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Abstract: 

Computational and mathematical modelling has become a valuable tool for investigating 

biological systems. Modelling enables prediction of how biological components interact to 

deliver system-level properties, and extrapolation of biological system performance to 

contexts and experimental conditions where this is unknown. A model’s value hinges on 

knowing that it faithfully represents the biology under the contexts of use, or clearly 

ascertaining otherwise and thus motivating further model refinement. These qualities are 

evaluated through calibration, typically formulated as identifying model parameter values 

that align model and biological behaviours as measured through a metric applied to both. 

Calibration is critical to modelling, but is often under-appreciated. A failure to appropriately 

calibrate risks unrepresentative models that generate erroneous insights. Here we review a 

suite of strategies to more rigorously challenge a model’s representation of a biological 

system. All are motivated by features of biological systems, and illustrative examples are 

drawn from the modelling literature. We examine the calibration of a model against 

distributions of biological behaviours or outcomes, not only average values. We argue for 

calibration even where model parameter values are experimentally ascertained. We explore 

how single metrics can be non-distinguishing for complex systems, with multiple component 

dynamic and interaction configurations giving rise to the same metric output. Under these 

conditions, calibration is insufficiently constraining and the model non-identifiable: multiple 

solutions to the calibration problem exist. We draw an analogy to curve fitting and argue 

that calibrating a biological model against a single experiment or context is akin to curve 

fitting against a single data point. Though useful for communicating model results, we 

explore how metrics that quantify heavily emergent properties may not be suitable for use 
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in calibration. Lastly, we consider the role of sensitivity and uncertainty analysis in 

calibration and the interpretation of model results. Our goal in this manuscript is to 

encourage deeper a consideration of calibration, and how to increase its capacity to either 

deliver faithful models or demonstrate them otherwise. 
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Main Body 

 

Introduction 

 

Explored in ever greater depth, our appreciation of the sheer inherent complexity of 

biological systems grows [1]. Important system-level properties, such as disease and health, 

emerge from local interactions amongst vast numbers of molecular and cellular components 

[2]. These emergent properties cannot be predicted from examination of system 

components in isolation [3,4]. As immunologist Irun Cohen reflects: “The more data we have 

access to, the more confused we have become” [5]. Consequentially, computational and 

mathematical modelling has arisen as a “constructionist” tool that complements 

reductionist techniques [6]. Models reveal how local-level component dynamics impact 

system-level performance, and can predict real system behaviour in a given context. That 

anything can be manipulated or measured in a model is arguably its greatest upside [7,8]. 

The greatest downside is the risk that a model is unrepresentative of the biology, and hence 

misleads rather than informs.  

 

Two aspects of biological modelling can give rise to unrepresentative models, and 

complicate the interpretation of modelling results. First, models are abstract 

representations of the systems they seek to capture. Despite advances in multi-scale 

modelling [9,10], it is currently both technologically and conceptually impossible to fully 

model a biological system, from the molecule, through the cell and then organism, to the 

ecosystem. Low-level process dynamics are abstracted and summarily represented, e.g. as 
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distributions. Many biological components are similarly omitted, amalgamated or 

abstracted, and together they are represented in a simplified subset of the full spatial 

environmental. It is rarely known a priori what the most appropriate abstractions of a 

biological system will be [11]. Some mathematical models can capture realistic population 

sizes of system components. For others, such as agent-based modelling wherein every 

individual component of the model is explicitly represented [12], this is impractical. Second, 

the biological system is likely incompletely understood; gaining a greater understanding may 

in fact motivate the modelling enterprise. How, then, does one construct a representative 

model of such a system? The implication is that we cannot assume a direct mapping of 

biological- to model-component(s), neither in terms of component concept, dynamics nor 

population size. Rather, establishing and testing this mapping is accomplished through 

model calibration [7]. 

 

We distinguish between model mechanics and parameters. A model’s components, and the 

dynamics they are capable of, represent its mechanics. A model’s parameters assign rates 

and probabilities to component dynamics, and values to initial conditions. At the very least, 

calibration must seek to establish suitable parameter values. Ideally, however, calibration 

should be capable of detecting inappropriate model mechanics, and thus unrepresentative 

models. 

 

Calibration approaches typically seek parameter values that align model and real-world 

behaviours and outcomes under some single context or experimental condition. Approaches 

range from manual exploration of putative parameter values, drawing heavily on domain 

expertise [13,14], to automation. Domain experts can help overcome a lack of available 
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data, or conflicts and inconsistencies therein [15], but can prove inferior to systematic 

approaches [14,16]. Automated calibration approaches include the use of heuristic search 

algorithms [17,18], Bayesian methods such as Markov chain Monte Carlo and maximum 

likelihood [4,19], Kalman filters [20], and standard curve fitting techniques [21,22].  

 

Here we explore strategies aimed at increasing the power of calibration to either deliver 

representative, accurate models, or demonstrate them otherwise. Our aim is not to review 

the specific fitting technologies cited above, but to explore the broader contexts through 

which calibration can be performed.  

 

 

Diverse sources for model parameter values and mechanics 

 

Modellers can industriously delve through literature seeking experimental sources for 

model parameter values. For instance, Efroni et al. report sourcing parameter values from 

around 300 papers in their modelling of thymic T cell maturation [23]. We posit that, even 

where putative values for all model parameters can be extracted from the literature, 

adjustment and tuning through calibration is still warranted. In reproducing biological 

system dynamics, components included within a model must compensate for the activities 

of those that are omitted or abstracted. For instance, as key mediators of the adaptive 

immune response, T cells feature heavily in immunological models [24,25]. Currently, 29 

distinct subsets of T cell are recognised [26], encompassing a functional richness and nuance 

beyond most models’ aspirations. A modelled “T cell” may not correspond exactly with any 

single subset, but rather an integration of several. Hence, putative model parameters 
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originating from measurements of a specific subset may still warrant adjustment to account 

for abstraction. This principle is further compounded if data derives from different 

experimental systems, be they different organisms or systems of study, e.g. humans, mice 

or zebra fish, in vivo, in vitro or other in silico models. For instance, in vivo, ex vivo and in 

vitro studies have found differing effects of stress on NK cell cytotoxicity [27]. Elsewhere, 

differing transcriptomics results between in vitro and in vivo toxicology studies pose a 

challenge for the pharmaceutical industry [28]. Lastly, cell migration patterns can differ 

substantially between in vivo and in vitro contexts [29]. 

 

Responses to intervention can also differ considerably across organisms, reflecting 

mechanistic differences in biological components. For instance, in a study of over 100 

strains of mouse commonly used in research, the development of insulin resistance, and 

associated metabolism and physiology, in response to high fat-high sucrose diets was found 

to vary by over an order of magnitude [30]. Further, the effect of caloric restriction on 

lifespan, body weight, core body temperature, insulin sensitivity, metabolism, and 

pathology has been found to differ between mouse strains and sexes [31,32]. 

 

When acquired from multiple experimental systems, particularly those other than the 

specific system being modelled, putative parameter values are better thought of as 

guidelines than prescriptions. Yet calibration is not always reported in modelling literature, 

even when estimates for particular parameters vary by several orders of magnitude, e.g. 

Swerdlin et al. cite literature reporting the frequency of B cells specific for a given antigen to 

lie in the range of 1 in 10k to 1 in 1,000K [33].  
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An alternative to obtaining parameter values from highly diverse sources is to extensively 

interrogate the exact experimental system being modelled, and calibrate parameters 

against these data. For instance, in modelling hematopoietic stem cell expansion dynamics 

under given cytokine exposure, Gullo et al. acquired extensive experimental data of 

expansion from the exact in vitro system they were modelling for use in calibration [34]. To 

calibrate their model of the immune response in murine tuberculosis, Marino et al. 

quantified four key leukocyte population sizes in the lymph nodes and lungs at 7 time points 

post-infection obtained from 80 mice [35]. From 5000 samples of model parameter value 

space, the single set of values most closely (qualitatively) resembling in vivo dynamics was 

selected as the starting point for calibration. 130 parameters, those related to leukocyte 

dynamics, were calibrated; the remaining 80 retained these starting values. This practice 

can mitigate the diversity of experimental systems from whence parameter values are 

drawn as a source of uncertainty or error, though ideally sufficient data is extracted to 

calibrate all model parameters. Putative parameter values sourced from elsewhere can 

form initial values or boundaries of exploration for calibration.   

 

 

Calibrating to reproduce distributions of outcomes 

 

Stochasticity is a quality ubiquitous across Biology. Through it, identical interventions can 

generate different outcomes, even in genetically identical individuals [36]. Recent statistical 

meta-analyses have highlighted the importance of the variance in outcomes, not just their 

mean average. For instance, a low carbohydrate (LC) dietary weight-loss intervention can 

outperform caloric restriction (CR) on average, but in so doing incurs a larger spread of 



 10 

outcomes [37]; a greater proportion of individuals gained weight on LC diet than CR, despite 

LC’s lower average. Rather than determining LC the superior intervention, we must 

understand the mechanisms at play, and stratify patients onto interventions optimal for 

them as individuals. Similar trends exist for the effects of dietary interventions on lifespan, 

arguably an even more critical outcome [38], and the number of food sources on 

evolutionary fitness [39]. The spread of data is important, and stochastic models can offer 

insight into the mechanisms generating it. This requires calibration against the spread, not 

just the mean. The Kolmogorov-Smirnov (KS) statistic represents a powerful tool for 

accomplishing this, Figure 1. This non-parametric statistic is sensitive to differences 

anywhere across two distributions, not only their averages. As illustration, Read et al. 

employed the KS statistic to align in silico with in vivo distributions of leukocyte motility 

characteristics [40]. Only by explicitly modelling and tuning cellular heterogeneity could 

population-level dynamics be reproduced; some cells are inherently faster and more 

directional than others. 

 

We advocate for effect size measures rather than statistical significance (p values) in 

stochastic model calibration [41]. Unless the distributions being contrasted arise from the 

exact same process, statistical significance is always attainable given sufficient replicates, 

Figure 1C. As abstract representations from which additional replicates are trivially 

obtained, models will never be statistically indistinguishable from the biology. Rather than 

aspire to perfect (unattainable) model alignment with biology, we suggest expressing an 

acceptable tolerance in terms of effect size, which is relatively invariant to increasing 

replicates, Figure 1C. Example effect size statistics include: the KS statistic, described in the 

Figure 1 caption; the Vargha-Delaney “A” statistic, which quantifies the probability that a 
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randomly selected sample from one distribution is larger than a randomly selected sample 

from the other, and for which guidelines equating A scores to “small”, “medium” or “large” 

effects exist [42]; and Cohen’s “δ” statistic, the difference between two distributions’ means 

divided by their pooled standard deviation.  

 

Robust stochastic model calibration requires that any observed disparities can be attributed 

to inappropriate model parameter values or mechanisms, rather than artefacts arising from 

an insufficient sample size [15]. However, calibration can entail exploring numerous points 

in parameter space, and acquiring large sample sizes (model executions) for each point can 

compound into considerable computational expense, particularly for agent-based models. 

Modellers may wish to select a statistical precision (sample size) in accordance with the 

computational capacity available. A technique to quantify how many replicates are needed 

to reduce the contribution of stochasticity to a desired level was derived in [15], and 

implemented in [43]. It entailed contrasting n (e.g. 20) groups of model execution replicates, 

all generated under identical parameter values, using the Vargha-Delaney “A” statistic. This 

procedure was repeated with varying numbers of replicates, after which the maximum “A” 

statistic score obtained amongst group comparisons was plotted against sample size used. 

The authors sought the minimum sample size delivering a maximum “A” statistic score 

indicating a “small” effect [15]. This technique essentially performs “mock” parameter 

adjustments, therein quantifying the portion of an observed difference in model output 

(when calibrating proper) attributable to model stochasticity for the sample size used. There 

is no value in attempting to calibrate beyond this baseline level of alignment: any 

improvements would likely represent sampling artefacts rather than an improved model. 
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The “A” statistic was used because it formed the basis of subsequent analyses; any other 

statistic more relevant to the given calibration effort can be substituted.   

 

 

Single metrics alone may not fully distinguish complex systems 

 

Most conventional model fitting techniques require a single metric to quantify the 

difference between modelled and biological dynamics. However, complex biological systems 

are not necessarily quantifiable through single metrics alone. They constitute numerous 

types of interacting component with many-to-many mappings between components and 

functions, and encompass both positive and negative feedback loops [44,45]. A single metric 

may not be fully distinguishing in such a system. This can render a system, and a putative 

model thereof, non-identifiable [20]: multiple distinct component configurations and 

dynamics can produce the same value. For instance, motility research has classically 

employed “mean squared displacement” to quantify how far agents travel on average over 

time [46]. Typically used to characterise search behaviour on a scale of “localised” to 

“highly-directional”, this metric is nonetheless non-distinguishing. Slow-moving directional 

agents can yield the same mean squared displacement as fast-moving non-directional 

agents, and yet the spatial coverage, and hence interactions, of these agents can differ 

vastly [47,48]. 

 

In lieu of a more distinguishing metric, the only recourse is to instead employ a suite of 

them [49]. Yet, this is not readily applicable to standard model fitting techniques given their 

reliance on single metrics. Multi-objective optimisation (MOO) technologies can offer a 
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solution [50]. The differences between target biological and model dynamics, as measured 

by each metric, are posed as separate objectives to be minimised through MOO, Figure 2A 

[14,51]. MOO typically employs a guided search to find solutions, in this case parameter 

values, that best satisfy the objectives. Given its abstractive nature, no single set of 

parameter values will likely provide a perfect model alignment across all metrics. Rather, 

tradeoffs will exist, where given parameter values will provide better alignment on some 

metrics than others, Figure 2B. MOO provides a Pareto front of optimal parameter value 

sets: those for which performance improvement in any one metric necessitates worsening 

in another. Knowledge of these tradeoffs can inform modellers’ adoption of parameter 

values from calibration [14,49]. 

Alternatively, subsequent experiments can be replicated using all Pareto front parameter 

values, thereby exposing the extent to which results hinge on calibration choices rather than 

the intervention [51]. 

 

MOO-based calibration has found extensive application outside of Biology, in the calibration 

of hydrological models [52]; water basin properties are not sufficiently constrained by single 

metrics alone [49]. Elsewhere, Newland et al. calibrate land-use models through MOO, 

employing objectives quantifying capture of absolute location and patterns in land use [14]. 

In a Biological context, we demonstrated MOO-based calibration for models of murine 

multiple sclerosis [51] and leukocyte search behaviour [40]. The former employed metrics 

capturing the proliferation dynamics of several leukocyte populations involved in disease 

onset and subsequent recovery, recapitulating a prior expert-informed manual calibration 

effort [24]. The latter overcame the aforementioned mean squared displacement 

drawbacks by using a complementary suite of motility metrics. 
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Imperative in model fitting is the detection of overfitting, wherein the model captures not 

only general biological behaviours but also the specific noise nuances of the (training) 

dataset against which it is fitted. The standard approach of detecting overfitting through a 

separate, independent validation dataset not used for training can be ported to the multi-

objective context [51]. Separate Pareto fronts are maintained with respect to both datasets, 

and overfitting is indicated through the proportion of training dataset Pareto front member 

solutions that are not also members of the validation dataset Pareto front, Figure 2C.  

 

MOO-based calibration approach can facilitate model selection by contrasting the Pareto 

fronts generated under competing putative models [40,51], Figure 2D. The superior model’s 

Pareto front will contain solutions offering better tradeoffs than alternatives. However, 

there currently exists no formal framework to control for model complexity under this 

approach, such as in the Akaike information criteria. Hence, the technique may simply select 

the most complex model. This can be mitigated by formulating the number of model 

parameters, or some other measure of model complexity, as an objective to be minimised 

[53]. The tradeoff of better biological capture versus model complexity is thus made explicit, 

allowing modellers to select accordingly. 

 

The “NSGA-II” algorithm is a very popular MOO implementation [54]. However, the more 

recent Universal-NSGA-III improves scalability to many objectives, which can otherwise lead 

to a cumbersomely large number of similar solutions [55], Figure 2E. We provide an open-

source implementation of Universal-NSGA-III at 

https://github.com/marknormanread/unsga3. The NSGA algorithms generate putative 
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solutions through a genetic algorithm, employing natural selection and genetic 

recombination processes to iteratively improve quality. There exist other solution-

generation strategies compatible with the Pareto front concept, as reviewed in [56].  

 

 

Calibrating against multiple scenarios 

 

In curve fitting and regression, one attempts to fit (well-understood) equations to data, 

predicting how a dependent variable varies with one or more independent 

variables/predictors. Curve-fitting canon prescribes two data points to fit a line, three for a 

curve, and more if the data is noisy. The fitted equation permits extrapolation between and 

beyond known data points, and reasoning over how predictors drive system response. 

Herein exist clear parallels to modelling biological systems. With the model we aim to 

predict the biological system’s behaviour (dependent variable) under a given context, and 

gain mechanistic understanding. “Context” here encompasses the abstract space of possible 

experiments, conditions or environments to which a biological system can be subjected, 

which equates to predictors. For simplicity we refer to points in this space as scenarios. This 

analogy highlights the prudence of “fitting” the model against multiple scenarios, Figure 3. 

Otherwise, how can we be confident that the model will yield accurate predictions when 

used in predicting biological behaviour beyond what is already known? Any equation, and 

arguably, incorrect model, can be fitted to a single data point. Incorrect models can be 

identified as such through the heavy modifications to mechanics and parameter values they 

require to reproduce behaviour under each scenario. Such modifications compensate for 

the model’s inadequate biological capture. 
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Yet, rarely does modelling literature report model calibration procedures, let alone against 

multiple scenarios. Model fitting against single scenarios and demonstrating the ability to 

reproduce an independent experiment’s outcomes, not used in calibration, is sometimes 

reported [58,59]. This is akin to the training-test/validation splits commonly used in 

machine learning to detect over-fitting of statistical models, and we consider it good 

practice. For instance, following calibration, Palumbo et al. validated their model of energy 

homeostasis in relation to physical exercise against six independent real-world datasets, 

encompassing 69 demographically diverse study participants [60]. One might argue that 

fewer calibration data points are required in biological modelling, owing to a-priori 

biological knowledge informing model design. We counter this position: one cannot 

guarantee that a model is appropriate, and calibration is a valuable independent test 

thereof. 

 

Though not reported in the context of model calibration, Bloch and Harel verified that their  

model of tumour growth matched several known biological cases [61]. These include 

tumour growth being contingent on angiogenesis, non-cancerous cell viability in the 

absence of angiogenesis, and tumour angiogenesis being impeded if blood vessels were too 

distant. Kamal et al. calibrated their model of influenza and antiviral recombination therapy 

in two stages: firstly against placebo patient data, after which additional parameters were 

estimated by fitting against drug-receiving patient data [62]. Gullo et al. also report a multi-

stage calibration for their model of in vitro hematopoietic stem cell expansion under a given 

cytokine milieu [34]. Their work is particularly notable for the sheer number of experimental 

scenarios, representing combinations of cytokine exposures, informing their calibration: 20 
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combinations, each performed in vitro, in triplicate. Successfully calibrating against such a 

comprehensive exploration of possible cytokine exposures instils considerable confidence 

that their subsequent in silico experiments are trustworthy. In developing a computational 

model of the murine autoimmune disease Experimental Autoimmune Encephalomyelitis, we 

simultaneously calibrated against two experimental scenarios [24]: physiological recovery of 

mice post-induction of disease, and a hindered recovery following targeted ablation of a 

given T cell population. We evaluated each putative parameter value set against both 

scenarios simultaneously, seeking values that provided alignment in both experiments. Our 

calibration effort was manual, guided by a domain expert [15]. In hindsight, we believe a 

more thorough, and certainly less time-consuming, calibration could have been 

accomplished through application of MOO, with each metric used in each scenario 

comprising an objective. Herein, a single set of parameter values that accurately reproduces 

target behaviours with a given model can be considered a successful calibration. 

Alternatively, one could use conventional single-metric calibration techniques for each 

scenario independently, seeking a single set of parameter values providing good alignment 

across all calibration exercises. 

 

 

Calibrating with measures of emergent properties 

 

Quantifying a model in the same terms as the real biological system can facilitate adoption 

and interpretation of modelling results [63]. The development of powerful 3D model 

visualisation engines attests to this [64]. A model that is “seen” to look like the real system 

can help biologists appreciate what the model shows, and raise confidence that it is 
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representative of the biology [2,65]. It has been argued that similar quantifications of the 

real biology can be applied to models and used in their calibration [63]. Yet the metrics 

through which biological systems are quantified range from direct assays of individual 

systems components to observations of whole-system state (emergent properties). For 

instance, cell counting through flow cytometry is a fairly direct measure of system 

components. Likewise for histology and imaging, though in all three cases expression 

measurements can be biased by differing marker affinities for their targets [66]. At the other 

extreme lies metrics such at those used in disease model quantification. In the murine 

autoimmune disease Experimental Autoimmune Encephalomyelitis (EAE), disease severity is 

scored on a scale of 0 to 5, capturing the progression of paralysis from tail through hind-, 

then fore-, legs, ultimately culminating in death [67]. The K/BxN arthritis mouse model 

scores the severity in each paw from 0-3 and takes the sum thereof [68]. 

 

The degree to which such metrics can enable calibration depends on how directly they 

relate to a model’s components, and here these metrics occupy a spectrum. Exemplifying 

one extreme, Butler et al. developed a tool-chain facilitating flow cytometry, protein 

expression heatmap and histology analyses for a model of pre-natal lymphoid organ 

development [63]. These metrics were directly tied to processes explicit in the spatial agent-

based model. Further along the spectrum, calibration of Cilfone et al. and Warsinske et al.s’ 

granuloma models necessitated their development of a transformation from 2D modelled 

microbial load to 3D real-world equivalents [69,70]. Finally, at the other extreme lies Read 

et al.’s EAE model disease severity scoring metric [24]. EAE paralysis emerges from the 

effects of molecular-level interference with neurons that spans the entire central nervous 

system. This level of detail and spatial scale, from the molecular to the whole-organism, far 
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exceeded the model’s scope. Instead, modelled EAE severity scoring was based on the 

exposure of neurons to pro-inflammatory cytokines, which they believed would serve as a 

proxy. The result was a complicated fitting exercise requiring data smoothing, Fourier 

transforms, and, importantly, a calibrated model deemed representative of two real-world 

experiments where rates and degrees of fluctuations in mouse paralysis were known [71]. 

 

All these metrics proved useful for interpreting modelling results. However, the degree to 

which they can be used in calibration depends on how directly they pertain to directly 

observable modelled components. Metrics are less readily applicable in model calibration if 

they themselves require calibration, particularly if this necessitates an a priori calibrated 

model. 

 

 

Sensitivity and uncertainty analyses aid calibration and guide interpretation 

 

Complex models comprising many parameters can prove challenging to calibrate. For 

instance, if real-world data against which to calibrate is scarce with respect to model 

complexity, the problem may be non-identifiable: more data is needed to constrain all the 

model’s free variables. Sensitivity analysis (SA) can help target the calibration effort at the 

most influential subset of model parameters [13,16,72]. Less influential parameters are 

“fixed,” assigning values measured in the real system or extracted from the literature where 

possible. 
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SA describes a suite of analyses that quantify how variation of a model's output (response) 

relates to variation of its inputs (samples of model parameter space) [73,74], Figure 4A. In 

global SA, all (or many) parameters are perturbed simultaneously. Alternative one at a time 

SA approaches vary single parameters whilst holding others to some default value; these are 

best applied when those default values are well-motivated, often only after calibration has 

been performed. Global SA can quantify which parameters are most influential on model 

behaviour, and is sensitive to compound effects where one parameter's influence is 

dependent on values held by others. SA consists of a strategy to systematically vary 

parameter values coupled with a way of quantifying these with changes in output. A simple 

strategy to vary inputs is a factorial design, Figure 4B, in which a set of values is selected for 

individual each parameter, and their cartesian product then forms combinations of 

parameter values to explore: all possible combinations are utilised. This sampling strategy is 

robust to sampling artefacts, and its comprehensive exploration of parameter space yields 

highly representative results. However, it also incurs considerable computational expense 

when applied to all but the most computationally efficient models. Latin hypercube design 

offers a more efficient, yet still thorough, exploration of parameter space [75], Figure 4C. 

Representative model behaviour, termed the response, is obtained for each sample of 

parameter space and is then related to each individual parameter, Figure 4D. The partial 

rank correlation coefficient (PRCC) is particularly suitable here, it is sensitive to non-linear 

trends whilst minimising the effect of confounding co-variates (e.g. correlations between 

parameters) [76]. It is critical that samples are selected to minimise any correlation between 

parameters, as these sampling artefacts confound subsequent analysis, Figure 4E. More 

influential parameters will have larger PRCCs with the response. Many other SA techniques 

exist, and are extensively reviewed in [74]. The Latin hypercube-PRCC method is 
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implemented in [43]. Confidence that calibration has delivered an appropriate model is 

raised if the parameters and associated mechanisms SA highlights as influential are 

congruent with what is known of the biology. 

 

From a modelling perspective, lack of precise knowledge concerning some aspect of the 

biology is termed epistemic uncertainty [77]. This can concern, for instance, rates, 

probabilities, population sizes, or any figures pertaining to model parameters. 

Knowledge, or otherwise, of plausible ranges for parameter values derived from the biology 

can help contextualise the scientific significance of in silico experimentation. This can be 

done in two ways. First, whilst calibration can assign appropriate parameter values, those 

values resembling what is well-established biologically will raise trust in the model. This is 

most relevant for highly influential parameters. Conversely, if the model is highly sensitive 

to parameters about which very little is known biologically, caution when interpreting 

results is advisable. Second, one might moderate the interpreted scientific significance of an 

intervention if the resultant changes in model behaviour lie well within the range of 

behaviours possible under epistemic uncertainty. This can be gauged through an uncertainty 

analysis [74,78], which quantifies the diversity of model behaviours possible within the 

ranges of parameter values that current biological knowledge supports. Such an analysis can 

be performed in a one at a time fashion. Alternatively, building a factorial design or Latin 

hypercube around biologically-supported ranges of parameter values equates to a global 

UA, Figure 5A & B. An in silico intervention can be considered scientifically significant if it 

yields behavioural changes far exceeding that explainable under biological uncertainty,  

Figure 5C. For ease of illustration this discussion assumes discrete boundaries of 

“biologically plausible values.” However, in many cases biologically uncertainty may be 
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better expressed in terms of probability distributions, and probabilistic uncertainty analyses 

do exist [79].  

 

 

Conclusion 

 

As the old adage goes, “all models are wrong but some are useful” [80]. No model will ever 

perfectly reflect a complex biological system under all circumstances. Given sufficient effort, 

calibration will always reveal inconsistencies between model and reality. The importance of 

a model accurately reflecting a biological system under given scenarios is problem-specific. 

We would demand greater fidelity of a model directing clinical practice than one employed 

in notional, preliminary exploration [81]. The cost of capturing finer biological nuance is 

model complexity, which poses conceptual and calibration challenges; consider another 

adage, “everything should be made as simple as possible, but not simpler.” Accordingly, 

modellers should document their calibration activities and the justifications therefor. This 

can take the form of evidencing in MIRIAM [82], or comprising part of a structured 

argument that the model is fit for its designated purpose [83]. 

 

Rigorous calibration can instil confidence that a model appropriately captures a biological 

system, or, if unsuccessful, motivate further model development. The strategies we have 

explored here aim to increase the rigour of calibration. In curve fitting, the further away one 

extrapolates from known data points, the less accurate predictions will be. The same 

principle applies to biological models, and the scenarios their calibration covered (Figure 3). 

Being conceptual, this space of scenarios has no objective notion of distance. However, 
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selecting calibration scenarios that exercise the full dynamic range of model components 

and their possible interactions should maximise the range of scenarios under which the 

model proves accurate. 

 

The ultimate validation for a model is arguably that an in silico prediction be experimentally 

verified. For instance, Pappalardo et al.’s prediction that beta sitosterol, a citrus-derived 

compound, would serve as a powerful adjuvant for influenza A virosome vaccindation a was 

subsequently verified experimentally in mice [84]. A goal of calibration is to supply evidence 

and confidence of a model’s quality, which can help make the case for investment in such 

end-stage experimental validations.  
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Key Points: 

• The value of biological models hinges on either knowing they are accurate 

representations of the biology, or establishing otherwise; this is ascertained through 

calibration. 

• Stochastic models calibrated against the distribution of biological outcomes can help 

ascertain how these diverging outcomes arise from system components and they 

dynamics.  

• Even where all model parameter values are experimentally ascertained, calibration is 

still warranted to account for the simplifications and abstractions that models make.  

• Single metrics alone may be non-distinguishing for complex systems, resulting in 

multiple solutions to the calibration problem. Multi-metric calibration can overcome 

this and make explicit trade-offs in accurate biological capture across metrics. 

• Model calibration is ideally performed against multiple experimental conditions or 

contexts. To do otherwise is akin to curve fitting against a single data point.  
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Figures and Captions: 

 

 
 

Figure 1: The Kolgmogorov-Smirnov (KS) “D” statistic permits model calibration against distributions 

of biological outcomes. Such calibration requires sensitive detection of discrepancies between two 

distributions: that of the target biological behaviour and that of the model. (A) An evaluation of the 

sensitivity of two commonly used statistics, the Mann Whitney U (also called the Wilcoxon rank-sum 

test) and the T test, and the KS statistic. All three fail to determine statistically significant differences 

(p-values) between statistically identical Gaussian distributions, as would be expected, and all three 

are sensitive to changes in distribution mean values. However, only the KS test is sensitive to 

changes in variance in distributions with identical mean values. We advocate for calibrating 
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stochastic models with the KS “D” value, which quantifies the largest difference between the 

proportions of two distributions occurring at or below a given value. This is intuitively visualised (B) 

as the vertical arrow on a cumulative distribution plot. (C) The KS “D” is an effect size measure, and 

is thus relatively insensitive to the number of samples in the distributions being contrasted. 

Conversely, statistical significance (p values) quantify the probability that the given difference 

between two distributions could occur through random chance. Given two non-identical 

distributions, statistical significance is always obtainable with a sufficient sample size. Non-

significant p-values are shown in light grey. We provide methodological details for this figure in the 

supplementary materials. 
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Figure 2: Model calibration and selection using multi-objective optimisation (MOO). (A) The 

divergence between modelled and real biological system behaviours must be quantified. MOO-
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calibration can accommodate multiple such quantifications using different measures of system 

behaviour (only one shown). The example shows how distributions of modelled and real-world 

behaviour can be aligned using the Kolmogorov-Smirnov (KS) statistic. Cumulative distribution plots 

are related to histograms, they show the proportion of data in a distribution less than or equal to a 

given value. Other forms of quantification, such as mean squared error or alternative statistics, may 

be substituted if more appropriate. (B) Each quantification of the difference between modelled and 

real-world behaviour comprises an objective for MOO to minimise by exploring model parameter 

values. It is highly unlikely that that any single set of parameter values perfectly satisfies all 

objectives; rather, tradeoffs in performance are typical. A Pareto front comprises the subset of 

solutions for which an improvement in any one objective necessitates a worsening in another; the 

remaining solutions are sub-optimal. For clarity, only two objectives and model parameters are 

depicted; many more of both are possible. (C) Imperative in model fitting is the detection of 

overfitting, wherein models capture not only general trends but the specific noise nuances of the 

training dataset, therein reducing the generality of the model. Overfitting is typically detected 

through an independent validation dataset not used in model training. Model capture of general 

biological properties will lead to closer alignment with both training and validation datasets. 

Conversely, when overfitting occurs model alignment with the training dataset will continue to 

improve, but alignment with the validation dataset will worsen. This overfitting detection strategy 

can be ported to the multi-objective context by maintaining Pareto fronts with respect to both 

training and validation datasets. Training dataset Pareto front member solutions that are not also 

members of the validation dataset Pareto front are indicative of overfitting, and calibration should 

be terminated when a predetermined portion of the training dataset Pareto front satisfies this 

criteria. (D) The Pareto front concept can facilitate model selection. The superior model will better 

align with real world behaviours, manifesting as smaller tradeoffs in objective scores. This model’s 

Pareto front will dominate those of inferior alternatives. If modellers have reason to preference 

particular metrics/objectives, they can focus on sub-regions of the models’ Pareto fronts. (E) The 
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number of solutions comprising the Pareto front typically grows exponentially with the number of 

objectives used; “Universal Non-dominated Sorting Genetic Algorithm” (U-NSGA-III) constrains the 

Pareto front whilst encouraging a diversity of solutions. This is accomplished by preferentially 

retaining Pareto front solutions closest to an evenly distributed set of reference vectors in objective 

space. These vectors intersect each of the evenly distributed points on a unit hyperplane and it’s 

origin. The hyperplane is normalised using the maximum and minimum objective scores across the 

Pareto front. For more information on MOO and its use in calibration, see references [40,51,55,57]. 
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Figure 3: Fitting models against biological behaviour under multiple experiments, conditions or 

environments (e.g. x1, x2) affords greater confidence that the model will accurately predict 

biological system performance (r(x)) in scenarios for which this is not known (grey box, x3). Almost 

any model can be fitted against a single data point. However, unrepresentative models (m1(x)) will 

fail to reproduce system behaviour across multiple scenarios without heavy alterations to parameter 

values or mechanics to account for their inadequacy. Employing multiple experiments or scenarios in 

calibration can highlight inadequate models. 
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Figure 4: (A) Sensitivity analysis quantifies how variation of a model's output relates to variation of 

its inputs (parameters). It commences with a systematic sampling of model parameter space. (B) 

Given a set of values to explore for each parameter, factorial design samples every possible 

combination thereof. Obtaining representative model behaviours for each sample, particularly for 
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stochastic models where repeat executions are required, can incur considerable computation 

expense under factorial design. (C) Latin hypercube design represents a more efficient sampling of 

space, whilst still encouraging an extensive coverage. The range of values of interest for each 

parameter are segregated into intervals, and each is sampled once. Note that intervals need not be 

evenly spaced, and can instead concentrate samples around areas of particular interest.  

(D) Parameter influences on the response can be quantified through the partial rank correlation 

coefficient, which is sensitive to non-linear effects. (E) It is essential to minimise correlations 

between parameters when sampling (e.g. Latin hypercube design), these artefacts confound the 

partitioning of observed effects between parameters that are correlated. In this example, three 

distinct possibilities are non-distinguishable because parameters 1 and 2 are sampled in a correlated 

manner: both parameters are equally influential on model output, parameter 1 is influential and 

parameter 2 has no effect, or vice versa. This figure depicts only two model parameters for clarity. 
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Figure 5: Contextualising in silico experimental scientific significance by contrasting effect size 

against range of model behaviours possible given biological uncertainty (epistemic uncertainty). (A) 

Sample model parameter space within region of biologically plausible parameter values. Shown is a 

Latin hypercube, but other sampling schemes can be substituted. Gather representative model 

behaviours within this region, and (B) quantify range of model behaviours explainable given current 
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epistemic uncertainty. (C) Interventions resulting in model behaviour changes lying within the range 

explained by epistemic uncertainty have relatively little scientific significance. Conversely, 

interventions delivering effects far exceeding this range may be highly significant. 

 


