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Abstract

Biclustering is a powerful data mining technique that allows clustering of rows and columns, simultaneously, in a matrix-
format data set. It was first applied to gene expression data in 2000, aiming to identify co-expressed genes under a subset of
all the conditions/samples. During the past 17 years, tens of biclustering algorithms and tools have been developed to en-
hance the ability to make sense out of large data sets generated in the wake of high-throughput omics technologies. These
algorithms and tools have been applied to a wide variety of data types, including but not limited to, genomes, transcrip-
tomes, exomes, epigenomes, phenomes and pharmacogenomes. However, there is still a considerable gap between biclus-
tering methodology development and comprehensive data interpretation, mainly because of the lack of knowledge for the
selection of appropriate biclustering tools and further supporting computational techniques in specific studies. Here, we
first deliver a brief introduction to the existing biclustering algorithms and tools in public domain, and then systematically
summarize the basic applications of biclustering for biological data and more advanced applications of biclustering for bio-
medical data. This review will assist researchers to effectively analyze their big data and generate valuable biological know-
ledge and novel insights with higher efficiency.

Key words: biclustering; functional annotation; modularity analysis; network elucidation; disease subtype identification; bio-
marker and gene signatures detection; gene–drug association

Introduction

The advent of much-improved biotechnology and the decreased
associated costs have generated a massive amount of biological
and biomedical data. The next-generation sequencing (NGS)
technology [1, 2] has higher resolution, improved accuracy, lower

technical variation and other advantages in comparison with
array-based counterparts [3–5]. NGS allows for rapid generation
of larger volumes of biological information than ever before. Also,
large amounts of patient clinical data are generated through NGS
and electronic health record (EHR), which presents significant
opportunities for knowledge discoveries in biomedical research
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[6]. These complex and large volumes of data, collected from dif-
ferent sources, have changed the way biological and biomedical
research is conducted [7, 8]. Effective utilization and interpret-
ation of such data require advances in interdisciplinary sciences.
The concept of big-data-to-knowledge relies extensively on biolo-
gical, mathematical, statistical and computer sciences to extract
usable information and generate new knowledge.

For example, the abundance of gene expression data sets
provides an opportunity to identify genes with similar expres-
sion patterns across multiple conditions, i.e. co-expression gene
modules (CEMs). These modules are crucial for inferring high-
level functional machinery, e.g., regulatory and metabolic path-
ways. Microarray platforms have been the most widely used in
generating gene expression data because of its easy accessibility
and low cost. The high-throughput RNA sequencing (RNA-seq)
is a revolutionary technology for gene expression profiling [9,
10], which promises a comprehensive picture of the transcrip-
tome for a biological process, as it enables the complete quanti-
fication of all genes in a cell [9, 11]. Genome-scale identification
of CEMs can be modeled by biclustering [12], which was intro-
duced by Hartigan in 1972 [13] and applied to gene expression
data analysis by Cheng and Church in 2000 [14]. Biclustering is a
two-dimensional data mining technique that allows clustering
of rows (representing genes) and columns (representing sam-
ples/conditions) in a gene expression matrix, simultaneously.
The biclustering method can capture biologically meaningful
and computationally significant CEMs, by identifying (possibly
overlapped) homogeneous submatrices, subsets of rows with a
coherent pattern across subsets of columns that satisfy specific
quality metrics (e.g. mean squared residue used in [14] and MSE
used in [15]). This unique feature makes it useful when applied
to big gene expression data, as genes that participate in a cellu-
lar process are only active in specific conditions, thus are usu-
ally co-expressed under a subset of all conditions.

Furthermore, with the advancement of informatics technol-
ogy, EHR contains sufficient information that can be trans-
formed into disease phenotypes [16]. In this phenotyping
process, a heuristic and the iterative searching algorithm is
applied to search the large-scale EHR database with queries cre-
ated by clinical experts and knowledgeable computational en-
gineers [16], during which thousands of phenotypes generated
for all the included individuals. These phenotype data can be
organized into a matrix, with phenotype features as rows and
individuals as columns, providing essential materials to identify
a family of phenotype biclusters. The biclusters define a sub-
group of patients from a subset of phenotypes, which are sub-
ject to detailed validation analysis to establish their relations
with (i) prognostic or therapeutic characteristics of diseases [17–
20], and (ii) genotype biclusters [16].

A substantial number of biclustering methods were de-
veloped during the past 17 years [14, 15, 21–38]. SAMBA [30], ISA
[31], BIMAX [32], QUBIC [33] and FABIA [34] are some popular al-
gorithms for general purpose. CCC-biclustering [39–41] and
LateBiclustering [42] are designed for temporal data analysis,
and BicPAM [43], BicNET [37, 44] and MCbiclust [45] are three re-
cent tools. In addition, several tools (R packages, web servers,
etc.) have been developed to facilitate users with a limited com-
putational background [25, 46–52]. GEMS [49] is a web server for
gene expression mining based on a Gibbs sampling paradigm,
and biclust [50] and QUBICR [51] are two R packages integrating
multiple existing algorithms, data preprocessing functions and
interpretation and visualization of the results.

Several biclustering algorithm review studies have been con-
ducted emphasizing different mechanistic perspectives [32, 53–57].

For example, Pontes et al. [58] presented a taxonomy of 47 biclus-
tering algorithms according to their search strategies, and Busygin
et al. [59] emphasized the mathematical models and concepts in
biclustering techniques. Padilha et al. [56] claimed that an algo-
rithm only achieved satisfactory results in a certain context, and
the best algorithm choice depends on specific objectives. Eren et al.
[60] compared 12 popular algorithms and concluded that QUBIC
achieves the highest performance in synthetic data sets and cap-
tures a high proportion of enriched biclusters on real data sets.
Adetayo et al. [61] presented an overview of data analysis using
biclustering methods from a practical point of view, accompanied
by R examples.

As far as we know, application of biclustering has not pro-
gressed in parallel with algorithm design. Considering all the
biclustering-related publications, the portion of application
studies has been much lower than that of algorithm develop-
ment studies from the year 2000–17 (Figure 1). This situation is
affected by multiple factors. First, there is a gap between tool
development and the understanding of new biotechnologies
and corresponding data properties. For example, microarray
data are reflecting absolute gene expression with continuous
fluorescence intensity values [62], while RNA-seq data meas-
ures the relative expression level using discrete, positive and
highly skewed read counts [63–66]. Furthermore, there are
abundant zeros in RNA-seq-based gene expression data, as not
all the genes are expressed under a specific experimental condi-
tion, which is particularly true in single-cell RNA-seq (scRNA-
seq) data [67, 68]. Hence, algorithms designed and evaluated
using microarray data may not be suitable to be directly applied
to RNA-seq data. RNA-seq and scRNA-seq data need the unique
design of algorithm and tool development. However, contrary to
the fact that RNA-seq is becoming more and more popular, few
biclustering algorithms are explicitly designed for RNA-seq data
[39, 40, 43, 44]. Second, there is a knowledge gap for applying
biclustering tools and choosing the appropriate accompanying
analytical tools for specific data analyses. Usually, biclustering
is not a solo data analysis tool. Instead, it connects with other
results annotation processes (e.g. DAVID and KOBAS), visualiza-
tion programs (e.g. Cytoscape) and statistical methods (e.g. prin-
cipal component analysis and regression analysis), to derive a
more comprehensive interpretation. It is worth noting that or-
ganically integrating a biclustering algorithm and appropriate
accompanying tools into a pipeline is not trivial. Construction
of a unified pipeline requires a deeper understanding of under-
lying algorithm designs, data inputs and expected outputs.

The yearly proportion of biclustering references related to al-
gorithm development and improvement and application stud-
ies is presented in Figure 1. The numbers of biclustering studies
on algorithm design and application were similar at earliest
stage when few tools were available. The proportion of applica-
tion-related studies decreased relative to algorithm design until
2010. In the 1650 articles published in 2011, the number of stud-
ies related to algorithm design was almost nine times that of
the application studies. Recently, more researchers have real-
ized the biclustering application shortage and made significant
efforts in this area. Between 2012 and 2016, the application pub-
lication proportion increased to 40%. There is still a consider-
able potential for more application-related studies; therefore,
this review systematically summarizes the basic applications of
biclustering in biological data and the advanced applications of
biclustering in biomedical data. This information will enable
biological researchers to select appropriate algorithms and com-
putational tools for their various studies, effectively bridging
the gap between big data and valuable biological knowledge
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and efficiently providing novel data-driven insights. In the fol-
lowing, we will review how biclustering aids biological and bio-
medical data interpretation at the gene, module and network
level, respectively.

Basic application of biclustering on biological
data

It is well known that biological function can rarely be attributed
to an individual molecule. Instead, most functions arise from
complex interactions (as a whole system or module) among the
cell’s numerous components, such as protein, DNA, RNA and
small molecules [69, 70]. Biotechnology has developed fast in
the past two decades, from traditional arrays (e.g. microarray
and tilling array) to NGS (e.g. DNA-seq, RNA-seq and chromatin
immunoprecipitation sequencing (ChIP-seq)) to the third-
generation long-read sequencing (e.g. PACBIO and Oxford
Nanopore). The generated data provide unprecedented
opportunity to understand the complex biological system at
different levels, from basic mutation, gene and protein structure
level, to pathway/module level, and even global networks.
Biclustering analyses play a significant role in making sense
out of various omics data toward the goal of generating a
system-level understanding.

Functional annotation of unclassified genes

Functional annotation categorizes genes into one or multiple
functional classes, which is an essential step for understanding
the physiological purpose of target/interesting genes. However,
a reliable functional assessment of a given gene can be carried
out only if all its interacting genes are known in advance, as a
gene can be involved in different pathways/networks to achieve
specific biological functions [71]. These are typically not known
for all genes or conditions. Biologists often deal with this chal-
lenge, in part, by taking advantage of the ‘guilt-by-association’
(GBA) principle. GBA assumes that functions can be transferred
from one gene to another through biological association. Two
kinds of information are required for a GBA-based functional
annotation: known functional annotation in public domain and
the associations between annotated and unannotated genes.
NCBI, Gene Ontology (GO) [72] and Kyoto Encyclopedia of Genes
and Genomes (KEGG) [73] are three dominant representatives of

such comprehensive databases; RegulonDB is one of the most
widely used resources for Escherichia coli K-12 gene regulation
[74]; The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/) offers genomics, epigenomic and proteomic data for thou-
sands of tumor samples across >20 types of cancer; and
PlantTFDB provides comprehensive genomic transcriptional
factor (TF) repertoires of green plants [75]. For unannotated
genes, co-expression is one of the most widely used association
indices, as gene expression profile collection is accessible and
can be used to derive other associations, e.g. co-regulation [76,
77] and co-evolution [78, 79]. Biclustering can be used to identify
co-expressed genes based on the similarity of their expression
profiles across a wide range of conditions (e.g. treatments, tis-
sues and samples), giving rise to a set of significant CEMs, i.e.
biclusters [80]. Based on existing annotation databases and
these CEMs, functional enrichment analysis is carried out to
identify significantly overrepresented functions, using the
hypergeometric distribution as a statistical test [81]. To be spe-
cific, the probability of an enriched function can be calculated as:

P X ¼ xjN; p;nð Þ ¼
pN
x

� � ð1�pÞN
n�x

� �

N
n

� � ;

where x is the number of genes in a bicluster that belong to the
certain pathway with size n, N is the total number of genes in
the whole genome, p is the percentage of that pathway among
all pathways in the whole genome and the P-value of getting
such enriched or even more enriched module is calculated as:

P� value ¼ P X � xð Þ ¼ 1� P X < xð Þ ¼ 1�
Xx�1

i¼0

pN
i

� � ð1�PÞN
n�i

� �

N
n

� � :

If the P-value is smaller than a specific cutoff (e.g. 0.01), then
it concludes that the bicluster is enriched with that function.
Highly enriched functions are assumed to be shared by all
members in the obtained biclusters, and unannotated genes in
those biclusters will be assigned to the most abundant func-
tional class [82, 83]. It is noteworthy that biclustering is usually
combined with the comparative genomics strategy in the case
of gene annotation for new-sequenced organisms, which builds
links between well-annotated model organisms and the new or-
ganisms [84].

Figure 1. Yearly comparison of biclustering algorithm development and algorithm application related studies. The references in 2017 were collected as of 26 March

2017.
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Despite the high potential of this approach, it is essential to
keep in mind that correlation does not guarantee causal rela-
tionships, i.e. genes with similar expression profiles may not
have the same function. The results should be interpreted as
preliminary computational predictions which provide useful
hypothesis/candidates for future testing [85]. Thus, experimen-
tal validation of the predictions is needed. However, the per-
centage of unannotated genes is high even in well-studied
model organisms [86] (e.g. the proportion of unannotated genes
is around 40–50% in E. coli), and it is unrealistic to go through all
the to-be-validated candidates exhaustively using experimental
methods. Therefore, researchers usually just verify functions of
a few genes of considerable interest [82], and in most cases,
they rely on computational validation (e.g. cross-validation [30]
and random forest [83]) and published literature support. This
logic applies to all tables in this review, and will not be men-
tioned again.

The basic idea of computational validation is to mask the
functions of some annotated genes in a CEM and check to see if
the functions can be correctly assigned back to the masked
genes. The validation could be conducted by assessing whether
the genes share conserved sequence motifs, as it is believed

that co-expressed genes tend to, although not necessarily, be
transcriptionally co-regulated [87]. Recently, researchers pro-
posed using genome-scale ChIP-seq data for the validation of
the prediction of CEMs [84]. Table 1 summarizes five representa-
tive studies, which inferred the functions of unannotated genes
from the well-annotated genes that they are co-expressed with.
For each of five studies, we introduce the input data for the
study (Data), biclustering algorithm and accompanying analysis
methods (Methods), specific tool and software (Tools/
Databases) used to accomplish the research, the output and re-
sults (Outcomes) and related references (Refs). All other tables
in this study follow the same structure.

Modularity analysis

Compared with individual cellular components, modularity
analysis puts more emphasis on the component’s relationship
and the topology of a module, i.e. a group of physically or func-
tionally linked molecules that work together to achieve distinct
functions [70]. Increasing evidence indicates that biological sys-
tems are inherently modular [89–91]. Therefore, modularity
analysis has been widely applied to investigate the organization

Table 1. Case studies of functional annotation of unclassified genes

Data Methods Tools/databases Outcomes References

Functional annotation of yeast
Microarray
(6200 ORFs under 515

conditions)

• Biclustering for gene classification SAMBA 2406 biclusters;
196 annotations of un-

known genes

[30]
• Functionally assign the unannotated genes in

biclusters to the most abundant class
SGD [88]

• Cross-validation for annotation assessment –
Functional annotation of plant genomes

Microarray
(21 031 genes of

Arabidopsis under 351
conditions)

• Biclustering on known PCW genes QUBIC 417 seed biclusters;
2438 candidate PCW genes

co-expressed with 349
PCW genes

[87]
• Expand biclusters to include additional genes QUBIC
• Construct co-expression network Cytoscape
• Predict and annotate motifs in promoter regions

of co-expressed genes in each module
WeederTFBS
MotifSampler
CompariMotif
PLACE
AGRIS

Microarray
(122 973 probes of

Switchgrass, 94
conditions)

• Homologous mapping of identified PCW genes Tblastn 991 homologs PCW genes;
104 clusters of co-expressed

genes;
823 new PCW genes;
112 new genes

[84]
• Assign mapped genes to PCW-associated

functions
DAVID

• Biclustering of mapped genes and expand for new
candidates

QUBIC

• Identify motifs for each bicluster –
• Validate prediction by annotated Arabidopsis PCW

genes
PCWGDa

Functional annotation of human and mouse
A correlation matrix

with associations
among mouse long
intergenic noncoding
RNAs (lincRNA), pro-
tein-coding genes and
lincRNAs

• Identify lincRNA ChIP-Seq Sets of lincRNAs associated
with a diverse range of
functions, including cell
proliferation, immune
surveillance, muscle
development, etc.

[82]
• Create association matrix of lincRNA and

protein-coding genes
GSEA

• Biclustering to identify functional modules
consisting of lincRNAs and protein-coding genes

SAMBA

• Assign putative functions to each lincRNA –
• Validate inferred biological functions for lincRNAs –

65 human microarray
data sets and GO
function categories

• Discover network patterns based on frequent
itemsets and biclustering

– 1126 functions assigned to
895 genes (779 knowns
and 116 unknowns)

[83]

• Design network topology statistic based on graph
random walk

–

• Assess functional annotation by a random forest
method

–

Note: – denotes for no specific existed tools, and this also applies to all the following tables.

aPurdue Cell-Wall-Genomics Database (https://cellwall.genomics. purdue.edu). PCW: plant cell-wall; ORF: open reading frames.
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and dynamics of biological systems at different levels, i.e. mod-
ule identification, dynamic module analysis and module net-
work reconstruction. Up to now, substantial efforts are devoted
to the first level of modularity analysis, module identification.

Biclustering has been applied to identify different types of
modules, which could be groups of interacting molecules (e.g.
microRNA, miRNA, sponge modules in [92] and miRNA-mRNA
modules in [93]), functionally related genes/proteins or any
other manually defined clusters [94]. Depending on the target
modules, different inputs and strategies are needed. For ex-
ample, (i) scRNA-seq gene expression data were used to identify
molecularly distinct subtypes of cells that contribute different
brain functions [95]; (ii) an integrated correlation matrix was
derived from expression data with target site information to
predict miRNA-mRNA functional modules [93]; and (iii) time
series expression data are often used to identify temporal tran-
scriptional modules that consist of activated genes at consecu-
tive time points [39]. As various modules are investigated,
additional supporting data are often involved. For example, pro-
moter sequences and integrated de novo motif detection are
integrated with co-expression biclustering to identify regulatory
modules [96]. Similar strategies have been implemented with
the integration of other supporting data types (e.g. operon pre-
diction, ChIP-seq data and network connections) [97].

With modules identified, further research concentrates on
investigating the characteristics of modules. Applying func-
tional annotation or enrichment analysis to these modules can
illustrate/deduce their roles in biological processes [92, 93, 98].
Where expression profiles are available in multiple evolutionar-
ily correlated species, researchers can conduct interspecific
comparisons and investigate the underlying evolutionary story.
For example, Waltman et al. [99] performed biclustering of mul-
tiple species data and then used a conservation score to identify
conserved modules among these species. Based on co-
regulation modules, Yang et al. [100] derived an expression-
based quantity to characterize the functional constraint acting
on a gene, and then tested the correlation of those quantities
with gene sequence divergence rate to estimate the evolution-
ary potential of genes. With temporal modules, the dynamic
regulatory interaction can be explored. Gonçalves et al. [101]
ranked TFs targeting the modules at each time point and graph-
ically depicted the regulatory activity in a module at consecu-
tive time points. Other researchers examined the external
relationship among modules, e.g. grouped modules of host pro-
teins based on a distance measure to form higher-level subsys-
tems [102]. Table 2 summarized four kinds of modularity
analysis applications, including functional module identifica-
tion, regulatory modules, evolution characteristic and module
subsystem. Module-based network inference, as a higher level
of modularity analysis, will be introduced in next section.

Biological networks elucidation

Biological interactions can be conceptualized as networks, with
nodes representing biological entries and edges denoting rela-
tionships between nodes. For example, in protein–protein inter-
action (PPI) networks, nodes are proteins and edges represent
physical interactions; in transcriptional regulatory networks
(TRNs), nodes stand for regulators [TFs, microRNAs and long
noncoding RNAs (lncRNAs)] and targets and edges are regula-
tory interaction directing from regulators to targets. Analyzing
these networks provides systematic views and novel insights
for understanding the underlying mechanisms controlling cel-
lular processes. Table 3 shows examples in network analysis,

which mainly focus on network inference and network
decomposition.

Compared with random networks, one distinct characteris-
tic of the biological networks is modularity, forming dense sub-
graphs [103, 104]. Several computational approaches have used
the module-based method to infer networks. For example, in
TRNs, one widely used approach is to group genes/regulators
based on the similarity of their expression profile using biclus-
tering, along with the modeling of the regulatory interactions
between those modules to get a higher-level understanding of
regulatory mechanisms [69]. This approach has been success-
fully applied in several other studies [105–107]. On the other
hand, Tanay et al. [90] used the hierarchical topology of the bio-
logical networks. They first used biclustering to identify mod-
ules based on integrated heterogeneous experimental data,
and then built a module graph, with nodes being modules and
edge connected two modules whenever their genes intersect
sufficiently. These small modules were clustered into super-
modules based on their functional association. In this way, a
hierarchical transcriptional network was built. It is noteworthy
that researchers often integrate multiple sources of data, in the
hope of getting a more comprehensive and accurate view of bio-
logical networks. For example, TRNs were constructed using ex-
pression data as well as sequence information and interaction
data [105–107], and Tanay et al. [90] combined expression data,
various interactions and phenotypes.

Network decomposition breaks a network down into sim-
pler units or components, e.g. network motifs and modules,
and is another hotspot in network analysis. Compared with
the previous modularity analysis section where biclustering
method is mainly applied to expression data, biclustering
takes networks as input in decomposition. Decomposition re-
duces network complexity and facilitates the exploration of
the underlying molecular mechanisms [108–110]. Henriques
and Madeira [37] developed and applied a pattern-based
biclustering algorithm to discover coherent modules from PPI
and showed that most modules were significantly enriched
with particular biological functions. Lakizadeh et al. integrated
time series expression data and static PPI networks to extract
dynamic PPI subnetwork and then detected protein complex
based on these subnetworks. They concluded that this method
could model the dynamicity inherent in static PPI networks
[111].

Advanced application of biclustering in
biomedical science

A genetic variation that contributes to a specific disease is usu-
ally detected through single-nucleotide polymorphisms (SNPs),
insertion/deletions, variable number tandem repeats and copy
number variants [112]. Besides, understanding the association
between above genomic information and specific diseases has
led to the discovery of new drugs [113]. However, the associ-
ation studies are considered as complicated processes because
disease risks are attributed to the combined effect of both mul-
tiple genetic variants and environmental factors. With the
increasing application and decreasing cost of big data gener-
ation techniques in biomedical and health-care informatics,
large volumes of biological and clinical data sets have become
available in the public domain. On one hand, this advance pro-
vides materials to identify new therapeutic targets, drug indica-
tions and drug-response biomarkers; on the other hand, it also
introduces more challenges to the data mining approaches
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[113]. As the applications of biclustering in basic biological sci-
ence lead to many discoveries and novel methodologies, there
is a rapidly growing interest in extrapolating it into the big bio-
medical data. Biclustering is deemed as a powerful tool that
could identify novel target genes, indicated drugs or biomarkers

of drug responses, in which the principles of biclustering being
used in functional annotation and modularity analysis of biolo-
gical data are also applicable. In this section, we provide
comprehensive guidance and discuss the applications of biclus-
tering, particularly the integration with other methods, for

Table 2. Case studies of modularity analysis

Data Methods Tools/databases Outcomes References

Functional module
miRNA-mRNA regulatory score matrix

derived from gene expression data

• Create miRNA-mRNA regulatory
score matrix based on expression
matrix and miRNA–target binding
information

– Four miRNA sponge
modules

[92]

• Biclustering on the score matrix to
infer miRNA-mRNA biclusters

BCPlaid

• Filter biclusters using statistical
methods and interaction
information

–

• Functional annotation GeneCodis
• Validation of predicted modules –

mRNA-miRNA association matrix derived
from gene expression data

• Construct mRNA-miRNA associ-
ation matrix based on expression
data and miRNA target information

– 100 putative miRNA
functional module

[93]

• Biclustering to identify functional
modules

BUBBLE

• Visualize and evaluate modules miRMAP
SC-RNA-seq (3005 mouse cortical cells) • Biclustering BackSPIN 47 distinct cell

subclasses
[95]

Regulatory modules
Microarray data (Saccharomyces cerevisiae

under 2200 conditions); upstream and
downstream sequences

• Biclustering COALESCE 450 regulatory
modules

[96]

Microarray (Mycobacterium tuberculosis
under 2325 measurements); and 154
TFs ChIP-seq data

• Biclustering cMonkey2 600 modules [97]

Time series microarray data for 2884
genes of S. cerevisiae in response to heat
stress under five time points

• Biclustering CCC-Biclustering 167 biclusters;
Regulatory snap-

shots of docu-
mented regulators
at each time point

[39, 101]
• Ranking the prominent prioritized

regulators targeting each of the
modules at each time point

Regulatory
Snapshots

• Graphically depict the regulatory
activity in a module

Baiacu;
BiGGEsTs

Evolutionary study
Three normalized expression matrixes

(Bacillus subtilis, Bacillus anthracis and
Listeria monocytogenes);

upstream sequences;
metabolic and signaling pathways, co-

membership in an operon and phylo-
genetic profile networks

• Biclustering on expression data FD-MSCM 150 biclusters [99]
• Evaluate the conservation between

biclusters
–

Microarray (4117 orthologs in 15, 14 and
17 tissue groups in rice, maize and
Arabidopsis, respectively)

• Biclustering to predict co-regulated
modules

ISA 1181 modules [100]

• Quantify the functional constraint
acting on a gene based on the
modules (eFC)

–

• Correlate eFC with gene sequence
divergence rate

–

Subsystem
HIV-1, Human Protein Interaction

Database (HHPID)

• Biclustering on the binary inter-
action matrix

Bimax 279 significant sets
of host proteins
show the same
interaction to HIV-
1

[102]

• Construct bicluster distance matrix –
• Construct neighbor-joining tree and

designate host subsystem
–
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detecting disease subtype, identifying biomarker and gene sig-
natures of disease and gene–drug association.

Disease subtype identification

Disease subtype could provide a framework for the development
of more accurate biomarkers by stratification of patient popula-
tions [114]. It can be defined by related molecular characteristics
or clinical features [115]. Gene expression data, depicted as a ma-
trix with genes as columns, and subjects as rows (with known or
unknown disease types), were widely used in molecular subtyp-
ing studies. This formulation is reasonable because pathways re-
sponding to specific disease subtypes may be activated across
most the patients of the subtype, and the gene expression can be
considered candidate signatures for subtypes [51]. With bench-
mark gene expression data sets and well-annotated disease sub-
type information, biclustering can discriminate biclusters from
the gene expression matrix, containing genes that share similar
expression patterns only in one or some specific subtypes

[33, 116]. Hence, de novo identification of biclusters can be used to
group subjects (patients) into disease subtypes, and these identi-
fied patient groups can be further evaluated by linking known
clinical characteristics [117]. The evaluation process assumes
that patients from different subtypes tend to have distinctive
clinical features. In cancer subtyping study, survival time, neo-
plasm disease stage, tumor size, tumor grade, tumor nuclei per-
centage and patient age have been commonly used to assess the
subtyping results [33, 117, 118]. Table 4 summed up those applica-
tion studies in certain diseases, including leukemia, gastric can-
cer, breast cancer, lung cancer, etc.

For each characteristic, a dependence test, e.g. chi-square test,
is used to examine the difference among all subtypes [119, 120].
To be specific, given a clinical characteristic (e.g. the presence of
an adverse drug reaction), the null hypothesis of the test is that
subtypes of a disease and the characteristic are independent,
i.e. there are no differences among the subtypes regarding that
characteristic. After summarizing the frequencies or counts of
cases under different subtypes into a r� c contingency table

Table 3. Case studies of biological networks elucidation

Inputs Methods Tools/databases Outputs References

Yeast transcriptional network
Nearly 1000 S. cerevisiae expression profiles;

110 TF binding location profiles; 30 growth
profiles; 1031 protein interaction; 4177
complex interactions and 1175 known
interactions from MIPS

• Modeling genomic information as
weighted graph

– 665 significant
modules;

Global Yeast mo-
lecular network

[90]

• Biclustering SAMBA
• Generate module graph and explore

associations between modules
Methanogenesis regulatory network

Microarray (1661 methanogen genes under 58
conditions);

upstream regions of all genes;
operon prediction from MicrobesOnline;
protein interactions from String

• Biclustering to Identify co-regulated
gene subsets

cMonkey 166 biclusters;
GRN model includ-

ing a set of 1227 EF
and TF regulatory
influences that
interlink the regu-
lation of 1661
genes

[105]

• Construct GRN to infer transcriptional
influences of each bicluster

Inferelator

• Visualize GRN Cytoscape
Gaggle

• Use TF knockout experiment and extra
data and to validate the GRN model

–

Mycobacterium tuberculosis regulatory network
Microarray data (M. tuberculosis genes under

2325 conditions);
upstream regions of all genes;
�5000 operon prediction from

MicrobesOnline;
�250 000 protein interactions from String

• Biclustering to identify co-regulated
gene subsets

cMonkey 598 biclusters;
A global regulatory

network covering
98% of MTB genes

[106]

• Construct GRN model to infer transcrip-
tional influences of each bicluster

Inferelator

• Validate the GRN model using new data
sets; visualize network

BioTapestry

Phaeodactylum tricornutum regulatory network
RNA-seq (1214 phaeodactylum tricornutum

genes from 179 samples);
genome annotation, chloroplastic and mito-

chondrial genomic information, functional
annotation, PPIs

• Biclustering to identify putatively
co-regulated genes

cMonkey2 121 biclusters cover-
ing 1214 metabolic
genes and TFs

[107]

• Construct regulatory network to infer
regulatory influences

Inferelator

• GO enrichment analysis to identify po-
tential biological processes carried out
by the co-regulated genes

–

Biological network decomposition
Two gene interaction networks for yeast; two

PPIs from E. coli and human

• Biclustering BicNET Modules with
heightened biolo-
gical significance

[37]
• Assess biological significance of

retrieved modules
GOrilla

Yeast metabolic cycle expression matrix for
3553 genes under 12 time points; one yeast
PPI network with 21 592 interactions
among 4850 proteins

• Biclustering BiCAMWI Protein complex [111]
• Extract dynamic subnetworks from PPI –

• Detect protein complex –

GRN: Gene regulatory network; MTB: Mycobacterium tuberculosis.
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(r ¼ number of rows; c ¼ number of columns), the chi-square
test statistic is calculated by using the formula:

v2 ¼
X ðO� EÞ2

E
;

where O represents the observed frequency, and E represents
the expected frequency under the null hypothesis, which is
computed by:

E ¼ row total� column total
sample size

:

The test statistics will be compared with the critical value of
va

2(df ¼ ðr� 1Þ � ðc� 1Þ). If v2 > va
2, the null hypothesis will be

rejected, meaning that there are differences among subtypes re-
garding that characteristic (see details in Supplementary
Example S1). Meanwhile, interpretation of the identified biclus-
ters in gene dimension can be carried out, and more details of
biomarker and gene signatures detection can be found in the
next section.

Biomarker and gene signatures detection

Biclustering proved to be influential for mining information
from elaborate biomedical data sets, especially in cancer

research. Cancer is complicated because of the heterogeneity of
tumor cells and is recognized as a system-level disease [129,
130]. Biclustering has been used with human gene expression
data to identify cancer subtype patterns [33, 116–118, 131],
metabolic pathways highly related to cancer progression [121],
marker genes of a specific cancer type/subtype [95, 132] and
clinical risk factors of cancer [133]. Also, studies of common or
rare diseases have used biclustering of human gene expression
data to identify phenotype–genotype associations [134, 135],
dysregulated transcription modules [136] and genetic risk vari-
ants [137]. Depending on the available information, various lev-
els of analyses can be conducted as summarized below.

Basically, given gene expression matrix with rows represent-
ing genes and columns representing patients, biclustering can
identify co-expressed gene clusters that are specific to character-
istics of patients, e.g. certain subtypes or disease stages. If genes
included in the identified biclusters have differential expression
patterns between different subtypes, then they can serve as can-
didate gene signatures or biomarkers for cancer staging and sub-
typing [121]. If predefined gene sets are given, and clinical
characteristics/phenotype labels are also available, researchers
can carry out gene set enrichment analysis (GSEA) first to investi-
gate the correlation between gene sets and clinical characteris-
tics/covariates (e.g. tumor grade, stage, age or hormone status).
Based on these correlations results, a binary association matrix
can be derived, with rows representing gene sets and columns

Table 4. Case studies of disease subtype identification

Data Methods Tools/databases Outcomes References

Leukemia
Microarray data with 12 533 probes

from 72 patients of different sub-
types of leukemia

• Biclustering by qualitative bicluster-
ing algorithm

QUBIC Biclusters with cancer sub-
typing information

[33]

Gastric cancer
Microarray data for 80 paired gastric

cancer and reference tissues from
nontreated patients

• Biclustering on gene expression
data for bicluster identification

QUBIC [33]; Pathways associated with
cancer development;

identified gastric cancer
subtypes

[121]

• Pathway enrichment analysis DAVID [122]
KOBAS [123]
HPID [124]

Breast cancer
Microarray data with 7756 genes and

matched clinical data for 437 pri-
mary breast tumor patients

• Adjust for cohort-correlated batch
effect across the nonadjuvant-
treated tumor data set

ComBat [125] Similar clinical features
associated with tumor
within the same cluster

[118]

• Biclustering to identify molecular-
based tumor subgroup

cMonkey [126]

• Determine molecular classifiers for
each bicluster

PAM [127]

Microarray data with 17 814 genes
across 547 samples and gene net-
work consisted of 11 648 genes and
211 794 interactions

• Assign weights to genes based on
impact in the network and expres-
sion variation

PageRank [128] Cancer subtypes [117]

• Weighted biclustering algorithm
based on a semi-nonnegative matrix
tri-factorization

NCIS [117]

Colon and lung cancers
290 colon cancer samples, each has

384 methylation probes covering 151
cancer-specific differentially methy-
lated region

Expression levels of 12 625 genes in 56
patients having lung cancer

• Heterogeneous sparse singular
value decomposition-based
biclustering

– Variance biclusters of
methylation data in can-
cer versus normal pa-
tients using colon cancer
data

cancer subtype patterns
using lung cancer data

[116]
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representing pairwise tests for phenotypes, the element ‘1’ denot-
ing significant association between gene set and pairwise test,
and ‘0’ denoting no significant association. Biclusters identified
from this association matrix can represent modules that associ-
ated with known clinical covariates [133].

A matrix of SNPs or phenotypes and the extended matrices
from them, including a matrix of regression coefficients of SNPs
associated with traits and matrix of P-values of SNPs in traits,
were subjected to biclustering to recognize the phenotype–
genotype connections [134, 135, 137]. With the developments of
RNA-seq, whole transcriptomic data are becoming available to
characterize and quantify gene expression [138]. The recent ad-
vent of scRNA-seq technology has enabled researchers to study
heterogeneity between individual cells and define cell type a
based solely on its transcriptome [132]. Using biclustering, re-
searchers can not only group cells into subpopulations but also
identify biologically important gene signatures for each class
simultaneously [95, 139]. For example, Zeisel et al. [95] recently
classified single cells from the brain through biclustering, which
identified numerous marker genes and highly restricted expres-
sion patterns of transcription factors for cell types. Kiselev et al.
[132] developed a stable and accurate consensus tool, based on

such scRNA-seq data, which can quantify the inherent hetero-
geneity of single cells, define the subclonal composition and
identify marker genes [132]. Meanwhile, new biclustering appli-
cations are emerging, such as detecting disease marker genera
from gut biome [140]. The gut microbiome is typically tricky to
profile, and use of biclustering enhances identification of spe-
cific taxonomic signatures that can support the elucidation of
disease risk [140].

These identified biclusters were subjected to downstream ana-
lysis of functional gene annotation [131, 134], gene network infer-
ence [134] or phenomic analysis [134, 135, 137]. Most of the gene
functional annotations were done through the UCSC Genome
Browser [141]. Gene networks among clustered genes were com-
monly constructed by the Ingenuity Pathways Analysis software
developed by QIAGEN. Phenomic analysis performs pairwise gen-
etic correlation of traits/phenotype against gene sets identified by
biclustering, which is usually done using hypergeometric statistics
or paired t-test. Table 5 gives an overview of biomarker/gene sig-
nature identification studies, with the detailed procedures regard-
ing biclustering and accompanied analyses specified in the
column ‘Methods’. It is noteworthy that the application of biclus-
tering in these biomedical studies is much more complicated

Table 5. Case studies of biomarker and gene signatures detection

Data Methods Tools/databases Outcomes References

Breast cancer
Association matrix of 1008

gene expression microarray
profiles of primary breast
tumors

• Biclustering binary data matrix iBBiG Modules associated
with clinical covari-
ates in breast cancer

[133]

Matrix of normalized miRNA-
seq expression profiles

• Biclustering to evaluate miRNA deregulation ISA [31] 12 different miRNA
clusters

[131]
• Validate each bicluster by an external reposi-

tory of different groups of miRNAs in human
species

MetaMirClust [142]
UCSC [141]

• Compare results with a different biclustering
algorithm

SAMBA [30]

Osteoporosis
Regression coefficients matrix

of 1109 unique SNPs associ-
ated with 23 studied traits
from the GWAS data of the
Framingham Osteoporosis
Study

• GWAS database mining Tagger [143] SNP–phenotype
connections;

highly genetically corre-
lated traits;

candidate genes identi-
fied for multiple bone
traits

[134]
• Biclustering on matrix of SNPs against

phenotypes
Bayesian biclustering

[144]
• Gene annotation and identification of enriched

canonical pathway and gene network
inference

UCSC [145]
IPA

Williams–Beuren syndrome
Normalized skin fibroblast

microarray data set includ-
ing 9329 probe sets and 96
samples

• Identify transcriptional modules ISA [31] 72 dysregulated mod-
ules were found

[136]
• Test modules containing at least 10 genes for

dysregulation using hypergeometric
distribution

–

Schizophrenia
8023 subjects, 4196 patients

and 3827 controls, with 2891
SNPs in each subject

• Perform biclustering for both phenotype and
genotype data

bioNMF [146] Causally cohesive geno-
type–phenotype
relations

[135]

• Cross-correlate phenotype and genotype
biclusters

–

• Organize and encode relations into topologic-
ally organized networks

PGMRA [135]

• Estimate genotype-associated disease risk SKAT [147]
Complex diseases

P-value matrix of 466 423 SNPs
in 32 independent diseases/
traits

• Identify biclusters of diseases/traits and SNPs SparseBC [148] Genetic risk variants for
complex diseases

[137]
LAS [149]
SSVD [150]

• Map detected SNPs to genes –

GWAS: Genome-wide association studies; PCW: plant cell-wall; CW: cell wall; MTB: Mycobacterium tuberculosis; ORF: open reading frames.
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compared with those in basic biological applications, regarding
the data sources, data preprocessing methods and downstream
statistical analyses.

Gene–drug association

In drug development, it is vital to understand the complicated
responses in the human body to various drug treatments [151,
152]. However, rigorous testing of safety and efficacy of novel
drug makes drug development time-consuming, expensive and
often unsuccessful. Alternatively, computational drug repos-
itioning is termed as an efficient way to identify new applica-
tions for current medicines [153]. By the advancement of
biotechnologies, a significant amount of gene expression data
becomes a paramount component in characterizing the human
responses to drugs. Here, we review the applications of biclus-
tering in the context that is considered appropriate in revealing
the co-expression patterns encompassed in the drug-perturbed
responses [154]. The genome-scale drug-treated gene expres-
sion data were served as raw materials for identification of co-
expression modules using biclustering methods, where differ-
ent drug treatments were conditions. Table 6 gave an overview
of four typical studies that were examining the drug-induced

co-expression modules. In these studies, information for both
gene and drug members was mined to characterize the detected
drug-induced modules. Conservation of identified biclusters
was first evaluated across data sets through overlapping genes
and drugs [154]. Then, genes and drugs in the bicluster were
examined, respectively. Functional enrichment of these genes
was tested using the DAVID knowledge base to determine the
biological relevance of these biclusters [154, 155]. Enrichment of
drug annotation terms can be assessed by various databases,
such as STRING [156] and DAVID [122], for identification of TFs
linked to these biclusters [154, 157, 158].

Conclusion and discussion

In summary, GBA is the basis of expression profile-based biclus-
tering; however, co-expression does not guarantee co-
regulation. One popular strategy to further elucidate co-
regulation is to integrate supporting data that provide evidence
of co-regulation with expression data, e.g. motif prediction and
network connection. In support of a more comprehensive clari-
fication of complex biological systems in a cell, existing biolo-
gical network inference tools should embed multiple regulatory

Table 6. Case studies of gene–drug association

Data Methods Tools/databases Outcomes References

Drug–gene associations
NCI-60 cancer cell line in drug re-

sponse; gene expression data

• Identify co-modules of drugs and genes PPA [155] 859 co-modules
were identified,
and drug–gene as-
sociations were
predicted more ac-
curately than
other algorithms

[155]
• Test drug–gene association DrugBank [159]

Connectivity Map
[160]

Drug-induced transcriptional modules

6100 gene expression profiles of
human cancer cell treated with
1309 small molecules from
CMap [160]1743 expression pro-
files from liver tissues of drug-
treated rats [161]

• Biclustering drug-induced gene expression
profiles [31]

ISA [52] Drug-induced tran-
scriptional
modules

[154]

• Hypergeometric test for significance as-
sessment of overlaps among gene
members

–

• Predict novel gene functions by comparing
modules of human cancer and rat liver cell
lines

STRING [156]

• Test enriched gene functions and identified
biological themes among transcriptional
modules

DAVID [122]

TFs for drug-associated gene modules
7056 genome-wide expression pro-

files of five different human cell
lines treated with 1309 chemical
agents at different dosages from
CMap [160]

• Identify drug–gene modules by biclustering
method

FABIA [34] Links between 28
modules with 12
TFs were detected

[157]

• Indicate GO and Kyoto Encyclopedia of
Genes and Genomes (KEGG) information
associated with genes in modules

DAVID [162]

• Use cumulative hypergeometric test to
evaluate drug target enrichment

–

Transcriptomics and decision in early-stage of pharmaceutical drug discovery

Transcriptomic profiles in eight
drug discovery projects of oncol-
ogy, virology, neuroscience and
metabolic diseases

• Normalize and filtrate mRNA expression
data

– Transcriptional ef-
fects of
compounds

[158]

• Identify transcriptional modules FABIA [34]
• Identify transcriptional modules related to

the desired effect using target-related bio-
assay measurements

PSVM [163]
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signals, e.g. TF, lncRNAs and miRNAs, and organically integrate
biclustering within their network construction framework. Use
of these methods and integration of well-annotated phenotypic
data can enhance the identification of CEM and improve
systems-level insights. Combination of biclustering of gene ex-
pression and clinical phenotype data with successive enrich-
ment analyses has revealed disease subtype patterns and
diseases biomarkers. Biclustering has contributed to drug devel-
opment by exposing the co-expression patterns from the drug-
treated gene expression data. Most uses of biclustering in bio-
medicine to date rely on a handful of conventional biclustering
algorithms, as it remains unclear which are sufficiently accur-
ate for any given data type.

A workflow of biclustering application is proposed here to
integrate the methods and tools used in both biological and bio-
medical fields discussed above. As shown in Figure 2, there are
three layers (Data, Methods and Results) in this workflow. The
data sources in the first layer provide the information directly
collected and derived from genotyping and phenotyping results.
Different method combinations in layer two can be used for
various analytical requirements. Biclustering can be used to
analyze phenotype matrix, genotype matrix, as well as the
derived association matrix of these two matrices. A few ex-
ample tools were shown in the figure for biclustering methods,
and a detailed table for the relevant tools can be found in
Supplementary Table S1. These biclustering methods are often
accompanied by downstream analysis, such as functional

annotation, module analysis or network construction, to inter-
pret the identified biclusters, together with statistical evalu-
ation tools applied to demonstrate bicluster associations.
Examples of results from a combination of the methods identi-
fied in layer two provide specific illustrations of corresponding
outputs [33, 87, 118, 164, 165]. The connections between data
and methods offer model analysis paths for researchers to use
depending on the characteristics of their data.

The identified workflow guides many current studies; how-
ever, new biotechnologies are developing and emerging rapidly,
while the corresponding biclustering tools are not evolving at a
parallel pace. This situation is an important factor limiting the
application of biclustering analysis to more complex data sets,
e.g. multidimensional biological image data, requiring integra-
tion of multiple variables. Meanwhile, considering the variety
and complexity of data from various platforms, the data inte-
gration and analyses are not trivial, and it is more challenge to
combine multiple required computational techniques with
biclustering analysis. Furthermore, different data types may
need specifically designed biclustering algorithms. For example,
scRNA-seq data exhibit higher heterogeneity than RNA-seq
data and are increasing in popularity; however, few biclustering
algorithms are explicitly designed for these new data. Hence,
additional biclustering methods, which include specific design
attributes taking into account the characteristics of biological
and biomedical data, are still needed to facilitate larger-scale
applications of biclustering.

Figure 2. The overall workflow of biclustering application mechanism (related to upstream and downstream process). Three layers are shown to provide the path from

raw data, appropriate analytical methods/tools to various cases of the result. The power of biclustering is illustrated by the ability to generate (from left to right in the

figure) co-expressed gene modules, subtype or biomarker, regulatory networks, clinical entities and estimated disease free survival (DFS) distribution.
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Key Points

• This article provides a comprehensive review of the ap-
plications of biclustering in the biological and the bio-
medical fields.

• Biclustering has been widely used in GBA-based gene
functional annotation. The documented functional in-
formation and the associations between annotated and
unannotated genes are two kinds of essential
information.

• Biclustering can be used for module identification.
Depending on the to-be-identified modules, different in-
formation could be integrated with expression data. Once
identified, further analysis of functional annotation, evo-
lutional analysis and module network can be conducted.

• Biclustering analysis is often combined with network
construction methods in module-based network infer-
ence, which facilitates the exploration of molecular
mechanisms for biological process.

• With benchmark gene expression data sets and well-
annotated disease subtype information, biclustering
can group subjects/patients into disease subtypes, and
dependence test can be applied to patient groups to in-
vestigate their clinical characteristics further.

• Biclustering of gene expression data in human yields
biclusters of the subset of patients associated with a
subset of genes, these genes are candidate biomarkers
and the identified biclusters can provide other useful
information like phenotype–genotype associations.

• Biclustering on drug-treated genome-wide expression
data can recognize drug-induced modules. Following
conservation analysis and enrichment analysis are
often needed to verify gene–drug association.

• A workflow of biclustering application is generated,
aiming to assist researchers to effectively derive biolo-
gical knowledge and novel insights from their big data.

Supplementary Data

Supplementary data are available online at https://aca
demic.oup.com/bib.
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