the toolbox, because some of them may depend on

personal preference. Also, changing too much in

ones’ development process at once may not be bene-

ficial. We believe it is more reasonable to pick and

introduce one method at a time that promises the

biggest benefit in a given project. This allows to

evaluate whether it works for ones project, and fur-

ther changes can be added gradually, rather ‘as much

as necessary’ than ‘as many as possible’.

The same idea permeates the Agile school of

thought. The evolutive nature of programming pro-

jects requires the techniques to co-evolve. One ad-

vantage of the techniques described here is that they

can be used pragmatically as required, without

knowing much about Agile. Nevertheless, we

think that well-described methodological frame-

works like Scrum and XP may allow for more effi-

cient development than what we have written here.

In fact, Scrum is being used by the developers of

InterPro [10], but we have not tried it ourselves.

One practice that we found particularly challenging

to adapt is working in defined time-boxes

(iterations). To familiarize with the concept of iter-

ations, we recommend the Scrum Lego City game

[50]. In this exercise, a team is to build a brick city

within four time boxes of 5 min. Instructions on task

cards are used, and each iteration is accompanied by a

short planning and evaluation session.

Agile contains at least two more techniques that

are worth mentioning but that we have not used

extensively: one of them is pair programming, in

which two developers share a single workstation to

program. It has been reported that this helps to iden-

tify potential problems early and the resulting code is

more reliable, and the overall productivity is not

lower than without pair programming [8]. The

other is daily Scrum or daily standup meetings. In

a daily Scrum, the entire development team meets at

a regular time to briefly discuss the status of the

project. This helps to keep all developers informed

and solve problems together.

A few important aspects of programming have not

been covered here: development tools (editors,

debuggers, testing frameworks, etc.) are mostly spe-

cific for a given programming language. A detailed

discussion of Design Patterns [51] would exceed

the scope of this text, although their importance

for good program design cannot be ignored.

Examples relevant for bioinformatics can be found

in Biopython (Bio.PDB.Entity implements the

Composite pattern), in ModeRNA (the API uses

the Facade pattern), and in most web frameworks

(the MCV pattern).

Another issue not touched is licensing. Barnes

claims that it is imperative to make program code

available in order to make its improvement possible

[52]. On the other hand, there are arguments against,

such as potential commercialization or cooperation

with companies. We think the licensing was benefi-

cial for the 12 open source projects in Tables 1 and 2,

but the strategic decision about which license to use

depends on many factors.

Finally, it would be worthwhile to extend the

survey of development techniques to a larger body

of bioinformatics projects and examine their

long-term effects on software quality, availability

and usage.

CONCLUSION
We have used software development techniques in

22 projects to support planning, improve code qual-

ity and help in training situations. The 12 methods

described in this article follow a lightweight, prag-

matic approach to writing software that is independ-

ent of the programming language or platform used.

We therefore think this article may be useful as a

toolbox to improve software production for other

developers of bioinformatics software and team lead-

ers with limited knowledge of software engineering.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

FUNDING
Polish Ministry of Science and Higher Education

(POIG.02.03.00-00-003/09, 188/N-DFG/2008/0);

A toolbox for developing bioinformatics software 255



the 7th Framework Programme of the European

Commission (HEALTHPROT 229676); the

German Academic Exchange Service (D/09/42768

to K.R.); the National Institutes of Health

(1R01GM081680-01 to W.P.); the European

Molecular Biology Organization (ASTF 274-2008

to T.P.); the Faculty of Biology at the Adam

Mickiewicz University (PBWB-03/2009 to M.R.);

the European Research Council (RNAþP¼ 123D

to J.M.B.); and the Foundation for Polish Science

(‘Ideas for Poland’ to J.M.B.].

Acknowledgements
We thank Pawel- Skiba, Stanisl-aw Dunin-Horkawicz, Grzegorz

Papaj, Marcin Feder, Jan Kosiński, L- ukasz Kozl-owski, Andrzej

Kamiński, Marcin Pawl-owski, Jan Kogut, Michal- Piętal, Maciej

Fijal-kowski, Michal- Gajda, Tomasz Jarzynka, Ewa Tkalińska,

Karolina Tkaczuk, L- ukasz Kościński, Joanna M. Kasprzak, Kaja

Milanowska, Katarzyna H. Kamińska, Tomasz Osiński, Marcin

Domagalski, Jan Kaczyński, Mal-gorzata Figiel, Irina Tuszyńska,

Raphael A. Bauer, Peter Hildebrand, Andrean Goede, Björn

Grüning, Sabrina Hofmann, Sascha Bulik, Andreas Hoppe and

Herrmann-Georg Holzhütter for their participation in the pro-

gramming, Coding Sprints and testing software. We would also

like to acknowledge Sandra Smit, Rob Knight and Gavin

Huttley for their support in the Statistical Geometry project,

and fruitful discussions about development.

References
1. Hannay JE, MacLeod C, Singer J, et al. How do scientists

develop and use scientific software, ICSE Workshop on
Software Engineering for Computational Science and Engineering,
2009, Vancouver, Canada, pp. 1–8.

2. Merali Z. Computational science: . . . Error. Nature 2010;
467:775–777.

3. Benington HD. Production of large computer programs.
IEEEAnnals of the History of Computing 1983;5:12.

4. Poksinska B, Dahlgaard JJ, Antoni M. The state of ISO
9000 certification: a study of Swedish organizations. TQM
Magazine 2002;14:10.

5. Beck K, Beedle M, Bennekum A, et al. Manifesto for Agile
Software Development. AgileAlliance 2001.

6. Takeuchi H, Nonaka I. The new new product develop-
ment game. Harv Bus Rev 1986. Jan 01. Online journal.

7. Beck K. Extreme Programming Explained: Embrace Change.
Boston: Addison-Wesley Professional, 1999.

8. Cockburn A. Agile Software Development. Boston:
Addison-Wesley Professional, 2001.

9. Amfahr J, Bustamante A, Rome P. Exploring Agile:
The Seapine Agile Expedition. http://downloads.seapine
.com/pub/ebooks/SeapineAgileExpedition.pdf (7 May
2011, date last accessed).

10. Hunter S, Apweiler R, Attwood TK, et al. InterPro: the
integrative protein signature database. Nucleic Acids Res
2009;37:D211–5.

11. Kane DW, Hohman MM, Cerami EG, et al. Agile methods
in biomedical software development: a multi-site experi-
ence report. BMCBioinformatics 2006;7:273.

12. Baxter SM, Day SW, Fetrow JS, et al. Scientific software
development is not an oxymoron. PLoSComputBiol 2006;2:
e87.

13. Rother K, Hildebrand PW, Goede A, et al. Voronoia:
analyzing packing in protein structures. Nucleic Acids Res
2009;37:D393–5.

14. Hodis E, Schreiber G, Rother K, et al. eMovie: a story-
board-based tool for making molecular movies. Trends
Biochem Sci 2007;32:199–204.

15. Pietal MJ, Tuszynska I, Bujnicki JM. PROTMAP2D: visu-
alization, comparison, and analysis of 2D maps of protein
structure. Bioinformatics 2007;23:1429–30.

16. Smit S, Rother K, Heringa J, et al. From knotted to nested
RNA structures: a variety of computational methods for
pseudoknot removal. RNA 2008;14:410–416.

17. Bauer RA, Rother K, Moor P, et al. Fast structural align-
ment of biomolecules using a hash table, N-grams and string
descriptors. Algorithms 2009;2:17.

18. Rother M, Rother K, Puton T, etal. ModeRNA: a tool for
comparative modeling of RNA 3D structure. Nucleic Acids
Res 2011;39:4007–22.

19. Czerwoniec A, Dunin-Horkawicz S, Purta E, et al.
MODOMICS: a database of RNA modification pathways.
2008 update. Nucleic Acids Res 2009;37:D118–21.

20. Milanowska K, Krwawicz J, Papaj G, et al. REPAIRtoire–a
database of DNA repair pathways. NucleicAcidsRes 2011;39:
D788–92.

21. Rother K, Hoffmann S, Bulik S, et al. IGERS: inferring
Gibbs energy changes of biochemical reactions from
reaction similarities. BiophysJ 2010;98:2478–86.

22. Rother K, Preissner R, Goede A, et al. Inhomogeneous
molecular density: reference packing densities and distri-
bution of cavities within proteins. Bioinformatics 2003;19:
2112–21.

23. Hildebrand PW, Rother K, Goede A, etal. Molecular pack-
ing and packing defects in helical membrane proteins.
BiophysJ 2005;88:1970–77.

24. Hildebrand PW, Gunther S, Goede A, et al. Hydrogen-
bonding and packing features of membrane proteins: func-
tional implications. BiophysJ 2008;94:1945–53.

25. Elshemey WM, Elfiky AA, Gawad WA. Correlation to
protein conformation of wide-angle X-ray scatter param-
eters. ProteinJ 2010;29:545–50.

26. Knight R, Maxwell P, Birmingham A, et al. PyCogent: a
toolkit for making sense from sequence. Genome Biol 2007;
8:R171.

27. Cock PJ, Antao T, Chang JT, et al. Biopython: freely avail-
able Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009;25:1422–3.

28. Rother K, Rother M, Boniecki M, et al. RNA and protein
3D structure modeling: similarities and differences. J Mol
Model 2011. Jan 22 [Epub ahead of print].

29. Eigen M, Winkler-Oswatitsch R, Dress A. Statistical geom-
etry in sequence space: a method of quantitative comparative
sequence analysis. ProcNatlAcadSciUSA 1988;85:5913–7.

30. Eigen M, Lindemann BF, Tietze M, et al. How old is the
genetic code? Statistical geometry of tRNA provides an
answer. Science 1989;244:673–9.

256 Rother et al.



31. Nieselt-Struwe K. Graphs in sequence spaces: a review of
statistical geometry. Biophys Chem 1997;66:111–31.

32. Kuznetsov I, Morozov P. GEOMETRY: a software pack-
age for nucleotide sequence analysis using statistical geom-
etry in sequence space. ComputApplBiosci 1996;12:297–301.

33. Sarver M, Zirbel CL, Stombaugh J, et al. FR3D: finding
local and composite recurrent structural motifs in RNA
3D structures. JMath Biol 2008;56:215–52.

34. Wilkinson NM. Using CRC Cards: An Informal Approach to
Object-Oriented Development. Cambridge, UK: Cambridge
University Press, 1998.

35. Larman C. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process.
Upper Saddle River, JJ, USA: Prentice Hall PTR, 2001.

36. Bell AE. Death by UML fever. ACMQueue 2004;2:9.

37. O’Sullivan B. Making sense of revision-control systems.
CommunACM 2009;52:7.

38. Cohen J. Best Kept Secrets of Peer Code Review.
Smartbearssoftware.com, 2006.

39. Foundation DS. Django Framework. www.djangoproject.
com (10 May 2011, date last accessed).

40. Testing Framework. http://c2.com/cgi/wiki?Testing
Framework (10 May 2011, date last accessed).

41. Erdogmus H, Morisio M, Torchianp M. On the effective-
ness of the test-first approach to programming. Software
Engineering, IEEETransactions 2005;31:12.

42. Beck K. Test Driven Development: By Example. Boston:
Addison-Wesley Professional, 2002.

43. Müller MM, Padberg F. About the Return on Investment
on Test-Driven Development. Universität Karlsruhe,
Germany.

44. Sassenburg H. Design of a Methodology to Support
Software Release Decisions. Do the Numbers Really
Matter?. SE-CURE AG 2005. http://dissertations
.ub.rug.nl/faculties/eco/2006/j.a.sassenburg/ (13 June
2011, date last accessed).

45. Humble J. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Boston:
Addison-Wesley Professional, 2010.

46. Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit:
Perl modules for the life sciences. Genome Res 2002;12:
1611–8.

47. Holland RC, Down TA, Pocock M, et al. BioJava: an
open-source framework for bioinformatics. Bioinformatics
2008;24:2096–7.

48. Brooks FP. The Mythical Man-Month: Essays on Software
Engineering. Boston: Addison-Wesley Professional, 1995.

49. DeLano WL. The PyMOL Molecular Graphics System
2002.

50. agile42. Scrum Lego City. http://www.agile42.com/cms/
pages/lego_city_game/ (06 May 2011, date last accessed).

51. Gamma E, Helm R, Johnson R, et al. Design Patterns:
Elements of Reusable Object-Oriented Software. Boston:
Addison-Wesley Professional, 1994.

52. Barnes N. Publish your computer code: it is good enough.
Nature 2010;467:753.

A toolbox for developing bioinformatics software 257


