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Abstract
A number of supervised machine learning models have recently been introduced for the prediction of drug^target
interactions based on chemical structure and genomic sequence information. Although these models could offer im-
proved means for many network pharmacology applications, such as repositioning of drugs for new therapeutic
uses, the prediction models are often being constructed and evaluated under overly simplified settings that do not
reflect the real-life problem in practical applications. Using quantitative drug^target bioactivity assays for kinase
inhibitors, as well as a popular benchmarking data set of binary drug^target interactions for enzyme, ion channel,
nuclear receptor and G protein-coupled receptor targets, we illustrate here the effects of four factors that may
lead to dramatic differences in the prediction results: (i) problem formulation (standard binary classification or
more realistic regression formulation), (ii) evaluation data set (drug and target families in the application use case),
(iii) evaluation procedure (simple or nested cross-validation) and (iv) experimental setting (whether training and
test sets share common drugs and targets, only drugs or targets or neither). Each of these factors should be
taken into consideration to avoid reporting overoptimistic drug^target interaction prediction results.We also sug-
gest guidelines on how to make the supervised drug^target interaction prediction studies more realistic in terms
of such model formulations and evaluation setups that better address the inherent complexity of the prediction
task in the practical applications, as well as novel benchmarking data sets that capture the continuous nature of
the drug^target interactions for kinase inhibitors.

Keywords: drug^target interaction; kinase bioactivity assays; nested cross-validation; predictive modeling; supervised machine
learning

INTRODUCTION
System-level understanding of the relationships be-

tween chemical compounds and their potential cel-

lular targets is an important prerequisite for a rational

drug development process. Chemical–protein inter-

actions provide insights into the mode of action and

potential side effects of the selected lead compounds

in phenotype-based drug testing as well as facilitate

choosing those compounds that selectively target a

particular protein in the target-based drug discovery.

Because experimental mapping of the compound–

target interaction networks remains limited both in
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coverage and throughput, a wide spectrum of in silico
approaches have been developed for systematic pri-

oritization and speeding up the experimental work

by means of computational prediction of the most

potent drug–target interactions, using various ligand-

and/or structure-based approaches, such as those that

relate compounds and proteins through quantitative

structure activity relationships (QSARs), pharmaco-

phore modeling, chemogenomic relationships or

molecular docking [1–6]. In particular, supervised

machine learning methods have the potential to ef-

fectively learn and make use of both structural simi-

larities among the compounds as well as genomic

similarities among their potential target proteins,

when making predictions for novel drug–target

interactions (for recent reviews, see [7, 8]). Such

computational approaches could provide systematic

means, for instance, toward streamlining drug repos-

itioning strategies for predicting new therapeutic tar-

gets for existing drugs through network

pharmacology approaches [9–12].

Compound–target interaction is not a simple

binary on-off relationship, but it depends on several

factors, such as the concentrations of the two mol-

ecules and their intermolecular interactions. The

interaction affinity between a ligand molecule (e.g.

drug compound) and a target molecule (e.g. receptor

or protein kinase) reflects how tightly the ligand

binds to a particular target, quantified using measures

such as the dissociation constant (Kd) or inhibition

constant (Ki). Such bioactivity assays provide a con-

venient means to quantify the full spectrum of re-

activity of the chemical compounds across their

potential target space. However, most supervised

machine learning prediction models treat the drug–

target interaction prediction as a binary classification

problem (i.e. interaction or no interaction). To dem-

onstrate improved prediction performance, most au-

thors have used common evaluation data sets,

typically the ‘gold standard’ drug–target links col-

lected for enzymes (E), ion channels (ICs), nuclear

receptor (NR) and G protein-coupled receptor

(GPCR) targets from public databases, including

KEGG, BRITE, BRENDA, SuperTarget and

DrugBank, first introduced by Yamanishi et al. [13].

Although convenient for cross-comparing different

machine learning models, a limitation of these data-

bases is that they contain only true-positive inter-

actions detected under various experimental

settings. Such unary data sets also ignore many im-

portant aspects of the drug–target interactions,

including their dose-dependence and quantitative

affinities.

Moreover, the prediction formulations have con-

ventionally been based on the practically unrealistic

assumption that one has full information about the

space of targets and drugs when constructing the

models and evaluating their predictive accuracy. In

particular, model evaluation is typically done using

leave-one-out cross-validation (LOO-CV), which

assumes that the drug–target pairs to be predicted

are randomly scattered in the known drug–target

interaction matrix. However, in the context of

paired input problems, such as prediction of pro-

tein–protein or drug–target interactions, one should

in practice consider separately the settings where the

training and test sets share common drugs or proteins

[8, 14–16]. For example, the recent study by van

Laarhoven et al. [17] showed that a regularized

least-squares (RLS) model was able to predict

binary drug–target interactions at almost perfect pre-

diction accuracies when evaluated using a simple

LOO-CV. Although RLS has proven to be an ef-

fective model in many applications [18, 19], we

argue that a part of this superior predictive power

can be attributed to the oversimplified formulation

of the drug–target prediction problem, as well as

unrealistic evaluation of the model performance.

Another source of potential bias is that simple

cross-validation (CV) cannot evaluate the effect of

adjusting the model parameters, and may therefore

easily lead to selection bias and overoptimistic

prediction results [20–22]. Nested CV has been

proposed as a solution to provide more realistic per-

formance estimates in the context of drug–target

prediction or other feature selection applications

[8, 23].

Here, we illustrate that a more realistic formula-

tion of the drug–target prediction problem may lead

to drastically decreased prediction accuracies, better

reflecting the true complexity of the drug–target

prediction problem in practical applications.

Although the van Laarhoven et al. study [17] is

used as an example, we note that similar problem

formulations and evaluation setups have been used

in many recent studies that have introduced new

models and showed improved prediction accuracies

[14, 24–26]. Although these works have provided

important insights into the performance of the super-

vised machine learning methods, we believe they

fall short in demonstrating the realistic performance

of the predictive models in practice. A particular
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contribution of the present work is to formulate the

drug–target interaction prediction as a ranking prob-

lem, in contrast to the standard binary classification.

In comparison to the binary drug–target data sets by

Yamanishi etal. [13], we use here two large-scale data

sets from biochemical selectivity assays for clinically

relevant kinase inhibitors by Davis et al. and

Metz et al. [27, 28]. Rather than reporting only

true-positive interactions, these systematic mappings

of the quantitative Kd and Ki bioactivity spectra in

standardized settings provide broader insights into

the interaction patterns across wide panels kinase in-

hibitors and their potential cellular targets for model

evaluation purposes. Protein kinases play important

roles in a wide range of diseases, such as cardiovas-

cular disorders and cancer; however, members of the

same kinase family are relatively similar to each

other, which leads to prevalent target promiscuity

and polypharmacological effects—and a challenging

drug–target prediction problem.

MODELSANDMETHODS
Predictive models
We used the same machine learning predictive

model that was used in the previous works [17, 29,

30]. The so-called Kronecker RLS method is a spe-

cial case of the ordinary RLS model (Supplementary

Methods provides a detailed description of the

KronRLS model and its implementation in the pre-

sent case studies). Briefly, given a set of training

inputs xi (drug–target pairs in the present application)

and their real-valued labels yi (interaction affinities),
i ¼ 1,:::,m, we formulate the problem of learning a

prediction function f as finding a minimizer of the

following objective function:

Jðf Þ ¼
Xm

i¼1

ðyi � f ðxiÞÞ
2
þ l f

�� ��2

k

Here, l> 0 is the user-provided regularization

parameter that determines a compromise between

the prediction error on the training set and the

model complexity, and f
�� ��

k is the norm of f mea-

sured in the Hilbert space associated with a kernel

function k. Here, the kernel functions for the drugs

and targets come from the chemical structure and

sequence similarity matrices, respectively, or from

the identity matrix in the case when no similarity

information is being used (so-called d kernel). The

kernel for the drug–target pairs is the product of the

drug and target kernels.

We also performed additional experiments with

another widely used machine learning prediction

model, random forests (RFs), to test whether the

observations made with the Kronecker RLS general-

ized also to other popular machine learning methods,

which are based on rather different learning prin-

ciples. In the RF implementation, we followed the

recent drug–target interaction prediction study by

Yu et al. [31], where each drug–target pair was rep-

resented as a concatenation of drug and target simi-

larity vectors (see Supplementary Methods for details

of the implementations).

Experimental settings
Let the training input data for a prediction model

consist of a set X of drug–target pairs x¼ (xd,xt)
and their real-valued labels y (either binary or quan-

titative interaction affinities). Let D and T denote,

respectively, the spaces of drugs and targets encoun-

tered in the training set X � D� T. Here, we pay a

special attention to the differences between the fol-

lowing four experimental settings under which the

model can be learned and applied to predict the label

of a drug–target pair x¼ (xd,xt):

S1. Both xd and xt are encountered in the train-

ing set: xd2D and xt2T.

S2. We have seen xt2T, but the drug xd is

unseen in the training phase.

S3. We have seen xd2D, but the target xt is

unseen in the training phase.

S4. Neither xd nor xt is encountered in the train-

ing phase: xd =2D and xt =2T.

The setting S1 corresponds to the most widely

used experimental design in computational works,

in which one assumes random missing entries in

the otherwise fully known drug–target interaction

matrix, and the aim is to infer the missing values

without going outside the training space (Figure 1).

The settings S2 and S3 are more compatible with the

real application use cases, where only part of the drug

or target information is available during the model

training phase (these settings correspond to multila-

bel learning problems where one aims to predict, e.g.

one label per drug for the new target). In the most

challenging setting S4, neither the set of drugs nor

the set of targets is fixed during the training phase,

and the aim is to predict the interaction affinity for

a drug–target pair, neither of which has been
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previously seen based solely on their similarities with

the previously encountered drugs and targets.

Cross-validation
In CV, we followed the averaging CV approach, in

which the performance is computed for every test set

separately, and the average is reported (see

Supplementary Methods for further details). This is

reasonably straightforward in the first setting S1,

where the folds can be formed by simply random

sampling of the drug–target pairs. However, when

the prediction model is to be applied in the setting

S2, then the train-test splits must be done at the level

of drugs, rather than drug–target pairs. Formally, if a

drug–target pair x¼ (xd,xt) belongs to the test fold,

the training set must not include any such drug–

target pairs that contain xd. Otherwise, the perform-

ance estimate may become optimistically biased. An

analogous situation occurs in the setting S3. To deal

with the setting S4, one has to design the CV even

more carefully, as both the drug and the target of

the test pair must remain unseen in the training set.

This means that both the row and the column of the

corresponding test pair entry x¼ (xd,xt) must be

removed from the drug–target interaction matrix.

Also note that the other entries in the row and the

column cannot be part of the same test fold either

because otherwise they would share common drugs

or targets with the training data pairs (Figure 1).

Thus, in each train-test split, one has a portion of

data that can belong neither to the training nor the

test sets.

The averaging CV approach requires relatively

large fold sizes to evaluate the multivariate perform-

ance metrics, as all the interactions contradicting the

particular setting have to be removed from the train-

ing set. In the experiments presented in the article,

we performed 5-fold CV in settings S1–S3, where

the fold division was performed either at the level of

drug–target pairs (S1), drugs (S2) or targets (S3). In

the setting S4, we used a CV approach, in which

both the drugs and the targets were partitioned

into three folds, resulting in 9-fold combinations

(3� 3-fold CV). We note that large fold sizes may

Figure 1: The four experimental settings illustrated in a subset of the quantitative data matrix from Davis et al.
[27], where the rows and columns correspond to the drugs and targets, respectively, and the entries depict the
drug^target interaction affinities (Kd). The following CV options were used to split the drug^target interaction
matrix for training and testing under the different settings. In setting1, the matrix entries are randomly partitioned
into five parts, each of which was removed in turn from the training set (the entries colored in gray) and used as a
test data (5-fold CV on drug^target pairs). This corresponds to a use case where the aim is to predict the inter-
action affinities for the missing drug^target data pairs, both of which have been encountered in the training set.
In setting 2, the test set consists of one-fifth of the rows of the drug^target interaction matrix, and each of these
entries were used simultaneously as test pairs (5-fold CV on drugs). Setting 3 is simulated analogously by holding
out one-fifth of the columns of the interaction matrix at a time (5-fold CV on targets). These settings correspond
to practical cases, where the aim is either to predict new targets for a given compound (e.g. phenotype-based
drug testing) or compounds targeting a given protein (e.g. target-based drug development). In setting 4, where
neither the drug nor the target of the test pair has been encountered during model training, both the rows
and the columns are randomly partitioned into three parts, which form nine mutually disjoint submatrices having
entries indexed by a third of the rows and a third of the columns (joint 3�3 CV on drugs and targets). Each of
these nine submatrices were, in turn, used as a test set (gray), whereas the rest of the entries that share either
a row or a column with any of the test pairs (black) can be used neither for training nor testing during the
CV round corresponding to the particular submatrix. A colour version of this figure is available at BIB online:
http://bib.oxfordjournals.org.
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sometimes cause a pessimistic bias on the perform-

ance estimate, if the training set becomes too small

compared with the size of the whole data set used for

training the final model. As an alternative to the

n-fold CV, we also introduced separate CV strategies

under S2 and S3, so-called leave-drug-out (LDO)

and leave-target-out (LTO), in which the fold sizes

are kept as small as possible, given the constraints of

the particular settings. The LDO and LTO concepts

are analogous to the LOO-CV approach, which

have been widely used in the previous works

under setting S1 [17]. However, as these strategies

may lead to the risk of the multivariate metrics

becoming undefined or having large variance be-

cause of the small fold sizes, one needs to resort to

a pooling CV strategy (these results are provided in

Supplementary Tables S10–S17).

In addition to the aforementioned CV issues, se-

lection of hyper-parameters, such as the regulariza-

tion parameter l of KronRLS model, introduces

additional challenges for the performance evaluation.

It is well known in the machine learning literature

[20–23] that if CV estimate is used as a parameter

selection tool, the same estimate is no longer reliable

for estimating the prediction performance of the

model trained with the optimal hyper-parameters.

The larger the degree of freedom in the selection

of hyper-parameters, the more the CV estimate

will overfit the performance evaluation. For ex-

ample, if CV is used only for selecting the value of

the regularization parameter, the over-fitting risk

may not yet be so drastic. However, if the CV esti-

mate is used to select the model from a very large set

of alternatives, for example, feature subset selection

from the power set of all features, the risk for over-

fitting will be considerably larger. To address the

risk of selection bias, we implemented here a two-

level evaluation technique, so-called nested CV

(Supplementary Figure S8), in which the outer CV

is used for performance estimation only, whereas the

inner CV is separately performed during each round

of the outer CV for the model hyper-parameter

or feature selection [21, 23] (see Supplementary

Methods for details).

Evaluation metrics
To take into account that the interaction affinities

behind drug–target interactions are continuous

values rather than binary ones, we used the concord-

ance index (CI) as an evaluation metric for the pre-

diction accuracy [32]. More formally, CI over a set of

paired data is the probability that the predictions for

two randomly drawn drug–target pairs with different

label values are in the correct order, that is, the pre-

diction fi for the larger affinity yi is larger than the

prediction fj for the smaller affinity value yj:

CI ¼
1

Z

X

yi>yj

hðfi � fjÞ

Here, Z is a normalization constant that equals the

number of data pairs with different label values, and

h(u) is the step function returning 1.0, 0.5 and 0.0

for u> 0, u¼ 0 and u< 0, respectively. The values of

the CI range between 0.5 and 1.0, where 0.5 cor-

responds to a random predictor and 1.0 to the perfect

prediction accuracy in the test data. In the case of

binary interaction labels, the CI becomes equal to

the widely used area under the receiver operating

characteristic curve (AUC) metric:

AUC ¼
1

mþm�

X

yi¼þ1,yj¼�1

hðfi � fjÞ

where mþ and m� are the numbers of drug–target

pairs belonging to the positive and negative classes,

respectively. Similar to the AUC, the CI measure

provides a convenient performance metric in cases

where it is more important to predict the relative

order of labels than their exact values, for instance,

when ranking the compounds (or targets) according

to their increased likelihood of interacting with a

given target (or compound). We also evaluated the

binary classification problems using the area under

precision-recall curve (AUC-PR), which has been

used in several earlier drug–target interaction

studies [17].

EVALUATION DATA SETS
To assess the model predictions on quantitative

interaction data, we used two large-scale biochemical

selectivity assays for clinically relevant kinase inhibi-

tors from the studies by Davis et al. [27] and Metz

et al. [28]. In these kinase disassociation constant (Kd)

and kinase inhibition constant (Ki) data sets, respect-

ively, the smaller the Kd or Ki bioactivity, the higher

the interaction affinity between the chemical

compound and the protein kinase (Table 1). The

non-measured missing pairs in the Ki data set were

mean-imputed in the training phase, whereas the

prediction performance was evaluated using only

the measured interaction pairs in the testing phase

(Supplementary Figure S9). We also evaluated
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different types of chemical and genomic kernels cap-

tured by pairwise drug–drug and target–target simi-

larity matrices and compared these with the model

using no similarity information (d kernel). For the

structural fingerprint similarities, we compared the

two-dimensional (2D) and three-dimensional

(3D) Tanimoto coefficients, both with feature and

shape-optimized versions, using the structure cluster-

ing server at PubChem (http://pubchem.ncbi.nlm.

nih.gov), as well as the extended-connectivity

fingerprint (ECFP4; [33]), calculated using the

Accelrys Discovery Studio� software (version 3.5).

For the target sequence similarities, we tried out

both the original and normalized versions of the

Smith–Waterman (SW) score [8, 13]. These data

are available at: http://users.utu.fi/aatapa/data/Drug

Target.

To facilitate benchmarking comparisons with the

other drug–target prediction studies, we applied the

widely used ‘gold standard’ binary interaction data

sets of compounds targeting pharmaceutically useful

target proteins, including GPCRs, ICs, Es and NRs,

as first analyzed by Yamanishi et al. [13] and also

made publicly available (http://web.kuicr.kyoto-u.

ac.jp/supp/yoshi/drugtarget/). In these data sets,

the unary drug–target interaction information was

retrieved from the KEGG, BRITE, BRENDA,

SuperTarget and DrugBank databases, resulting in

binary drug–target interaction matrices. The chem-

ical structure similarity between the compounds was

computed using the SIMCOMP algorithm [34],

which represents the 2D chemical structures as

graphs and calculates a similarity score between the

compounds based on the size of the common sub-

structures between the two graphs using the Jaccard

coefficient, also known as the Tanimoto coefficient.

The SIMCOMP calculation does not use any 3D

structural features. The sequence similarity between

the protein targets was computed using the normal-

ized version of the SW score [8, 13]. These six

drug–target interaction data sets represent a wide

range of different characteristics, not only in terms

of various drug and target families and interaction

types (binary and quantitative) but also in terms of

the number of drugs, targets and their interactions

included in the interactions matrices (Table 1).

EXPERIMENTALRESULTS
We started by evaluating the predictive accuracy of

the KronRLS model under each of the settings S1–

S4 (Figure 1). The evaluations were performed using

the nested CV strategy in the two quantitative kinase

inhibitor data sets, as well as in the four binary data

sets for various targets (Table 1). As expected, the

highest predictive accuracy was obtained under the

most informative setting S1, whereas the practically

more realistic settings resulted in reduced accuracies

(Tables 2 and 3). The setting S3 showed often higher

accuracy compared with the S2, suggesting that new

drug targets are easier to predict than new targeted

compounds, except when the number of drugs is

considerably larger than the number of targets (Ki

data set) or when the data set is relatively small,

making the results unstable (NR data set).

Interestingly, a degree of predictive signal was

learned even under the most challenging setting S4

in most of the data sets. The binary E, GPCR and IC

data sets were easier for the prediction compared

with the quantitative kinase inhibitor data sets, and

these differences in the prediction accuracies could

not be attributed to differences in the data set dimen-

sionalities. Among the quantitative kinase inhibitor

data sets, the predictive accuracy in the Kd data was

often higher than in the Ki data set. Importantly,

when the quantitative data sets were binarized

Table 1: Data set characteristics

Data set Drugs Targets Ratioa Interactions Promiscuityb References

Kd 68 442 0.154 1527c 0.051 [27]
Ki 1421 156 9.109 3200d 0.034 [28]
GPCR 223 95 2.347 635 0.030 [13]
IC 210 204 1.029 1476 0.034 [13]
E 445 664 0.67 2926 0.0099 [13]
NR 54 26 2.077 90 0.0641 [13]

aThe number of drugs dividedby the number of targets. bThe number of interactions dividedby the number ofmeasureddrug^targetpairs indicates
the degree of drugs’ promiscuity (polypharmacological effects).The cutoff thresholds of Kd< 30.00 nMc and Ki< 28.18 nMd were used to binarize
the two quantitative kinase bioactivity data sets so that they represented similar degrees of polypharmacological effects with the other data sets.
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using relatively stringent cut-off thresholds

(Kd < 30 nM and Ki < 28.18 nM), the prediction

accuracies increased markedly under each setting

(Table 2). Similar improvement in the binary classi-

fication results was observed also with other cut-off

thresholds (Supplementary Figure S7). These results

indicate that the experimental design (settings S1–

S4), as well as the problem formulation (binary or

rank prediction), each can lead to reporting unreal-

istic prediction results, unless the effects of these fac-

tors are well understood and acknowledged in the

study.

We next evaluated the effect of the different

chemical structure and sequence similarity kernels

on the prediction accuracies in the quantitative Kd

data set. As for the target–target similarity, the nor-

malized SW score systematically gave better results

than its non-normalized version. The drug–drug

similarity based on the 3D structural features

showed improved accuracy in most cases compared

with the standard 2D structural fingerprint, especially

under the most challenging setting S4 (Figure 2A and

B). The ECFP4 fingerprint also led to performance

comparable with that of using the 3D structural fin-

gerprint. Rather surprisingly, reasonable accuracies

could be obtained even without using any target–

target or drug–drug similarities under S2 or S3, re-

spectively (Figure 2, d kernel). This is rather typical

in multitask or transfer learning problems, in which

one of the similarities is vital for generalizing to new

inputs, whereas the other similarity encodes correl-

ations between the different tasks. These results in-

dicate that it may be better to solve the different

learning problems independently. In setting S4, on

the contrary, generalization is not possible without

both similarities, except for trivial cases. We also note

that if the drug–drug or target–target similarity is

ignored in setting S1, it reduces to settings S3 or

S2, respectively. Therefore, in the settings S3 and

S4, successful learning always required the use of

target–target similarities; by symmetry, prediction

accuracies remained at a random level in the settings

S2 and S4 when no drug–drug similarity was used.

Similar results were obtained also in the other data

Table 3: AUC-PR in the binary data setsa

Setting E IC GPCR NR Kd B Ki B

S1 82.9 76.5 60.2 52.8 67.0 57.2
S2 36.1 25.8 37.8 49.3 24.5 42.8
S3 77.2 79.6 59.2 34.8 63.5 25.4
S4 25.0 18.9 17.5 19.3 17.2 16.2

aThese summary results were based on the normalized SW sequence
similarity and 2D structural similarity. B denotes binarized data. Data
sets E, IC,GPCR and NRwere originally in binary interaction format,
whereas the kinase Kd and Ki were originally quantitative data. The
full set of prediction results using different prediction models, cross-
validation approaches and evaluation metrics are provided as
SupplementaryTables S1^S17. All prediction accuracies reported in this
workdiffer significantly from random (P< 0.01, permutation test).

Table 2: CI in the binary and quantitative data setsa

Setting E IC GPCR NR Kd Q Kd B Ki Q Ki B

S1 96.0 96.4 92.7 86.1 88.3 95.2 79.3 93.4
S2 83.7 80.2 85.2 84.6 74.8 77.5 73.6 85.5
S3 92.1 94.0 89.4 73.8 86.1 93.6 66.6 85.0
S4 76.4 67.8 78.6 67.7 67.0 70.0 59.2 74.9

aThese summary results were based on the normalized SW sequence
similarity and 2D structural similarity. Data sets E, IC,GPCR and NR
were originally in binary interaction format, whereas the kinase Kd

and Ki were originally quantitative data. The full set of prediction re-
sults using different prediction models, cross-validation approaches
and evaluation metrics are provided as Supplementary Tables S1^S17.
All prediction accuracies reported in this work differ significantly from
random (P< 0.01, permutation test).Q, quantitative data; B, binarized
data.

A B

Figure 2: (A) The CI with various similarity kernels in
the quantitative Kd data using the KronRLS model,
evaluated using 5-fold CV in settings S1^S3 and 3�3-
fold CV in setting S4, and (B) AUC-PR in the binarized
Kd data under the same settings. The hyphen (-) indi-
cates random performance. The d kernel indicates the
use of the delta function kernel without any similarity
information, that is, each drug (rows) or target (col-
umns) is only similar to itself, resulting in the identity
kernel matrix. The normalized SW sequence similarity
always outperformed its non-normalized version, and
it is used here as the target similarity.The 3D structural
similarity combining shape and feature fingerprint with
shape-optimized mode showed the best overall per-
formance, and it is used here as the 3D drug kernel.
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sets (Supplementary Tables S7–S9 and S16–S17).

These results demonstrate that the selection of an

appropriate similarity metric, that is, which kernels

to use, if any, for drugs and targets has also a marked

effect on the prediction accuracies under the differ-

ent settings.

Finally, we asked whether the simple CV is suffi-

cient for the evaluation of the drug–target predictors.

We first focused on the regularization parameter l in

the KronRLS model. The default l ¼ 1 is a popular

choice in many of those studies that have used the

binary data sets to evaluate the performance of the

new prediction models. With simple CV, this default

option led to the optimal prediction accuracy under

each setting, for instance, in the binary IC data set

(Figure 3). When compared with the nested CV,

however, the default parameter choice resulted

in overoptimistic simple CV accuracies, especially

under setting S4. Perhaps more importantly, the de-

fault parameter choice became suboptimal in many

other experimental data sets (Supplementary Figures

S1–S6). For instance, in the quantitative Kd data set,

the l-value that maximized the simple CV accuracy

ranged between 225 and 230 under settings S1–S4,

whereas the default l ¼ 1 resulted in markedly

reduced accuracy estimates (Supplementary Figure

S1). On a more positive side, the maximal accuracy

of simple CV reflected closely the nested CV accur-

acy under each of the settings S1–S4, suggesting

that the information content in the quantitative Kd

data set make the simple and nested CV strategies

comparable in terms of performance estimation. On

the contrary, dramatic differences between the

simple and nested CV estimates were observed also

in the Kd data set when the size of the drug–target

data matrix was reduced and the model construction

involved feature selection (Figure 4). These results

demonstrate the importance of adjusting the model

hyper-parameters and the application of the nested

CV, especially in smaller data sets, to avoid reporting

biased model parameters or unrealistic drug–target

interaction prediction results.

DISCUSSION
We illustrated here that there are at least four factors

that either alone or together with the other factors

Figure 3: Comparison of the simple and nested CV
on the binary IC data set under the experimental set-
tings S1^S4. CI is plotted as a function of increasing
regularization parameter of KronRLS.The dotted verti-
cal line indicates the default parameter value of l¼1.

Figure 4: Comparison of the simple and nested 5-fold
CV on a random training set of 500 drug^target pairs
from the Kd data set [27]. CI is plotted as a function of
the number of drug^target pairs selected using greedy
forward feature selection [19]. Here, the drugs have a
68-dimensional feature representation, each feature
encoding the 3D structural similarity with another drug.
Similarly, the targets are encoded as a 442-dimensional
feature vector consisting of SW sequence similarities;
the final feature representation for drug^target pairs
is the tensor product between the drug and target fea-
ture vectors. The test performance is evaluated against
a randomly chosen independent test set of 10 000
drug^target pairs from the Kd data set. The example
demonstrates how this type of model learning may
soon lead to a substantially optimistic bias with the
simple CV, whereas the nested CV stabilizes around
the true test set performance. These results were
based on the default regularization parameter l¼1 of
KronRLS under S1.
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can lead to highly positive drug–target interaction

prediction results, or otherwise bias the model

applicability, when constructing and evaluating

supervised machine learning models: (i) experimental

setting (S1–S4), (ii) evaluation data set (different drug

and target families), (iii) problem formulation (binary

classification or rank prediction) and (iv) evaluation

setup (simple or nested CV). The contribution of

each of these factors should be acknowledged and

ideally evaluated when reporting computational pre-

diction results, especially if the prediction models are

intended for practical prediction tools for researchers

working in the drug discovery field. Otherwise,

there is a risk of reporting overoptimistic prediction

results that do not reflect the real complexity of the

prediction task in real application.

We also showed that choosing a suitable similarity

metric for measuring drug–drug and target–target

relationships plays a role in the prediction results,

especially when tackling the more challenging

settings. Although here we focused merely on the

conventional 2D structural similarity, along with its

3D and ECFP4 structural alternatives (Figure 2),

other combinations of compound similarity measures

might be optimal for different molecular properties

[35]. Moreover, although SW score has been used in

most of the prediction works, alternative similarity

calculations for targets, such as those based on

BLAST and its variants together with PAM or

BLOSUM substitution matrices, might provide the

opportunity to extend the predictions for new drugs

or target classes. The rather surprising observation

that it may not be necessary to use both similarities

under setting S2 or S3 is in line with the analogous

multitask or transfer learning problems, where it is

rather typical that, although the use of prior know-

ledge about the task correlations may sometimes be

beneficial, it also involves the risk of the so-called

negative transfer [36].

Interestingly, predictive accuracies obtained with

various CV approaches suggest that it might be pos-

sible to predict even completely new drug–target

pairs, that is, under the setting S4, provided there is

sufficiently representative and high-quality training

data set available for the particular drug and target

families under investigation. However, relatively

large variation in the S4 results was seen across the

various drug and target families in the present results

(Table 2). The observation that new drug targets are

easier to predict than new targeted compounds is

consistent with previous work [8]. Future

improvements in the experimental drug–target bio-

activity data coverage and quality, both in the indi-

vidual profiling studies that focus on specific drug

and target families, such as kinase inhibitors [17,

18], as well as in the general drug and target data-

bases, such as ChEMBL [37], could make it possible

to start developing in silico prediction tools that can

generalize beyond the training data and can be used,

for instance, for prioritization of the most potential

drug or target panels for experimental validation in

human assays in vivo.
There are many drug target databases, such

as KEGG, BRENDA, MATADOR, TTD,

SuperTarget and DrugBank, that list potential cellu-

lar targets for various families of chemical com-

pounds, including both approved drugs on market

and those under in vitro or in vivo investigation.

However, these databases have at least two limita-

tions for evaluating drug–target predictions. First,

they report an interaction for a compound–protein

pair if there is any evidence, either experimental or

text mining, showing that a compound can bind to a

protein under some condition; however, these

conditions can greatly vary from experiment-to-

experiment, and typically, there is no quantitative

information about the binding affinity that could

be used to evaluate the reliability of the interaction.

Second, these databases do not include true-negative

interactions, that is, those drug–target pairs that have

been tested but found to be non-interacting based on

the bioactivity levels. The importance of having

true-negative interactions was recently highlighted

as one of the future developments in the prediction

of drug–target interactions [8].

Currently, perhaps the most standardized source of

large-scale experimental mapping of quantitative

drug–target interactions originates from individual

biochemical selectivity assays. We argue that the ex-

perimental data sets of Kd/Ki or other bioactivity

measurements provide more realistic response variable

for the prediction problem in terms of representing

the whole spectrum of interaction affinities, including

both true-positive and -negative interactions. Based

on our between-study evaluations [38], the recent

kinase binding assay data from Davis et al. [27] seem

especially of high quality. Therefore, we suggest that

these data should be used as a benchmarking data set

in the future studies. Interesting future direction

would be to evaluate other types of drug and target

similarities, such as those based on predicted side effect

profiles or semantic gene ontology similarities [3], as
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well as to develop network-based prediction methods

combined with invitro validation [25]. These develop-

ments could eventually lead to network pharmacol-

ogy approaches for particular drug compounds [39].

To test whether similar results are obtained also

with other supervised machine learning methods, we

performed additional experiments with the RFs in

the quantitative Kd data set. The relative differences

in the prediction accuracies across the four settings

remained the same as those obtained with the

KronRLS, and the binary classification formulation

was also easier to solve with the RF than the rank

prediction problem (Supplementary Tables S2 and

S4). Given the relatively different learning principles

behind these two learning models, it is likely that

these findings generalize further to other supervised

techniques. We also repeated the same experiments

using the LOO-CV, LDO-CV and LTO-CV stra-

tegies (Supplementary Tables S10–S17). Although

these results were better than those based on aver-

aged n-fold, as was expected because of smaller fold

sizes [40], the differences remained rather modest

compared to the differences observed between the

settings S1–S4, as well as between the binary and

quantitate formulations, further demonstrating the

consistency of our main results.

We note that some of the challenges in the super-

vised model construction and evaluation posed by

the different experimental settings have been stated

before. Already some of the earlier works considered

the different scenarios where either the drug or the

target in the drug–target pair to be predicted is not

encountered in the training data, showing that the

LOO-CV type of setting is the easiest one for the

prediction [15]. However, to our knowledge, this is

the first work where all the other factors affecting the

prediction performance have been considered either

alone or together with the different experimental

settings. Further, many recent supervised drug–target

prediction studies seem to have ignored these lessons

when introducing new and improved prediction

models, although there are few exceptions [8, 41].

For instance, many recent works have investigated

the effect of including other types of pharmaco-

logical information into the drug–target interaction

prediction model; however, these studies did not

consider either the quantitative prediction problem

or the different settings S1–S4 separately [14, 26,

35, 42].

In more general terms, Park and Marcotte recently

argued that any paired input studies should consider

separately settings where both, one or neither of the

test inputs are shared by the training set as well as

presented experimental evidence showing that the

different setups lead to differing results in symmetric

protein-protein interaction classification problem

[16]. We focused here specifically on the asymmetric

drug–target interactions, where one needs to imple-

ment separate cross-validation approaches to the

cases of predicting either novel drugs or targets.

Moreover, the drug–target interaction problem

leads to further challenges, including the continuous

nature of the interaction affinity prediction. Our ex-

perimental comparison of the four settings and the

binary and regression formulations further verified

the need to consider these factors simultaneously,

as these factors resulted in marked differences in

the prediction performance (Table 2 and Figures

2–4). We note that similar issues in the evaluation

of predictive models apply also to many other bio-

medical applications, for instance, when predicting

links between drugs and indications or anatomical

therapeutic chemical classes, as well as drug sensitiv-

ities across cancer cell types [43, 44].

The present work focused on issues in the con-

struction and validation of supervised machine learn-

ing models for drug–target interaction prediction.

However, there are also such unsupervised methods

that do not require any labeled training data when

searching drugs, targets or their interactions by means

of ligand-, target- or phenotype-based approaches [4,

6, 45]. The issues reported here obviously do not

apply to such unsupervised approaches. For instance,

computational chemogenomic methods that system-

atically use phenotypic responses of both drug treat-

ments and protein perturbations are widely used in

predicting compound–target interactions using both

supervised and unsupervised approaches [6, 46].

Although the supervised chemogenomic models

can deal with a number of targets simultaneously,

they are also prone to the same model construction

and evaluation challenges considered here, including

model over-fitting because of issues related to, for

instance, large feature space and selection bias.

Among the ligand-based approaches, QSAR

methods use the drugs’ molecular features to predict

their phenotypic response or activity against given

targets. Although the conventional QSAR methods

typically consider only a single target at a time, there

are also recent multitarget QSAR variants [5]. When

used in supervised setting, the QSAR methods share

many similarities in the model construction and
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validation with those machine learning models that

predict drug–target interactions using both their

chemical structure and genomic sequence informa-

tion. When predicting new drugs under setting S2,

the KronRLS method reduces to a standard QSAR

model, in which no target similarities are needed.

The challenges posed by model over-fitting and

similarity or difference of the drugs between the

training and the test sets are well documented in

the QSAR literature [47, 48], whereas the usage of

nested CV is less frequent in this context, as well as

making predictions about new targets not encoun-

tered in the training set (we note, however, that

QSAR methods are not intended for target-based

discovery applications).

Simple CV may lead to highly overoptimistic

prediction results is well demonstrated in the context

of gene expression microarray classifiers [20–22].

However, the effect of selection bias is rarely evalu-

ated in drug–target interaction prediction models [8],

perhaps because performing the nested CV in this

application is computationally rather expensive.

Although most studies have resorted to using default

parameter values, such as regularization constant

l ¼ 1 in the RLS-based models, this approach may

lead to biased estimates of the model prediction per-

formance in the test set (Figure 3). It was shown that

even more dramatic optimistic bias will be seen be-

tween the simple and nested CV when multiple par-

ameters or distance functions are selected at the same

time, especially when analyzing limited-size drug–

target interaction matrices (Figure 4). In such cases,

the number of feature combinations offers much

larger degree of freedom for model over-fitting com-

pared with selecting the regularization parameter

value only, which typically does not lead to such

dramatic differences between the two CV strategies.

Regardless of the supervised approach, however,

each prediction model is limited in applicability by

the training data used in the model construction.

Here, the predictions were made within a given

drug and target family only. This so-called interpol-

ation challenge was already shown to be challenging

enough for the current models. The extrapolation

challenge of having different drug and/or target

families in the training and test sets was beyond the

scope of the current work. However, the drug–

target interaction data sets and knowledge bases are

continuously increasing both in their size and quality.

Once there are large enough data matrices that con-

tain accurate bioactivity data for the particular drug

and target families, testing of the predictive models

on external completely independent data sets be-

comes warranted. It should be noted, however,

that the size of the drug–target data set alone is not

sufficient for getting high-prediction accuracies, as

was seen in the comparison between two kinase in-

hibitor bioactivity assays (Ki and Kd), but the quality

of the experimental data is the more important

factor.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Supervised machine learning models are increasingly being
applied to predict drug^target interactions and to investigate
drugs polypharmacological effects on a global network level.

� More realistic prediction models and results are obtained
through formulating the prediction problem as regression or
rank prediction, rather than a standard binary classification
problem.

� The experimental setting (S1^S4) as well as the drug and target
families to beusedboth in the training and evaluation of thepre-
dictivemodel depends on the eventual application use case.

� Nested cross-validation should be used to avoid reporting
overoptimistic prediction results in cases where themodel con-
struction involves selection of features or other model
parameters.

� Quantitativebioactivity assays provide convenientdata thatcap-
ture thewhole spectrum of interaction affinities, including both
true-positive and -negative interactions.
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