
A benchmarking of workflows for detecting differential splicing and differential 

expression at isoform level in human RNA-seq studies 

 

 

Gabriela A. Merino1,2, Ana Conesa3,4, Elmer A. Fernández1,2* 

1Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas 

(CIDIE), CONICET, Av. Armada Argentina 3555, X5016DHK Córdoba, Argentina. 

2Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Av. 

Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina 

3Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe, Avda. 

Eduardo Primo Yúfera 3, 46020 Valencia, Spain 

4Microbiology and Cell Science Department, Institute for Food and Agricultural Research, 

University of Florida, Gainesville, Florida, USA. 

 

 

*To whom correspondence should be addressed. 

Elmer A. Fernández 

efernandez@bdmg.com.ar 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 30, 2017. ; https://doi.org/10.1101/156752doi: bioRxiv preprint 

https://doi.org/10.1101/156752


ABSTRACT 

Over the last few years, RNA-seq has been used to study alterations in alternative splicing 

related to several diseases. Bioinformatics workflows used to perform these studies can be 

divided into two groups, those finding changes in the absolute isoform expression and 

those studying differential splicing. Many computational methods for transcriptomics 

analysis have been developed, evaluated and compared; however, there are not enough 

reports of systematic and objective assessment of processing pipelines as a whole. 

Moreover, comparative studies have been performed considering separately the changes 

in absolute or relative isoform expression levels. Consequently, no consensus exists about 

the best practices and appropriate workflows to analyse alternative and differential 

splicing. To assist the adequate pipeline choice, we present here a benchmarking of nine 

commonly used workflows to detect differential isoform expression and splicing. We 

evaluated the workflows performance over three different experimental scenarios where 

changes in absolute and relative isoform expression occurred simultaneously. In addition, 

the effect of the number of isoforms per gene, and the magnitude of the expression 

change over pipeline performances were also evaluated. Our results suggest that workflow 

performance is influenced by the number of replicates per condition and the conditions 

heterogeneity. In general, workflows based on DESeq, DEXSeq, Limma and NOISeq 

performed well over a wide range of transcriptomics experiments. In particular, we suggest 

the use of workflows based on Limma when high precision is required, and DESeq2 and 

DEXseq pipelines to prioritize sensitivity. When several replicates per condition are 

available, NOISeq and Limma pipelines are indicated.  
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INTRODUCTION 

In high eukaryotes, many genes can produce multiple transcripts through alternative 

splicing (AS), a post-transcriptional regulatory mechanism responsible for the functional 

complexity and protein diversity made from a small number of genes [1, 2]. Splicing 

patterns are constantly changing, allowing organisms to respond to modifications in their 

environment [3, 4]. For instance, more than 90% of human genes are naturally 

alternatively spliced and misregulations of AS causing changes in absolute or relative 

isoform expression have been related to several diseases, including cancer [5]. Hence, the 

determination of changes in splicing patterns is an important issue in basic and applied 

biomedical research. Today, RNA-seq is the most widely used technique to analyse 

transcriptome expression dynamics, including AS [6].  

In the analysis of AS, two types of changes in isoform expression can be envisioned: 

Differential Isoform Expression (DIE) and Differential Splicing (DS). DIE refers to a change 

in the absolute expression of an isoform, whereas DS is related to changes in isoform 

proportions [7]. In both cases, the transcriptomic analysis is based on quantification at 

different levels (i.e. isoform, exon) than gene expression [6]. Several works have been 

published comparing and evaluating isoform quantification methods using synthetic and/or 

real RNA-seq data [6-9]. Moreover, numerous differential expression (DE) analysis tools 

exist for the study of DIE and DS, generally in a separate way [10-13]. In general, specific 

methods have been developed for DS analysis while DE methods at the gene level have 

been applied to the study of DIE [10]. Although those methods are well-known in DE 

analysis at the gene level, their performances over isoform expression data have not been 

deeply evaluated. Complementary, while some studies comparing methods to detect 

changes in AS have been published, they are mainly based on a descriptive 

characterization of method features [1, 7, 14-15]. Hence, a systematic evaluation of 

workflow performance is needed to further assist the choice of the appropriate set of tools 
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for AS among a plethora of available methods. In this sense, the most complete reported 

work compares eight popular software tools using both simulated and real RNA-seq data 

in several scenarios [16]. However, this work focus only on DS changes without 

consideration of DIE, or DIE and DS occurring simultaneously, and only uses plant data. 

Thus, there is no clear consensus about the best practices or workflows that should be 

used or combined to obtain a comprehensive assessment of AS changes in human 

RNA-seq data involving both DIE and DS together.  

Here we present a systematic evaluation and comparison of nine pipelines for the 

detection of DIE and DS events. In particular, the evaluated DIE workflows were based on 

isoform expression profiles and used five of the most popular tools: Cuffdiff2 [11], and the 

R packages: DESeq2 [17], EBSeq [10], Limma [18] and NOISeq [19]. On the other hand, 

the DS evaluated pipelines were based on Cuffdiff2, and the SplicingCompass [12], 

DEXSeq [13], and Limma R packages. The study was performed using synthetic RNA-seq 

datasets where isoform expression profiles were modified and controlled to simulate AS 

changes based on a real human RNA-seq experiment. The proposed workflows were 

evaluated in several experimental scenarios, varying the number of genes simulated as 

differentially expressed, as well as, the number of replicates per conditions. Several 

performance measures, useful for workflows’ comparison, were obtained. General and 

practical guidelines based on the number of replicates, sensibility, precision and 

percentages of true positives are provided in order to aid scientists in the selection of the 

most appropriate workflows for their data and analysis goals. 

METHODS 

 Definition of expression changes at the isoform level 

Let us suppose that there are three experimental conditions, A, B, and C, and a gene g 

having two isoforms, gI and gII, having the expression values listed in Table 1. The 

comparison of A and B conditions reveals changes in gI and gII absolute expression, 
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without modifications in their proportions, which is an example of DIE. Note that DIE refers 

to absolute changes in isoform expression and hence DIE methods use count matrices at 

the transcript level. When conditions A and C are compared, significant changes in isoform 

proportions involving small changes in absolute expressions are present. This comparison 

reveals alterations in the AS mechanism in C respect to A condition, a phenomenon 

known as DS. The changes in the proportion of the isoforms from the same gene are 

usually evaluated measuring the changes in the gene’s exon usage.  

Table 1: Illustration of changes in absolute and relative isoform expression occurred 

across three experimental conditions. The comparison of condition A and B reflects the 

occurrence of differential absolute expression, keeping relative isoform proportions. The 

comparison of condition B and C reflects alterations in the alternative splicing mechanism 

causing significant changes in isoform proportions. 

Gene Isoform 
Expression in A Expression in B Expression in C 

Absolute Relative (%) Absolute Relative (%) Absolute Relative (%) 

g 
gI 10 66.67 20 66.67 20 80 

gII 5 33.33 10 33.33 5 20 

 

 Workflows for differential expression analysis 

Seven commonly used methods for DE analysis based on different approaches were 

chosen to analyse DIE and DS. The selected methods were: EBSeq, DESeq2, NOISeq, 

SplicingCompass, Limma, DEXSeq and Cuffdiff2. Specific pipelines for them were 

designed (see Figure 1). The evaluated workflows were called: Cufflinks, DESeq2, EBSeq, 

Limma and NOISeq, in the case of DIE analysis (solid arrows), and CufflinksDS, DEXSeq, 

LimmaDS, and SplicingCompass, for DS study (dashed arrows). It is worth nothing, that 

only Cuffdiff2 and Limma DE tools are able to perform the analysis of both DIE and DS. 
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Figure 1: Schema of the nine pipelines evaluated on this work. Five workflows to evaluate 

differential isoform expression (DIE, solid arrows) and four to analyze differential splicing 

(DS, dashed arrows) were included. Pipelines were designed following the author’s 

recommendations to evaluate case-control experiments. All the workflows take as input 

the sequencing reads and generate a list of isoforms (DIE methods) or genes (DS 

methods) with significant changes.   

DIE workflows 

This group of pipelines takes as input data isoform expression levels obtained by 

quantification methods based on probabilistic isoform resolution models. These models try 

to assign reads or fragments to the isoforms they came from modelling the uncertainty 

derived from multiple isoforms having overlapping sequences [16]. In this work, RSEM [20] 

was used as a quantification tool to generate isoform count matrices from reads aligned 

against the human reference transcriptome using the Bowtie tool [21], as suggested by 

Teng et al and Liu et al [8, 16]. To evaluate DIE, four methods were used i.e. DESeq2, 

EBSeq, Limma and NOISeq, which are R packages that accept count data at isoform level. 

EBSeq and DESeq2 assume that the raw expression counts follow a negative binomial 

distribution, whereas Limma assumes that the logarithmic transformation of expression 
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counts follows a normal distribution. To infer DE changes between experimental conditions, 

EBSeq uses a Bayesian hierarchical model [10], while DESeq2 combines empirical Bayes 

shrinkage with generalized linear model estimations to obtain model coefficients and then 

uses the Wald statistic [17]. The voom transformation [22] applies a generalized least 

squares approach by modelling the mean-variance relationship with precision weights, 

allowing the use of the classical eBayes Limma method to detect the isoform expression 

changes [18]. The three methods return an FDR adjusted p-value, used here to call DIEs. 

The NOISeqbio tool, from the NOISeq package, is a non-parametric and data adaptive 

method that uses fold changes and absolute expression differences between the 

experimental conditions to obtain one statistic per isoform. This method performs a 

permutation step to obtain the noise distribution, against which the isoform statistics will be 

compared [19]. NOISeqbio returns for each isoform the probability of being differentially 

expressed (pde) and the adjusted p-value is 1-pde.  

DS workflows 

In the case of DS workflows, the analysis is performed over expression matrices at several 

levels obtained from alignments against the reference genome. The gapped aligner 

TopHat2 [23] was used to do this mapping and evaluated DS methods were three R 

packages, SplicingCompass, DEXSeq, and Limma, and the program Cuffdiff2. The 

coverageBed [24] was used to obtain expression matrices for SplicingCompass, applying 

a union transcript model for each gene. With this information, SplicingCompass constructs 

vectors of exon and junction counts for each gene and sample, then calculates pairwise 

geometric angles between two samples and uses a t-test to compare geometric angles 

[12]. DEXSeq is based on negative binomial generalized linear models [13], like DESeq2. 

Count matrices at exon level for DEXSeq and Limma packages were obtained using the 

python script provided by the DEXSeq package, disabling the aggregate options, as 

suggested by Soneson et.al. [7]. DEXSeq and Limma models incorporate an interaction 
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term between the condition and the exon identifier to evaluate changes in the proportion of 

that exon within a gene and between conditions. The initSigGenesFromResults 

(SplicingCompas), perGeneQValue (DEXSeq) and diffSplice (Limma) functions were 

used to compute per gene adjusted p-values.  

The C++ Cufflinks2 program was used to calculate the isoform expression values as 

Fragments Per Kilobase Million (FPKM) from reads aligned to genome sequences [11, 25]. 

Then, Cuffdiff2 performed DE analysis at isoform and splicing levels, generating the output 

files of the two workflows: Cufflinks (DIE case) and CufflinksDS (DS case). 

In all workflows, significant isoform/gene changes were identified using an adjusted 

p-value threshold of 0.05. The program versions, as well as all the scripts used in this 

study, are available in supplementary material. 

Simulated RNA-seq datasets 

A replicated human prostate cancer RNA-seq dataset (GSE22260) was used as the 

reference to generate synthetic data. This dataset consists of 30 samples, ten from normal 

tissue (control, condition-C) and 20 from prostate carcinoma (tumor, condition-T), 

sequenced using the Illumina GAII platform with a pair-end protocol. The ten T-C pairs 

matched samples were discarded to avoid subject correlation. In addition, four samples 

were tagged as outlier samples by our quality control pipeline [26] and discarded to finally 

keep 16 samples, eight per condition, that were then used to feed the simulator. Three 

possible experimental scenarios (S1, S2, and S3) combining DIE and DS events were 

designed. The S1 and S2 scenarios involved eight non-matched samples, four per each 

condition. In S1, 5% of total genes were simulated to have expression differences 

(DIE/DS); whereas, S2 had 10% of changing genes incrementing the between-conditions 

heterogeneity. The S3 scenario considered the effect of a different number of replicates 

per condition, involving 16 samples, eight for each condition, with 10% of differentially 

expressed genes, the same as S2.  
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A simulation procedure was designed to obtain raw sequencing reads for each subject 

with controlled DIE and DS. The simulation was based on the rsem-simulate-reads 

tool from RSEM, which takes a customized isoform expression profile and model 

parameters, computed from a real RNA-seq dataset, to generate synthetic sequencing 

reads. The implemented simulation procedure is shown in Figure 2 and consists of three 

steps. In step one, each real sample was aligned against the reference transcriptome and, 

isoform expression profiles together with RNA-seq model parameters were obtained. In 

the second step, the expression matrix was pre-processed to exclude low expressed 

genes (zero counts in at least one replicate of C and T). Then, a set of well-expressed 

genes (20 counts per million in at least one replicate of C) were randomly chosen to 

simulate DIE/DS. The expression counts for the i-th isoform of the g-th gene from the k-th 

condition were modelled by a negative binomial (NB) distribution, yigk ~ NB(µigk, igk). The 

sample mean (µigk) and shape (igk) for the NB distribution were computed over condition C 

and taken as a reference to compute the simulated parameters for both C and T 

conditions, incorporating DIE/DS in the group of genes to be simulated as differentially 

expressed. In the third step, the isoform counts for each replicate were generated from NB 

distributions with the modified mean and shape parameters, obtaining the simulation 

expression profiles. Finally, transcripts per million for each sample were computed and 

used to call the rsem-simulate-reads function to generate simulated raw reads. In 

order to provide statistical power to evaluate workflows performance, the third step of the 

simulation pipeline was run ten times to obtain replications of each scenario keeping the 

same differentially expressed genes and NB parameters.  
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Figure 2: Simulation procedure designed to generate the RNA-seq datasets used to 

workflows evaluation. The procedure was divided into three steps. The first step was run 

once for each sample and it started by aligning reads to the reference. Next, alignments 

were processed to obtain the real isoform expression profiles and RNA-seq model 

parameters, for each replicate. In the second step, the mean and shape negative binomial 

parameters for each isoform in each experimental condition were calculated and modified 

to simulate expression changes. This step was run once for each scenario. The third step 

was run ten times per each scenario and consisted in generating the simulated isoform 

expression profiles using a negative binomial distribution with the modified parameters. 

Finally, the customized expression matrix and the RNA-seq model, estimated before, were 

used by RSEM to obtain the simulated sequencing reads for each sample. 

Since DIE and DS occur simultaneously, both cases were jointly simulated. The set of 

genes selected to be differentially expressed was divided into four subsets: DE, DIE, DS, 

and DIEDS. For the DIE and DE groups, changes in the expression of all isoforms of the 

gene were simulated, without modification of isoform proportions. The DIE group included 

genes having more than one annotated isoform; whereas, the DE group involved genes 

having only one annotated transcript. For the DS group, changes in isoform proportion 
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were simulated, without modifications of the overall gene expression. For each gene, the 

proportion of the most expressed isoform (major isoform) was controlled and the remaining 

proportions were equally distributed along their other expressed isoforms. Finally, the 

DIEDS group, the simultaneous occurrence of DIE and DS was simulated. Even though 

the DS occurrence could derive in DIE, we would include this group where we control DIE 

and DS presence. More detailed information about simulation groups, subgroups and the 

computation of simulated profiles can be found in the supplementary material. 

Table 2: Simulation groups and subgroups. Groups were defined according to the 

combination of changes in absolute and relative expression of gene isoforms at two 

experimental conditions.  

Group 
Fold Change at 

isoform expression 

Change in the proportion of the 

major isoform  
Simulation subgroup 

DE 
2 No change DE-2 

4 No change DE-4 

DIE 

2 No change DIE-2 

3 No change DIE-3 

4 No change DIE-4 

5 No change DIE-5 

DS 

No change 0 to 0.7 DS-0-0.7 

No change 0.1 to 0.4 DS-0.1-0.4 

No change 0.3 to 0.6 DS-0.3-0.6 

No change 0.5 to 0.8 DS-0.5-0.8 

DIEDS 

0.5 0.8 to 0.5 DIEDS-0.5-0.8-0.5 

2 0.8 to 0.3 DIEDS-2-0.8-0.3 

2 0.8 to 0.5 DIEDS-2-0.8-0.5 

4 0.8 to 0.3 DIEDS-4-0.8-0.3 

4 0.8 to 0.5 DIEDS-4-0.8-0.5 

DE, Differential Expression; DIE, Differential Isoform Expression; DS, Differential Splicing; DIEDS, Differential 
Isoform Expression and Differential Splicing 

 
Performance evaluation 

Commonly used performance measures were computed to evaluate workflows results at 

ten simulations from each scenario [27]. The result of each workflow was either a list of 

significant differentially expressed isoforms (DI), or genes detected as alternative spliced 
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(ASG). Each isoform or gene detected as differentially expressed was called positive (P), 

and was classified as true positive (TP) or false positive (FP); whereas, an isoform or gene 

detected as differentially expressed (negative, N) was classified as true negative (TN) or 

false negative (FN). In particular, for DIE workflows, those isoforms simulated either as 

DIE, DE, DIEDS or DS were considered as TPs, since DS could cause DIE; but, only the 

isoforms simulated as DIE, DE or DIEDS were considered as FNs because we did not 

control if the simulated DS changes caused DIE. Then, accuracy, sensitivity, precision and 

the F-score (harmonic mean between sensitivity and precision) were computed. The ability 

of a workflow to deal with false positives was characterized measuring the FP rate (FPR).  

We also evaluated the effect of simulation subgroup, i.e. DIEDS-2-0.8-0.3, and the effect 

of the number of isoforms per gene. In the first case, isoforms and genes were clustered 

according to their simulation subgroup and the TP rate (TPR) was computed in order to 

determine if the magnitude of deregulation influenced the DI/ASG detection. In the other 

case, genes were grouped according to their number of annotated isoforms, i.e. 1, 2-4, 5-9 

and more than 9 (>9) transcripts and TPRs per each of those groups were computed. 

Those numbers correspond to the 33, 66 and 99 percentiles, respectively, of the 

distribution of the number of isoforms per gene in humans.  

RESULTS AND DISCUSSION 

Nine workflows for DIE and DS analysis were compared in this study based on synthetic 

data, where the true status of each isoform or gene was controlled. Three experimental 

scenarios, S1, S2, and S3 were designed to evaluate the effect of the percentage of 

differential genes (S1 and S2) and the number of replicates per condition (S2 and S3).  

Concordance of Differential Expression Results 

The concordance of differential expression results was evaluated looking at the number 

and percentage of detected DI/ASG (P and TP) in the ten replicates run for each scenario. 

Results for DIE and DS workflows are shown in Figure 3 and summarized in 
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Supplementary Tables S4 and S5. In the case of DIE pipelines, the EBSeq workflow 

detected the highest amount of DI (>8500) in the three tested scenarios, whereas the 

Cufflinks pipeline found the lowest values, three times lower than the EBSeq results. 

However, EBSeq had the lowest number of P found simultaneously in the ten simulations 

(Figure 3A), indicating the poor concordance of this method in all three scenarios. On the 

other hand, DESeq2 and Limma showed a higher concordance of P (>17%, Figure 3A) 

and TP (> 30% Figure 3B) along simulations, especially for S2 and S3, showing that they 

were more robust than EBSeq. Comparing S1 and S2 scenarios, EBSeq and Cufflinks 

methods did not show differences in the percentage of TPs. On the contrary, DESeq2, 

Limma and NOISeq increased this percentage in S2 by approximately 5%. TP 

percentages were increased by 10% for EBSeq and DESeq2 and only 1% for Cufflinks 

and Limma from S2 to S3. Meanwhile, NOISeq was the only method that showed the 

highest percentage of TP detections in S2. The FP percentage (Figure 3C) was <5% for all 

the scenarios and pipelines, indicating the effectiveness of the simulation procedure.  

In the case of the DS workflows, CufflinksDS found the lowest average number of ASG 

(<303); whereas, the highest values were observed for DEXSeq (>423). The lowest and 

the highest percentage of P were found for SplicingCompass (<20%) and LimmaDS 

(>25%), respectively (Figure 3A). Moreover, SplicingCompass and CufflinksDS had a poor 

concordance of TP detection (Figure 3B). Interestingly all workflows, except CufflinksDS, 

increased the percentage of P and TP in S2 with respect to S1 and S3. In terms of FP, 

LimmaDS pipeline showed the highest values, near to 10%.  
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Figure 3: Concordance of workflows results in the ten simulations performed in each 

scenario. Here, concordance was measured by means of the percentage of significant 

detections (A), true significant detections (B) and false significant detections (C) of DI/ASG 

found in the ten runs of each scenario. Each panel is divided into two facets, one for DIE 

workflows, detecting DI, and other for DS workflows, detecting ASG.  

Overall performance results 

The overall performance measures for the evaluated workflows on the simulated scenarios 

are listed in Supplementary Table S6.  All DIE and DS workflows achieved a high accuracy 

(>0.85) in all scenarios and hence, this measure was not further considered in our 

comparisons. Sensitivity, precision and F-score for DIE workflows are shown in Figure 4, 

panels A-C. In terms of sensitivity (Figure 4A), all DIE pipelines reached values lower than 

0.65; the highest values were exhibited for EBSeq (S1 and S3), NOISeq (S2) and DESeq2 

(S3), and the lowest for Cufflinks. In terms of precision (Figure 4B), EBSeq and NOISeq 

(S1 and S2) had low performance; whereas, values higher than 0.9 were achieved by 

Limma, Cufflinks (S2 and S3) and NOISeq (S3). It is worth mentioning that only Limma 
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(S1) and NOISeq (S3) were able to control the imposed FDR, achieving precisions higher 

than 0.95. When the three experimental scenarios were compared, an improvement from 

S1 to S3 was noted, except for NOISeq’s sensitivity and Limma’s precision, which showed 

opposite behaviours. In terms of the F-score, the best values (>0.7) were found for 

DESeq2, EBSeq, Limma (S3) and NOISeq (S1 and S2).  Thus, DESeq2 and EBSeq 

workflows seem to be adequate to DIE analysis. However, if precision is preferred, Limma 

and NOISeq are recommended.  

The Figure 4D-F summarizes the performance results for DS workflows. In terms of 

sensitivity (Figure 4D), DEXSeq and LimmaDS had the best performance, achieving 

values higher than 0.5 in nearly all scenarios; whereas CufflinksDS and SplicingCompass 

exhibited the poorest results. However, CufflinksDS showed the highest precision (>0.8), 

controlling also the FDR in S3 (Figure 4E). Although DEXSeq had the lowest precision 

(<0.75), this method together with LimmaDS, achieved the higher F-score values in all 

cases (>0.55) and hence these pipelines are adequate to detect ASG with high sensitivity 

and precision. Particularly, LimmaDS had lower sensitivity than DEXSeq but, it reported 

ASG more precisely.    

The ability to deal with FP results was evaluated using the FPR (Supplementary Figure 

S1). In the case of DIE workflows (Supplementary Figure S1A-C), the lowest FPR was 

achieved by Cufflinks in all scenarios, whereas EBSeq, in the three scenarios, and 

NOISeq, in S1 and S2 had the highest FPR. Regarding DS pipelines (Supplementary 

Figure S1D-F), CufflinksDS showed the lowest FP values and DEXSeq the worst. In 

general, FPR values did not exceed 0.05, with higher values for S2 in comparison with S1. 

In the S3 all DIE pipelines, except Limma, had lower FPRs in respect to S2.  
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Figure 4: Overall performance measures along ten simulations performed in three 

experimental scenarios. A to C: DIE pipelines, D to F: DS workflows. 

Based on the poor performances described above for Cufflinks, EBSeq, CufflinksDS and 

SplicingCompass, these methods were excluded from further analysis and only five 

pipelines were selected for subsequent evaluations: DESeq2, Limma and NOISeq, for DIE 

analysis,  DEXSeq and LimmaDS for DS study.  

Effect of the number of isoforms 

Figure 5 illustrates the relationship between the TPRs and the number of isoforms per 

gene. Upper (lower) panels show the results for the DIE (DS) workflows and the three 

evaluated scenarios. For DIE workflows (Figure 5A-C), the percentage of TPs was higher 

for isoforms belonging to genes with only one annotated transcript (gene group “1”) and 

lower for those belonging to genes with more than nine isoforms (gene group  “>9”), in all 

scenarios. For instance, in S2 (Figure 5B) all workflows achieved percentages higher than 
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75% for isoforms from gene group “1”; while the percentage of TPs in gene group “>9” was 

lower than 50%. We suspected this behavior was caused by lower expression values and 

complexity of isoform reconstruction process when the number of isoforms per gene 

increases. DESeq2 and NOISeq showed the highest and similar TPRs in S1 (Figure 5A) 

and S2, while DESeq2 and Limma performed best in S3 (Figure 5C). In general, all 

workflows performed better in S2 compared to S1 and in S3 compared to S2, except for 

NOISeq, that had poorer TPRs in S3.  

In the case of DS workflows (Figure 5, panels D, E, and F) the observed TPRs were very 

similar in all scenarios and in all gene groups. The highest values were achieved by 

DEXSeq (> 60%). Notably, LimmaDS showed TPRs higher than 40% that was better than 

Limma performance in DIE analysis. The TPRs practically did not change between S1 and 

S2, whereas in S3, DEXSeq and LimmaDS increased the TPRs in all gene groups.  

The relationship between FP and the gene groups is illustrated in Supplementary Figure 

S2. In the case of DIE pipelines, FPs distribution along gene groups was different between 

scenarios and pipelines. DESeq2 and NOISeq showed similar behavior along S1 and S2, 

with most of FP (>35%) for gene group “>9”. In addition, the number of FPs increased with 

the number of isoforms per gene, as expected. Meanwhile, most FPs for Limma were 

found in the gene group “2-4”. Nevertheless, Limma behaved similarly to DESeq2 and 

NOISeq in S2 and S3, respectively. For DS workflows, FPs distributions along gene 

groups and scenarios were similar. In general, FPs were near to 20%, 25% and 45% for 

gene groups “2-4”, “5-9” and “>9”, respectively. It was observed that for both, DEXSeq and 

LimmaDS, FPs were more abundant when the number of isoforms per gene increased.  
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Figure 5: True positive rate of DIE and DS workflows as a function of the number of 

isoforms per gene. Panels A, B, C are for DIE workflows and D, E, F for DS workflows at 

S1, S2 and S3, respectively.  

Effect of the magnitude of differential expression 

Finally, the effect of the magnitude of differential expression in the ability of each workflow 

to detect changes was evaluated (Figure 6). As expected, all DIE pipelines (Figure 6, 

panels A, B, and C) showed a higher TPR when the magnitude of the expression change 

was increased, however, differences were evident as a function of the simulation group 

(DE, DIE, or DIEDS) and the simulation scenario. While all methods had high TPRs when 

single gene isoforms were simulated with a fold-change of 4 in all scenarios, important 

differences were observed at fold-changes of 2, where Limma behaved poorly in scenarios 
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S1 and S2 and NOISeq in scenario S3. Surprisingly, all methods had much lower TPRs in 

the DIE group compared to DE. For example, nearly perfect TP detection was achieved 

with a 4 fold-change in DE cases, this value dropped to around 50% when talking about 

DIE transcripts at the same fold-change. This could be explained by the fact that 

multi-transcripts genes generated both high and low expressed isoforms and all of those 

were analysed to compute DIE analysis and TPRs calculation. And, as it is known, low 

expressed transcripts that are differentially expressed are more difficult to detect than 

those highly expressed. When a change in isoform proportions was included in the 

simulation group (DIEDS), TPRs were again affected. In scenario S1 all pipelines 

performed better at detecting true isoform changes when there was also an effect on the 

relative proportion of the isoform, while this was only the case for transcripts with a 4 fold-

change in scenario S3 and was pipeline-dependent in scenario S2. In general, and in 

agreement with other analyses, Limma performance was comparatively worse at S1 and 

S2 and NOISeq at S3. 

For DS pipelines (Figure 6, panels D, E, and F), results were more predictable. As a 

general rule, DEXSeq performed better than LimmaDS in all simulation groups and 

scenarios. In addition, higher TPRs were found when the magnitude of the DS was bigger. 

In the DIEDS group, good performance was basically associated at the magnitude of the 

splicing change (values higher than 0.75 for a 0.8-0.3 difference) and to a much lesser 

extent to the magnitude of the total fold change of the gene (similar results for 0.5, 2 and 4 

global gene fold-changes and only slightly lower in the DS 0.5-0.8 subgroup that is zero 

global gene change). For genes with splicing and not total expression differences (DS), 

better TPRs were found when the major isoform had zero (DS-0-0.7) or low (DS-0.1-0.4) 

relative expression in one condition, although the biggest effect for an improved TPR was 

given by the magnitude of the differential splicing: the DS-0-0.7 subgroup had much higher 
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TPRs than DS-0.1-0.4, DS-0.3-0.6 and DS-0.5-0.8. Both for DIEDS and DS groups overall 

performances were better when more replicates were present (S3 vs S1 and S2).  

 

Figure 6: True positive rates (TPR) for DIE and DS workflows as a function of the 

simulation subgroup as described in Table 2. Panels A, B, C for DIE and D, E, F, for DS 

workflows at scenarios S1, S2 and S3 respectively. 

CONCLUSIONS 

In this study, we performed a systematic evaluation of workflows for DIE and DS analysis 

using simulated RNA-seq datasets based on a real human experiment. The goal of our 

work was to provide guidelines for choosing appropriate analysis strategies for 

researchers interested in different modalities of isoform expression changes. For this, we 

evaluated nine workflows in a variety of expression setups and experimental 

configurations. We tailored our analysis to human transcriptomics datasets with variability 

similar to tumor-healthy subject samples. The validity of our study for other types of data 

(i.e. cell-lines or organisms with lower complexity) remains to be demonstrated. 
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In general terms, we found that a better scenario for case-control comparisons was when 

more differential genes (10% vs 5%) and replicates per condition (8 vs 4) were available 

(S3). For this configuration, we found the highest number of DI/ASG, TPs and 

concordance among replicated simulation. Best performing workflows were DESeq2, 

Limma and NOISeq for DIE analysis and DEXSeq and LimmaDS for DS testing.  

We used precision, sensitivity and F-score as performance measures. For experiments 

with a low number of replicates, the best pipelines to DIE analysis were DESeq2 and 

Limma. Based on our results, we concluded that, if high sensitivity is preferred, DESeq2 is 

the most indicated, while the Limma pipeline should be used if higher precision is 

important. For experiments with a large number of replicates, NOISeq is more restrictive 

and precise than Limma. For DS pipelines, we found that DEXSeq was the best in terms of 

sensitivity and F-score. However, precision of this method was lower than the one 

achieved by LimmaDS, which reached the DEXSeq F-score values when the number of 

replicates was increased. We concluded that these two workflows are indicated for DS 

analysis, the first one prioritizing sensitivity and the second precision. When the FPR was 

evaluated, we found that both Limma and LimmaDS workflows were superior to DESeq2 

and DEXSeq, respectively. 

We also evaluated the effect of the number of isoforms per gene in the percentage of true 

and false positives. DIE pipelines were found to be more influenced by the number of 

isoforms per gene than the DS workflows, probably by the presence of low-expressed 

isoforms. In addition, the TPRs for DIE workflows decreased as the number of isoforms 

per gene increased. In particular, we found TPR between 30% to 90% using four 

replicates for DESeq2 and Limma. Whereas, NOISeq reached values between 25% and 

60% when more replicates were available. Using DEXSeq or LimmaDS, we found near to 

40% of TPs with fewer replicates. Meanwhile, TPR increased to 60% when more 
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replicates were available. We also found that, in DIE and DS cases, most of the false 

positives were related to genes with more than nine isoforms. 

Exploring the effect of the magnitude of differential expression on TPRs, we noted that this 

was higher for isoforms with greater expression changes, with or without changes in the 

AS. In the case of DESeq2 and NOISeq, TPs detection was further improved when the 

percentage of differentially expressed genes was higher. This suggests that these 

pipelines benefit from an extended regulation in the data and might have problems in 

detecting differential expression when this affects only a small subset of transcripts. 

Controversially, Limma associated better performance to more replicates. In the case of 

DS workflows, we found that DEXSeq achieved the highest TPRs percentages, followed 

by LimmaDS. Both of those found genes under DS and DS combined with changes in 

isoform expression levels, with better results in the latter. Those pipelines also showed 

higher percentages when more replicates were used. In both, DS and DIEDS groups, the 

best results were found for genes with the largest change in the major isoform expression.  

Finally, we suggest that if the number of replicates per condition is low, the workflows 

based on the Limma R package could be used to detect DIE and DS with high precision. 

The use of DESeq2 and DEXSeq workflows might be preferred when a high number of 

genes/isoforms are expected. If the number of replicates per condition is higher, we 

recommend the use of NOISeq workflow, for DIE analysis combined with any of LimmaDS 

or DEXSeq pipelines for DS analysis.  
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Figure 7: Schema of workflows selection based on the research experiment. Each circle 

box contains the DIE (solid) and the DS (dashed) pipelines recommended for 

transcriptomic analysis.   

KEY POINTS 

 A number of workflows have been developed to either analyse differential gene or 

transcript expression and differential splicing using RNA-seq data. However, there 

is no clear consensus about the best practices for the simultaneous exploration of 

both types of transcriptional regulation. Our work analysed nine different pipelines 

or workflows to provide guidelines. 

 The workflows choice directly impacts on the number of detected differential 

features (isoforms or genes) and the sensitivity and precision of the result.  

 The number of isoforms per gene and the magnitude of the expression change 

influence the power of true detections. Fewer isoforms per gene and larger 

expression changes favour the detection of true positive differential features. 

 The number of replicates and the amount of expected differentially expressed 

genes/isoforms between conditions should be taken into account when selecting 

the analysis pipeline.  
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 Workflows based on DESeq and DEXSeq are recommended for experiments with 

few heterogeneous samples; whereas, Limma and NOISeq pipelines will return 

better overall results when more replicates are available.  
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