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Abstract

Cancer is well recognized as a complex disease with dysregulated molecular networks or modules. Graph- and rule-based
analytics have been applied extensively for cancer classification as well as prognosis using large genomic and other data
over the past decade. This article provides a comprehensive review of various graph- and rule-based machine learning
algorithms that have been applied to numerous genomics data to determine the cancer-specific gene modules, identify
gene signature-based classifiers and carry out other related objectives of potential therapeutic value. This review focuses
mainly on the methodological design and features of these algorithms to facilitate the application of these graph- and
rule-based analytical approaches for cancer classification and prognosis. Based on the type of data integration, we divided
all the algorithms into three categories: model-based integration, pre-processing integration and post-processing
integration. Each category is further divided into four sub-categories (supervised, unsupervised, semi-supervised and
survival-driven learning analyses) based on learning style. Therefore, a total of 11 categories of methods are summarized
with their inputs, objectives and description, advantages and potential limitations. Next, we briefly demonstrate
well-known and most recently developed algorithms for each sub-category along with salient information, such as data
profiles, statistical or feature selection methods and outputs. Finally, we summarize the appropriate use and efficiency of all
categories of graph- and rule mining-based learning methods when input data and specific objective are given. This review
aims to help readers to select and use the appropriate algorithms for cancer classification and prognosis study.

Key words: graph mining; association rule mining; data set integration; learning technique; cancer classification; cancer
prognosis; gene signature

Introduction

Cancer is a prevalent human disease, and its underlying biol-
ogy is highly complex. Currently, various large-scale genomic,
epigenomic and transcriptomic data (such as gene expression,
DNA methylation, copy number variation, somatic mutation,
etc.) have been generated, which have greatly enhanced our

understanding of the cancer biology in each type of cancers. Data
availability is still not consistent; sometimes only a single-omic
data (SOD) set is available for a single tissue, whereas in other
cases multi-omics data (MOD) are accessible from different data
repositories. Thus, there is no specific standard to analyze any
data due to the availability of dependent (related) profiles as well
as the heterogeneous internal relationship among the profiles.
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The internal design of the algorithms for each project is prepared
depending on the desired objectives of the investigators such as
identification of single-gene markers, combinatorial gene mark-
ers, gene modules, feed forward loops, gene signature, classifier,
regression, survival validation, pathway-based markers, gene
module, drug-target-disease relation, dense subgraphs, frequent
closed association rules, rule-based classifier, feature mining
or feature score determination, etc. or a combination of some
of these. Thus, the design of such techniques always differs
from each other depending upon the inputs and objective (or
expectation) of the users.

Accordingly, the analysis of various cancer omics data
becomes challenging. Some review articles have been published
to present recent related studies [1-10]. These review articles
mainly focus briefly on a few related studies. In contrast,
the entire corpus in terms of all techniques such as integra-
tion/analysis type, learning type, etc. has not been considered
together. The advantages and limitations of each category
have not been discussed in terms of various aspects mentioned
above (integration/analysis type and learning type together).
In addition, previous review articles have not addressed which
method might be most appropriate for a specific combination of
input data type and user’s objective (or expectation).

To reduce the aforementioned limitations, we here provide
a comprehensive survey of graph theory and association
rule mining (ARM)-based learning algorithms used for the
purpose of SOD/MOD integration or analysis. The entire set
of the algorithms is first divided into three major categories,
depending upon the type of data integration (or analysis).
These categories are model-based integration or analysis,
preprocessing integration or analysis and post-processing
integration or analysis. Next each category is further divided
into several sub-categories depending upon the learning style
used, supervised, unsupervised, semi-supervised or survival-
driven learning. A brief summary of the most well-known
recently developed algorithms for each sub-category along
with the other important information (such as data profiles
used, statistical method and feature selection method used,
outputs of the algorithms, etc.) is presented. Therefore, a total
of 11 categories of methods [model-based conjoint or analysis
with supervised learning (MSL), unsupervised learning (MUL),
semi-supervised learning (MSSL), survival-driven approach
(MSD), preprocessing conjoint with supervised learning (PRSL),
unsupervised learning (PRUL), semi-supervised learning (PRSSL),
survival driven learning (PRSD), post-processing conjoint with
supervised learning (POSL), unsupervised learning (POUL) and
semi-supervised learning (POSSL)] will be described in detail.
Since the number of possible variation of the entire set of
algorithms is high, it is impossible to provide a comparative
study for all methods together. Finally, we provide a summary
table of the appropriate use and efficiency of all the categories
of graph and rule mining-based learning methods when input
and specific objective are given. This review will improve
understanding of the appropriate uses of different kinds
of algorithms in the domains of cancer classification and
prognosis.

Fundamental theory and advances in graph-
and rule-based learning algorithms
A graph is a collection of vertices connected by edges. A graph is

either undirected or directed. Density is a fundamental measure
of a graph. Let Gp = (V,E) be an undirected, unweighted graph
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and SGp be a sub-graph of it (SGp < V). The density of SGp
(symbolized as D(SGp)) can be defined as follows:

IES(SGp)|

D(SGp) = SGpl

1

where IES(SGp) refers to an induced edge set of SGp and |SGp|
denotes the cardinality of SGp. For any weighted graph, a real-
valued weight function (or conical combination/weighted sum),
w: E — R* can be defined as .. f(e)w(e). The adjacency matrix
denoted as Ad of the graph Gp of the order n can be described as
an x n matrix as follows:

1, if(p,q >E

Ad= (adi‘;) “ o, else

where p and q are two nodes of the graph and n is the number of
nodes (vertices) in the graph.

Of note, a graph is called as a connected graph whenever
all pairs of vertices are connected by paths. On the other hand,
a graph is called as a disconnected graph if it contains some
vertices which are not connected to each other. A cycle is a
simple path which starts and terminates at a same node (vertex).
The graph having no cycle is stated as a acyclic (or forest). A tree
is formed whenever there exists a connected forest.

A spanning tree of the graph denotes a connected acyclic
sub-graph which contains all the nodes (vertices) of the graph
along with the minimal number of edges. Of note, a spanning
tree must consist of (n —1) edges. A minimum (weight) spanning
tree is basically a subset of the edges belonging to a connected,
undirected and weighted graph containing all its nodes to be
connected together having no cycle, but contains minimum total
interaction (edge) weight. In other words a spanning tree must
contain the minimum summation value of its edge (interaction)
weights. A graph can be stated as bipartite graph (bigraph) if its
corresponding vertex set can be divided into two disjoint subsets
by which all edges belong to these two sets as well as no two
nodes (vertices) of the graph within the same subset will be
adjacent. A graph is called as a complete graph if each pair of
the distinct nodes (vertices) is adjacent. A clique of the graph
is a complete sub-graph of that graph in which each node will
be adjacent to each other. However, two graphs Gpr = (Vi,Ex)
and Gp; = (Vi,E)) can be called as isomorphic graphs whenever
a bijective mapping (i.e. 1-to-1 mapping), i.e. f : Vi, — V; (i.e. an
isomorphism) occurs by which u, v € E; exists, iff {f(u),f(v)} € E.

Several graph pattern mining approaches such as frequent
graph patterns, optimal graph patterns, graph patterns with con-
straints and pattern summarization have been extensively used
in different areas including biomedical as well as bioinformatics
domain. For graph classification, the researchers basically use
decision tree-based approach and pattern-based approach. In
addition, various graph compression methods such as intru-
sion network analysis, identifying functional (gene) module,
extracting biochemical structures, building blocks for the graph
clustering (classification or correlation study), mining biological
conserved motifs or subnetworks are useful.

ARM [66, 68] is another widely used technique to find
interesting relationships among various items (i.e. genes). Let
GNS = {gni,gny,..,gn,} be an item set (gene set) and SMS =
{smy,smy,...,smy} be a transaction set (sample set). Thus, an
association rule can be formulated as Ac = Cs, where Ac,Cs C
GNS and Ac () Cs = ¢. Of note, here Ac and Cs refer to antecedent
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Table 1. List of the graph and rule mining methods

Method

Category Data type

Output

Statistics and feature selection

Network-constrained
regularization and
variable selection [48]

Penalized logistic

regression model [51]
SDP/SVM [116]

FSMKL [117]

iBAG [118]

MCD [119]
Anduril [120]

Machine-learning
approach to integrate
big data for precision
medicine [70]
Spectral graph theory
[69]

sglasso [40, 38]

fglasso [37, 39]
intNMF [79]
iNMF [69]

Joint NMF [91, 92]

iCluster [94]

iCluster+ [95]
JIVE [79]

Joint Bayes Factor [98]
ssCCA [99]

CCA sparse group [100]
SMBPLS [101]

SNPLS [102]

rMKL-LPP [111]
Normalized ImQCM
[34, 35]

GEM-TREND [61]

RiboFSM [60]
ConGEMs [43]

Bimax biclustering
[53, 54]

MSL

MSL

MSL

MSL

MSL

MSL
MSL

MSL

MSL

MSL

MSL

MUL

MUL

MUL

MUL

MUL
MUL

MUL

MUL

MUL

MUL

MUL

MUL

MUL

MUL

MUL
MUL

MSSL

EXP and KEGG pathways

MET

Protein sequence,
hydropathy profile, EXP
and protein interactions
CNV, EXP, ER status and
clinical features

Multi-data
LoH, CNV and MET

MET, EXP, SNP, miREXP,
aCGH and exon

Network-constrained
regularization for linear
regression finding various
subnetworks
Methylation CpG loci and
associated genes

Linear classifier based on
the combinations of
multiple kernels

Linear classifier based on
the combinations of
multiple kernels

Gene subset

Gene subset
Comprehensive report
(genetic loci along with

the genes containing highly

significant survival effect)

L1-norm (Laplacian) of coefficients

Penalized logistic regression (11 and squared 12
penalty)
SDP/SVM kernel-based statistical learning

Multiple kernel-based statistical learning,
SimpleMKL (i.e. gradient descent method)

Multi-step study, Bayesian lasso and median
probability model

Multi-step study

Multi-step study

EXP, drug response data andMolecular marker discovery Probabilistic graphical model

driver feature data

Multi-data
EXP and SNP
EXP and SNP

MET, CNV, EXP, miREXP
and PEXP

Multi-data

Multi-data

Copy number variation
and expression
Multi-data

Multi-data

MET, EXP and CNV
Sequence data

Two categories of data
Multi-data

EXP, gene network
information and drug
response

Multi-data

oD

EXP

SOD
SOD

SOD (logical matrix)

Discriminative dense
sub-networks
sglasso estimator

L1-penalized fglasso
estimator
Clusters subtype discovery

Clusters
Gene modules
Clusters

Clusters

Unique factors and
shared factors

Unique factors and
shared factors
Operational taxonomic
unit clusters

Cluster of features
containing weights
Feature modules
Co-modules of gene-drug

Clusters

Densely connected gene
modules (i.e. quasi-cliques)
Network discovery

Frequent subgraph
Condensed gene
co-expression modules
Sub-matrices (clusters)

Graph Laplacian spectrum of graph

Weighted 11-penalized RCON(V,E) model, CCM
and CCD algorithm

Weight L1-penalized factorial dynamic Gaussian
Graphical Model, CCM and CCD algorithm
Nonnegative matrix factorization

Nonnegative matrix factorization
Nonnegative matrix factorization
Matrix factorization L1 penalty

Matrix factorization L1 penalty
Matrix factorization L1 penalty

Matrix factorization student-t sparseness
promoting prior
CCA L1 penalty

CCA L1 penalty

Partial least squares L1 penalty
Partial least squares network-dependent
penalty

Multiple kernel learning dimension reduction
metric locality preserving projections

Graph mining and weight normalization
inspired by spectral clustering

Nonparametric as well as rank-based pattern
matching method inspired by the method of [62]
Frequent subgraph mining

Weighted rank-based Jaccard and weighted
rank-based Cosine measures

Finding only all one sub-matrix

Continued
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Method

Category Data type

Output

Statistics and feature selection

CC biclustering [55]
XMotifs biclustering [58]
Spectral biclustering [59]

iSubgraph [63]

Net-Cox [50]
netSVM [52]

Pathway-based
classification [71]
MDI [103]

Prob_BM [104]
CNAmet [23]

iPAC [112]

Dysfunctional module
detection [74]
Network topology-based
gene marker discovery
[76]

GeneticInterPred [121]
Graph-based learning
[122]

Combinatorial gene
marker discovery [79]
TrapRM [80]

NBS [75]

CoxPath [123]

MKGI [124]

ATHENA [113]
jActiveModules [114]

Network propagation
[115]

Diffusion kernel
creation [83]

PSDF [105]

BCC [106]

MSSL

MSSL

MSSL

MSSL

MSD

MSD

PRSL

PRUL

PRUL
PRUL

PRUL

PRUL

PRUL

PRSSL

PRSSL

PRSSL

PRSSL

PRSD

PRSD

PRSD

POSL

POSL

POSL

POSL

POUL

POUL

SOD
SOD (logical matrix)
SOD

EXP and miREXP

Multi EXP

EXP protein EXP
EXP, MsigDB v1.0
Multi-data

CNV, SNP, EXP and miREXP
MET, EXP and CNV

CNV and EXP

EXP

EXP and PPI

PPI, EXP and protein
complex data

MET, miREXP, EXP and CNV
EXP MET

EXP, MET and PPI

EXP and PPI

MET, miREXP, EXP and CNV
MET, miREXP, EXP and CNV
CNV, EXP, miREXP and MET
PPI, EXP and interactions
between proteins and DNA
PPI, mutation and gene
expression

Gene expression data

CNV and EXP

MET, proteomics, EXP and
miREXP

Sub-matrices (clusters)
Sub-matrices (clusters)
Sub-matrices (clusters)

Finding closed frequent
subgraphs (co-modules)
having frequent up- or
down-regulated molecules
cancer group classification
Signature genes
Prognostic signatures
building classification
models

Pathway markers

Clusters

Clusters

Scores and corresponding
P-values of genes

Gene subset

Disease module features
(sub-networks)
Subnetwork identification

Genetic interaction labels

Patient scores for the
purpose of classification
Combinatorial gene
markers

Multi-omics association
rules
Network-smoothed
features/modules and
cancer classification
survival analysis
Prognosis index for the
individual patient

Final model along with
patient index

Final model along with
index of patient

Find sub-matrices containing lower score than
cut-off value in a standardized data

Finding sub-matrix for which each row has
similar motif through all the columns

svd in the eigenvectors for both genes and
samples simultaneously

Graph mining mixture models

Cox regression model with L1/L2-norm
SVM

Z-score logistic regression

Bayesian correlated clustering and DMA
mixture model

Bayesian

Multi-step study

Multi-step analysis various filtering including
matched aberrant genes, in-cis correlation as
well as in-trans functionality

Shortest distance algorithm

Randomized Steiner tree algorithm Network
topology

Graph conjoint

Graph conjoint

CoMEX statistical score and BiMax biclustering
weighted support measure

Statistical test and weighted shortest distance

association rule mining
Network-based stratification NMF

Multi-step study L1 penalty
GENN

GENN neural networks

Subnetwork (i.e. hotspots of Network-simulated annealing

the network)
Propagated network
corresponding to

differential gene expression

Natural families of kernels

Clusters

Clusters

Network

Heat equation spectral graph theory

Bayesian and binary indicator feature’s
likelihood
Bayesian

Continued
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Table 1. (continued)

Method Category Data type Output Statistics and feature selection
CONEXIC [107] POUL CNV and EXP Clusters of genes related to Bayesian
modulators
PARADIGM [108] POUL Multi-data Gene score gene Pathway networks
significance in individual
pathway
SNF [109] POUL miREXP, MET and EXP Clusters Similarity network fusion
Lemon-Tree [110] POUL EXP and MET/CNV/miRNA Association network Module network
(only one category) graphics
Causal genes and POUL EXP, CNV and SNP Causal genes and Set-covering approach
dysregulated pathways dysregulated pathways
finding [81]
Significantly mutated POUL Somatic mutation and PPI  Significantly mutated Naive approach-enhanced influence graph
pathway detection [82] pathway
Multi-view gene POUL MOD set Multi-view modules Dense hypo-graph mining normalized mutual
modules using information
hypo-graph mining [44]
MVDA [27] POSSL  MOD set Multi-view clusters Hyper-graph based learning, normalized mutual
information, optimization, etc.
MEMo [87] POSSL  Somatic mutation, GISTIC Mutual exclusivity modules Jaccard coefficient statistical test (switching
CNV, EXP and PPI permutation method)
Epigenetic gene marker POSSL  EXP and MET Epigenetic gene markers  Statistical test and relevance and redundancy
discovery through normalized mutual information
feature selection [41]
StatBicRM [68] POSSL  EXP and MET Rule-based classifier gene Statistical test and biclustering association rule
markers mining
Tumor prediction using POSSL  EXP and MET Rule-based classifier gene Statistical test association rule mining
integrated analysis of markers

expression and
methylation [93]

aCGH, comparative genomic hybridization array; ER, estrogen receptor; EXP, gene expression profile; fglasso, factorial graphical lasso; GISTIC CNV, gistic copy number
variation profile; LoH, loss of heterozygosity; MET, DNA methylation profile; miREXP, miRNA expression profile; PEXP, protein expression profile; PPI, protein-protein
interaction profile; sglasso, structured graphical lasso; SNP, single-neucleotide polymorphism.

(or left-hand side) and consequent (or right-hand side), respec-
tively. For example, in a biological transaction, let {gn; t,gn, |=
gns 1} be such a rule that denotes that if gene 1 is up-regulated
(marked by 1) and gene 2 is down-methylated (denoted as |)
simultaneously, it is likely that gene 3 becomes up-regulated.
It is expected that the relationship between these three genes
will likely lead to disease progression. Additionally, the support
(frequency) of an item set (gene set) is stated as the number
of transactions (samples) in which all the participating items
(genes) belonging to the item set occur together. A gene set is
said to be frequent if the support is greater than a user-provided
threshold value (i.e. minimum support cutoff); whereas the con-
fidence (strength) of the rule can be stated as the ratio of the sup-
port of the entire item set to the support of its antecedent alone.

Currently, graph theory as well as ARM approaches are
used extensively in various biomedical fields including cancer
classification and co-expressed gene module detection. Cancer-
related information has been detected from the hotspots
(disease modules) in the corresponding dysregulated bio-
molecular networks. Dam et al. [11] provided a survey of the
existing methods of co-expression-based analysis for the RNA-
seq or similar kind of profiles along with mentioning the
gene markers/hubs that might have significant role in disease
detection, progression and therapeutic value of the disease.
They also demonstrated the integrated network analysis that
might include genome-wide transcription factor binding sites,
genome-wide association study, expression quantitative trait
loci and many more layers of data. Differential co-expression

study could explore the genes which might contained various co-
expression partners between the disease condition and normal
condition and which might revealed the important information
regarding the regulators across the disease as well as other
remaining phenotypes. Application of generalized singular value
decomposition (svd) approaches, as well as various biclustering
techniques to determine the modules for the corresponding
cancer subtypes that might be interesting information for
disease prognosis as well as precision study, was also described.
Interestingly, a new gene module identification framework
was developed by Jiang et al. [12] that used the double-label
propagation clustering technique to enhance the biological
significance of the gene modules as well as discarding the
loosely connected interactions of gene pairs from the modules.

Selection of the most appropriate analysis method is com-
plicated by both data availability and user need. While for some
types of cancers only a SOD set is available from a single tis-
sue source, multiple data sets from multiple repositories are
available for others. User needs also differ between studies. At
present, researchers are left to decide upon the appropriate
analysis methods without sufficient information. Therefore, this
comprehensive review of various graph theoretic as well as
ARM algorithms used for the purpose of SOD or MOD inte-
gration is needed. Table 1 summarizes a list of graph and rule
mining-based algorithms with brief information such as type
of data integration (conjoint), type of learning, data type to be
used, objective and the underlying statistical method or feature
selection.



Types of different graph and rule
mining-based algorithms with objectives,
advantages and limitations

The various graph and rule mining algorithms were grouped in a
total of 11 categories in terms of combinations of several conjoint
(or analysis) and learning methods (Figures 1 and 2). The brief
details of input, objective (output) and description, advantages
and limitations with various research works for each category
are demonstrated in the following.

Model-based conjoint (or analysis) with supervised
learning

The 1st sub-category belonging to the model-based conjoint
is MSL. It utilizes a single unified machine learning approach
for integrating (or analyzing) all the genomic profiles with a
single network. The majority of the mathematical model-based
approaches belong to this sub-category. Notably, one unified
learning framework as well as a global optimization technique
has been used here. Supervised learning is useful whenever the
entire data are labeled.

MSL:

Inputs: In general, the inputs of MSL are (i) genomic
(epigenomic or similar) profiles, (ii) corresponding molecu-
lar networks and (iii) sample (phenotype) class labels.
Objectives: The objectives of this type of algorithms are
(i) cancer sample (phenotype) prediction and (ii) gene-
signature (marker-gene, hub-gene or driver-gene) identifi-
cation.

Advantages: (i) This category provides best prediction of
class labels for the results whenever the three kinds of
inputs are available, since it uses global optimization along
with only one unified framework together. (ii) Handles the
problems of sparsity and heterogeneous connectivity well.
(iii) Minimizes the score of the statistical loss function if
kernel-based methods are used.

Limitations: (i) Although an optimization technique is used
here, the optimization strategy is very complex and dif-
ficult to understand. (ii) Scalability is very low. (iii) It is
costly to use as it requires all labeled data (property of the
supervised learning).

Various techniques fall into this category. The most fre-
quently utilized network-based regularization technique is
graph Laplacian regularizer. Different popular regression models
are incorporated into the graph Laplacian constraint to analyze
the genomic data. A network-constrained linear regression
technique, which integrates a graph Laplacian constraint and the
L1-norm sparse linear regression for identifying the associations
among the regression coefficients [49], was developed by Li et al.
(2008) [48]. Interestingly, this network-related linear regression
is basically analogous to the utilization of a well-known LASSO
optimization problem [48]. The graph Laplacian constraint in the
linear classification models (e.g. logistic regression by Sun et al.
(2012) [51]) was also utilized in many studies.

Lanckriet et al. (2004) [116] developed a computational and
statistical pipeline (denoted as ‘SDP/SVM’) to conjoint the
heterogeneous descriptions of the same gene set. Here,
semidefinite programming (SDP), support vector machine
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(SVM) and simple multiple kernel-based statistical learning
(abbreviated as simpleMKL, e.g. gradient descent method) were
utilized. The output provided one or more linear classifiers,
depending upon the combinations of kernels. A pathway-based
data integration (feature selection in the context of multiple
kernel learning or FSMKL) [117] was proposed, in which the
integration was carried out through the utilization of multiple
kernel learning. Here, the user had to provide copy number
variation (CNV) data, gene expression (EXP) data, ER-status and
clinical features.

Bayesian method is a well-known strategy to work on any
kind of genomic profile. In 2013, the generalized version of
the integrative Bayesian analysis of genomics data (generalized
iBAG) [118] was proposed which conjoined profiles from various
genomic platforms through a hierarchical model, including the
biological relationships among them. The outcome included a
subset of genes. Another method defined the multiple concerted
disruption (MCD) analysis [119] of genes which allowed for the
deduction of abnormal pathways as well as genes. The three
kinds of data sets [viz., DNA methylation, DNA copy number and
loss of heterozygosity (LOH) data sets] were provided as inputs.
As outcome, a small gene set, which revealed the disruption via
several mechanisms and represented the corresponding conse-
quential alteration in gene expression, was identified. Anduril
et al. [120] developed a similar kind of framework that was
used to convert the fragmented large-scale profile into testable
predictions. The main aim of this technique was to determine
the genetic loci as well as the genes which have significant
effect on the survival of the patients. It used MET, EXP, sin-
gle nucleotide polymorphism (SNP), miRNA, array comparative
genomic hybridization) as well as exon profiles as inputs. Lee
et al. [70] introduced a new method to determine reliable gene
expression markers for the purpose of determining drug sen-
sitivity by adding the valid multi-omic prior information for
every gene’s potential to drive the cancer. As inputs, EXP, drug
response data and driver feature data were used. A probabilistic
graphical model was applied here. Chuang et al. [69] developed a
protein-network-based method to determine the sets of markers
denoted as discriminative dense subnetworks obtained from
protein interaction databases. Graph Laplacian and Spectrum of
graph were utilized.

Furthermore, structured graphical lasso denoted by sglasso
[37,38,40] and L1-penalized factorial graphical lasso symbolized
as fglasso [37, 39, 40] were also widely used for conjoining
multi-omics profiles. For the sglasso, weighted L1-penalized
RCON(V, E) model, cyclic coordinate minimization (CCM) and
cyclic coordinate descent (CCD) algorithms were used for
modeling, whereas for fglasso, weight L1-penalized factorial
dynamic Gaussian Graphical Model, CCM and CCD algorithms
were used. For both the methods, EXP and SNP were used
as inputs.

Model-based conjoint (or analysis) with unsupervised
learning

The coefficients learned from the corresponding feature
variables identify several dense subnetwork modules (clusters).
Some characteristics of this category (such as use of singular uni-
fied learning framework and global optimization technique) are
common with MSL, since both follow model-based integration.
However, the distinctive characteristic of this type of algorithms
is that these algorithms are highly useful for determining the
inherent feature (structure, e.g. module) from the input data set
due to their unsupervised learning style. This kind of techniques



374 | Mallik and Zhao

Model-based conjoint Pre-processing conjoint

Single omics and i i Single omics and
multi-omics profiles Slgto & i o muilti-omics profiles Single and multi networks

a Tope  decompostonof e % neqrate hese
S : network for each networl
Network based unified integration model ‘ a singular profile (network)

[
g Modulet (M1) Module2 (M2) Module n (Mn)
Learning technique i W1 M2 Vin ‘Integrated singular profile (network)‘
i * Sample-module
* Cluster identification 3 $ heatmap
£ = Vol
« Classification .-? &1 phenctype
< o | Diseased
« Biomarker, hub and signature detection % . phenctyee
9] ; Provide only the integrated singular
Z | Provide the decomposed da?a m%trixyor r?etwg?ka ed singuia

network-based features for each
network, simultaniously

Learning technique
* Cluster identification
+ Classification

* Biomarker, hub and signature detection

a b

Post-processing conjoint

Single omics and multi-omics profiles ‘

Oncogenic alerations
(e.g., differentially expressed genes
by statistcial test) from each profile

«Q
a
o

logr0iPuanse))

°
Up-regulated
genes

° Build single network or multiple networks using oncogenes

Down-regulated
genes

Network integration technique

« Cluster identification
« Classification

« Biomarker, hub and signature detection

Cc

Figure 1. The flowchart of three categories of integration where sub-figure (a) illustrates the flowchart of model-based integration, sub-figure (b) depicts the flowchart
of pre-processing-based integration and sub-figure (c) denotes the flowchart of post-processing integration.
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Figure 2. The work-flows of four categories of learning where sub-figure (a) represents the work-flow of supervised learning, sub-figure (b) illustrates the work-flow
of unsupervised learning, sub-figure (c) signifies semi-supervised learning and sub-figure (d) represents the flowchart of survival-based learning.
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is used whenever the entire data are unlabeled (property of
unsupervised learning).

MUL:

Inputs: The inputs of MUL are (i) genomic (epigenomic
or similar) profiles and (ii) corresponding molecular net-
works.

Objectives: The major objectives of this kind of
algorithms are (i) subnetwork (module) detection and
(ii) gene-signature (marker-gene, hub-gene or driver-gene)
detection.

Advantages: (i) This category is useful to model the under-
lying distribution or structure of the data for the purpose
of learning more regarding the data. (ii) As MSL, the MUL
also works well for handing the problems of sparsity and
heterogeneous connectivity.

Limitations: Some limitations of this category (such as
optimization technique used being more difficult to under-
stand, as well as low scalability) are common with some
characteristics of MSL due to both using model-based
integration. However, the performance in this category of
algorithms is worse than the performance of MSL since it
follows unsupervised learning whereas MSL follows super-
vised learning.

Selection of predictive classification strategies from high-
dimensional, small-sample-sized sparse data is a major chal-
lenge whose importance has been increasing day by day in
different kind of applications such as RNA-seq/microarray data
analysis, functional magnetic resonance imaging study, image-
based object detection and many more. In general, for those
applications, the number of features/genes (dimensionality) of
the profile is vastly higher than the number of samples of the
profile. In addition, in many times, the data matrix might have
zeros in most of the elements (called as sparse matrix/data).
These two shortcomings create new challenges in case of the
classification learning strategies [2, 9, 137-142].

There are various model-based conjoint algorithms which
include the unsupervised learning approach. One of the straight-
forward approaches for unsupervised data conjoint belongs to
the matrix factorization approach that basically focuses on the
projection of variability among the underlying data profiles into
the space of dimension reduction. Zhang et al. [91, 92] introduced
a joint nonnegative matrix factorization pipeline for the MOD
conjoint. It depended upon dividing a nonnegative matrix into
the two objects, nonnegative loadings and nonnegative factors:

min||Y — FL|j,F = 0,L = 0, @

where Y denotes the matrix of methylome, mRNA transcriptome
or any other omics profile having P x Q dimensions; F symbolizes
the common factor for the P x K dimension matrix; and L refers
to the K x Q dimension coefficient matrix. Instead of the funda-
mental correlation, the objective was to project each profile into
the common fundamental space by which one can determine
the coherent patterns among the profiles through examining
the elements that have significant z scores. NMF took longer
to compute and bulk memory space was needed. In case of

NMEF, it needed the nonnegative input matrices as well as correct
normalization for these input profiles, since these contained
different distributions as well as variabilities. Chalise et al. [72]
proposed intNMF (an integrative approach for disease subtype
classification based on NMF) to cluster multi-dimensional pro-
files using NMF technique. Multi-omics (viz., MET, CNV, EXP,
MiIREXP (miRNA expression), PEXP (protein expression), etc.) data
were used. Outcomes were the resultant clusters as well as the
cancer-subtype detection. A similar algorithm (integrative NMF
or iNMF) was also developed by Yang and Michailidis [96]; it also
utilized NMF for multi-modal omics data.

Shen et al. (2009) [94] proposed a new NMF-based technique
called ‘iCluster’ that considered a regularized joint latent vari-
able akin to F in the NMF but having no non-negative constraints.
The equation for decomposition in iCluster is denoted as follows:

X =FL+E, @)

where E is noise (or, error) term. Here, the loading coefficient L is
the sparsity that was induced with various categories of penalty
functions in the case of different data types. In 2013, Mo et al.
[95] extended the concept of iCluster (denoted as ‘iCluster+’)
through the assumption of various modeling methods for the
inter-relationships between Y and F across various data plat-
forms. ‘iCluster+’ allows for different kinds of data types such as
continuous, binary, sequential and categorical data with various
modeling assumptions including multilogit, normal linear, logis-
tic and Poisson distributions. The common latent variable vector
F denoted the corresponding driving factors which were applied
to the disease subtype assignment. Tibshirani et al. (1996) [49]
introduced the least absolute shrinkage and selection operator
(LASSO) penalty method to solve the issue of sparsity in L. Of
note, nonnegative input data matrix is not necessary for either
iCluster or iCluster+, unlike for the NMF method.

Lock et al. (2013) [97] proposed a new variant of NMF method
entitled ‘Joint and Individual Variation Explained’ (JIVE). Through
JIVE, the original data profile of each layer was decomposed
into three partitions, i.e. an approximation of the joint variation
toward the data types, residual noise and an approximation of
the specified structured variation for each individual data type.
In detail, JIVE factors the initial data profile input matrix into the
two lower-ranked representative parts, i.e. shared factor (Fy,) and
data-specific factor (Fgs) that are completely dependent upon Lg,
and Lgs, respectively. Here this is denoted as follows:

Y = FgnLsn + FasLgs + E. (4)

Notably, the ranks of the two loading factors might not be
same. Depending upon the principal component analysis for the
factorization, JIVE performance suffers mainly from the outliers.
Hence, the robustness of JIVE might be affected due to outliers.
In the next year of developing JIVE, Ray et al. (2014) [98] pro-
posed another method in which Joint Bayes Factor was inverted
in a way such that a common factor loadings L was assumed for
both the factors (i.e. shared factor Fs, as well as data-specified
factor Fy). The initial data profile input (e.g. gene expression
data matrix) is decomposed into shared common factors across
data types, data-type specific factors and residual noise just as
in JIVE. But unlike JIVE, which introduced the sparsity through
L1 penalties, Joint Bayes Factor model assumes a beta-Bernoulli
procedure for both factors (Fs, and Fg). For the factor loadings
(L), that model utilizes the student-t sparseness-promoting prior



for taking into account the sparsity [125]. The decomposition
equation is as follows:

Y = (Foh + Fas)L + E. (5)

The drawback of the method was that the Joint Bayes Factor falls
into the linear relationship between the observational and latent
spaces, and a very close relationship for various levels of data
was assumed.

Another method is canonical correlation analysis (CCA) that
is used to determine the relationship between the two sets
of variables. CCA is extensively used in integrating two data
sets. Let us assume that, in the CCA, the two profiles will be
decomposed as follows:

Y =FL, +E ©6)

and

Z=F,L, +E, )

where L, and L, denote the loading factor for y-th and z-th
profiles. In general, the objective of CCA is to identify the loading
factors (1"y and 1} depicting the j-th column for loading factors)
that will maximize the following correlation:

argmax, ;. Cor(Yljy, z Ijz), @)

where Cor(,.) stands for the correlation score between two
vectors. Of note, typical CCA could not be used for the purpose
of dimension reduction for estimating the inverse of a covari-
ance matrix. For the case of MOD integration, penalization and
regularization terms are included to produce more stable as well
as sparse solutions of those loading factors. L1-penalized sparse
CCA (sCCA) conjoint with elastic net CCA has been developed
for filtering the number of variables to create more biologically
relevant results [126, 127]. The latest research on CCA considered
the grouped effects of the features as the structures fixed into
the data sets [e.g. structure constrained CCA (ssCCA) [99], CCA-
sparse group [100]].

Partial least squares (PLS) is a method that was used to
maximize the covariance, and it can help to avoid the problem
of sensitivity to the outliers. This can be denoted as follows:

argmax, ; Cov(Fy,Fy). 9)

The sparse solutions of the PLS (symbolized as sPLS) have been
applied to work in parallel with CCA-elastic net [128]. Of note,
other variants of PLS are (i) ‘sparse multi-block partial least
squares’ (sMBPLS) used to solve the limit of the two data block
computation by redefining the objective function as a weighted
sum of the latent variables in various layers [101], (ii) sparse
network regularized partial least square (SNPLS) was used to
determine the co-modules estimated based on the relationship
between gene expression and drug response [102].

Another technique is Regularized Multiple Kernel Learning
Locality Preserving Projections (rMKL-LPPs) used to conjoin the
multi-omics profiles [111]. The LPPs have been utilized for con-
serving the sum of distances for the k-nearest neighbors of every
sample. As compared to SNF, rMKL-LPP provided more flexibility
since it generated various choices of the dimension reduction
techniques as well as kernels for each data type.
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Some gene module identification methods using various cor-
relation measures such as Pearson correlation coefficient, tra-
ditional TOM by [30], weighted TOM by [31, 32] and generalized
TOM [33] also fall into this category. Zhang et al. (2014) [34]
proposed a new method for weighted networks to produce the
densely connected modules referred to as quasi-cliques. The
major benefit of this approach is that the local maximum edges
were applied to initiate the search for avoiding the extortionate
(unreasonable) overlaps among the recognized modules. Hence,
the run time of the method was significantly reduced. This
methodology is highly useful for detecting a higher number
of genetic modules which are enriched in both the biological
functions and the chromosomal bands in the cancer profile
suggesting a major contributions of copy number variations con-
nected with the development of the cancer. Huang et al. (2018)
[35] developed the corresponding R package, ‘ImQCM’. Feng et al.
(2009) [61] developed a novel web-based software, ‘Gene Expres-
sion data Mining Toward Relevant Network Discovery’ (GEM-
TREND) to mine the gene expression data network through
finding the similar gene expression profiles and generating cor-
responding co-expression networks from any publicly available
database. Of note, for statistical significance, a nonparametric
as well as rank-based pattern matching method inspired by the
method of [62] was utilized. Frequent subgraph mining is the
latest topic of interest. Gawronski et al. (2014) [60] introduced
a novel algorithm named as ‘Frequent subgraph mining for
the discovery of RNA structures and interactions’ (RiboFSM)
for identifying the meaningful patterns from either a single
large graph or a set of smaller sized graphs. The graph repre-
sented all RNA structures along with the interactions. The most
significant frequent patterns had been determined from the
graph.

ARM is a useful tool for extracting the interesting gene sets
(item sets) for any kind of data. It can generate the cause-
effect relationships between the biomolecules such as genes.
Mallik and Zhao [43] introduced two novel rule-based similarity
measures (i.e. weighted rank-based Jaccard and weighted rank-
based Cosine measures) and then prepared a novel computa-
tional framework to identify the condensed gene co-expression
modules (‘ConGEMs’) through the utilization of the association
rule-based learning strategy and the weighted similarity scores.
The algorithm is good for retrieving the bio-marker modules
from the genomic (or epigenomic) profile.

Model-based conjoint (or analysis) with
semi-supervised learning

The characteristic of MSSL shared with MSL and MUL is that
it also uses a unified learning framework as well as a global
optimization strategy as it follows model-based conjoint like
MSL and MUL. However, in the MSSL, the unsupervised learning
methods have been applied to produce as well as to learn the
structure from the integrated data. The supervised learning
methods can also be utilized to validate best guess predictions
in case of unlabeled data. This feeds the data back into the
method of supervised learning as the training data set and
then applies the model for making predictions on the unseen
new data (test data). Interestingly, a lot of real-life machine-
learning problems have fallen into this domain (semi-supervised
learning) since collecting completely labeled data is time-
consuming as well as highly expensive. On the other hand,
unlabeled data are very cheap and very easy to accumulate and
store.
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MSSL:

¢ Inputs: The inputs of MSSL are same as mentioned for
MSL [i.e. (i) genomic, epigenomic or similar kind of data
profiles; (ii) corresponding molecular networks; and (iii)
available sample (phenotype) class labels].

® Objectives: Since this kind of algorithms is the
combination of MSL and MUL approaches, the
objectives of the MSSL are also divided into two
different kinds, first kind of objective includes all
the objectives of MSL such as subnetwork module
detection and gene-signature (marker-gene, hub-gene
or driver-gene) detection, whereas the second type of
objective includes all the objectives of MUL such as the
prediction of the unknown class labels of the outcome
has been performed using the available class label of
the samples.

® Advantages: (i) It also produces good prediction of the
class labels because it applies a combination of unsu-
pervised and supervised learning approaches (property
of semi-supervised learning). (ii) It is useful whenever
only a few of the class labels of the entire samples
are available, but majority of data remain unlabeled
(property of semi-supervised learning). (iii) This is used
frequently for both prediction along with data explo-
ration. (iv) The cost is moderate (due to use of semi-
supervised learning); hence, it is useful to solve most
of the real life problems since it needs some data to be
labeled, not all.

® Limitations: Some limitations belonging to this category
(i.e. the optimization technique used being more diffi-
cult and complex to understand, as well as producing
low scalability) are matched with some characteristics
of MSL and MUL because all the three categories follow
model-based integration. The other distinct limitations
are class-label prediction result is not always consistent.

Biclustering techniques are useful for the detection of genetic
modules. Binary inclusion-maximal biclustering (Bimax) algo-
rithm [53, 54] is a popular biclustering algorithm which traverses
each cell of the matrix to determine the sub-matrices having
only ones in a logical (Boolean) matrix and then determines
such sub-matrices, if any exist. The advantage of this method
is that it is able to identify the genetic modules having a set
of genes along with respective samples (class labels). Another
biclustering method is Cheng and Church (CC) biclustering [55]
for which the sub-matrices containing scores lower than a speci-
fied threshold value in a standardized data matrix were searched
for and identified, if found. Turner et al. (2003) [57] improved
the centralized idea proposed by [56]. Here data matrices were
modeled to a sum of views (layers). The model was used to fit
to the profile through the minimization of the error. Another
reputable biclustering tool is XMotifs biclustering developed by
Murali et al. (2003) [58]. This algorithm searches the sub-matrix
for which each row consists of a similar motif by all the columns.
The method requires a logical (Boolean) data matrix as input.
Kluger et al. (2003) [59] proposed spectral biclustering which
assumed that the normalized microarray data matrices con-
tained a checkerboard structure obtained by the use of svd in
the eigenvectors applied to samples and genes simultaneously.

The high heterogeneity between tumors makes generating
the major tumorigenic pathways as the therapeutic targets a

most challenging task. The merging of the multi-omics profiles
is an interesting task to build the driving regulatory networks
underlying the subgroups of the patients (samples). Ozdemir
et al. (2013) [63] introduced a novel framework entitled ‘iSub-
graph’ (Integrative Genomics for Subgroup Discovery in Hepato-
cellular Carcinoma Using Graph Mining and Mixture Models) to
determine the patterns belonging to the miRNA-gene networks
in which frequently up/down-regulated biomolecules in a group
of patients (samples) had been observed and it would be utilized
for the stratification of the patient for the hepatocellular carci-
noma. The gene expression profile and miRNA expression pro-
file had been analyzed simultaneously in terms of the structure
of a graph. Here the microarray profile was firstly transformed
into a graphical form that encodes the gene expression levels as
well as miRNA expression levels with their internal interactions.
Of note, iSubgraph technique can determine the co-operative
regulation of genes as well as miRNAs although the regulation
found only in a few patients (samples). The miRNA-mRNA
modules were utilized in an unsupervised class prediction
model for recognizing the hepatocellular carcinoma subgroups
through the patient (sample) clustering through the mixture
models.

Model-based conjoint (or analysis) with survival-driven
approach

Survival-driven (cancer prognosis) prediction is a topic of inter-
est for cancer patients as well as health care providers. Mean-
while, only a few strategies are available to conjoin any MOD
optimized for the prognosis-related prediction. Notably, both
the one unified learning framework and global optimization
technique have been used here. It predicts the class labels for
the results through prognosis well as it also checks the overall
survival and follow-up times for the patients.

MSD:

¢ Inputs: The inputs of MSD are same as mentioned for
MSL and MSSL [i.e. (i) genomic, epigenomic or similar
data profiles; (ii) corresponding molecular networks;
and (iii) available sample (phenotype) class labels.

® Objectives: The objectives of this type of algorithms are
(i) cancer sample (phenotype) prediction and (ii) gene-
signature (marker-gene or hub-gene) detection having
prognosis study of underlying samples from the clinical
data.

® Advantages: (i Cancer prognosis (survival)-related
information helps to make a decision about the man-
agement as well as therapeutic treatments of the
patients. (ii) Prognostic-related markers are highly use-
ful to more effective selection of the subgroups of
patients along with various therapeutic methods.

® Limitations: Several disadvantages of this category over-
lap with some characteristics of the MSL, MUL and
MSSL due to all four using the same type of integration
(model-based integration). These are as follows: (i) the
optimization technique seems to be more difficult and
complex to understand. (ii) Low scalability has been
produced. (iii) The result of the class-label prediction
is not always consistent. There is another distinct dis-
advantage of this category that we need the labeled
clinical data for using this category. So it is costly.




A network-based Cox proportional hazard model (abbrevi-
ated as ‘Net-Cox’) was introduced by Zhang et al. (2013) [50]
for the survival study. The objective of the Cox regression is to
understand the baseline hazard function (ho(t)) as well as the
regression coefficients (8) for which the associated instanta-
neous risk of any event during the time t for a patient x; could be
estimated by the following equation:

h(t|x;) = ho(t)exp (xfﬁ) (10)

In addition, the graph Laplacian constraint on the regression
coefficients (i.e. B) is utilized. Of note, a local optimum solution
is produced through the alternation between the maximization
with respect to ho(t) and 8.

In addition, the graph Laplacian constraint in the linear clas-
sification models [e.g. support vector machines (SVMs) by Chen
etal. (2011) [52]] is utilized in many works. Let us assume that y is
a binary response vector, i.e. y = (y1,¥a,...,¥n)|, Where y; € {0, 1}.
In this case, a Bernoulli likelihood function minus both the L1-
norm and the graph Laplacian constraints became maximized in
order to learn the linear coefficients. The probability of occurring
the i-th sample in class 1 is referred to as follows:

eXP(ﬂo4—x?ﬂ)

pxi) = T oole —xT8) N exp(ﬂo N XlTﬂ) .

The elastic net technique is utilized here in order to maximize
the regularized cost function. Chen et al. (2011) [52] developed
network-based SVMs (netSVMs). Suppose, the +1/ — 1 binary
response vector be denoted by y. The network-constrained SVM
was formulated by the addition of the graph Laplacian constraint
and the hinge loss in which the subscript ‘+’ symbolized the
positive part, i.e.

z, = max{0, z}. (12)

Preprocessing conjoint with supervised learning

In this type of algorithms, the genomic (epigenomic or similar)
profiles and the corresponding networks are analyzed individ-
ually to explore final network-based features for each profile,
and then the learning models are utilized on the network-based
features employed, for the purpose of predictions. Alternatively,
all genomic (epigenomic or similar) profiles are integrated first,
and then further analysis or learning technique conducted on
the integrated data. After that, the class labels of the samples
for the results are classified and gene signature (marker gene or
hub gene) identified, if required. PRSL is used when the entire
data are labeled (characteristics of the supervised learning).

PRSL:

¢ Inputs: The inputs of PRSL are same as mentioned for
MSL.

® Objectives: The objectives of this type of algorithms are
same as MSL [i.e. (i) classifying the samples and (ii)
extracting gene-signature (marker-gene or hub-gene)
for the disease], but the design of this kind of algorithms
is different from MSL (mentioned in the beginning of
PRSL).
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® Advantages: (i) It is flexible enough to recognize the
customizable subnetwork features (e.g. the recognized
features) that affect the hypothesized network-related
phenomena (characteristics). (ii) The density as well as
size of the subnetworks can be properly specified. (iii) It
is the better approach for the output/prediction for the
MOD in terms of integration/analysis category.

® Limitations: (i) Network-dependent features obtained
from this kind of algorithm are not found to be optimal.
(ii) It is costly to use as it needs all labeled data. (iii)
Some information loss might be possible during data
integration since that depends upon how the profiles
are integrated and based upon which criteria are used.

Lee et al. (2008) [71] introduced a novel classification method-
ology taking into account the features belonging to the dis-
criminative pathways. In this case, gene expression data of the
patient samples collected from each disease subtype (e.g. good
prognosis or poor prognosis) were converted into a ‘pathway
activity matrix’. In other words, pathway information and gene
expression matrix were integrated together preliminarily. For
each pathway, the activity was basically an integrated z-score-
estimated gene-wise from the gene expression data. After cov-
ering the gene expression vector of every gene on its respective
protein belonging to the pathway, the genes that produced the
most discriminative functionalities (activities) were identified
through a greedy search depending upon their individual power.
Next the pathway activity matrix was utilized for training a
classifier.

Pre-processing conjoint (or analysis) with unsupervised
learning

In this type of algorithms, the integration technique is same
as PRUL, but learning technique is different from PRSL. In this
case, unsupervised learning technique is used. As for PRSL, the
genomic or similar kind of data profiles along with the respective
networks are analyzed separately to extract the final network-
based features for each profile, and then the learning mod-
els are applied on the employed network-depended features.
Alternatively, all genomic or similar data profiles are conjoint
preliminarily, and then learning or next analysis conducted on
the merged data. Thereafter, the final gene modules and genetic
signature are identified. Of note, this type of algorithms (in
terms of unsupervised learning) is utilized to learn the inherent
structure from the input data portion. PRUL is used when the
entire data are unlabeled (nature of the unsupervised learning).

PRUL:

¢ Inputs: The inputs of PRUL are same as mentioned for
MUL.

® Objectives: (i) Finding the final gene modules or/and
genetic signature. (ii) PRUL is applied for determin-
ing the inherent structure from the input data profile
through unsupervised learning.

® Advantages: (i) It is flexible enough to recognize the
customizable subnetwork features (e.g. the recognized
features) that surely affect the hypothesized network-
related phenomena (characteristics). (ii) The density
as well as size of the subnetworks can be properly
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specified. (iii) It is the better approach for the output
(prediction) for the MOD in terms of integration or anal-
ysis category. (iv) The aim of using unsupervised learn-
ing is to model the underlying distribution or structure
of the data for the purpose of learning more about
the data. (v) Performs well in solving the problems of
sparsity and heterogeneous connectivity akin to MSL
and MUL. PRUL:

® Limitations: (i) Subnetwork features found from PRUL
are not optimal like PRSL. (ii) Like PRSL, information
loss is possible during conjoining the data profiles. (iii)
Performance of PRUL is worser than the performance of
all categories that use supervised learning (such as MSL,
PRSL, etc.).

Kirk et al. (2012) [103] developed a Bayesian technique for
conjoining multiple profiles through unsupervised model that
is called multiple data set integration (MDI). MDI can conjoin
information from a wide range of various data sets as well as
data types simultaneously, including the capability for mod-
eling the time series profile explicitly through the use of the
Gaussian processes. Each profile had been modeled through
a Dirichlet-multinomial allocation (DMA) mixture model with
the dependencies between these models accumulated by the
parameters which demonstrated the agreement among the pro-
files. Cho and Przytycka (2013) proposed a novel computational
probabilistic pipeline to model the cancer cases separately as
the subtype mixtures for dealing with the cancer heterogeneity.
That was as a meta-model, which summarized the outcomes
of a large number of alternative models. The proposed method
was applied to glioblastoma multiforme (GBM). The outcome
model (symbolized as ‘Prob_GBM’) not only correctly determined
known relationships but also recognized new characteristics
underlining the phenotypic similarities. That pipeline could be
utilized for modeling the relations between the similarity of gene
expression and the potential genetic reasons relating a broad
spectrum of different cancers.

Louhimo and Hautaniemi (2011) [23] introduced a novel
method entitled ‘CNAmet’ to integrate the gene expression,
methylation and copy number data to produce an integrated
score and then estimate the P-value computation using
permutation statistical test. At first, the genes for which up-
regulation was caused by the hypo-methylation and the higher
copy number patterns or vice versa were identified, where
‘1’ and ‘0O’ denote hypo-methylation and hyper-methylation,
respectively, for the methylation data and amplification and
lack of amplification, respectively, for the copy number data.
Then the weighted score for j-th gene for methylation profile
was computed as follows:

j J
Wtj _ Hineth1 — Mmetho _j
meth = j ? “'meth,0

; >0,0)
Ometh1 T Ometh,0

meth,1

>0, (13)

where /Ll;,nethyl and ogneth,l signify the mean and standard devia-
tion, respectively, of the methylation values of the underlying
samples that have ‘1’ score, whereas M{neth,o and aneth,o denote the
mean and standard deviation, respectively, of the methylation
values of the respective samples having ‘0’ score. Similarly, the
weighted score for j-th gene for the copy number data (Wtipn)

was computed. The CNAmet score for j-th gene (denoted as St)

was then computed as

St = (Wt + Wehpn ), Weh, > 0, Wtk >0, (14)

where the correction term e; is as follows:

uj

= (15)

g
Here U/ is the number of samples belonging to the intersection of
the samples having ‘1’ in copy number profile and methylation
profile of j-th gene, and TN stands for the total number of
underlying samples. Next the statistical significance of Wt/
thm and St/ was evaluated by random permutation of the
corresponding labeled vectors and then recomputing Wtjmeth,
Wt{gm and St/. The false discovery rate technique proposed by
Benjamini and Hochberg (1995) was applied to compute the P-
values of St). Of note, H, states that ‘the higher score was caused
because of the random event’.

However, Aure et al. (2013) [112] introduced a new framework
which analyzed in-trans process-associated and cis-correlated
(iPAC) genes in order to find the evidence of in-trans relation to
the biological processes without the bias toward the processes of
a specified function or category. The objective of this approach is
to determine the cis-regulated genes for which the correlation in
the expression to other genes generates further evidence of their
role in the network perturbation in cancer. The aforementioned
unsupervised methodology involved several statistical tests con-
secutively to identify the list of relevant (nonredundant) genes
depending upon the integrative analysis of the gene expression
and copy number profiles. A new adjustment approach handled
the effects of the co-occurrence of the copy number aberrations,
in terms of reducing the number of false positives.

He et al. [74] introduced a new technique for identifying
the dysfunctional modules which would be validated by vari-
ous categories of measurements along with different indepen-
dent data sets. In that case, the disease-specified sub-networks
were considered as features in which a set of known disease-
related genes were mapped into the protein-protein interaction
(PPI) network, and thereafter the sub-networks of the disease-
associated genes had been determined as the disease-module
features. Jahid et al. [76] proposed a new approach to recognize
a smaller-sized sub-network for linking all the differentially
expressed genes in a PPI network. Next the genes belonging to
the subnetwork were utilized as the corresponding features for
conducting classification of the underlying samples. Of note,
the Steiner tree problem belonging to the graph theory was
addressed in that work. For obtaining an optimum solution with
the higher probability, a heuristic method, which was coupled
with the randomization, was modeled for integrating the under-
lying multiple sub-optimal Steiner trees.

Preprocessing conjoint (or analysis) with
semi-supervised learning

In this category of algorithms, the conjoint strategy is the same
as PRSL as well as PRUL, but the learning technique is different.
Here semi-supervised learning technique (mixture of unsuper-
vised and supervised techniques) is used. In brief, unsupervised
learning methods are applied to produce as well as to learn
the structure from the integrated data. The supervised learning
methods can also be utilized to validate best guess predictions
in case of the unlabeled data. This feeds the data back into the



method of supervised learning as the training data set and then
applies the model for making predictions on the unseen new
data. Semi-supervised learning is useful when a few of the entire
data are labeled, but the majority of data remain unlabeled.

PRSSL:

® Inputs: The inputs of PRSSL are same as mentioned for
MSSL.

® Objectives: Like MSSL, the objectives of the PRSSL are
also divided into two individual categories of which
1st category belongs to the objectives related to unsu-
pervised learning [i.e. (i) sub-network or gene module
detection and (ii) gene-signature finding, and the 2nd
objective category includes (iii) the prediction of the
unknown (new) class labels of the result through learn-
ing (training) on the available class label of the underly-
ing samples].

® Advantages: Like PRUL, (i) one of the objective of
PRSSL is to identify the customized as well as flexible
features which will certainly affect the network-
based characteristics. (ii) Like PRUL, the density
along with the size of the subnetworks could be
mentioned as much as appropriate. (iv) It is a useful
and better strategy for the output (prediction) for the
MOD in terms of integration (or analysis) category.
Besides those, other objectives of PRSSL are as follows.
(v) This is used for both the prediction as well as
data exploration (characteristics of semi-supervised
learning). (vi) The expense is moderate because of
utilizing the semi-supervised learning. Therefore,
PRSSL is useful to solve most of the real-life problems
since it needs some data to be labeled, not all.

® Limitations: Akin to PRSL and PRUL, (i) the network
features identified from PRSSL are not optimal. (ii) As for
PRSL and PRUL, information loss might be there at the
time of integrating the data profiles. (iii) Some informa-
tion loss might be possible during data integration.

You et al. (2010) [121] proposed a new computational method,
‘GeneticInterPred’ to predict the pairwise synthetic genetic
interactions (SGI) accurately. Initially, a high-precision and high-
coverage functional gene regulatory network (FGN) was built
through integrating the gene expression data, protein complex
and PPI. Thereafter, a graph-based semi-supervised learning
(SSL) classifier was applied to determine SGI in which the
topological measures of the protein pairs in the weighted FGN
was utilized as the input features of the SSL classifier. Kim
etal. (2012) [122] introduced an integrated pipeline which applied
the multi-level genomic profile to predict the clinical outcomes
in ovarian and brain cancer. From the empirical comparative
results on individual genomic data, some fundamental insights
regarding the level of data, which was highly informative in
the clinical-type classification problem, were described and
these findings with the associated biological implications
for each cancer-subtype were justified. The prediction of the
clinical results in the cancer was further improved whenever
the prediction depended on the conjoint of the MOD (multi-
layered data). That analysis enhanced the comprehensiveness
of the bio-molecular pathogenesis as well as internal biological
understanding of both categories of cancer.
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Bandyopadhyay and Mallik (2016) [79] developed a new algo-
rithm of combinatorial gene marker identification from the gene
expression and methylation profiles. To do so, initially the gene
expression and methylation profiles were integrated using the
concept regarding the inverse relationship between the gene
expression and methylation status, and then the statistical as
well as association rule-based learning methods were applied on
the integrated data. Moreover, interesting weighted association
rules (classification rules having gene sets in antecedent and
class in consequent) had been extracted from the algorithm.
The top rules were considered as combinatorial biomarkers.
Mallik and Zhao (2017) developed a new algorithm TrapRM [Tran-
scriptomic and proteomic rule mining using weighted short-
est distance-based multiple minimum supports (WSDMS) for
MOD set] [80] in which the gene expression, DNA methyla-
tion and PPI profiles are first integrated, and association rules
are then extracted by using three variable cutoff measures:
WSDMS, weighted shortest distance-based multiple minimum
confidences (WSDMC) and weighted shortest distance-based
multiple minimum lifts (WSDML). Finally, gene enrichment anal-
ysis is performed to assess the biological significance of the
resultant rules.

Pre-processing conjoint (or analysis) with survival
driven learning

PRSD follows the same learning technique (survival) as MSD, but
the data integration technique is different from MSD.

PRSD:

® Inputs: The inputs of PRSD are the same as mentioned
for MSSL and PRSSL.

® Objectives: The objectives of PRSD are the same as MSD,
but the design (data integration technique) is different
from MSD (i.e. preprocessing conjoint instead of model-
based integration).

® Advantages: As for all the algorithms that use prepro-
cessing integration such PRSL, PRUL and PRSSL, there
are some common advantages as follows: (i) It is useful
to identify the flexible sub-network features that can
alter the network properties. (ii) The size of the underly-
ing subnetworks as well as the other factors (density of
the network) are highlighted accurately. (iii) Also PRSD
is better for the output prediction with the MOD set in
terms of integration (or analysis) category. There are two
more objectives that are same as the objectives of MSD.

® Limitations: (i) Subnetwork-related features obtained
from PRSD are not optimal like PRSL, PRUL and PRSSL.
(ii) Some information loss might be possible during data
integration since that depends upon how the profiles
are integrated and based upon which criteria are used.
(iii) Since labeled clinical data are required, it is costly.

Hofree et al. (2013) [75] proposed a method entitled network-
based stratification (NBS) for conjoining the somatic tumor
genomes and gene networks. This approach allowed for
stratification of cancer into the respective subtypes through
clustering simultaneously the patients with the mutations in
the same network regions. That method generated the network-
smoothed features that were applied for the classification of
samples through the label propagation on the mutation data of
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each individual sample on a PPI network. Mankoo et al. (2011)
[123] introduced a multivariate Cox Lasso model and median
time-to-event prediction method (CoxPath). It can integrate
multiple genomic data types. First the features were chosen
using cross-validation, and then a prognostic index for the
risk stratification of the patient was determined. Next the
continuous clinical outcome measures such as the recurrence
time and survival time were predicted. Kaplan-Meier P-values,
hazard ratios and concordance probability estimates were
utilized for assessing the performance on prediction, comparing
individual as well as integrated profiles. Data conjoint resulted
in the best progression-free survival (denoted as ‘PFS’) signature.
Kim et al. (2016) [124] introduced a novel computational
pipeline entitled meta-dimensional knowledge-driven genomic
interactions. According to the outcome, each knowledge-driven
genomic interaction model depending upon various genomic
profiles consisted of various sets of pathway features that
signified that each genomic profile category might provide out-
comes in the specified cancer through a different pathway. From
the MKGI models, various interactions between the pathways
related to the outcomes were determined. Those included the
gonadotropin-releasing hormone signaling pathway as well as
the mitogen-activated protein kinase signaling pathway that
were well known for having significant roles in the cancer
pathogenesis. Interestingly, the reason for inclusion of the
biological knowledge into the model depending on the multi-
omics profiles was the capability to enhance the diagnosis as
well as the prognosis and to provide better interpretability.
Hence, measuring the variability in the molecular signatures
depending upon these interactions between these pathways
might enhance diagnosis or treatment in precision medicine.

Post-processing conjoint with supervised learning

In POSL, the genomic or similar data profiles and the respective
networks are preliminarily analyzed individually to determine
the list of oncogenic alternations for each profile. The recog-
nized changes are then analyzed within the network. Then the
learning models are utilized on the oncogenes. Alternatively, the
network information is integrated (conjuncted) after detecting
the oncogenic changes through standard statistical approaches.
Here gene signature is identified, and the class labels of the sam-
ples for the outcome are predicted. In addition, the reason for
using the post-processing integration (or analysis) is to evaluate
how cancer-driving changes damage the normal cellular system
through examining the normal influences on the corresponding
network components. For multi-omics profiles, post-processing
conjoint signifies that at first each profile has been analyzed
separately, and then resulting outcomes from each profile inte-
grated to retrieve final outcomes.

This category of algorithms extracts oncogene-related
findings and other related information including the cancer
mechanisms from the underlying network. The aim of the
post-processing integration technique is to deal with either
the mutations or other DNA aberrations along with the
differential expression or several other molecular phenotypes
of the network employed. Thus, this category of methods is
interesting in general and contains a full set of information
about the cancer mechanisms between the networks. But
since the internal relation of the patterns between different
profiles is not considered prior to the learning process, the final
resulting outcome might not be optimal whenever integrating
or analyzing the multi-omics data. POSL is used when the entire
data are labeled (like the supervised learning).

Kim et al. (2013) [113] proposed a neural network method
entitled ‘Analysis Tool for Heritable and Environmental Network
Association’ (ATHENA) to conjoin several omics profiles in a
supervised fashion that might further lead to a prognosis study.
Here grammatical evolution neural networks (GENN) algorithm
was applied for training the individual models from various data
platforms. Depending upon the neural networks, the grammat-
ical evolution approach was conducted for training the model
using the chosen features which were less noisy as well as
significantly related to the clinical results. Thereafter, individual
models were integrated to obtain the final integrative model that
might be used for multiple reasons including diagnosis as well
as prognosis. ATHENA provided a flexible way to visualize the
correlation of the genomics data with the clinical data [e.g. sur-
vival results (prognosis results)]. The most notable shortcoming
of ATHENA is lacking interactive terms between various layers
since the features were chosen from each data type separately
first, and then conjoined into each respective integrated model.
Ideker et al. (2002) [114] developed a network-based Cytoscape
plug-in that attempted to obtain the network hotspots through
the integration of gene expression profile, PPI profile and pro-
tein-DNA interaction profile. This technique depended upon the
hypothesis that the molecular interactions connecting the genes
were more likely to be correlated among the expression data
rather than randomly picked genes belonging to the network.
jActiveModules estimated the highest-scoring sub-network cir-
cuits with the help of the random sampling method as well as
the iterative computation in a complete network of the molec-
ular interactions that created further biologically interesting
knowledge retrieval (discoveries) [denoted by Cline et al. (2007)
[129]]. jActiveModules, which can be related to the molecular
interaction network, can include the genes without dramatic
gene expression fold changes.

POSL:

¢ Inputs: The inputs of POSL are the same as for MSL.

® Objectives and description: The major objectives of
POSL are same as the objective mentioned for MSL.
The data set integration approach used in POSL is post-
processing, which is different from MSL and PRSL. POSL
is helpful for providing a full set of information about
the cancer mechanisms between the networks.

® Advantages: (i) POSL provides oncogene-related find-
ings and other related information including the can-
cer mechanisms from the regulatory network. (ii) The
chance of losing the information in the analysis is less
since the integration has been performed after comple-
tion of individual analysis. (iii) This type of algorithms
is helpful to evaluate how cancer-driving changes dam-
age the normal cellular system through examining the
actual influences on the corresponding network com-
ponents.

® Limitations: (i) The final result may not be following
optimal result while integrating or analyzing any MOD.
The reason behind this is that the interrelation of the
patterns between different profiles is not considered
prior to learning process. (ii) It is costly to use (the
supervised learning) as it needs all labeled data. (iii) It
is less efficient in outcome prediction. (iv) There is no
guarantee that optimal features are obtained.




Ruffalo et al. (2015) [115] introduced a network propagation-
based integration approach that claimed to determine the key
proteins across the sample level through the propagated protein
networks depending upon the integrated mutation as well as the
differential gene expression (DGE) data sets. Propagated muta-
tion and DGE profiles were determined for each individual gene
through the prior knowledge in the PPI pipeline. Next, feature
selection was conducted on these propagated data profiles in
a supervised manner, in which the top features were the most
relevant features as resulting outcomes. A final set of proteins
was chosen depending upon the network proximity toward the
underlying samples. In the final step, logistic regression was
conducted with the specified genes. That approach effectively
identified the hidden set of proteins (or genes) at the pathway
level having a significant role in the tumor progression or clinical
outcome that might not be observed by either the differential
expression analysis or the individual mutational analysis. In
addition, Kondor et al. (2002) [83] developed a diffusion kernel
that can be used for constructing an influence graph having the
edges weighted by the influence between each gene pair.

Post-processing conjoint (or analysis) with
unsupervised learning

As in POSL, in the POUL, the genomic data sets along with their
corresponding networks are preliminarily analyzed separately
to identify the list of oncogenic modifications for every pro-
file. Thereafter, the recognized changes are incorporated into
the network and further analyzed. The learning models are
thereafter used on the resultant oncogenes. Otherwise, after
identifying the oncogenic changes, the information regarding
the network is merged through several statistical strategies.

In addition, the reason for using the post-processing inte-
gration (or analysis) is to evaluate how cancer-driving changes
damage the normal cellular system through examining the nor-
mal influences on the corresponding network components. For
multi-omics profiles, post-processing conjoint signifies that at
first each profile has been analyzed separately, and then result-
ing outcomes from each profile are integrated to retrieve final
outcomes. Notably, POUL is applied when the entire data are
unlabeled (property of the unsupervised learning).

POUL:

¢ Inputs: The inputs of POUL are the same as mentioned
for MUL.

® Objectives: Some objectives of POUL are the same as
those for MUL and PRUL. Those objectives are identify-
ing (i) the gene modules and/or (ii) the gene signature. In
addition, POUL is useful for recognizing the significant
inherent features from the underlying input data sets.

® Advantages: (i) As POSL, POUL approaches are inter-
esting and full of information about the oncogenes as
well as cancer mechanisms between the networks. (ii)
As for POSL, the probability of information loss during
the analysis is low as the data integration is conducted
after the completion of individual data analysis. (iii)
As for POSL, POUL algorithm is useful to evaluate how
cancer-driving modifications destroy the normal cel-
lular system via verifying the normal influences on
the respective network components. (iv) The aim of
using unsupervised learning is to model the underlying
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distribution or structure of the data for the purpose of
learning more regarding the data. (v) Performs well for
solving the issue of heterogeneous connectivity.

® Limitations: (i) The internal relation of the patterns
between different data profiles is not considered prior to
the learning process. Hence, although oncogene-related
information obtained from the data are interesting, they
are not a global optimal solution. (ii) Performance of
POUL is worse than that of POSL due to use of unsuper-
vised learning technique while POSL uses supervised
learning. (iii) The resultant features might not be global
optimal.

Akavia et al. (2010) [107] introduced a Bayesian network-based
approach denoted as ‘Copy Number and Expression In Cancer’
(CONEXIC) to integrate the gene expression and CNV data. A
score-guided search was then utilized to obtain the combination
of genes (modulators). A list of ranks for the high-scoring mod-
ulators (i.e. ‘candidate driver genes’) was produced. The high-
scoring modulators signified the genes which were correlated
with the differential expression modules in the tumor samples
as well as present in the either significantly amplified regions
or significantly deleted regions. The main feature of CONEXIC
went beyond determining the mutation drivers, since CONEXIC
produced insights into the impact of the candidate drivers as
well as the related genes. Bonnet et al. (2015) [110] developed an
unsupervised method denoted as Lemon-Tree that was mainly
focused on rebuilding the gene module networks. After obtain-
ing the co-expressed clusters from the gene expression profile,
Lemon-Tree was applied to determine the consensus modules as
well as the upstream regulatory programs using some ensemble
approaches. Preliminarily, any expression matrix was consid-
ered to obtain the clusters of co-expressed genes using a Gibbs
sampler. Consensus modules of these co-expressed genes were
integrated by the utilization of the spectral edge clustering algo-
rithm along with a set of the gene cluster outcomes. On the
other hand, several additional candidate regulator categories of
data (e.g. CNV, miRNA expression and methylation profiles) were
integrated with the consensus module for inferring a regulatory
score computed using a decision tree structure. The benefit of
using Lemon-Tree is that it can infer more closely associated
short-path networks containing more significant gene ontology
based categories, as compared to the method CONEXIC.

Yuan et al. (2011) [105] proposed a Bayesian nonparamet-
ric model called ‘Patient-Specific Data Fusion’ (PSDF) that was
developed based on the two-level hierarchy of the Dirichlet pro-
cess model, which is highly useful for clustering. It verified the
concordance between the gene expression and the CNV for each
individual patient. Interestingly, it also chose the top informative
features (genes) and then evaluated the number of subtypes of
the corresponding disease from the underlying data. Wang et al.
(2014) [109] introduced a new approach denoted ‘Similarity Net-
work Fusion’ (SNF) whose goal was to identify the patient sub-
group clusters. SNF merged various data types through building
a network of samples (instead of genomic features) for each indi-
vidual data type, and thereafter fusing these networks into one
single network. SNF is relatively flexible without the constraints
for the format of the input profile. SNF worked only on the
matched samples under various omics profiles (layers). Through
obtaining the integrated similarities as the output among the
patients under various layers, SNF provided deeper biological
understanding. Lock and Dunson (2013) [106] developed Bayesian
consensus clustering (BCC), a flexible and efficient clustering
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method that was able to model the heterogeneity as well as
the dependence of different data sources. In BCC, individual
clustering of the objects from each individual data source was
conducted, and then the post-hoc conjoint of individual clusters
carried out. Thereafter, consensus clustering was applied in
order to model the source-specified structures and to identify
the overall clustering. Vaske et al. (2010) [108] developed a prob-
abilistic graphical model entitled ‘Pathway Representation and
Analysis by Direct Reference on Graphical Models’ (PARADIGM)
to deduce the patient-specified genetic variations, along with
the inclusion of the selected pathway interactions among the
genes. PARADIGM transformed each pathway belonging to the
National Cancer Institute Pathway Interaction Database into an
individual probabilistic model that was depicted as a factor
graph having both the observed states as well as hidden states.
Of note, variables belonging to the graph were utilized to illus-
trate the protein-coding genes, gene molecules and complexes.
Kim et al. (2011) [81] proposed a new approach for identifying the
causal genes and dysregulated pathways together. Firstly, dif-
ferentially expressed genes were generated. Next, the genomic
aberrations obtained by the mutations and copy number varia-
tions associated with the DGE were estimated. The causal paths
obtained from the altered (i.e. causal) genes toward the differ-
entially expressed target genes belonging to a PPI network were
computed. The causal genes were finally determined through
utilizing a set-covering methodology on all the differentially
expressed target genes. Vandin et al. (2011) [82] developed a novel
approach of de novo identification of the sub-networks from a
genome-scale gene interaction network which were mutated in
a statistically significant number of samples. Bhadra et al. (2017)
[44] developed a new method using an integrated method of
statistical test and normalized mutual information-based hypo-
graph mining for generating the multi-view co-similarity gene
modules from the multi-view profiles.

Post-processing conjoint with semi-supervised learning

As seenin the case of POSL and POUL, the objectives of POSSL are
that first the epigenomic or genomic data profiles along with the
corresponding networks are independently analyzed for extract-
ing the list of oncogenic changes for each data profile. The
resulting alterations are thereafter analyzed into the network.
Then the learning models are applied to the oncogenes. Else,
the network-related information is merged after identifying the
oncogenic updates using statistical techniques. In common with
the other post-processing integration techniques (e.g. POSL and
POUL), POSSL is also used to evaluate the effect of cancer-driving
changes on the normal cellular system. For multi-omics profiles,
post-processing conjoint states that preliminarily analyses are
conducted individually on each data profile, and thereafter the
outcomes obtained from each profile is conjoined to retrieve
the final outcomes. Additionally, in terms of the usability of
learning method, POSSL follows the same strategies as MSSL and
PRSSL.

POSSL:

¢ Inputs: The inputs of POSSL are the same as mentioned
for MSSL and PRSSL.

® Objectives: The objectives of the POSSL are the same as
MSSL and PRSSL, but the design is different from them.

® Advantages: As POSL and POUL, (i) POSSL generates
interesting oncogene-associated outcome along with

other related information such as the cancer mech-
anism obtained from the regulatory network; (ii) the
overall probability of losing the underlying information
during the analysis of POSSL is less because the data
profile integration is conducted after completing the
individual analysis; and (iii) POSSL can recognize how
cancer-driving changes affect the entire normal cellular
system. In addition, there are many other advantages
that match those of MSSL and PRSSL. For example, (iv)
POSSL is used in both the cases data exploration as well
as prediction since semi-supervised learning is used
here; (v) POSL is useful when a few of the entire data
are labeled, but the majority of data remain unlabeled
(phenomena of the semi-supervised learning). (vi) The
expenses of using POSSL are moderate since semi-
supervised learning is utilized here. Hence, a lot of real
life machine learning problems fall into POSSL.

® Limitations: Like POSL and POUL, (i) in POSSL, the inter-
nal relation of the patterns among different data pro-
files are not taken into account before the learning
process. As a result, despite of producing interesting
oncogene-related information, findings might not be
global optimal. (ii) The overall cost is moderate due to
use of semi-supervised learning; hence it is useful to
solve most of the real-life problems since it needs only
some data to be labeled. (iii) The efficiency in outcome
prediction is low. (iv) Performance of POSSL is worse
than POSL, but better than POUL (property of semi-
supervised learning). (v) Features may not be optimal
globally.

Ciriello et al. (2012) [87] developed the mutual exclusivity
module (MEMo) discovery method in which a matrix format of
the underlying genes that were significantly altered by either
mutations or CNV were built. The selected (altered) genes were
then associated with their proximal in the Human Protein
Reference Database PPI network. At the final stage, the subgraph
containing all the associated gene pairs (‘cliques’) was detected
for analyzing the mutual exclusiveness in the underlying
data.

Mallik et al. (2013) [93] provided an integrated analysis (post-
processing integration or analysis) to find the genes having the
inverse relationship between their methylation and expression
patterns. Maulik et al. (2015) [68] developed a new ARM method
namely statistical biclustering-based rule mining (StatBicRM) to
determine classification rules as well as possible potential gene
markers through the integrated methodology of the statistical
method and BiMax algorithm from multi-omics profiles. First
of all, a new statistical approach was applied to discard
the insignificant redundant genes (features) through which
the significance pattern must satisfy the distribution of the
underlying data (i.e. either normal or non-normal distribution).
The data were then discretized as well as post-discretized
Then the biclustering algorithm was utilized to determine the
maximal frequent closed homogeneous gene sets. Classification
rules were then generated from the employed gene sets.
To recognize the potential gene markers, frequency analysis
of the genes appearing in the data was then conducted. In
addition, classification performance of the employed rules was
conducted. Moreover, the inversely associated genes between
their methylation and expression patterns were also identified.
Mallik et al. (2017) [41] introduced a novel pipeline for discovering
the statistically significant epigenetic gene markers through



the utilization of minimal redundancy and maximal relevance
condition based gene (feature) selection method for multi-
omics profiles. First of all, the genes that contained both the
methylation and expression values, and which follow the normal
distribution, were identified. On the other hand, the genes that
contained both the methylation and expression values, but did
not follow the normal distribution, were also determined. In
each case, a gene-selection method which generated maximal-
relevant, but variable-weighted minimum-redundant genes to
be the top genes, was applied. Next, student’s t-test (parametric
test) was conducted on both the methylation and expression
profiles containing only the normally distributed top-ranked
genes to identify the genes that were both differentially
methylated and differentially expressed. In a similar fashion,
Limma R tool using nonparametric empirical Bayes test was
performed on both the methylation and expression profiles
having only the non-normally distributed top-ranked genes
to determine the genes that were both differentially methy-
lated and expressed. Moreover, the top-ranked statistically
significant gene markers having inverse relationship among
their methylation and expression patterns were reported
along with biological validation and well as classification
performance.

Critical discussion and summary of results

In this section, we first describe briefly the issues of sparsity and
heterogeneous connectivity along with possible solutions. There
are several methods that can handle the problem of sparseness
and heterogeneous connectivity. In fact, several matrix factoriza-
tion technique-based algorithms (such as iNMF and JIVE) suffer
from the problem of sparseness in the dimension coefficient
matrix (denoted by L). To solve the associated problem, LASSO
penalty has been developed and it has been integrated into
different methods. In our study, sglasso and fglasso are used for
same purpose. CCA (correlation-based analysis) methods also
have this sparsity issue. To solve this, different regularized and
penalized factors have been incorporated into the existing CCA
methods. For example, L1-penalized sCCA tied with elastic net
CCA [126, 127] is useful to select the reduced highly important
feature set to reduce the sparsity and make the outcome
biologically interesting. In addition, sparse solutions of PLS
(denoted as sPL) [128] is equally efficient to reduce sparsity as
CCA-elastic net. Another two important methods (i.e. variants
of PLS) are sMBPLS [101] and SNPLS [102]. The sMBPLS solves
the limit of the two data block computation through redefining
the objective function as a weighted summation of the latent
variables in different layers. On the other hand, SNPLS is
useful to identify the combined co-modular patterns from
various pharmacogenomics profiles such as gene expression
and drug-response data based on their inter-relationship. It is
well known that the actual relation between different genomic
layers (factors/profiles) and the response to the various distinct
cancer drugs is still under debate. Under these circumstances,
different large-scale pharmacogenomic profiles give the poten-
tial opportunities to enhance the state-of-the-art therapeutic
methods or to provide proper guidance in the initial phase of
clinical trial of compounds under the development. In SNPLS,
the corresponding modular analysis has been conducted that
provides the novel insights into the bio-molecular techniques
regarding the procedure of functioning the drugs along with
providing novel drug targets for the therapeutic value of various
kinds of cancers. Furthermore, several multi-step analysis
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methods are useful to address the sparsity of the underlying
data. Normal-gamma prior has been utilized here for enhancing
the computation of the effect size as well as to handle the
sparsity. In order to address the heterogeneity problem, different
Bayesian approaches work better. For example, BCC [97] is an
efficient clustering technique that can handle the heterogeneity
along with the dependency between different data sources. In
BCC, individual clustering of the objects from each individual
data source was conducted, and then the post-hoc conjoint of
individual clusters was carried out. Next, consensus clustering
was used in order to model the source-specified structures and
to identify the overall clusters. In addition, several tree or graph-
based algorithms such as randomized Steiner tree and network
topology based algorithm by Jahid et al. [76], dysfunctional
module detection using shortest distance technique by He et al.
[74] are also useful to handle the issue. TrapRM [80] is another
attempt to selectively reduce the heterogeneous connectivity
problem through integrating the gene expression, methylation
and PPI data using the three novel dynamic threshold measures
that use a weighted shortest distance based strategy. These are
WSDMS, WSDMC and WSDML. Then using these three threshold
measure, the corresponding ARM technique was applied to
reduce the number of rules generated and to identify only the top
biologically significant association rules. Serra et al. [27] devel-
oped a Multi-View Data Integration (MVDA) strategy that works
well to address the issue, whereas another dense hypo-graph
mining model Bhadra et al. [44] is also an efficient technique for
this.

In addition, based on the literature evidences as well as our
own experiments, we have reached the following significant
observations:

(i) In the model-based integration or analysis, a single
unified machine-learning technique is directly utilized
for integrating all the genomic profiles with a single net-
work. On the other hand, for preprocessing integration,
first the genomic data and the corresponding network
are analyzed together to determine the final network-
based features. After network-based feature extraction,
the learning models are then utilized on the employed
network-based features for the predictions; whereas for
post-processing analysis, the network information has
been integrated after detecting the oncogenic changes
through standard statistical approaches.

(i) MSLs are complex to design and costly as different
mathematical formulations (e.g. regression, graph
Laplacian regularization, etc.) have been used and
they need all labeled data, but preprocessing and post-
processing approaches are simpler, less flexible, easier
to understand as well as less costly.

(iii) Model-based integration methods produce the best
performance over the other remaining methods in
all situations (including handling sparsity problem,
heterogeneity problem, etc.) since different lasso-based
methods, regularized and penalized methods, Bayesian
methods, shortest distance-based or random walk-
based techniques as well as other related methods
belong to the model-based integration strategy. Specif-
ically, MSL (model-based integration with supervised
methods) works best for prediction.

(iv) Post-processing analysis with unsupervised learning is
best for data exploration, i.e. providing an interesting
and large amount of information regarding the cancer
mechanisms from the network.
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v)

(vii)

(viii)

(ix)

(xi)

PRSSL is most useful and flexible for determining highly
customizable subnetwork features (e.g. dynamic mod-
ules) from network as well as it is less costly since it does
not require all data to be labeled. Although its prediction
performance is not better than supervised methods, the
overall prediction quality is still fine with the supervised
one.

In model-based integration algorithms, the chance of
obtaining optimal features (modules) is highest among
all other two (preprocessing integration algorithms and
post-processing integration algorithms).

For therapeutic treatment, any kind of survival
(prognosis)-driven analysis (preprocessing integrative
methods with survival driven learning) is very useful,
but it is costly due to the need for clinical data.

Of note, the properties, examples, advantages and
limitations of each integration method and learning
method are individually shown in Tables 2 and 3. Table 4
represents the summary of the overall usefulness and
effectiveness of the different categories of methods
whenever the input and objective are given.

For example, when the input data is either SOD or
MOD containing class labels of all samples, and the
objective is to identify the gene signature or gene-
signature-based classifier, MSSL methods are highly
useful and efficient. Also MSL, MSD, PRSL, PRSSL, PRSD,
POSL and POSSL methods are useful, whereas MUL,
PRUL and POUL strategies are used rarely and their
performance is not so good. Some of the suggested
methods are ‘Machine learning approach to integrate
big data for precision medicine’ [70], Bimax biclustering,
CC biclustering, Spectral Biclustering, etc.

On the other hand, when the input data are either
SOD or MOD containing class labels of all samples,
but the objective is to identify the module/subnetwork
detection, MUL, MSSL, PRUL and POUL methods are
highly useful and efficient, whereas MSL, PRSSL, PRSD,
POSL and POSSL methods are also useful. But, MSD
and PRSL strategies will not be useful. Some of the
suggested methods are iBAG, MCD, intNMF, iNMF, Joint-
NMF, iCluster, iCluster+, JIVE, ssCCA, Bimax bicluster-
ing, CC biclustering, Spectral Biclustering, MDI, BCC,
SNF, etc.

When the input data is SOD/MOD (big data) containing
some sample class labels but not all, or SOD/MOD with
all sample class labels but need for clustering toward
both samples and genes together, and the objective is
gene classification signature detection as well as mod-
ule (subnetwork) detection, MSSL, PRSSL and POSSL are
highly useful and efficient, whereas MUL, MSD, PRUL,
PRSD and POUL are also useful. However, MSL, PRSL and
POSL are not applicable. Some of the suggested methods
are Bimax biclustering, CC biclustering, XMotifs Biclus-
tering, spectral Biclustering, combinatorial gene marker
discovery [79], etc.

Interestingly, when the input data are either SOD or
MOD containing class labels of all samples, and the
objective is to identify singular gene marker (hub-
gene or driver-gene), all categories of methods can
be used more or less successfully. In this case, POUL
and POSSL are highly useful and efficient, whereas all
the other categories of methods are also useful. Some
of the suggested methods are StatBicRM, epigenetic
gene marker discovery through feature selection [41],

(xii)

(xiii)

(xiv)

(xvi)

(xvii)

(xviii)

(xix)

‘Machine learning approach to integrate big data for
precision medicine’ [70], etc.

In the case, when the input data are SOD/MOD con-
taining some sample class labels, or SOD/MOD with all
sample class labels but need for clustering toward both
samples and genes together, and the objective is to iden-
tify a singular gene marker (hub-gene or driver-gene),
POSSL is highly useful and efficient, whereas MSD, PRSD
and POUL are also useful. MUL, MSSL, PRUL and PRSSL
can be usable, but their performance is average in this
case. All the remaining categories such as MSL, PRSL
and POSL are not applicable. A suggested method is
StatBicRM.

Whenever the input data are MOD with all sample class
labels, and the objective is to identify the co-module
of gene drug, MUL is then highly useful and efficient,
whereas MSD and PRSD are also useful. But, the remain-
ing categories are not applicable here. One of the sug-
gested method is SNPLS.

If the input data are MOD consisting of all sample class
labels, and the objective is to determine the prognosis
gene signature, MSD and PRSD are highly useful and effi-
cient. POSL is also useful. But, the remaining categories
are not. Some suggested methods in this case are Net-
Cox, netSVM, CoxPath, MKGI and ATHENA.

If the input data are MOD consisting of all sample
class labels, and the objective is to develop the Kernel-
based classifier (or regression) model, MSL and MSD are
highly useful and efficient. MUL, MSSL and PRSD are
also useful. However, the reset of the categories cannot
be applied. Some suggested methods in this case are
SDP/SVM, FSMKL, ‘Penalized logistic regression model’
[51], sglasso, fglasso, IMKL-LPP, etc.

If the input data are MOD consisting of all sample class
labels, and the objective is to identify pathway marker,
PRSL and POUL are the categories that are highly useful
and efficient for this. However, the rest of the categories
are not applicable here. Some suggested methods in this
case are pathway-based classification [71] and mutated
pathway detection [82].

When the input data are MOD consisting of all sample
class labels, and the objective is to identify important
feature/feature-Score, PRUL, PRSSL and POUL categories
are highly useful and efficient here. MSL, MUL and PRSD
are also useful, whereas MSSL, MSD, PRSL, POSL and
POSSL cannot be applied here. Some suggested methods
in this case are Anduril, CNAmet, graph-based learning
[122] and NBS.

If the input data are MOD containing all sample class
labels, and the objective is to identify closed frequent
association rules or dense subgraphs or rule-based clas-
sifier, MSSL, MSD, PRSSL and POSSL are the highly useful
and efficient categories, whereas MSL, MUL, POSL and
POUL are useful categories. The remaining categories
cannot be applied. Some suggested methods in this case
are iSubgraph, TrapRM, Lemon-Tree, ConGEMs, RiboFSM,
Normalized ImQCM, etc.

Whenever the input data are MOD consisting of
all sample class labels, and the objective is to find
combinatorial gene marker, PRSSL is a highly useful
and efficient category. All the remaining categories
cannot be used. One of the methods here is combi-
natorial gene marker discovery by Bandyopadhyay and
Mallik [79].



Table 2. Brief description of conjoint (integration) techniques
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Model-based conjoint

Pre-processing conjoint

Post-processing conjoint

Properties

Advantages

o It utilizes a single unified
machine-learning approach
for integrating all the genomic
profiles with a single network.

o All the network-based
regularization-based machine
learning models fall into this
category.

o The main aim is to determine
subnetwork genetic modules as
well as predict the cancer type.

o The coefficients learned from
the corresponding feature
variables lead to dense
subnetwork modules.

o The most frequently utilized
network-based regularization
technique is graph Laplacian
regularizer.

o The subnetworks are
combinedly detected to make
contrast the case/control groups
in the study depending upon the
global optimization approach.
Hence, these methods generally

o The genomic data and the
corresponding network are
analyzed simultaneously to
explore final network-based
features.

o The learning models are then
utilized on the employed
network-based features for the
purpose of prediction.

o The integration of the genomic
data and the corresponding
network are conducted prior to
utilizing any learning model.

o More flexible in detecting
customizable subnetwork
features by which the recognized
features can make impact
significantly on the hypothesized
network-based properties.

o The genomic data are analyzed
first to identify the list of
oncogenic changes.

o The recognized changes are
then analyzed into the network.

o In the post-processing conjoint,
the network information is
integrated after detecting the
oncogenic changes through the
standard statistical approaches.

o The purpose of these
approaches is to evaluate how
cancer-driving changes damage
the normal cellular system
through examining the proper
influences on the corresponding
network components.

It uses either the mutations or
other DNA aberrations along with
the differential expression or
several other molecular
phenotypes of the employed
network. The resultant networks

conduct better in the prediction
of the outcome.

The underlying models might be
tuned through the utilization of
several parameters that are
clearly defined. This increases the
possibility to train the
corresponding models through
the cross-validation.

Disadvantages Requirement for better
sophisticated optimization
methods that is less scalable in

general.

o Less efficient in outcome

are generally informative of the
cancer mechanisms.

o Less efficient in outcome

prediction. prediction.
o No guarantee that the o No guarantee to obtain optimal
recognized subnetwork features features.

will be optimal in the prediction
through the standard learning
model.

(xx) Finally, if the input data are MOD consisting of all sam-
ple class labels, and the objective is to identify gene
exclusive module, POSSL is the most useful and efficient
category. All the remaining categories are not applicable
here. One of the methods here is MEMo.

Perspectives

To date, graph- and rule-based algorithms have been extensively
utilized for cancer classification and prognosis using large scale
genomic and other type of omics data. The internal design of
the analysis algorithms is made depending on the desired objec-
tives of the users such as identification of singular gene mark-
ers, combinatorial gene markers, gene modules, feed forward
loops, gene signature, classifier, regression, survival validation,
pathways marker, gene exclusive module, drug target-disease
relation, dense subgraphs, frequent closed association rules,

rule-based classifier, feature mining or feature score determi-
nation, etc. or a combination of some of these. Therefore, the
design of these kinds of algorithms is always different among
different studies depending upon the inputs and objectives of
the users. Our survey covers various existing graph- and rule-
based machine learning algorithms used for the purpose of
SOD or MOD integration or analysis. Due to this broad topic,
this review focuses mainly on the methodological design of
these algorithms to facilitate the applications of these graph
(orrule-based) analysis methods used for the purpose of SOD
or MOD integration (or analysis) along with various purpose
such as cancer classification, singular gene marker (hub-gene or
driver-gene) identification, etc. as mentioned above. Moreover,
we divided all these algorithms into a total of 11 categories
(MSL, MUL, MSSL, MSD, PRSL, PRUL, PRSSL, PRSD, POSL, POUL and
POSSL) depending upon the combinations of the type of data
integration (or analysis) and learning style. After that, various
well-known and most recently developed algorithms for each



388 | Mallik and Zhao

‘A3s0d

0s ‘eJep [BIIUID PI[2GE[ PI3N ®
sdnoidqns-jusned
a3} 8unoaras

A19A1309339 103 Tnyasn A[Y31H e
‘SjULW eI}
onnadersayy pue juswadeuet
jusnied a3 noqe

uotsap Aue oxew 03 djoH e

‘[pet] 193 pue [ezT] yredxoD o

1uro(uod urssadoidaid
10 paseq-[apowt
I9U3IS I9pun pajsIxa aq WSIN ®
‘uonipaid
paiera1 sisoudoid ay3 10§
pazrundo qON Aue uto(uod
0] 3[qe[ieAe a1e sa1391e1S
Jo IdqUINU M3J € A[UQ ®
's19p1a01d 21eDYI[eaY SE [[am
se sjuaned 190Ued ‘s10300p
a1} 10§ 1sa193ut Jo O1do] 7 @

‘[[e 10U ‘pa[age] 9q 03 elep
9WIOS SPaaU 1 dJULS swa[qoid dJ1[-[eal ay3
JO 1SOUI DA]OS 03 [NJISN ‘DDUIY {}SOD 3JLISPOIN @

‘uonyero[dxa
elRp SE [[om sk uondipaid sy} Y3oq 10} pas() ®
‘spoyjawt
pasiazadns 9y} UeY) 9SI0M ING ‘SPOYISUL
pasiatadnsun ay3 Uy} 191197 ST DULULIONIS] @

019 ‘[89] Igo1dIRaS ‘[08] WadellL ‘[£z]
VAAN ‘[£8] oW ‘[zz1] Sutures] paseq-ydeid
‘[121] pa1disyurdnaULD ‘sy1omiau Jarraq dosq o
‘(stsATeueAUto(Uod
Zurssaooid-ysod 10 3urssadoidaid
‘paseq-[opout '9°T) sa1103391ed UoTeISA UL
BIED 9313 33 JO AUk I9pun us[[ej 9q IYSIN ®
019
‘spoyiawt paseq-ydeid ‘Surures] maIa-1nut
pue 3urure}-od ‘saurydewt 103234 11oddns
SATIONPSUEI] ‘S[9POWL DINIXIW SAIFBIDUSS
YIM UOTIeZIWIXEW-U011e1d9dXa apndouf @
‘BJEP MU USISUN dY3 UO suonoipaid
3uryew 10j [9powt a3 A[dde usayy pue
19s ejep 3ururen ay) se 3uruies] pasiatadns jo
POYISaW 33 OJUI DB BIEP 3} PI3J UOTIDIPAI] @
‘sa[qeutea Indut usAI3 Y3 woiy
2IN30oN11S 33 UIea] pue aonpoid o3 parddy e
‘eyep ay3 3ur=qe|
10] aA1suadxa ATy31y pue SUrUNsuod-aw}
ST }1 9DUIS UTBWIOP SIY3} OJUL US[[B] UDI] SABY
swajqoid SuruIes[-aurydew 9j1[-[eS1 JO 10] V @
‘pa[ege[un urewal eyep
911 JO 3sow SeaIdYM ‘(9313 pue 3op ‘}ed ‘uosiad
Se yons) pa[aqe[ uadq Sty SaZeWI 113U
93 JO Md] B UYDIYM Ul dATYDIE 0joyd e :o[durexy e
‘81q st eyep ndur oy} jo az1s 3y} ySnoyie
Pa[eqe] Us9q 2ABY EIEP JINUS Y3 JO M3 € A[UQ ®
‘pardde aq 1yt sayoeoidde Sururesy
pasiazadns pue pasiatadnsun Jo UOTIBUIGUIOD
B ‘9DUSH "PI[2ge[un Urewal eyep jo Ajuofeur
93 INq ‘p3[2ge] 1€ BIEP SITIUS 93 JO MIJ Y ®

‘sojdwes

9Y3 JO [2qE[ SSE[D OU SI 9I9Y} SE SISY3I0
93 UeY} 9dURULIOJIDd 9SIOM SPIAOI] ®
‘A[3S0D sSoT ©

‘uore1o[dxa elep I0j pasn sty @
218 ‘[g7]
1PwyND ‘[z0T] STANS ‘[101] STd9NS
‘[se] +1easnyD1 ‘[p6] 10380101 ‘[z6] “[16]
JINN 3utof ‘wyitiodre uoud v ‘Suesw-3 o

‘(3uro(uod 3urssadoid-ysod
10 urssadoid-a1d ‘paseq-opowt
'9'1) saL1039)ed uoneI3aul
B1EP 931U} 9Y} JO UO Iapun aq Aey ®
‘swajqoid
3uLI91SNd pue UOIIBIDOSSE 9pN[OU]J ®
‘elep SUIA[Iapun 3y} WOIJ 2INIONIIS
3unsaiajur a3 Jussaidal pue AJRuapl
03 uefd umo 12y} uodn puadaq
‘eyep ay3 Surpiedal
arow 3ururea] jo asodind ay3 10§
B1Ep 9} JO SINIDNIS I0 UOTINGLIISIP
SurA[Iapun a3 [9powt 03 ST WITe YL, @
‘uoniod eyep
ndur 313 Wo1j 2IN1ONIS JUIAY UL
911 SUTUTULI9]SP 0] UIES] 0] PAZI[I() ®
‘e1ep PI[aqE[UN UE 31k Blep JInug ®

"B1EP PI[AqE] [[€ SPaau I Sk ‘A[3S0D) *

‘uondipaid 10§ pasn s3] @
Aousidiyge
se [[om se dduewLioiad 1S9q Ip1AOId ®

019 [s/] SAN ‘[£TT] TINSA [811]
ovat ‘[€11] VNIHLV ‘[91T] WAS/dds
‘UoISSa13a1 1BIUI[ 1S910] WIOpUEY ®

‘(stsATeue/Auto(uod
Zuissaooid-ysod 10 3urssadoidaid
‘paseq-[apoul) SaLI083)ed uoneIdsiul
BIED 921U] 3} JO SUO Iapun aq Aey ®
‘swa[qoid uorssaidax
pue swia[qoid UONEDdIJISSE[d apNn[du]
195 BlEp
ururen ay3 uo 3ururea] ay} 3uisn
BIED 1S9} 9} UO uondIpaid ULI0fIad @
‘B1ED
indur ay3 woij 3ndino ay3 21paid ©
"eJep pa[aqe] B SIe Blep 2Inug e

sadejueapesiq

sadejueapy

sardwexy

SOTISLISIDBIRYD

USALID [BAIAINS

pasiazadns-Twias

pastazadnsupn

pasiazadng

spoyjaw uonoipaid pue 3uruies] Jo saLI0333ed-gns jo uondudssp jaug ‘g Sqel



Graph- and rule-based learning algorithms | 389

Table 4. Summary of the appropriate usability and efficiency of all the methods by category when input and objectives are specified

Input and objectives Method category Suitable algorithms
MSL MUL MSSL MSD PRSL PRUL PRSSL PRSD POSL POUL POSSL

Input: SOD/MOD having + - ++ + + - + + + - +  Machine-learning
class labels of all approach to integrate
samples. big data for precision
Objective: gene medicine [70], Bimax
signature or biclustering [53], [54],
marker/gene-signature- CC biclustering [55]
based and spectral
classifier. biclustering [59]
Input: SOD/MOD having + ++ ++ X X ++ + + + ++ +  iBAG [118], MCD [119],
all sample class labels. intNMF [72], iNMF [96],
Objective: Joint NMF [91], [92],
module/subnetwork iCluster [94], iCluster+
detection. [95], JIVE [137], ssCCA
[99], Bimax

biclustering [53], [54],
CC biclustering [55],
spectral biclustering
[59], MDI [103], BCC
[106] and SNF [109]

Input: SOD/MOD (big x + ++ + x + ++ + x + ++ Bimax biclustering
data) having some [53], [54], CC

sample class labels but biclustering [55],

not all, or, SOD/MOD XMotifs biclustering
with all sample class [58], spectral

labels but need for biclustering [59] and
clustering toward both combinatorial gene
samples and genes marker discovery [79]
together.

Objective: gene
classification signature

module/subnetwork

detection.

Input: SOD/MOD having + + + + + + + + + ++ ++  StatBicRM [68],
all sample class labels. epigenetic gene
Objective: singular gene marker discovery
marker/hub gene/driver through feature
gene. selection [41] and

machine-learning
approach to integrate
big data for precision
medicine [70]

Input: SOD/MOD with x +- +— + x +- +— + X + ++  StatBicRM [68]

some sample class

labels or SOD/MOD with

all sample class labels

but need for clustering

toward both samples

and genes together.

Objective: singular gene

marker/hub gene/driver

gene.

Input: MOD with all x ++ x + x x X + X X X SNPLS [102]

sample class labels.

Objective: Co-module of

gene-drug.

Input: MOD with all x X x ++ x x x ++ + x x  Net-Cox [50], netSVM
sample class labels. [52], CoxPath [123],
Objective: prognosis MKGI [124] and

gene signature. ATHENA [113]

Continued
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Table 4. (continued)

Input and objectives

Method category

Suitable algorithms

MSL MUL MSSL MSD PRSL PRUL PRSSL PRSD POSL POUL POSSL

Input: MOD with all ++ + + ++ X X + X X X SDP/SVM [116,] FSMKL

sample class labels. [117], penalized

Objective: Kernel-based logistic regression mo-

classifier/regression del [51], sglasso [38],

model. [40], fglasso [37], [39]
and rMKL-LPP [111]

Input: MOD with all X X X X ++ X X X ++ x Pathway-based

sample class labels. classification [71] and

Objective: Pathway Significantly mutated

marker. pathway detection [82]

Input: SOD/MOD with + + +- +- +- ++ + +- ++ +—  Anduril [120], CNAmet

all sample class labels. [23], Graph-based

Objective: learning [122] and NBS

Feature/feature score. [75].

Input: SOD/MOD with + + ++ ++ x ++ x + + ++  iSubgraph [63],

all sample class labels. TrapRM [80],

Objective: closed Lemon-Tree [110],

frequent association ConGEMs [43], Ribo

rules or dense FSM [60], StatBicRM

subgraphs or [68]

rule-based classifier. and normalized
ImQCM [34], [35]

Input: MOD with all x x x x x ++ X X x X Combinatorial gene

sample class labels. marker discovery [79]

Objective:

combinatorial gene

marker.

Input: MOD with all x x x x x X x X ++  MEMo [87]

sample class labels.

Objective: gene

exclusive module.

‘++', Best or highly useful; ‘+’, good or useful; ‘+-’, average, neutral or can be used; ‘', rarely used or poor; ‘x’, NA or cannot be used.

category were described briefly along with the other impor-
tant information (such as used data profiles, used statistical
method and feature selection method, outputs of the algorithms,
etc.). This will help the readers to know the hierarchy of those
algorithms along with the actual reason for developing those
algorithms. Moreover, the summary of results for each category
of methods is described briefly with appropriate examples. In
addition, we suggested the methods that likely work better
for certain condition. Specially, we also described some special
issues such as sparsity and heterogeneity along with possible
solutions for them.

Hence, through this review, the reader can easily understand
which type of algorithms can be used under particular circum-
stances.

Key Points

e Graph- and rule-based analytics has been extensively
applied for cancer classification as well as prognosis
using large genomic and other similar kind of data over
the past years.

o This article provides a comprehensive review of many
graph- and rule-based machine learning algorithms

using genomics data for cancer-specific gene modules
and gene signature discovery.

These algorithms are divided into 11 major cate-
gories based on type of data integration or analysis
(model based, pre-processing and post-processing inte-
gration or analysis) and type of learning method (super-
vised, unsupervised, semi-supervised and survival-
driven learning or analysis).

The review provides detailed description of these cat-
egories of graph and rule mining algorithms, such as
used data profiles, used statistical

method and feature selection method, output of the
algorithms and other related information.

A summary table of the appropriate use and efficiency
of all the categories of graph and rule mining-based
learning methods is provided when input and specific
objective are given.

The probable solution or reduction of some critical
issues such as data sparsity and heterogeneity has been
described briefly.

This study helps the reader find the appropriate algo-
rithms for cancer classification and prognosis study.
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