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Abstract

Genomic islands (GIs) that are associated with microbial adaptations and carry sequence patterns different from that of the host
are sporadically distributed among closely related species. This bias can dominate the signal of interest in GI detection. However,
variations still exist among the segments of the host, although no uniform standard exists regarding the best methods of discrim-
inating GIs from the rest of the genome in terms of compositional bias. In the present work, we proposed a robust software,
MTGlIpick, which used regions with pattern bias showing multiscale difference levels to identify Gls from the host. MTGIpick can
identify GIs from a single genome without annotated information of genomes or prior knowledge from other data sets. When
real biological data were used, MTGIpick demonstrated better performance than existing methods, as well as revealed potential
GIs with accurate sizes missed by existing methods because of a uniform standard. Software and supplementary are freely avail-
able at http://bicinfo.zstu.edu.cn/MTGI or https://github.com/bioinfo0706/MTGIpick.
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Introduction

Bacteria have greatly diversified over billions of years as a result
of their adaption to a wide range of environments. One of the
major contributors to adaptability of bacteria is horizontal gene
transfer (HGT). An HGT event was first reported in 1990 when
Hacker et al. [1] found that a few clusters of virus genes present
in several Escherichia coli genomes are absent in their close rela-
tives; these gene clusters are referred to as pathogenicity is-
lands (PAIs). At least a dozen types of PAIs, such as ‘secretion
islands’, antimicrobial ‘resistance islands’ and ‘metabolic is-
lands’, have been detected thereafter. Genomic island (GI) was
then used as a more general term to refer to a cluster of 10-
200 kb long genes acquired through horizontal transfer.
Typically, these horizontally transferred regions are first
denoted as GIs until further inspection of their gene function
provides basis for the use of a more specific term [2].

The importance of GIs should not be underestimated in the
genomic era. Given a newly sequenced genome, researchers
usually intend to find some genomic regions that differentiate
an organism from other species or strains. By comparing related
taxa, one can possibly discern GIs that encode functions related
to complex changes in ecological niche [3]. For example, GIs are
responsible for type III secretion systems, iron uptake functions,
toxin and adhesion secretion, which augment the ability of
pathogens to survive within a host and thus cause diseases
[4, 5]. Some researchers have reported that pathogenicity can be
modulated with the help of selective loss or regain of specific
GIs [6, 7], and PAIs can be spontaneously excised from a
chromosome at detectable rates, resulting in distinct patho-
genic phenotypes [8, 9]. In addition, GIs apparently confer many
other adaptations to bacteria, including metal resistance, anti-
microbial resistance and secondary metabolic properties, which
are of environmental or industrial interest [5]. Therefore, identi-
fication of GIs in different genomes has become of great interest
in studies on microbial evolution and function.

With the help of large-scale comparative genomics, re-
searchers have found that GIs are characterized by varying se-
quence composition, flanking direct repeats and presence of
mobility and transfer RNA (tRNA) genes. Exploring and using
these features in turn can lead to better GI detection [3, 10-12].
Gls are sporadically distributed among closely related species,
and they carry some phyletic patterns that differ from the host,
allowing researchers to identify them by comparing the diver-
gence of the 16S ribosomal RNAs or other orthologs among dis-
tantly related species [13]. Several alignment-based methods,
such as basic local alignment method [14] and whole-genome
alignment [15], have been developed to detect GIs. These tools
rely on the observation that genomic regions that are not
aligned across multiple genome alignment or uniquely aligned
to a genome are more likely to be putative GIs compared with
the conserved regions. For more complex cases, several meth-
ods to construct and apply multiple layers of large-scale gen-
omic  comparisons were reported. For  example,
MobilomeFINDER first finds shared tRNA genes among several
related genomes and then uses Mauve, an alignment method,
to search for GIs in the upstream and downstream regions of
orthologous tRNA genes [16]. Given that GIs identified using this
method are associated with disrupted tRNAs, GIs without tRNA
genes as insertion sites will be missed. To address this problem,
MOSAIC launched a method to identify strain-specific regions
that were not necessarily inserted into a tRNA [17].
Unfortunately, inversions and translocations are often mis-
takenly identified as strain-specific regions. IslandPick is one of

the most widely used tools for GI identification [18]. Given a
genome, IslandPick first automatically selects suitable compari-
son genomes without any bias, and then Mauve is adopted to
construct whole-genome alignments. To avoid duplication,
IslandPick uses BLAST as secondary filter to recheck the regions
aligned by Mauve. IslandPick has been integrated into
Islandviewer website, where pre-computed data sets of GIs can
be downloaded [19, 20]. In addition, comparative genomics
method relies heavily on the genomes used in comparison and
thus can be of limited use during annotation or when closely
related genomes are unavailable. Even when more genomes are
available, researchers will have to spend more effort on select-
ing genomes from the species of interest [21].

Apart from comparative genomics, composition-based
methods are highly sensitive for GI detection. Given that Gls
often exhibit a sequence composition that is significantly differ-
ent from that of the host, a detection algorithm, to be efficient,
must discriminate anomalous regions from the remainder of
the genome in terms of compositional bias. In practice,
composition-based methods are desirable because they allow
rapid GI identification from a genome or from a sequence that
is analysed without requiring additional genomes. The GC con-
tent and two to nine long oligonucleotides are widely used to
describe sequence composition in GI detection [10, 22-25]. For
example, PAI Finder calculates GC content anomalies and codon
usage bias to detect GIs and further evaluates a candidate PAI
only if the PAI-like region partly or entirely spans the GI [26]. PAI
Finder has been integrated into the PAI database, where com-
prehensive information on all annotated PAIs and predicted
ones in prokaryotic genomes can be downloaded [27, 28].
Hidden Markov models (HMMs) are also introduced to assist in
removing or detecting anomalous regions containing compos-
itional biases [22, 29-31]. For example, score-based
identification of genomic islands using Hidden Markov Models
(SIGI-HMM) constructs an HMM to remove ribosomal regions
with biased codon usage [29, 30]. In addition, IslandPath-DIMOB
[31] uses an HMMer to identify mobility genes [11] by searching
each predicted gene against PFAM37 mobility gene profiles [32],
whereas Alien_Hunter introduces a scoring system based on a
flexible length of k-mers and refines the boundaries of the pre-
dicted GIs using an HMM [22]. Although these HMM-based
methods demonstrate better performance in GI detection, they
involve a relatively high number of parameters and heavy train-
ing calculation and thus longer computational time is required
to detect GIs.

Instead of evaluating a cluster of genes, several researchers
first split a genome into distinct overlapping or non-
overlapping windows and then extract the compositional
features of the genome [33-36]. To identify the compositionally
distinct windows, they measure whether the difference be-
tween two windows is significant or not. To accomplish this
goal, centroid identifies some windows as GIs because they are
identified by distance values lying outside the other values [33].
However, one limitation of this method is that the signatures of
the host are estimated based on all the windows without selec-
tion, resulting in some noise in the native information of the
host. To overcome this problem, INDeGenlIUS uses a sequence-
clustering method to obtain a ‘major cluster’ to estimate the na-
tive signatures of the host [34]. However, measuring each oligo-
nucleotide is not necessary, and simultaneous presence of a
subset of oligonucleotides is generally viewed as strong evi-
dence for a horizontal transfer. Thus, instead of selecting all
possible tetranucleotides, SigHunt selects informative tetranu-
cleotides from a range of organisms using the tetranucleotide
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quality score [36]. These window-based methods can provide a
rapid GI prediction, although several problems still exist as
described below:

a. Outcomes of the SigHunt depend on the additional related
genomes used in selection. For example, inclusion of distant
genomes that have extensive rearrangements renders selec-
tion of informative oligonucleotide difficult and can poten-
tially lead to false-positive predictions. Moreover, SigHunt
can be of limited use when closely related genomes are
unavailable.

b. Atypical regions are frequently reported as GIs only in terms
of the established threshold. If the compositional difference
of a region is larger than the established threshold, then this
region is deemed atypical. Given that different data sets can
result in different thresholds, determining all of the GIs
from different data sets solely on the basis of the established
thresholds is therefore difficult. However, when atypical re-
gions can be estimated by a standard statistical test, the effi-
ciency of a detection method can be evaluated regardless of
different data sets.

c. Iteration is virtually never used in GI identification. In most
reports, the number of GIs from a one-step prediction is in-
sufficient. Moreover, samples are nearly always consider-
ably small to select optimal threshold values for various
regions.

d. Most window-based methods predict GIs without refining
the island boundaries. If the boundaries of the predicted Gls
are further refined, then the validity and efficiency of the
prediction are likely to be improved.

To address these problems, we reported herein a novel soft-
ware called ‘MTGIpick’, the first multiscale statistical test for GI
identification. For each region of a genome, we proposed an it-
eration of a small-scale t-test with large-scale feature selection
(IST-LFS) to quantify compositional differences of a genome
from that of a host rather than to calculate the distance or dis-
crete interval accumulative score of each region. At the core of
the IST-LFS method is a selection method for informative tetra-
nucleotides using kurtosis and a highly sensitive measure based
on a two-sample t-test. Unlike the predetermined thresholds
and limited information from individual windows in the exist-
ing methods, we investigated the variability of genomic signa-
tures and used multiscale segmentation algorithm (MSA) to
identify large, multiwindow segments. After delineating these
compositionally distinct segments, GIs were selected with re-
spect to their enrichment scores. Finally, the boundaries of pre-
dicted GIs were further refined using Markovian Jensen-
Shannon divergence (MJSD) and the GC-based segmentation
method.

Materials and methods

We now describe the framework for the robust GI identification
using multiscale statistical testing. The steps are schematically
illustrated in Figure 1A and are described as follows:

Steps a-b: Split a genome into non-overlapping windows
with a size of 1 kb and extract genomic signatures

To detect regions with distinct composition, one must ex-
tract features from each region of the genome. Several
approaches have been proposed to extract genomic signatures
within a given window. Different window sizes provide differ-
ent information on DNA segments. In other words, each win-
dow size describes a different view of the genomic signatures: a
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longer window misses small details of local genomic signatures,
whereas a shorter window preserves details of genomic signa-
ture, although it suffers greatly from clusters in different
windows.

We split a genome into n non-overlapping windows of size
1 kb and calculated the frequencies of the tetranucleotides in
each window as genomic signature.

Step c: Score each window using an IST-LFS

At a smaller scale, we proposed the use of IST-LFS to quan-
tify the compositional differences of a region from the host
(Figure 1B). The steps of the IST-LFS are described below:

1. Extract the signatures of the host by using the confidence
intervals on the windows’ variances (CIWV). For each region,
we calculated the variance s? of the oligonucleotide frequen-
cies and further estimated the confidence interval of their
mean as follows:

Sg2 — Sg2
s? _Zx/zﬁ < pe < s? +Za/2ﬁ7 (1)

where s2 is the average of all of the window variances, S is
the standard variance of all of the windows’ variances, « is a
confidence level and N is the total number of regions. If vari-
ance of a region falls within the confidence interval, then
the region is possibly considerably conserved and thus can
be considered a region from the host.

2. Calculate the kurtosis of each tetranucleotide across n win-
dows and select the windows with a larger kurtosis as in-
formative signatures. Kurtosis is formally defined as follows:

ku=" In o)

where X is the sample mean and n is the total number of
observations.

3. Measure the divergence of the ith window from the host
using two-sample t-test. For each informative signature f;, a
t-test was used to determine whether the means of the two
samples (fj"**‘“,...,fj",...,fj"“) and (f*.f?---.f") are equal,
and its P-value was calculated as follows:

X — %
P =P|[t| > ——Z— |, ©)]

o 1 1
Sp (2s+1 + tr)
where

2 2¢s3 + (tr — 1)s3

4 2e+tr—1

X1 and X (s? and s3) are the means (variances) of the inform-
ative signature f; from the 2¢ eye regions surrounding the ith
region (fj""”'“, Y ,fj"“) and from the host (f*.f --- . f"),
respectively, tr is the total number of selected regions of the
host and I is the total number of selected informative signa-
tures. Summing all of the P-values of the informative signa-
tures, we obtained the divergence of the ith region from the
host as follows:

tr
D(GS;,NGS) = Zj:l Py 4
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Figure 1. Overview of the MTGIpick algorithm. (A) The workflow of the MTGIpick algorithm, with (a) split a genome into non-overlapping windows with a size of 1kb;
(b) extract genomic signatures represented as a heatmap; (c) score each window using IST-LFS; (d) identify large segments using MSA; (e) calculate conserved score of
the predicted genomic islands; and (f) refine the boundaries of the GIs using the GC-MJSD method. (B) The workflow of the IST-LFS algorithm, in which signatures of
the host are extracted using the CIWV, and core signatures are selected based on ordered kurtosis. During an iteration, we score each window using the two-sample
t-test and select the windows whose scores are large enough to be considered to be statistically significant. (C) The workflow of the MSA algorithm. Starting from the
IST-LFS scores and GC content, we select signatures of the host using the CIWV. During an iteration, we construct a continuous linear scale-space using a blurring
strategy, score the enrichment of all the segments using the Z test and select the windows whose enrichment scores are large enough to be considered to be statistic-

ally significant.

Select windows whose scores are sufficiently large to be con-
sidered statistically significant.

Delete the selected windows and update all windows of the
genome; repeat Steps 2-4 until no window is found.

For each starting node at scale t (child), the best successor
node at scale t+ 1(parent) is sought within a limited domain.
The potential successor nodes are selected on the basis of
the affection to a given starting node at scale t. This affec-
tion is defined as follows:

Step d: Identify segments using MSA
At a large scale, we investigated the variability of genomic

n
signatures and used MSA to identify large, multiwindow seg- N = DM (6)
ments (Figure 1C). MSA is described as follows: 21 Wi
1. Create a scale space with S scales, where the first scale in where
the scale space (s = 1) is the score x(i) obtained using the IST-
LFS method. The subsequent scales are obtained using a 1, dep < 050,
Gaussian window with increasing width. The standard devi- p={ pud
ation of this window for scale s is defined as follows: ﬁ, dep > 0.50; ’
Sdep
1
s =e(s— 1)§ln2. (5)
IXp —%c |
dc,p = ez(ﬁgiﬂgy’.

The convolved signal at scale s is denoted by xs(i).

Choose a set of starting positions, which will serve as starting
nodes of the segmentation tree. To reduce computational
complexity, we only select these positions of the genomic sig-
nal where a differential signal intensity, i.e. x(i — 1) # x(i) or
x(1) #x(1+ 1), exits.

with X. and X, being the spatial positions of the child and
the parent, respectively, and ¢, and o, being the scales of the
child and parent levels, respectively. The candidate succes-
sor node with the highest affection value is selected to be-
come the best successor node at scale t + 1.


Deleted Text: identify 
Deleted Text: multiscale segmentation algorithm
Deleted Text: multiscale segmentation algorithm (
Deleted Text: )
Deleted Text: -

4. Divide the complete genomic signal at scale t+1 into ngq
segments whose boundaries are the best successor nodes of
the starting nodes at scale t.

5. The observed intensity of a segment is simply the summed sig-
nal intensity in the segment and is denoted by X. The expected
intensity of a segment follows a normal distribution N(np, np(
1 —np)) with P = I/B. Herein, I and B are the total summed sig-
nal intensity (the IST-LFS score) and total background signal in-
tensity (the GC score) across the complete genomic signal,
respectively, and n is the summed intensity of the background
signal of the segment under investigation. The enrichment
and depletion of all the segments at scale t+ 1 are calculated
using standard enrichment tests (the Z-test). We picked a P-
value threshold p™ = 107°. The P-value threshold was con-
verted into a Z score using the inverse error function. The prob-
abilities p* were then solved using the following equations:

X —np*

Vnep (1 =p7)’

zZh = @)

where n* = max(n,10). Thus, if the observed intensity of
some segments is equal to or greater than the observed in-
tensity X, they are expected to exhibit probability p*, which
is the P-value. Given that np is the expected mean back-
ground intensity of the segment, its enrichment can be cal-
culated by using the following equation:

log nw” np < np*
Enrichment = “np’ .

®

0, otherwise

6. Select the segments whose enrichment scores are suffi-
ciently large to be considered statistically significant.
7. Repeat Steps 3-6 until the given scale is achieved.

Step e: Calculate conserved score of each nucleotide according to
the total number of appearances in the selected segments, from
which GIs are detected with respect to their conserved scores

Step f: Refine the boundaries of the predicted GIs using the
GC content bias and Markovian Jensen-Shannon divergence

Window-based methods usually select atypical windows as
putative GIs without refining their boundaries. Herein, we pro-
posed a simple method to refine the boundaries of predicted GIs
based on GC content bias and Markovian Jensen-Shannon di-
vergence (GC-MJSD) [21, 35]. Suppose that Sy, ., is a predicted
GI whose start and end positions are t; and ty, respectively, then
the proposed method allows users to search for its boundaries
in regions upstream and downstream of Sy, _kp.t,45kb) from its
start and end positions. The GC content bias describes the dif-
ferences among the DNA fragments and captures some strong
signatures for GI detection [37, 38]. To refine the start position
of the GI, we segmented the sequence Sy, k.1, into several dis-
tinct regions according to the GC content bias and obtained a
series of the breakpoints {Pg[?r_‘kbﬁtz] }. For each breakpoint t;, we
calculated the MJSD between the Sp, ., and Sy, _, using the
following equation:

7t17t17}'kb+1
t27t1fykb+1

th—-t. +1 2
-————— —H .
ty —t1 — ykb +1 (S[t‘ tz])

MJSD?(t.) = H2(Sjt, kb—ty)) H2(Spt, —jib—t.))

)

where H?(Sy,_,p—t)) and H?(Sy,_.,)) are the Markov entropies
of the sub-sequences Sj, ) and Sy _.,, respectively, and
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HZ(S[tl,;,kbﬂtr]) is the Markov entropy of the sequence Sp, _ip—t,)-
The breakpoint showing the maximum MJSD value was then se-
lected as start point:

St (start) =arg  max  {MJSD?*(t.)} (10)

treq PSG
’ S[‘l 7kb—ty]

Following the same method, we obtained the end point of
S[hﬂtz]:
— 2 (MSD2(t)} (a

t.eq PSS
[tq —tp +kb]

S[tl*'tz] (end) =arg

For the parameter y, 2 was set as the default value.

Results

Expected mer and window size in GI detection

In all window-based methods, different window sizes provide
different information about k-mer counts. Each window size de-
scribes a different view of the genomic signatures: a longer win-
dow misses small details of local genomic signatures, whereas
a shorter window preserves details of genomic signature, al-
though it suffers greatly from clusters in different windows. To
provide a robust view of the multilevel composition, appropri-
ate levels of expectation should be determined first. Suppose
that four nucleotides, A, C, T and G, occur in equal probabilities
and occur independently of one another. Should we want to ob-
serve that a specific k-mer appears at least t times in a window
of length n with a 95% chance, then by using binomial distribu-
tion, we obtain the following equation:

(0T T e

Given an expectation level, we can solve for the window
length n that optimally summarizes the information of the
given k-mer with the help of the above equation. However,
what is truly needed in GI identification is an appropriate win-
dow length that optimally summarizes the genomic signatures.
We initially investigated the relationship between these param-
eters and found that window size rises sharply with k-mer
length or their expected count increases, especially starting
from 7-mer (Supplementary Figure S1A and Table S1). Although
no biological evidence exists for a minimum size of GIs, many
methods typically use a minimum cut-off of 8 kb (34). In the
case of a 7-mer, the minimum window size in which we expect
k-mer to appear at least once is ~50 kb (Supplementary Table
S1), which is much larger than the minimum GI size. This find-
ing suggests that k-mers that are >7 are not desirable for devel-
opment of methods for GI detection.

GIs contain clusters of genes that are acquired by horizontal
transfer, and detecting these genes in turn can lead to better
prediction of GIs. To further optimize the k-mer length and win-
dow size, we analysed the length distribution of horizontally
transferred genes. We collected 118 131 transferred genes (15-
11 792 bp) in 479 prokaryotic genomes from the Horizontal Gene
Transfer DataBase. We observed that the average length of
these transferred genes is <1 kb in prokaryotic genomes
(Supplementary Figure S1B). However, a 1 kb window only
allows us to observe the maximum k-mer length of 4, with an
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expected count of at least 1. In other words, tetranucleotides
can be the largest k-mers that are sufficiently sensitive for de-
tection of HGTs.

Moreover, window size is associated with expected k-mer
count. We subsequently investigated the window size based on
the expected count. When 4-mer count increases by 10, the win-
dow size increases from 0.8 to 4 kb (Supplementary Figure S1C).
To further understand the influence of the expected counts, we
scored the genome sequences using the IST-LFS without iter-
ation in which non-overlapping window sizes were used from 1
to 4.5 kb. These window sizes guarantee that the ‘at least’ the
expected 4-mer counts ranges from 1 to 10. We performed this
experiment on four genomes with different GI sizes. One gen-
ome is the Salmonella enterica serovar CT18, which contains 21
large known GIs with an average size of 29 kb, and the other
genome are the three chromosomes of Aspergillus fumigatus,
which contains 86 small known GIs whose average size is 5 kb.
We noted that the area under curve (AUC) the receiver operating
characteristic curve for A. fumigatus decreases as the window
size increases, and the best window size is 1 kb (Supplementary
Figure S1D). In contrast, the AUC scores for S. enterica serovar
CT18 increase first and then decrease from 2 kb, with the best
window size being 1.7 kb in which a 4-mer can be observed at
least three times (Supplementary Figure S1D). All of these re-
sults suggest that a 4-mer with an expected count of at least
four is sufficient to predict the GIs by detecting horizontally
transferred gene. In this work, tetranucleotides within a non-
overlapping window with a size of 1 kb were chosen to detect
the GIs.

Comparison of window-based approaches to
classify GIs/non-Gls

To evaluate the proposed method, we first used the proposed
method to classify GIs/non-Gls constructed as a standard data
set to evaluate GI predictors (Supplementary Data). We applied
MTGlIpick to classify Gls/non-Gls, where the IST-LFS was run
with default parameters, using six iterations in the IST-LFS and
0.28 standard error in MSA. MTGIpick finally used 1 kb up-
stream/downstream of ‘raw’ GIs to refine the boundaries of pre-
dicted GIs. For comparison, the window-based methods
centroid [33], INDeGenIUS [34] and SigHunt [36] were all run
using default values on the same 118 chromosomes. For
SigHunt and INDeGenlIUS, we used the same significance test
with a significance level of 0.05, which was used in our method
to detect putative GIs. DIAS value of >5, which is used in
SigHunt, does not work in our experiment because all of the tet-
ranucleotides were used to calculate DIAS rather than the 16 se-
lected tetranucleotides because of the lack of related genomes
for core signature selection. The precision, recall and overall ac-
curacy of each method were calculated at the nucleotide level
(Supplementary Data).

We found that MTGIpick achieved the best performance,
with an overall accuracy of 86.15%, whereas others demon-
strated similar overall accuracies ranging from 81 to 84%
(Supplementary Table S2). MTGIpick was the only prediction
method that achieved a prediction of over 70% and a recall of
over 45%, whereas the other methods lagged behind. Zisland
Explorer achieved the best performance in terms of precision
but at the cost of lower recall (25.49%) [39]. SigHunt did not
achieve the expected prediction, and this finding is apparently
caused by a large number (758) of predicted GIs and a relatively
short average length (4670 bp) in SigHunt compared with
those in the other methods (number: 277-522, average length:

13 146-30 352 bp). In addition, the chosen significance level pos-
sibly exerts influence on the performances of SigHunt and
INDeGenlIUS. To minimize the effects of this parameter, we fur-
ther performed the same experiments with selected signifi-
cance levels of 0.05-0.2. The overall accuracy of INDeGenIUS
slightly increases, whereas that of SigHunt decreases as the sig-
nificance level increases (Supplementary Figure S2).

In addition, we performed the same experiments using
MTGIpick with 3-mer, 4-mer and 5-mer, and discussed the ef-
fects of the size of k-mer. The overall accuracies of MTGIpick
with 3-mer, 4-mer and 5-mer are 85.43, 86.15 and 85.6%, respect-
ively, which also confirmed that tetranucleotides (4-mers) are
more sensitive for detection of genomic islands in the proposed
detection method.

Comparison with the tools in IslandViewer for
Gl identification

Islandviewer [19, 20] is an integrated interface for computa-
tional identification and visualization of GIs and is a combin-
ation of a comparative genomics method, namely, IslandPick
[18], and two HMM-based methods, namely, SIGI-HMM [29, 30]
and IslandPath-DIMOB [31]. To examine the proposed method,
we identified the GIs of the available genomes by using
IslandViewer and further compared the results with those ob-
tained using IslandPick, SIGI-HMM and IslandPath-DIMOB. Over
3000 additional publicly available complete genomes have been
pre-computed for Gls; we selected some of these genomes in
which at least 20 kb of the DNA segments were predicted to be
GIs by at least two of the three methods, and at least 40% of the
total DNA were predicted to be GIs by any of the three methods
[21]. Considering these requirements, we selected 20 genomes
from IslandViewer and used the proposed method (MTGIpick)
to predict the GIs (Supplementary Table S3); the IST-LFS was
run in default parameters and 0.3 standard error in MSA.
Finally, MTGIpick used 1 kb upstream/downstream of ‘raw’ Gls
to refine the boundaries of predicted GIs.

MTGIpick successfully identified the GI regions (99.6% of the
bases) that were previously predicted by all of the three meth-
ods (Figure 2), and the accuracy of MTGIpick was ~>3% than
that of the MJSD [21] and >31.6% than that of Zisland Explorer
[39]. For the regions identified by two of the three previously
mentioned methods (in other words, the regions missed by
SIGI, IslandPick or IslandPath but were detected by the two
other methods), 82.8-99.7% (average of 93.3%) of the bases were
identified as GIs by MTGIpick (Figure 2). In contrast, the regions
identified by MJSD were between 54 and 83% (average of 74%),
and the regions identified by Zisland Explorer were between 53
and 63% (average of 60%). For GIs identified by one of the three
previous methods, 65.1-70% of them (average of 67.1%) were de-
tected by MTGIpick (Figure 2), whereas 35-54% of them (average
of 44%) were detected by MJSD and 35-53% of them (average of
45%) were detected by Zisland Explorer. In addition, low amount
of DNA was classified as GIs that were deemed native by the
three previous methods (Figure 2), although the misclassifica-
tion of native DNA as GIs is slightly higher in our method than
in MJSD (1.2%) and Zisland Explorer (1.6%). These results dem-
onstrate that nearly all of the GIs (predicted by at least two of
the three methods) and 67.1% of the GIs detected by one of the
three methods can be identified correctly by the proposed
method MTGIpick. Thus, these consistent and robust detection
results are sufficient to warrant its use in general detection
of Gls.
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Figure 2. Performance of the MTGIpick, MJSD and Zisland Explorer in predicting the identified genomic islands by IslandPick (IsPick), SIGI-HMM (SIGI) and IslandPath-
DIMOB (IsPath). The accuracy in identifying islands reported by one, two or all three of the above-mentioned methods is assessed by obtaining the percentage of island
nucleotides that are correctly labelled as genomic islands by the proposed MTGIpick method.

Table 1. Performance of the MTGlIpick, SigHunt, INDeGeNIUS, centroid and Alien_Hunter on the detection of 189 horizontal transfers identified in
A. fumigatus, in which the AUC s calculated based on the top 10-25% of the ordered windows

Method Percentage of the windows with the top 10-25% of scores

10 15 20 25
Alien_Hunter 0.5814 0.5413 0.5418 0.5654
Centroid 0.5373 0.6717 0.6638 0.6832
INDeGenIUS 0.5868 0.6338 0.666 0.6699
SigHunt 0.5648 0.699 0.7262 0.7376
MTGIpick 0.6537 0.7621 0.7847 0.7952

The bold value indicates the best among the values.

Identification of horizontal transfers in
assembled/unassembled genomes

To test the proposed method on real biological data, we first se-
lected the assembled genomic sequences of A. fumigatus whose
189 horizontal transfers were annotated and their locations are
known [40]. Examination of those horizontal transfers reveals
that the average length is ~5 kb, which is less than the min-
imum GI size of 8 kb but much larger than the average length
(<1 kb) of horizontally transferred genes in most prokaryotic
genomes. This examination enabled us to cross-check the pro-
posed method (MTGIpick) and the other methods. We first
scored each window by using all of the evaluated methods with
default settings, and we sorted the windows in descending
order according to their scores. The AUC was calculated based
on the selected top 10-25% of the windows. MTGIpick outper-
forms the other methods (Table 1). In the top 10%, the
Alien_Hunter and INDeGenIUS methods both perform well in
identifying horizontal transfers, whereas SigHunt outperforms
them when the top percentage is >15% (Table 1). Moreover, all
of the methods did not perform as well as expected in the above
two experiments, and their AUC values reflect that challenges
in identifying small horizontal transfers still exist because of
the weak atypical characters of these genes.

We subsequently examined these methods on Cryptosporidium
[41] and Galdieria sulphuraria [42]. While the genomic sequences of
G. sulphuraria were not yet assembled into chromosomes, limited
numbers of horizontal transfers (24 horizontal transfers

identified in the 7 chromosomes of Cryptosporidium and 79 hori-
zontal transfers identified in the 18 chromosomes of G. sulphura-
ria) were identified, and small horizontal transfers (average
length of 1.8 and 1.3 kb) render the identification of horizontal
transfers more challenging. The sequences of the unassembled
genome are concatenated into a single sequence as input of
MTGlIpick for GI prediction [36]. In contrast to the experiment on
A. fumigatus, we evaluated these methods by counting the estab-
lished horizontal transfers covering >50% of the top 10-25% of
the ranked windows (Table 2). In G. sulphuraria, MTGIpick identi-
fies 50 of the 79 previously identified horizontal transfers using
the top 25% of the ranked windows followed by SigHunt, which
identifies 44 horizontal transfers, whereas the others lag behind.
For Cryptosporidium, MTGIpick can recognize 16 of the 24 identi-
fied horizontal transfers using the top 25% followed by
Alien_Hunter, which identifies 12 established horizontal trans-
fers. The same result holds for the top 10-20%. These results
demonstrate that MTGIpick is still efficient in detecting small
horizontal transfers regardless of whether the genome is
assembled or not.

Gl identification in the L-data set

To further assess the proposed method MTGIpick, we used the
proposed method to identify the genomic islands in the L-data
set constructed by Wei et al. [39]. They collected the genomic is-
lands in 11 genomes identified using a genome-wide compara-
tive approach from published literature (Supplementary Data).
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Table 2. Number of established horizontal transfers which are covered by > 50% of the top 10-25% of the windows from MTGIpick, SigHunt,
INDeGeNIUS, centroid and Alien_Hunter on red algae Galdieria and chromalveolates Cryptosporidium

Organism Previously established GIs Method Percentage of the windows with decent scores
10 15 20 25
Red algae 79 Alien_Hunter 12 16 24 30
Galdieria Centroid 10 13 16 21
INDeGenIUS 7 12 17 21
SigHunt 15 25 31 44
MTGIpick 25 34 42 50
Chromalveolates 24 Alien_Hunter 6 9 12 12
Cryptosporidium Centroid 2 3 6 7
INDeGenIUS 2 2 2 6
SigHunt 3 4 5 6
MTGIpick 8 11 14 16
The bold value indicates the best among the values.
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Figure 3. Comparison of the TPR, TNR, OACC, ACC, F1 and MCC of IslandPick, Islander, SIGI-HMM, IslandPath-DIMOB, Zisland Explorer and MTGIpick on the L-data set.

We applied MTGIpick to identify GIs in the L-data set, where the
IST-LFS was run with 0.2-0.4 standard error 0.03-0.07, using four
to seven iterations in the IST-LFS and 0.2-0.4 standard error in
MSA. MTGIpick finally used 10 kb upstream and 2-4 kb down-
stream of ‘raw’ GIs to refine the boundaries of predicted GIs. We
also compared our results with those of the methods IslandPick
[18], Islander [43], SIGI-HMM [30] and IslandPath-DIMOB [31]
from Supplementary Table S4 in the article [39]. As for Zisland
Explorer, we downloaded the predicted genomic islands in 11
genomes from Zisland Explorer and calculated the sensitivity
(TPR), specificity (TNR), overall accuracy (OACC), accuracy
(ACC), F1 and Matthews correlation coefficient (MCC) that were
defined in the article [39] (Figure 3).

For the six methods compared using the L-data set,
MTGIpick was the only prediction method that achieved a TPR
of >73% and an ACC of >85%, whereas the other methods
lagged behind. This finding suggests that the proposed method
MTGIpick was able to detect more true genomic islands in L-
data set (Figure 3 and Supplementary Table S4). In addition, we
found that MTGIpick achieved the best performance in terms of
the F1 score and MCC. To be specific, the F1 score and MCC of
MTGIpick were ~>14% than those of the second-best tool,
Zisland Explorer [39]. These results demonstrate that MTGIpick
is efficient in detecting genomic islands in L-data set and has
the best TPR/TNR balance and TPR/precision balance.

Gl identification in S. enterica serovar typhi CT18

We subsequently examined the performances of MTGIpick
when detecting large GIs in genuine genomes. Herein, we at-
tempted to analyse the S. enterica serovar typhi CT18 genome,
whose GIs have been explored extensively [22, 44]. A total of 17
PAIs have been annotated in Salmonella genomes, and 13 of
these are speculated to be present and active in S. enterica sero-
var typhi CT18 [22]. In addition, this strain contains multiple bac-
teriophage insertions and two other islands that were not
previously identified [45, 46], resulting in 21 large regions that
are confirmed to be foreign origin [21].

We applied MTGIpick to identify the GIs in the S. enterica sero-
var typhi CT18 genome, where IST-LFS was run in default param-
eters, and 0.31 standard error and 25 scale in MSA were used.
Finally, MTGIpick used 6 kb upstream/downstream of ‘raw’ Gls
to refine the boundaries of the predicted Gls. For comparison,
we also used six composition-based approaches (SIGI-HMM [30],
Alien_Hunter [22], centroid [30], IslandPath-DIMOB [31],
INDeGenlUS [34] and SigHunt [36]), as well as a comparative
genomics method (IslandPick [18]); these methods are highly ac-
curate in GI prediction. All of the evaluated methods were run
in default values. We used the same significance test at a sig-
nificance level of 0.05 in our method to identify putative GIs
based on their scores. Figure 4A illustrates the results of various
prediction methods when detecting 21 known GIs in S. enterica
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Figure 4. Performance of the proposed MTGIpick (MT), SIGI-HMM (SH), Alien_Hunter (AH), centroid (CE), IslandPath-DIMOB (IPA), INDeGenlIUS (IN), SigHunt (SI) and
IslandPick (IPI) on the detection of genomic islands in S. enterica serovar typhi CT18. (A) Predicted GIs found by all of the methods, and the known genomic islands are
shown as vertical bars. (B) Overall length of the predicted genomic islands, true positives and false positives of all of the evaluated methods at the nucleotide level. (C)
Precision, false discovery rate (FDR) and F1 score of all of the evaluated methods at the island level, in which the precision, false-positive rate and F1 score are calcu-
lated based on the number of known GIs, which are covered by > 50% of the results of the prediction method.

serovar typhi CT18 [22]. A large number of putative regions were
detected by Alien_Hunter, which predicts the longest Gls (Figure
4B). Although Alien_Hunter detected 451 of the 605 kb of DNA
encoded by established islands, the number of false positives
was extremely high (Figure 4B). Therefore, Alien_Hunter always
demonstrates the best recall at the cost of low precision and ac-
curacy (Figure 4C and Supplementary Tables S5-6).

In contrast, the comparative genomics IslandPick only dis-
covered six putative GIs with extremely low false-positive re-
sults and consequently achieved the best precision according to
the number of overlapping nucleotides between the predicted
and annotated GIs. However, the limitation of this method is
that it reports high false positives and suffers greatly from hav-
ing the lowest recall, as well as in predicting small GIs. To fur-
ther measure the prediction power at the GI level, we calculated
the precision, false positives and F1 score based on the number
of the known GlIs, which are covered by >50% of the results of
the prediction method (Supplementary Data). As expected,
there exists only one known GI whose half region was predicted
by IslandPick, resulting in the lowest F1 score (Figure 4C and
Supplementary Tables S5-6).

For MTGIpick, 18 genomic regions were detected as putative
GIs showing the largest average lengths among those identified
by all other prediction methods (Supplementary Table S5).
Among the 582 232 nucleotides in the predicted GIs, ~80% of
them are located in the published GIs. Similar to Alien_Hunter,
MTGIpick achieved a good true-positive rate but with low false-
positive rate (Figure 4B). We then examined the known GIs,
>50% of which was covered by the proposed method, and found
that the 14 annotated GIs were largely overlapping in the pre-
dicted results, leading to the highest precision and the highest

F1 score among all of the evaluated methods (Figure 4C and
Supplementary Table S6).

This comprehensive comparison further indicates that
IslandPick (comparative genomics) is reliable but misses a large
number of GIs, resulting in high false-negative results.
Although Alien_Hunter is sensitive, it suffers greatly from the
clutter in different regions, resulting in high false-positive re-
sults (Figure 4B). The window-based methods, namely, centroid
[33], INDeGenlIUS [34] and SigHunt [36], discover many putative
extremely small GIs, leading to low true-positive and high false-
positive results (Figure 4B). Thus, these results provide compel-
ling evidence that the proposed MTGIpick method is superior in
identifying GIs.

Figure 4A also shows the sizes of the predicted GI obtained
by MTGIpick are more accurate than those from other methods.
To be specific, we listed all of the start and end positions of the
known genomic islands and predicted genomic islands from
IslandPick [18], SIGI-HMM [30], Alien_Hunter [22], centroid [30],
IslandPath-DIMOB [31], INDeGenlIUS [34], SigHunt [36], Zisland
Explorer [39] and MTGIpick (Supplementary Table S7). It is easy
to find that ~80% of the predicted GIs from MTGIpick are located
in the published GIs, leading to the high accurate sizes. In add-
ition, the window-based methods centroid, INDeGenIUS and
SigHunt identify some windows as GlIs without refining the is-
land boundaries, and thus the size of their predicted genomic
islands is an integer multiple of the window size
(Supplementary Table S7). However, MTGIpick refined the boun-
daries of predicted GIs using MJSD and the GC-based segmenta-
tion method and therefore can detect the exact boundaries of
the genomic islands.
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Figure 5. MTGIpick software and applications.

Method efficiency

One obvious benefit of the proposed method is the utilization of
small patterns (tetranucleotides) rather than using large ones.
SigHunt has the same purpose, although it predicts small puta-
tive Gls, leading to low true positives and high false positives
(Figure 4). MTGIpick uses the multiscale statistical test to im-
prove GI prediction. It uses simple kurtosis to select informative
tetranucleotides from a single genome instead of a range of or-
ganisms, as well as uses t-test to measure the divergence be-
tween two regions rather than computing DIAS based on
density distribution, which leads to an improvement of
MTGIpick speed. For example, MTGIpick took about 6 min to
complete GI prediction of S. enterica serovar typhi CT18, whereas
IslandPick, Alien Hunter and INDeGenIUS algorithms require
11, 26 and 47 min, respectively. SIGI-HMM, centroid, IslandPath-
DIMOB and SigHunt run this prediction under 1 min, and
Zisland Explorer took about 2 min. Therefore, the computa-
tional efficiency of the proposed MTGIpick is higher than those
of IslandPick, Alien_Hunter and INDeGenlIUS, but less efficient
than SIGI-HMM, centroid, Zisland Explorer, IslandPath-DIMOB
and SigHunt.

Software and application

We provided an online service and a software of the MTGIpick
tool with graphical user interface to run locally (Figure 5I).
MTGIpick has been compiled and tested under Sun Java inter-
preter and Matlab. MTGIpick can be used in Windows- and
Linux-based platforms. Java Virtual Machine and MATLAB
Compiler Runtime are required for MTGIpick setup on your plat-
form. However, we strongly advise the use of openjdk instead of
the Oracle version of java virtual machine when working in
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Linux-based machines as the Oracle version may result in some
exceptions during the analyses. MTGIpick is an open-source
software, and it is available at http://bioinfo.zstu.edu.cn/MTGI
or https://github.com/bioinfo0706/MTGIpick.

The input format of the MTGIpick follows the standard
FASTA format and multiple DNA sequences are supported.
There will be an upload progress bar to monitor upload progress
when clicking the button to upload a file. If the input file you
uploaded contains at least two sequences, a dialog box appears
to tell you to select predicting each sequence separately or
assembling and predicting to process the input file. This soft-
ware consists of two prediction methods: IST-LFS and
MTGIpick. IST-LFS is a proposed small-scale t-test with large-
scale feature selection, and it is efficient at detecting HGTs or
GIs with small sizes.

A dialog box appears to tell you to select a way to download
the results once your project is complete. There are two ways to
download the results: download the results by clicking save but-
ton and find the results in the same directory where the input
file is stored. The outputs of the MTGIpick consist of genomic
signatures (Figure 5II), predicted GIs of total scales (Figure 5III),
predicted GIs of each scale (Figure 5IV) and GIs visualization
(Figure 5V). Output are Zip files whose names are created by the
input file name. If the input file contains at least two sequences,
each Zip file contains all of the results for all the sequences.

MTGIpick provides a new interactive genome visualization
tool (Figure 5V), which uses zoomable sunburst and sunburst
partition to represent predicted GIs with conserved score along
the whole genome. MTGIpick has generated a number of HTML
files in the same directory where the input file is stored, and
you can open them directly and view the predicted GIs with
conserved scores. Orange regions in the first circle represent Gls
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predicted by MTGIpick method at all the scales. You can click
on the arc to zoom in, click on the outer to show GI details and
click the circle to zoom out.

Discussion

An integrated strategy for bottom-up and
top-down approaches

Top-down and bottom-up approaches, which are strategies for
information processing, have been both widely used in GI pre-
diction. Bottom-up methods usually detect a few of the con-
stituent genes as sufficiently atypical to be deemed foreign and
thus their predicted Gls consist of a large number of small pre-
dicted fragments. To circumvent the problems in bottom-up
approaches, a top-down method was proposed to detect GIs by
splitting a genome into successively smaller regions by using a
recursive segmentation procedure [21]. Motivated by these
approaches, we attempted to adopt an integrated strategy,
where the bottom-up method (IST-LFS) is used to calculate the
score of each small region deviating from the host. With the aid
of the top-down method (GC-based segmentation), we further
split the predicted large segments into optimal distinct seg-
ments and then identified the GIs. Thus, the proposed method
can be regarded as a specific way to combine both the top-down
and bottom-up approaches for GI prediction.

Integrated strategy for local and global testing

Previous approaches usually execute global testing to detect GIs
and focus on whether local signatures of a region are signifi-
cantly different from the host. However, genomic signatures at
different scales exhibit different genomic characteristics: at a
large scale, the local genomic signature is poor and it misses
small details to detect more ancient GI insertions, resulting in
false-negative predictions of GIs; at a small scale, details of gen-
omic signature are preserved, although GI detection suffers
greatly from clutter in different regions and can result in
false-positive predictions. Herein, we proposed a multiscale
statistical testing method, MTGIpick, to explore the multiscale
genomic signatures. In IST-LFS, we used small-scale t-testing
with large-scale feature selection to quantify the compositional
differences from the host genome. In contrast, MSA used a
large-scale statistical testing to identify some multiwindow seg-
ments. As expected, MTGIpick performs better in identifying GIs
(Figure 4). This work is the first to use multiscale statistical test-
ing to improve GI prediction, and the resulting new insights can
be used to develop more powerful prediction methods.

Complementarity of the existing prediction methods

Window-based methods

Window-based methods are capable and versatile tools to de-
tect GIs despite their high false-negative and false-positive
rates. They attempt to enhance their discriminative power by
selecting core signatures. These approaches have achieved
promising results but are limited by the use of related
sequenced genomes. The proposed method does not replace
the existing window-based approaches; rather, they provide a
novel method for host signature extraction and core signature
selection to overcome their inherent weakness and thus should
be used along with existing methods. Moreover, the window-
based methods select consecutive atypical windows as ‘raw’ GIs
without refining their boundaries. To address this problem, we
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proposed a simple method to detect the boundaries of the ‘raw’
Gls, and this proposed method can also be merged with the
window-based methods.

Annotation-based methods or comparative genomics
Direct/inverted repeats, tRNA/tmRNA and mobility genes, in
addition to sequence composition features, are widely used by
annotation-based methods to identify GlIs. One of their limita-
tions is that they require fully annotated genomes and some-
times fail to identify GIs that are devoid of flanking features.
Moreover, comparative genomics are often the most reliable
methods to detect laterally acquired genes, although the suc-
cess of such methods clearly depends on the breadth
and depth of the sequence database. In contrast, the proposed
method requires only a single genome sequence
analysed without any annotation information and offers a bet-
ter performance than comparative genomics (Figure 4).
Therefore, the proposed method will complement the
annotation-based methods or comparative genomics when
fully annotated genomes and closely related genomes are
lacking.

HMM:-based methods

HMM was constructed and applied to remove or detect anom-
alous regions in GI detection. For example, Alien_Hunter intro-
duces an HMM to refine the boundaries of predicted GIs [22].
Although these methods achieve good performance in GI de-
tection, they involve a relatively high number of parameters
and training calculations; thus, longer time is required for GI
detection with a risk of overtraining. To address the same
problem, the proposed method provides a rapid and accur-
ate method to detect the boundary of ‘raw’ GIs and thus can
also be merged with existing HMM-based methods for GI
detection.

Current limitations of the proposed method

Although competitive performance of the proposed method
has been achieved, this method is not a universal solution to
detect all GIs or horizontal transfers in different organisms.
The genomic signatures in the proposed method are limited
because the method relies on observation of different tetranu-
cleotides. As shown by our experiments using simulated or
real data sets, tetranucleotides are not always sufficiently
strong and credible for GI detection and thus may result in
false-negative predictions of GIs. For example, some random
islands or small GIs do not provide sufficient oligonucleotide
patterns from the host genome, making their detection diffi-
cult. In addition, a phenomenon where some GIs originated
from a species with similar oligonucleotide patterns limits the
ability of the proposed method to detect the GIs. As more sig-
natures are added into the proposed model, the accuracy of GI
prediction improves.

Key Points

* MTGIpick is a software that uses the first multiscale
statistical test to detect genomic islands.

* We proposed an IST-LFS to quantify compositional dif-
ferences of a genome from that of a host.

* We investigated the variability of genomic signatures
and used MSA to identify multiwindow segments.
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* MTGIpick can refine the boundaries of predicted Gls
using MJSD and the GC-based segmentation method.

* MTGIpick can identify GIs from a single genome with-
out annotated information of genomes or prior know-
ledge from other data sets.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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