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Abstract
Gene fusions are important genomic events in human cancer because their fusion gene products can drive the devel-
opment of cancer and thus are potential prognostic tools or therapeutic targets in anti-cancer treatment.Major ad-
vancements have been made in computational approaches for fusion gene discovery over the past 3 years due to
improvements and widespread applications of high-throughput next generation sequencing (NGS) technologies. To
identify fusions from NGS data, existing methods typically leverage the strengths of both sequencing technologies
and computational strategies. In this article, we review the NGS and computational features of existing methods
for fusion gene detection and suggest directions for future development.
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INTRODUCTION
The past two decades have witnessed extensive re-

search on human genomic aberrations which are

believed to be causal factors of a variety of diseases.

Among the most widely studied variations, gene fu-

sions have been of great interest due to their associ-

ations with tumorigenesis. A fusion gene, also called

a chimeric gene or a hybrid gene, is the juxtaposition

of two otherwise separate genes. A canonical ex-

ample of fusion genes is BCR-ABL, the transcript of

which is translated into an abnormal tyrosine kinase

that drives the development of chronic myelogenous

leukemia (CML) [1–3]. A BCR-ABL targeting drug,

Gleevec/Glivec, has been proven very successful in

the treatment of CML [4], prompting the search for

other fusion genes to be used as tumor-specific bio-

markers or drug targets.

Active research on genomic aberrations and gene

fusions has been fueled by the advent and widespread

applications of high-throughput next generation

sequencing (NGS) technologies, the applications of

which have revealed complex landscapes of human

cancer [5–9]. NGS accelerates nucleotide acquisition

by sequencing tens to hundreds of millions of
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sequence targets simultaneously and thus allows for

comprehensive genome-wide analysis at a low cost

[10–15]. Additionally, NGS generates digital output,

for example, the counts of each transcript in RNA

sequencing data rather than the quantitative estimate

of signals from microarray gene expression data.

The digital nature of NGS gives rise to data of

higher resolution that enables mutation analysis to

the base-pair level. Another strength in NGS appli-

cations is its support for a wide array of applications

to human genetic research [16, 17]. Based on

the type of input materials, the mainstream applica-

tions of NGS can be classified into: whole gen-

ome sequencing (WGS), whole exome sequencing

(WES) and whole transcriptome sequencing (RNA-

Seq), enabling different levels of researches. Besides

whole genome and whole transcriptome sequencing,

NGS can also be applied to a subset of genes

(targeted sequencing). Moreover, the versatility of

sequencing platforms, e.g. Illumina Genome

Analyzer, Life Technologies SOLiD, Roche 454, as

well as the recently debuted Illumina HiSeq and

MiSeq systems, provides rich options for biological

researches. For an in-depth study of the NGS tech-

nologies, interested readers are referred to several

recent reviews [10–16, 18].

With the rapid advances of the NGS technologies,

the cost of sequencing has dramatically decreased

over the past few years and has made the sequencing

of human genomes routine at the genome sequen-

cing centers and core facilities in institutes. Advances

in sequencing technologies have also stimulated soft-

ware development. A number of new software tools

have quickly emerged to identify structural variants

(SVs), as well as gene fusions resulting from these

variants. In the year 2011 alone, at least eight

new computational tools for the characterization

of fusion genes were published in major scientific

journals [19–26]. These new methods have led to

important discoveries [27–31], e.g. disease-defining

fusion WWTR1-CAMTA1 in ‘epithelioid heman-

gioendothelioma’ [28] and a novel case of prostate

cancer with unique biological features [31].

To provide guidelines for the rapidly growing

number of fusion gene studies through NGS and

to foster the development of new algorithms, in

this article we present a review of existing computa-

tional methods for human gene fusion detection

from NGS data, primarily in cancer genomes. The

article summarizes the common features of existing

methods and discusses important issues that an

algorithm needs to consider while dealing with

NGS data. The capability, limitations and future dir-

ections of this new field are also explored.

ADVANCES IN GENE FUSION
DETECTION
A fusion gene can form as a consequence of a SV,

which is typically defined as large variation in struc-

ture of human genome. The types of SVs that may

result in gene fusions include large insertions, dele-

tions, inversions and in particular translocations.

For instance, the fusion BCR-ABL1 is created by a

characteristic interchromosomal translocation

(termed ‘Philadelphia chromosome’) that brings to-

gether the 50 part of the BCR gene on chromosome

22 and the 30 part of the ABL1 gene on chromosome

9 [32]. Genes involved in a fusion can come from the

same chromosome too. For example, TMPRSS2-
ERG, the most common genetic alteration in pros-

tate cancer, is an intrachromosomal fusion of two

genes on chromosome 21 [33, 34].

Major advancements have been made in the dis-

covery of fusion genes. As of 21 May 2012, as many

as 839 fusion genes have been documented in the

Mitelman Database of Chromosome Aberrations and

Gene Fusions in Cancer (http://cgap.nci.nih.gov/

Chromosomes/Mitelman) [32]. These fusion genes

enhance our understanding of the origins and

progression factors of cancer. More significantly,

a number of fusions have been recognized as import-

ant prognostic tools or therapeutic targets in

anti-cancer treatments. In a recent study [35], a

new urine test was invented to detect the presence

of TMPRSS2-ERG to indicate the risk of prostate

cancer.

The prevalence of known fusion genes in different

cancers varies greatly [32]. For the aforementioned

two fusions, BCR-ABL1 is expressed in >90% of pa-

tients with CML while TMPRSS2-ERG is found

in >50% of individuals with prostate cancer [36].

However, the majority of recurrent fusion genes

are prevalent at low frequency in patients. For in-

stance, the newly discovered fusion KIF5B-RET is

estimated in 1–2% of lung adenocarcinomas [37, 38].

The feasibility of applying NGS to detect fusion

genes in cancer genomes was first evaluated by

Campbell et al. [6], who produced sequencing reads

from lung cancer cell lines and identified two fusion

transcripts in addition to other genomic rearrange-

ments. Then, Ley et al. [39] applied WGS to cancer
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patients and established WGS as an unbiased method

to study human genomic mutations. Later, break-

throughs made by Maher et al. [40] and Zhao et al.
[41] demonstrated the utility of RNA-Seq in the

detection of fusion genes. To explore the power of

RNA-Seq in fusion gene discovery, Maher et al. [40]

not only pinpointed known fusions such as

BCR-ABL1 and TMPRSS2-ERG from RNA-Seq

data of tumors and cancer cell lines, but also found

novel fusions that were subsequently validated ex-

perimentally. These pioneer works stimulated NGS

applications to cancer research and, accordingly, led

to substantial expansion of the realm of fusion gene

discovery. Table 1 summarizes recent NGS studies

that have resulted in the discovery of novel fusion

oncogenes. Most of these studies used an RNA-Seq

platform, but detection of gene fusions at the gen-

omic DNA level using the WGS [8] or targeted

sequencing approaches [42, 43] is also effective.

Advances in fusion gene detection from NGS data

are largely attributed to the development of new

computational tools. To meet the challenges of

NGS data analysis, which deals with millions of

short reads that makes alignment to reference

genome difficult and error prone, a large number

of computational methods have been developed

over the past several years. A summary of these

tools is available in multiple review articles

Table 1: Recent next generation sequencing (NGS) studies that discovered novel gene fusions in human cancers

Cancer Sequencing technology # novel
fusions
detecteda

Example fusion event(s) Ref.

Acute myeloid leukemia (AML) WGS 3 bcr3 PML-RARA, LOXL1-PML, and RARA-LOXL1 [44]
Breast RNA-Seq 13 SEC16A-NOTCH1 [45]
Breast RNA-Seq 2 WWC1-ADRBK2, ADNP-C20orf132 [30]
Breast RNA-Seq 24 VAPB-IKZF3 [46]
Breastb RNA-Seq 5 ARHGAP19-DRG1 [47]
Breasta RNA-Seq 7 PDCD1LG2-C18orf10 [41]
Chronic myeloid leukemia (CML)b RNA-Seq 1 NUP214-XKR3 [47]
Colorectal RNA-Seq and targeted

sequencing
1 C2orf44-ALK [37]

Colorectal WGS 1 VTI1A-TCF7L2 [48]
Epithelioid hemangioendothelioma RNA-Seq 1 WWTR1-CAMTA1 [28]
Gastric cancer RNA-Seq 1 AGTRAP-BRAF [49]
Hodgkin lymphomab RNA-Seq 3 CIITA-BX648577 [29]
Hepatocellular carcinoma WGS 4 BCORL1-ELF4,CTNND1-STX5,VCL-ADK,

CABP2-LOC645332
[50]

Leukemia Targeted sequencing 11 RUNX1^KCNMA1 [51]
Lung RNA-Seq 1 ALK-PTPN3 [52]
Lung RNA-Seq and targeted

sequencing
1 KIF5B-RET [37]

Lung RNA-Seq 1 KIF5B-RET [38]
Lungb RNA-Seq 1 R3HDM2-NFE2 [53]
Lungb WGS 1 PVT1^CHD7 [8]
Melanoma RNA-Seq 11 RB1-ITM2B [54]
Ovary RNA-Seq and targeted

sequencing
1 ESRRA-C11orf20 [55]

Prostate WGS and RNA-Seq 15 C15orf21-MYC [31]
Prostate RNA-Seq 8 MSMB-NCOA4 [56]
Prostate RNA-Seq 7 ALG5-PIGU [27]
Prostate RNA-Seq 3 SLC45A3-BRAF, ESRP1-RAF1 [49]
Prostate RNA-Seq 13 SLC45A3^ELK4 [40]
Prostateb RNA-Seq 8 TIA1-DIRC2, ZDHHC7-ABCB9 [47]
T lymphoblastic lymphoma (T-ALL)
and associated myeloproliferative
neoplasm

Targeted sequencing 1 C6orf204-PDGFRB [42]

Therapy-related acute myeloid leukemia WGS 2 DGKG-BST1, BST1-DGKG [57]

NGS, next generation sequencing; WGS, whole genome sequencing; RNA-Seq, whole transcriptome sequencing. aOnly validated fusions were
counted. bOnly cell line samples were sequenced and analyzed
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[16, 58–62], none of which, however, covers new

methods for fusion gene discovery. Along with the

progress of computational technologies, software de-

signed specifically to detect gene fusions from NGS

data has emerged [63] and this new field is expanding

rapidly due to the pressing need to decode the com-

plexity of cancer and other genomes. As shown in

Table 2, in the year 2011 alone, at least eight new

methods for the characterization of fusion genes

were published in major scientific journals [19–26].

Unlike earlier works that used long or the combin-

ation of long and short single-end reads for fusion

event identification [40, 41], these new methods le-

verage the strengths of high-throughput short

paired-end reads to achieve better accuracy as well

as efficiency.

Table 2: Computational tools for gene fusion detection using NGS data

Method URL Feature Ref.

Fusion detection specific
BreakFusion http://bioinformatics.mdanderson.org/main/BreakFusion Identifying gene fusions from paired-end RNA-Seq

data
[65]

ChimeraScan http://code.google.com/p/chimerascan/ Detecting fusion transcripts from RNA-Seq data [24]
Comrad http://code.google.com/p/comrad/ Using both RNA-Seq and WGS data to detect

genomic rearrangements and aberrant
transcripts

[23]

FusionAnalyser http://www.ilte-cml.org/FusionAnalyser/ Detecting gene fusions from paired-end RNA-Seq
data

[64]

deFuse http://sourceforge.net/apps/mediawiki/defuse/ Identifying gene fusions from RNA-Seq data [22]
FusionMap http://www.omicsoft.com/fusionmap/ Using either WGS or RNA-Seq data to detect

fusion genes
[20]

FusionHunter http://bioen-compbio.bioen.illinois.edu/FusionHunter/ Detecting fusion transcripts from RNA-Seq data [21]
FusionSeq http://archive.gersteinlab.org/proj/rnaseq/fusionseq/ Identifying fusion transcript from RNA-Seq data [63]
ShortFuse https://bitbucket.org/mckinsel/shortfuse Identifying fusion transcripts from RNA-Seq data [26]
SnowShoes-FTD http://mayoresearch.mayo.edu/mayo/research/biostat/

stand-alone-packages.cfm
Detecting fusion transcripts from RNA-Seq data [25]

SOAPfusiona http://soap.genomics.org.cn/SOAPfusion.html Part of the software SOAP, for genome-wide
detection of gene fusions from RNA-Seq data

[66]

TopHat-Fusion http://tophat-fusion.sourceforge.net/ An enhanced version of TopHat, for detection of
fusion transcripts from RNA-Seq data

[19]

Structural variant detection
BreakDancer http://genome.wustl.edu/software/ Detecting structural variations from paired-end

WGS data
[67]

CREST http://www.stjuderesearch.org/site/lab/zhang Identifying structural variations from paired-end
WGS data

[68]

2003GASV http://code.google.com/p/gasv/ Software for identifying structural variations [69]
HYDRA http://code.google.com/p/hydra-sv/ Detecting SVs in both unique and duplicated

genomic regions
[70]

PEMer http://sv.gersteinlab.org/pemer/download.html Using paired-end NGS data to detect structural
variation

[71]

R453Plus1Toolbox http://www.bioconductor.org/packages/2.10/bioc/html/
R453Plus1Toolbox.html

An R/Bioconductor package for the analysis of
Roche 454 sequencing data

[72]

SVDetect http://svdetect.sourceforge.net/Site/Home.html Detecting structural variations from paired-end/
mate pair data

[73]

VariationHunter http://compbio.cs.sfu.ca/strvar.htm Identifying structural variations from paired-end
WGS data

[74, 75]

Othersb

R-SAP http://www.mcdonaldlab.biology.gatech.edu/r-sap.htm A parallel method to estimate RNA expression
level and to detect gene fusions from RNA-Seq
data

[76]

Trans-ABySSc http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss De novo assembly of RNA-Seq reads [77]
Trinity http://trinityrnaseq.sourceforge.net/ De novo assembly of RNA-Seq without using

a reference
[78]

NGS, next generation sequencing; WGS, whole genome sequencing; RNA-Seq, whole transcriptome sequencing; SV, structural variation.
aSOAPfusion is an unpublished web-downloadable method. bMethods in this category are designed for the general purpose of genetic alteration
detection.Gene fusion identification is only a small part of their pipelines. cFusion gene detection usingTrans-ABySS is described in its user manual
(http://www.bcgsc.ca/downloads/trans-abyss/data/trans-abyss-manual.v1.2.0.doc.pdf), notmentioned in its published paper [77].

Computational tools for gene fusion detection 509

http://bioinformatics.mdanderson.org/main/BreakFusion
http://code.google.com/p/chimerascan/
http://code.google.com/p/comrad/
http://www.ilte-cml.org/FusionAnalyser/
http://sourceforge.net/apps/mediawiki/defuse/
http://www.omicsoft.com/fusionmap/
http://bioen-compbio.bioen.illinois.edu/FusionHunter/
http://archive.gersteinlab.org/proj/rnaseq/fusionseq/
https://bitbucket.org/mckinsel/shortfuse
http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm
http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm
http://soap.genomics.org.cn/SOAPfusion.html
http://tophat-fusion.sourceforge.net/
http://genome.wustl.edu/software/
http://www.stjuderesearch.org/site/lab/zhang
http://code.google.com/p/gasv/
http://code.google.com/p/hydra-sv/
http://sv.gersteinlab.org/pemer/download.html
http://www.bioconductor.org/packages/2.10/bioc/html/R453Plus1Toolbox.html
http://www.bioconductor.org/packages/2.10/bioc/html/R453Plus1Toolbox.html
http://svdetect.sourceforge.net/Site/Home.html
http://compbio.cs.sfu.ca/strvar.htm
http://www.mcdonaldlab.biology.gatech.edu/r-sap.htm
http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss
http://trinityrnaseq.sourceforge.net/
http://www.bcgsc.ca/downloads/trans-abyss/data/trans-abyss-manual.v1.2.0.doc.pdf


Table 2 also lists eight SV-detecting tools, e.g.

BreakDancer [67] and CREST [68], the purpose of

which is mainly to provide accurate and comprehen-

sive predictions of SVs in genomes. We include

them here because fusion genes are potential prod-

ucts of SVs. The characterization of SVs that result in

fusions is an important step in fusion gene calling.

For example, BreakFusion [65] utilizes BreakDancer

[67] to locate splicing breakpoints, while more com-

monly fusion-detecting methods develop algorithms

targeted specifically at fusion-causing SVs. In com-

parison with the methods for gene fusion detection

that emerged only lately, SV identification is a

well-studied field with some methods, such as

BreakDancer [67], having been reviewed by a large

number of articles [11, 59, 79, 80]. Hence, in the

following text, we will not touch on these

SV-detecting tools. Instead, we will focus our dis-

cussion on the new methods in Table 2 that aim

specifically for fusion gene detection.

ISSUESAFFECTING GENE FUSION
DETECTION
The ability of an approach to identify fusions from

NGS data relies on the types of sequencing data it

aims to work on as well as its computational strate-

gies to process the data. In this section, we review

these NGS and computational issues. An in-depth

discussion of the computational features of existing

methods is the topic of the next section.

WGS,RNA-Seq and targeted sequencing
WGS and RNA-Seq are two major NGS technol-

ogies for fusion gene detection (Table 1). As the

most powerful sequencing technology today, WGS

provides the most comprehensive and unbiased char-

acterization of genomic alterations in genomes,

especially cancer genomes. Using WGS technology,

a variety of fusion genes have been discovered

[8, 50, 57], some of which, for example, VTI1A-
TCF7L2, are believed important for the growth of

certain cancer cells [48]. One drawback of WGS,

however, is that it requires a great amount of sequen-

cing and intensive computational analysis. The

whole process of WGS, from sample preparation to

fusion identification and verification, may take

months to complete [44]. While we have seen the

cost of NGS decreased dramatically during the past

few years, it is still expensive compared to RNA-Seq

[81]. Finally, the significance of a fusion gene

discovered using WGS relies on its effects on expres-

sion and on whether it produces fusion transcripts.

Compared to WGS, RNA-Seq only sequences

the regions of the genome that are transcribed and

spliced into mature mRNA, which is �2% of the

entire genome [63]. Another advantage that makes

RNA-Seq ideal for the discovery of expressed fusion

genes is that it allows for detection of multiple alter-

native splice variants resulting from a fusion event.

These distinct features of RNA-Seq, together with

its low cost and quick turnaround time, make

RNA-Seq very popular in fusion gene studies.

Over the past 3 years, 21 out of 29 studies found

novel onco-fusions through RNA-Seq, in contrast

with only 5 out of 29 through WGS (Table 1).

However, one main limitation of RNA-Seq is that

it cannot detect fusion events involving non-

transcribed regions [19]. Other factors that compli-

cate RNA-Seq data analysis are tissue-specificity and

the broad dynamic range of expression in the human

transcriptome [82]. The dynamic transcription of

genes in different tissues and cellular stages makes

detection of gene fusions more complicated, espe-

cially when transcript expression is low. Moreover, it

is a challenge to differentiate fusions of interest from

artifacts due to the prevalence of gene readthrough

events.

Table 3 summarizes features of fusion gene detec-

tion tools that have implemented the methods listed

in Table 2. Among these tools, the software

FusionMap [20] works with either WGS or

RNA-Seq data, while the majority of tools focus

on RNA-Seq only, primarily due to the aforemen-

tioned strengths of RNA-Seq over WGS and inves-

tigators’ interest in known gene regions. Different

from other software that analyzes one type of

sequencing data at a time, Comrad [23] requires

both WGS and RNA-Seq data produced for the

same sample as input, aiming to leverage the advan-

tages of both sequencing technologies. Comrad [23]

does not nominate a fusion event unless both WGS

and RNA-Seq reads support the evident. This inte-

grative approach reduces false positive detection of

fusions that are plaguing existing RNA-Seq methods

and has been shown to be powerful in a recent study

of prostate cancer [31]. However, the combination

of WGS and RNA-Seq increases cost and computa-

tional time. It also limits the applications of Comrad,

as investigators may not have samples for both plat-

forms in one study. Furthermore, if the false negative

rate is high in any platform (WGS or RNA-Seq), this
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strategy would miss the chance to identify true fusion

genes.

Finally, besides whole genome and whole tran-

scriptome, targeted sequencing is also effective

for the detection of gene fusions [42, 43]. For ex-

ample, we took advantage of an observation that

many breakpoints occur upstream of a conserved

GXGXXG kinase motif and targeted the region up-

stream of the exon containing the motif for DNA

capture. Our approach successfully identified several

tyrosine kinase fusions in cancer cell lines [43].

Reference sequences
To detect SVs that may result in gene fusions, each

read (pair) needs to be aligned to a reference genome

sequence in order to determine its genomic location.

Currently, the reference genome used in existing

methods is NCBI build 37/36 (http://www.ncbi

.nlm.nih.gov/projects/mapview/) or UCSC hg19/

hg18 (http://hgdownload.cse.ucsc.edu/downloads.

html#human). One limitation with the use of refer-

ence genome is that fusion genes involving novel

sequences that are not represented in the reference

will be missed.

For RNA-Seq data, in addition to alignment to

the reference genome, reads are also mapped to a

transcriptome library so that the genes involved in

each fusion can be identified. The reference tran-

scriptome used widely in the community includes

the UCSC annotations of known genes [83] and

the Ensembl human gene model RefSeq [84].

One potential problem with those methods relying

on a known transcriptome library is that they con-

sider only the candidates involving annotated exons.

The fusion genes with novel exons cannot be

detected.

Table 3: Features of computational tools for fusion gene detection

Method Input data Referencef Fusion junction detectiong Assemblyh

Typed Formate

WGS RNA-Seq Single-end Paired-end Transcriptome Genome Split-read Spanning-read

Fusion detection specific
BreakFusiona � � � � �

ChimeraScan � � � � � �

Comradb � � � � � � �

FusionAnalysera � � � � � �

deFuse � � � � � �

FusionMap � � � � � � �

FusionHunter � � � � � �

FusionSeq � � � � � �

ShortFuse � � � � � �

SnowShoes-FTD � � � � � �

SOAPfusion � � � � � �

Tophat-Fusion � � � � � �

Structural variant detection
BreakDancerc � � � � �

CREST � � � �

GASV � � � �

HYDRA � � � �

PEMer � � � �

R453Plus1Toolbox � � � � �

SVDetect � � � �

VariationHunter � � � �

Others
R-SAP � � � � � � �

Trans-ABySS � � � � �

Trinity � � � � �

aThe input of FusionAnalyser and BreakFusion are alignment files (typically BAM format). bComrad requires bothWGS and RNA-Seq data of the
same sample for fusion gene characterization. cAlthough BreakDancer is applied in BreakFusion to find splicing breakpoints from RNA-Seq data,
it is designed for detection of genomic structural variation. dColumn ‘Type’ is explained in detail in ‘WGS, RNA-Seq, and Targeted Sequencing’ sec-
tion. eColumn ‘Format’ corresponds to ‘Single-End Versus Paired-End’ section. fColumn ‘Reference’ is explained in ‘Reference Sequences’ section.
gColumn ‘Fusion Junction Detection’ is explained in ‘Single-End Versus Paired-End’ and ‘Procedure For Detection of Gene Fusions from NGSData’
sections. hColumn‘Assembly’corresponds to ‘Mapping-First Versus Assembly-First’ section.
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To alleviate the reliance on known transcrip-

tomes, FusionHunter [21] proposes to map sequen-

cing reads to the human reference genome and then

to identify putative exons by clustering reads mapped

to the same genomic regions. However, in its current

implementation, FusionHunter still needs a tran-

scriptome library to make its results more reliable.

Single-end versus paired-end
The earlier RNA-Seq studies used single-end data to

detect fusion genes [40, 41]. We call a read that

harbors a fusion junction a ‘split read’. By analyzing

the alignments of ‘split reads’, which do not map to

the reference sequences directly, gene fusion events

can be characterized [19, 20].

If both ends of a set of long DNA/cDNA frag-

ments are sequenced, the resulting paired short reads

are called paired-end (or mate-pair). We call a pair of

reads that harbor a fusion junction within its insert

sequence a ‘spanning pair’ (or ‘spanning reads’).

When two ends of a ‘spanning pair’ are aligned to

two different genes, a discordant mapping is pro-

duced. The discordant mappings of paired-end

reads are therefore characteristic of fusion genes. In

the landmark work by Maher et al. [47], discordantly

mapped reads were used to detect fusions from

paired-end RNA-Seq data. FusionSeq [63], the

first publically accessible method for fusion gene de-

tection, also exploits discordantly mapped reads for

fusion gene identification. As the most influential

method in this field, FusionSeq has contributed

to the discovery of multiple novel fusion genes, e.g.

ALG5-PIGU in prostate cancer [27] and WWTR1-
CAMTA1 in ‘epithelioid hemangioendothelioma’

[28]. It is also a starting point of several fusion-

detecting tools including FusionAnalyzer [64] in

Table 2. Besides FusionSeq, FusionAnalyzer and all

other software in Table 3 works with paired-end

reads and two of them, FusionMap [20] and

TopHat-Fusion [19], can work on single-end data.

Using both ‘spanning’ and ‘split reads’ to identify

fusion candidates, Maher et al. [47] and Ha et al. [30]

reported improved sensitivity if paired-end data is

used. However, if only ‘split reads’ are utilized to

identify fusion junctions, it was shown that the abil-

ity to characterize fusion genes using single-end reads

is as good as with paired reads [19, 20].

Mapping-first versus assembly-first
Based on the computational strategies for fusion

gene detection, the methods in Table 3 can be

grouped into two categories, mapping-first [22] and

assembly-first [78]. The mapping-first approach first

aligns reads to reference DNA/RNA sequences and

then finds fusion breakpoints from the resulting

alignment patterns [22]. All the software customized

for fusion gene characterization (i.e. ‘Fusion detec-

tion specific’) in Table 3 falls into this category.

Compared to the assembly-first approach, the

mapping-first approach is faster and has dominated

the field of NGS-based gene fusion studies.

The second computational strategy, the assembly-

first approach, first assembles reads that overlap. The

long sequences assembled, i.e. contigs, are then

mapped to reference sequences for structure alter-

ation identification. For an assembly algorithm, e.g.

Trans-ABySS [77] or Trinity [78], if it assembles short

reads directly without mapping them to the refer-

ences, then it is called denovo assembly. The exclusive

advantage of denovo assembly is that it does not need a

reference genome/transcriptome for fusion detection

(by comparing directly the assembled sequences of

the sample with the assembled ones of control). Its

disadvantage is that the assembly of short sequences is

too time-consuming and too error prone to enable

this approach for practical biomedical applications.

None of the studies in Table 1 employed short-read

assembly to identify fusion genes.

The assembly approach can be combined with

reference alignment. For instance, the aforemen-

tioned method BreakFusion [65] performs tar-

geted/localized de novo assembly after short read

mapping so as to balance sensitivity, specificity and

computational efficiency of fusion gene calling.

Other issues
Additional issues on gene fusion detection include

sequencing coverage, size of the insert sequences,

read length, rate of sequencing error, as well as the

length and location of the fusion gene to be dis-

covered. Overall, in the case of paired-end sequen-

cing, the increase in sequencing coverage, read

length or the decrease in sequencing error improves

the probability of detecting fusion genes [85]. For an

in-depth exploration into these features, interested

readers are referred to reference [85].

PROCEDURE FORDETECTIONOF
GENE FUSIONS FROMNGS DATA
In this section, we take a closer look at the methods

designed specifically for gene fusion identification.

512 Wang et al.



These methods overall follow a three-step procedure

to detect gene fusions: (i) mapping and filtering,

(ii) fusion junction detection and (iii) fusion gene

assembly and selection. The major computational

features of these methods are provided in Table 4.

Mapping and filtering
All the methods in Table 4 take mapping as their

initial analysis step. As the most important step

in the mapping-first approach, mapping is a well-

investigated problem in computational biology

[60, 61, 86]. However, different from NGS applica-

tions in other fields, e.g. SNP and indel callings, the

methods in Table 4 exploit primarily unmapped

reads and/or discordantly mapped reads, the analysis

of which is much more challenging than those of the

mapped ones.

Table 4 lists the mapping tools utilized in existing

fusion detection software. Among them, Bowtie [87]

is applied in most methods to short read alignments.

The popularity of Bowtie in the field is ascribed to its

speed and ability to find all possible mapping loci for

each read pair. In the broader areas of RNA-Seq

applications, however, ELAND, which is shown

more accurate than Bowtie [88], is used most

widely for mapping [89]. ELAND is rarely used for

fusion detection methods primarily because ELAND

is a commercial product and not free to the research

community.

After mapping, the alignment of each read (pair) is

evaluated and the reads unrelated to fusions are

removed from further consideration. The methods

that are based primarily on ‘split reads’, like

Tophat-Fusion [19] and FusionMap [20], filter out

all mapped reads. However, for methods that exploit

Table 4: Mapping tools and parameters used in methods for fusion gene detectiona

Method Mapping
tool

Intra-
chromosomal
distance cutoff
D (kb)b

Split-readmapping #
supporting
readsc

Features of scoring function

#
segments

Length (bp)
of end
segments/
seeds

BreakFusion BLAT A function of BLATalignment
scores

ChimeraScan Bowtie Various 25 3
Comrad Bowtie

and BLAT
25 1WGSþ 5 RNA-Seq

FusionAnalyser BWA 2 Various A scoring algorithm that ranks
fusion candidates based on
their coverage and annotation
status

deFuse Bowtie �2 Various 5 spanningþ 3 split A classifier trained using an
Adaboost algorithm on 11
features

FusionMap Bowtie and
GSNAP

5 2 Various 1 A score based on read density
and mapping quality

FusionHunter Bowtie 600 2 Various 2 spanningþ1 split
FusionSeq Eland/Bowtie

and BLAT
various A score of the normalized and

expected number of support-
ive reads

ShortFuse Bowtie 10 22 1/20� coverage A score based on mapping
quality and insert size
distribution

SnowShoes-FTD BWA 100 32 10 spanningþ 2 split
SOAPfusion 6
TopHat-Fusion Bowtie 100 3 25 Various Aweighted sum of read

coverage, number of
supporting reads, etc.

aOnly the software inTable 2 that is designed specifically for fusion gene detection is compared in this table. bD is defined as theminimally allowed
distance (kb) between genes that form intra-chromosomal fusion. cDefault/minimum number of supporting reads, which can be split reads, spanning
reads, supportiveWGS reads and/or RNA-Seq reads.
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‘spanning reads’, such as SnowShoes-FTD [25],

which is a powerful analytic pipeline for identifica-

tion of fusion transcripts in breast cancer and for as-

sessment of tumor subtype-specific distribution in

primary tumors [90], all discordantly mapped pairs

are preserved. In addition to discordantly mapped

reads, these methods also keep unmapped reads

(potentially ‘split reads’) in order to assist in the se-

lection of fusion candidates [24–26, 63]. Figure 1

illustrates a procedure for identification of gene fu-

sions through paired-end reads.

To further discard reads that are less likely to

harbor fusions, all the methods in Table 4 developed

filtering techniques. For instance, the software

FusionSeq [63] eliminates spurious fusion candidates

through more than 10 filters, e.g. sequence similarity

filter, repetitive regions filter, abnormal insert size

filter, ribosomal filters, etc. In essence, the two

steps discussed below are filtering techniques too,

considering the removal of fusion candidates as a

consequence of these two steps. One commonly

used filter that may be worth mentioning relates to

intra-chromosomal fusions. Two neighboring genes

on the same chromosome may produce a read-

through transcription. To differentiate true intra-

chromosomal rearrangements from read-through

events, a common practice is to define a threshold

D. A fusion candidate is discarded if the distance

between its fusion partner genes is smaller than

D. An appropriate value of D is important for

fusion gene calling in that more read-through

events are preserved if a smaller D value is used,

(1) Mapping and filtering

Predicted fusions

Raw reads

(2) Fusion junction detection

(3) Sequence assembly and selection

Unsupported candidates Filter out

Discordantly mapped reads
Read pairs with 

one or both ends 
unmapped

Concordantly mapped reads Filter out

Reference sequence

Reference sequence

Figure 1: A procedure to detect gene fusions from paired-end NGS data through ‘split read’mapping. (1) Reads are
mapped to reference sequences. Those mapped concordantly are discarded. To differentiate mapped reads in the
figure from unmapped ones, which remain blue throughout the pipeline, the color of mapped reads is changed
from blue to the color of reference sequence region they are aligned to. (2) Reads mapped discordantly are used to
infer approximate fusion boundaries. For each pair of reads with at least one end unaligned to reference sequence,
the unmapped end is cut into multiple segments (two in this case) to be aligned independently to the approximate
fusion boundaries. In the figure, two segments from the same read are connected by a dashed line. Fusion junctions
are identified through ‘split-reads’, whose two segments are mapped to two different chromosomes/genes. (3) The
sequences of the fusion candidates are assembled and the ones with the highest likelihood to be real fusions are se-
lected as final outputs. In the figure, we use vertical dotted lines to represent fusion breakpoints.
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whereas true intra-chromosomal fusions may be dis-

carded with a greater D value. The default values of

D in existing methods are provided in Table 4.

Fusion junction detection
Step 2 of the procedure in Figure 1 illustrates the

detection of fusion junctions through ‘split read’

mapping [19–22, 64]. The unmapped reads are cut

into multiple pieces. The first and last segments of

each ‘split read’ are then mapped against the refer-

ence sequences independently. Partitioning of the

reads increases the chance of the reads to be aligned

to the references. If the two end segments of a ‘split

read’ are mapped to two different chromosomes or

genes, then the read is potentially from a fusion gene.

Once this alignment pattern is detected, the precise

location of the fusion junction can then be found by

adjusting the boundaries of the original fragments

and performing realignment.

One factor that influences ‘split read’ mapping is

the length of the partitioned segments. Shorter seg-

ments improve sensitivity for nominating fusions but

increase false positive rate. To balance sensitivity and

false positive rates, these methods either split a read

evenly into two segments if the read is not long [21,

64], or simply use a fixed length (e.g. 25 bp) of end

segments, as shown in Table 4. For example,

TopHat-Fusion [19] splits an 80-bp read into three

segments with lengths 25, 30 and 25 bp, respectively.

The two end segments, which are 25 bp in length,

are remapped to the reference sequences.

A different strategy to detect fusion junctions is to

infer fusion breakpoints from ‘spanning reads’ and

then select those predictions that are likely to be

real using ‘split reads’ [24–26, 63]. Discordant align-

ments are first grouped into clusters, each consisting

of a maximal set of reads that share the same pair of

breakpoints. Then, the boundary region of each can-

didate fusion junction is identified from its cluster.

Next, fusion junction loci are inferred and putative

fusion transcripts are predicted. Finally, unmapped

reads are aligned to the predicted fusion transcripts.

The predictions, to which the highest number of

unmapped reads is aligned, are nominated as candi-

date fusion genes.

Fusion gene assembly and selection
After identifying fusion junctions, the sequence of

each candidate fusion gene can be derived by stitch-

ing directly two partner genes together. Then, the

reads unmapped previously are aligned to the

candidate fusion genes. Reads mapped in this step

provide additional confidence in the candidate.

Hence, they are called supporting reads. Besides

‘split reads’, ‘spanning reads’ can also serve as sup-

porting evidence, as they encompass fusion junctions

in their insert sequences. Existing methods all require

the presence of supporting reads as a prerequisite to

nominate a fusion, although the required number of

supports varies greatly, as illustrated in Table 4. Note

that the requirement for supporting reads should be

adjusted based on the scale of the sequencing data.

Theoretically, the limit on the number of supporting

reads should be increased for larger data sets, such as

those generated by the Illumina HiSeq system.

The requirement for more supporting reads re-

moves more inauthentic candidates, however, by

risking discarding true fusion genes of low transcrip-

tion level or coverage. To help distinguish true

fusions from candidates of uneven expression/

coverage, it is common practice in existing methods

to develop scoring functions to rank fusion candi-

dates [19, 20, 22, 26, 63]. The candidates with the

maximum likelihood to be real fusions are selected as

final outputs. As shown in Table 4, these scoring

functions are mostly based on features including

mapping quality, number of supporting reads and

read depths. The scores are either derived analytically

and empirically (e.g. FusionSeq [63]), or learned

from known data using machine learning techniques

(e.g. the AdaBoost classifier in deFuse [22], which,

with improved accuracy over FusionSeq, was applied

to detection of fusion genes in various studies

[29, 91]).

PERSPECTIVES
The active development of algorithms to identify

driver fusion genes in human cancer has resulted in

a variety of software, the sensitivity and specificity of

which are subject to today’s NGS platforms, sequen-

cing protocols, mapping tools, fine tuning of filtering

parameters, as well as other issues as discussed in this

work. Even with a wise combination of the most

up-to-date technologies, the capability of existing

methods to detect fusions in cancer genomes still

needs to be improved. As one example, one of the

latest software, SnowShoes-FTD [25], identified five

novel fusions in the breast cancer cell line MCF7 but

failed to characterize several fusion genes that were

previously discovered by Maher et al. [47].
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To increase the accuracy of fusion gene character-

ization, one direction is to improve mapping quality

by adopting mapping tools that are more accurate

than what are commonly used currently. Due to

the critical role of short-read mapping in fusion

gene detection, it is expected that more accurate

mapping will improve the performance of fusion

gene calling. Another direction is to develop new

denovo assembly algorithms that, unlike today’s main-

stream methods, do not rely on reference sequences

and, hence, are potentially more sensitive in fusion

detection.

Improvements in NGS sequencing throughput,

data accuracy and read lengths will continue at

an unprecedented pace. For example, the HiSeq

2000 sequencing system (http://www.illumina.com/

documents/products/datasheets/datasheet_hiseq2000

.pdf) unveiled recently by Illumina is capable of gen-

erating 25 Gb of data per day, a 5-fold increase in data

generation rate from its previous version (GAIIx).

Although the identification of fusions of low expres-

sion level from transcriptome sequencing still remains

a challenge despite higher coverage data, deeper

coverage overall will give rise to higher sensitivity

in fusion gene detection. Therefore, we expect

more interesting fusion genes to be identified from

differentially expressed systems. Further, increased

read length will reduce the ambiguity of short-read

mapping and, thus, lower the false positive rate of

fusion candidate callings.

Another prominent development is the devel-

opment of third generation sequencing (TGS) tech-

nologies, which promise to provide dramatically

longer read lengths, shorter times for data generation

and lower costs than NGS [17, 92]. Representative

platforms of TGS of today include Helicos, Pacific

Biosciences and Ion Torrent (acquired by Life

Technologies Corporation in 2010). Long reads

will dramatically simplify aberration analysis algo-

rithms. If the TGS reaches a throughput and error

rate comparable to that of the NGS technologies of

today, it is expected that the techniques for

fusion gene detection will greatly accelerate the

studies of human cancer and other cellular systems

(e.g. somatic mutations in tissues).

Key points

� Research on gene fusions in human cancer has been greatly
accelerated due to next generation sequencing technologies
and the development of detection algorithms and software
tools.

� The sensitivity and specificity of existingmethods for gene fusion
discovery are subject to issues such as today’s NGS platforms,
sequencing protocols, mapping tools and fine tuning of filtering
parameters.

� New sequencing technologies, especially the emerging third
generation sequencing (TGS) technologies, will improve fusion
gene calling.
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