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Abstract

Information criteria (ICs) based on penalized likelihood, such as Akaike’s information criterion (AIC), the Bayesian
information criterion (BIC) and sample-size-adjusted versions of them, are widely used for model selection in health and
biological research. However, different criteria sometimes support different models, leading to discussions about which is
the most trustworthy. Some researchers and fields of study habitually use one or the other, often without a clearly stated
justification. They may not realize that the criteria may disagree. Others try to compare models using multiple criteria but
encounter ambiguity when different criteria lead to substantively different answers, leading to questions about which
criterion is best. In this paper we present an alternative perspective on these criteria that can help in interpreting their
practical implications. Specifically, in some cases the comparison of two models using ICs can be viewed as equivalent to a
likelihood ratio test, with the different criteria representing different alpha levels and BIC being a more conservative test
than AIC. This perspective may lead to insights about how to interpret the ICs in more complex situations. For example, AIC
or BIC could be preferable, depending on the relative importance one assigns to sensitivity versus specificity. Understanding
the differences and similarities among the ICs can make it easier to compare their results and to use them to make
informed decisions.

Key words: Akaike information criterion; Bayesian information criterion; latent class analysis; likelihood ratio testing;
model selection

Introduction
Many model selection techniques have been proposed for
many different settings (see [1]). Among other considerations,
researchers must balance sensitivity (suggesting enough
parameters to accurately model the patterns, processes or
relationships in the data) with specificity (not suggesting

nonexistent patterns, processes or relationships). Several of
the simplest and most popular model selection criteria can

be discussed in a unified way as log-likelihood functions with
simple penalties. These include Akaike’s information criterion
[2, AIC], the Bayesian information criterion [3, BIC], the sample-
size-adjusted AIC or AICc of [4], the ‘consistent AIC’ (CAIC) of
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Table 1. Summary of common information criteria

Criterion Penalty weight Emphasis Likely kind of error

Non-consistent criteria
AIC An = 2 Good prediction Overfitting
AICc An = 2n/(n − p − 1) Good prediction Overfitting
Consistent criteria
ABIC An = ln ((n + 2)/24) Depends on n Depends on n
BIC An = ln (n) Parsimony Underfitting
CAIC An = ln (n) + 1 Parsimony Underfitting

Note. AIC = Akaike information criterion. ABIC = adjusted Bayesian information criterion. BIC = Bayesian information criterion. CAIC = consistent Akaike information
criterion. n = sample size (number of subjects). Other criteria include the DIC (deviance information criterion) which acts as an analog of AIC in certain Bayesian
analyses but is more complicated to compute.

[5] and the sample-size-adjusted BIC (ABIC) of [6] (Table 1). Each
of these ICs consists of a goodness-of-fit term plus a penalty to
reduce the risk of overfitting, and each provides a standardized
way to balance sensitivity and specificity. These criteria are
widely used in model selection in many different areas, such as
choosing network models for gene expression data in molecular
phylogenetics [7, 8, 9, 10, 11, 12, 13–15], in selecting covariates
for regression equations [16] and in choosing the number of
subpopulations in mixture models [17]. In addition to being
used as measures of fit for directly comparing models, they
are also used as ways of tuning or weighting more complicated
and specialized methods (e.g. [18, 19]) such as automated model
search algorithms in high-dimensional modeling settings where
comparison of each possible model separately might be too
difficult (e.g. [20]). For these reasons, it is widely useful to
understand their rationale and relative performance.

Model selection using an IC involves choosing the model with
the best penalized log-likelihood; that is, the highest value of
� − Anp, where � is the log-likelihood of the entire dataset under
the model, where An is a constant or a function of the sample
size n and where p is the number of parameters in the model.
For historical reasons, instead of finding the highest value of �

minus a penalty, this is often expressed as finding the lowest
value of −2� plus a penalty:

− 2� + Anp, (1)

and we follow that convention here. This function is often com-
puted automatically by computer software. However, to avoid
confusion, investigators should be careful when using statistical
software to be sure of what form is being used; in this paper we
use the form in which the smaller IC is better, but if � − Anp is
used then the larger IC is better. Also, the form of the likelihood
function and the definition of the parameters depends on the
nature of the model. For example, in linear regression, � is
the multivariate normal log-likelihood of the sample, and −2�

becomes equivalent to n log(MSE) plus a constant, where MSE is
the mean of squared prediction errors; p in this context is the
number of regression coefficients. In latent class models, the
likelihood is given by a multinomial distribution, and the param-
eters may include the means of each class on each dimension of
interest and the sizes of the classes.

Expression (1) is what Atkinson [21] called the generalized
information criterion (IC); in this paper we simply refer to Equa-
tion (1) as an IC. Expression (1) is sometimes replaced in practice
by the practically equivalent G2 + Anp, where G2 is the deviance,
defined as twice the difference in log-likelihood between the

current model and the saturated model, that is, the model with
the most parameters which is still identifiable (e.g. [22]).

In practice, Expression (1) cannot be used directly without
first choosing An. Specific choices of An make Equation (1) equiv-
alent to AIC, BIC, ABIC or CAIC. Thus, although motivated by
different theories and goals, algebraically these criteria are only
different values of An in Equation (1), corresponding to different
relative degrees of emphasis on parsimony, that is, on the num-
ber of free parameters in the selected model [1, 23, 24]. Because
the different ICs often do not agree, the question often arises as
to which is best to use in practice.

For example, Miaskowski et al. [25] recently used a latent class
approach to categorize cancer patients into empirically defined
clusters based on the presence or absence of 13 self-reported
physical and psychological symptoms. They then showed that
these clusters differed in terms of other covariates and on qual-
ity of life ratings, and suggested that they might have different
treatment implications. Using BIC, they determined that a model
with four classes (low physical symptoms and low psychological
symptoms; moderate physical and low psychological; moderate
physical and high psychological; high physical and high psycho-
logical) fit the data best. Their use of BIC was a very common
choice and was recommended by work such as [17]. It was not
an incorrect choice, and we emphasize that we are not arguing
that their results were flawed in any way. However, the AIC, ABIC
and CAIC can be calculated from the information they provide
in their Table 1, and if they had used AIC or ABIC it appears
that they would have chosen at least a five-class model instead.
On the other hand, CAIC would have agreed with BIC. Does this
mean that two of the criteria are incorrect and two are correct?
We argue that neither is wrong, even though in their case the
authors had to choose one or the other.

For a similar example using familiar and easily accessed
data, consider the famous ‘Fisher’s iris data’, a collection of four
measurements (sepal length, sepal width, petal length, petal
width) of 50 flowers from each of three species of iris (Iris setosa,
Iris versicolor and Iris virginica). These data, originally collected
by Anderson [26] and famously used in an example by the
influential statistician R. A. Fisher, are available in the dataset

package as part of the base installation in R [27]. It is often
used for benchmarking and comparing statistical methods. For
example, one can try clustering methods to classify the 150
flowers into latent classes without reference to the original
species label and using only their measurements, and determine
whether the methods correctly separate the three species. For
a straightforward estimation approach (Gaussian model-based
clustering without assuming equal covariance matrices; code is
shown in the appendix), AIC or ABIC choose a three-class model
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and BIC or CAIC choose a two-class model. In the three-class
model, each of the empirically estimated classes corresponds
almost perfectly to one of the three species, with very few mis-
classifications (five of the versicolor were mistakenly classified
as virginica). In the two-class model, the versicolor and virginica
flowers were lumped together. Agusta and Dowe [28] performed
this analysis and concluded that BIC performed poorly on this
benchmark dataset. Most biologists would probably agree with
this assessment. However, an alternative interpretation might
be that BIC was simply being parsimonious, and that flower
dimensions alone might not be enough to confidently separate
the species. A much more detailed look at clustering the iris data,
considering many more possible modeling choices, is found in
[29]. However, this simple look is enough to discuss the relevant
ideas.

In this review we examine the question of choosing a crite-
rion by focusing on the similarities and differences among AIC,
BIC, CAIC and ABIC, especially in view of an analogy between
their different complexity penalty weights An and the α levels of
hypothesis tests. We especially focus on AIC and BIC, which have
been extensively studied theoretically [30–33, 24], and which are
not only often reported directly as model fit criteria, but also
used in tuning or weighting to improve the performance of more
complex model selection techniques (e.g. in high-dimensional
regression variable selection; [34, 20, 35]).

In the following section we review the motivation and theo-
retical properties of these ICs. We then discuss their application
to a common application of model selection in medical, health
and social scientific applications: that of choosing the number of
classes in a finite mixture (latent class) analysis (e.g. [22]). Finally,
we propose practical recommendations for using ICs to extract
valuable insights from data while acknowledging their differing
emphases.

Common penalized-likelihood information criteria

In this section we review some commonly used ICs. Their formu-
las, as well as some of their properties which we describe later
in the paper, are summarized for convenience in Table 1.

AIC

First, the AIC [2] sets An = 2 in Equation (1). It estimates the
relative Kullback–Leibler (KL) divergence (a nonparametric mea-
sure of difference between distributions) of the likelihood func-
tion specified by a fitted candidate model, from the likelihood
function governing the unknown true process that generated
the data. The fitted model closest to the truth in the KL sense
would not necessarily be the model that best fits the observed
sample, since the observed sample can often be fit arbitrary well
by making the model more and more complex. Rather, the best
KL model is the model that most accurately describes the popu-
lation distribution or the process that produced the data. Such a
model would not necessarily have the lowest error in fitting the
data already observed (also known as the training sample) but
would be expected to have the lowest error in predicting future
data taken from the same population or process (also known as
the test sample). This is an example of a bias-variance tradeoff
(see, e.g. [36]).

Technically, the KL divergence can be written as Et(�t(y)) −
Et(�(y)), where Et is the expected value under the unknown true
distribution function, � is the log-likelihood of the data under
the fitted model being considered and �t is the log-likelihood
of the data under the unknown true distribution. This is intu-

itively understood as the difference between the estimated and
the true distribution. Et(�t(y)) will be the same for all models
being considered, so KL is minimized by choosing the model
with highest Et(�(y)). The �(y) from the fitted model is a biased
measure of Et(�(y)), especially if p is large, because a model with
many parameters can generally be fine-tuned to appear to fit
a small dataset well, even if its structure is such that it cannot
generalize to describe the process that generated the data. Intu-
itively, this means that if there are many parameters, the fit of
the model to the originally obtained data (training sample) will
seem good regardless of whether the model is correct or not,
simply because the model is so flexible. In other words, once a
particular dataset is used to estimate the parameters of a model,
the fit of the model on that sample is no longer an independent
evaluation of the quality of the model. The most straightforward
way to address this fit inflation would be testing the model on
a new dataset. Another good way would be by repeated cross-
validation (e.g. 5-fold, 10-fold or leave-one-out) using the existing
dataset. However, AIC and similar criteria attempt to directly
calculate an estimate of corrected fit (see [36, 37, 33]).

Akaike [2] showed that an approximately unbiased estimate
of Et(�(y)) would be a constant plus � − tr(Ĵ−1K̂) (where J and K
are two p × p matrices, described below, and tr() is the trace,
or sum of diagonal elements). Ĵ is an estimator for the covari-
ance matrix of the parameters, based on the matrix of second
derivatives of � in each of the parameters, and K̂ is an alternative
estimator for the covariance matrix of the parameters, based
on the cross-products of the first derivatives (see [1, pp. 26–27]).
Akaike showed that Ĵ and K̂ are asymptotically equal for the true
model, so that the trace becomes approximately p, the number
of parameters in the model. For models that are far from the
truth, the approximation may not be as good. However, poor
models presumably have poor values of �, so the precise size of
the penalty is less important [38]. The resulting expression � − p
suggests using An = 2 in Equation (1) and concluding that fitted
models with low values of Equation (1) will be likely to provide a
likelihood function closer to the truth.

Criteria related to Akaike’s information criterion

When n is small or p is large, the crucial AIC approximation
tr(Ĵ−1K̂) ≈ p is too optimistic and the resulting penalty for
model complexity is too weak [36, 39]. In the context of lin-
ear regression and time series models, several researchers (e.g.
[40, 4, 41]) have suggested using a corrected version, AICc, which
applies a slightly heavier penalty that depends on p and n; it gives
results very close to those of AIC when n/p is large. The AICc can
be written as Equation (1) with An = 2n/(n − p − 1). Theoretical
discussions of model selection have often focused on asymptotic
comparisons for large n and small p, and AICc gets little attention
in this setting because it becomes equivalent to AIC as n/p → ∞.
However, this equivalence is subject to the assumption that p is
fixed and n becomes very large. Because in many situations p is
comparable to n or larger, AICc may deserve more attention in
future work.

Some other selection approaches are asymptotically equiva-
lent for selection purposes to AIC, at least for linear regression.
That is, they select the same model as AIC with high probability
if n/p is very high. These include Mallows’ Cp (see [42]), leave-one-
out cross-validation [33, 43], and the generalized cross-validation
statistic (see [44, 36]). Leave-one-out cross-validation involves
fitting the candidate model on many subsamples of the data,
each excluding one subject (i.e. participant or specimen), and
observing the average squared error in predicting the extra
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response. Each approach is intended to correct a fit estimate for
the artificial inflation in observed performance caused by fitting
a model and evaluating it with the same data, and to find a
good balance between bias caused by too restrictive a model and
excessive variance caused by a model with too many parameters
[36]. These AIC-like criteria do not treat model parsimony as a
motivating goal in its own right, but only as a means to reduce
unnecessary sampling error caused by having to estimate too
many parameters relative to n. Thus, especially for large n, AIC-
like criteria emphasize sensitivity more than specificity. How-
ever, in many research settings, parsimonious interpretation is
of strong interest in its own right. In these settings, another
criterion such as BIC, described in the next section, might be
more appropriate.

Some other, more ad hoc criteria are named after AIC but
do not derive from the same theoretical framework, except that
they share the form (1). For example, some researchers [45–47]
have suggested using An = 3 in expression (1) instead of 2. The
use of An = 3 is sometimes called ‘AIC3’. There is no statistical
theory to motivate AIC3, such as minimizing KL divergence or
any other theoretical construct, but on an ad hoc basis it has fairly
good simulation performance in some settings, being stricter
than AIC but not as strict as BIC. Also, the CAIC, the ‘corrected
AIC’ or ‘consistent AIC’ proposed by [5], uses An = ln(n) + 1. (It
should not be confused with the AICc discussed above.) This
penalty tends to result in a more parsimonious model and
more underfitting than AIC or even than BIC. This value of An

was chosen somewhat arbitrarily as an example of an An that
would provide model selection consistency, a property described
below in the section for BIC. However, any An proportional to
ln(n) provides model selection consistency, so CAIC has no real
advantage over the better-known and better-studied BIC (see
below), which also has this property.

Another of the ‘information criteria’ (ICs) commonly used
in model selection, namely the Deviance Information Criterion
(DIC) used in Bayesian analyses [48, 49], cannot be expressed
as a special case of Expression (1). It has a close relationship
to AIC and has an analogous purpose within some Bayesian
analyses [50, 1] but is conceptually and practically different and
more complicated to compute. It is beyond the scope of this
review because it is usually not used in the same settings as the
AIC, BIC and other common criteria, so it is usually not a direct
competitor with them.

Schwarz’s Bayesian information criterion

In Bayesian model selection, a prior probability is set for each
model Mi, and prior distributions (often uninformative priors
for simplicity) are also set for the nonzero coefficients in each
model. If we assume that one and only one model, along with
its associated priors, is true, we can use Bayes’ theorem to find
the posterior probability of each model given the data. Let Pr(Mi)

be the prior probability set by the researcher, and let Pr(y|Mi) be
the probability density of the data given Mi, calculated as the
expected value of the likelihood function of y given the model
and parameters, over the prior distribution of the parameters.
According to Bayes’ theorem, the posterior probability Pr(Mi|y)

of a model is proportional to Pr(Mi) Pr(y|Mi). The degree to which
the data support Mi over another model Mj is given by the ratio
of the posterior odds to the prior odds:

Pr(Mi|y)
Pr(Mj|y)

Pr(Mi)
Pr(Mj)

. (2)

If we assume equal prior probabilities for each model, this
simplifies to the ‘Bayes factor’ (see [51]):

Bij = Pr(y|Mi)

Pr(y|Mj)
(3)

so that the model with the highest Bayes factor also has the
higher posterior probability. Schwarz [3] and Kass and Wasser-
man [52] showed that, for many kinds of models, Bij can be
roughly approximated by exp(− 1

2 BICi + 1
2 BICj), where BIC equals

Expression (1) with An = ln(n). BIC is also called the Schwarz
criterion. Note that in a Bayesian analysis, all of the parameters
within each of the candidate models have prior distributions
representing knowledge or beliefs which the investigators have
about their values before doing the study. The use of BIC assumes
that a relatively noninformative prior is used, meaning that the
prior is not allowed to have a large effect on the estimate of the
coefficients [52, 53]. Thus, although Bayesian in origin, the BIC
is often used in non-Bayesian analyses because it uses relatively
noninformative priors which do not have to be set by the user.
For fully Bayesian analyses with informative priors, posterior
model probabilities or the previously mentioned DIC might be
more appropriate.

The use of Bayes factors or their BIC approximation can be
more interpretable than that of significance tests in some prac-
tical settings [54–57]. BIC is described further in [58] and [59], but
critiqued by [60] and [53], who find it to be an oversimplification
of Bayesian methods. Indeed, if Bayes factors or the BIC are
used in an automatic way for choosing a single supposedly best
model (e.g. setting a particular cutoff for choosing the larger
model), then they are potentially subject to the same criticisms
as classic significance tests (see [61, 62]). However, Bayes factors
or ICs, if used thoughtfully, provide a way of comparing the
appropriateness of each of a set of models on a common scale.

Criteria related to Bayesian information criterion

Sclove [6] suggested a sample-size-adjusted criterion, variously
abbreviated as ABIC, SABIC or BIC∗, based on the work of [63]
and [64]. It uses An = ln((n + 2)/24) instead of An = ln(n).
This penalty will be much lighter than that of BIC, and may
be lighter or heavier than that of AIC, depending on n. The
unusual expression for An comes from Rissanen’s work on model
selection for autoregressive time series models from a minimum
description length perspective (see [65]). It is not clear whether
or not the same adjustment is still theoretically appropriate
in different contexts, but in practice it is sometimes used in
latent class modeling and seems to work fairly well (see [17, 66]).
Table 2 gives the values An for AIC, ABIC, BIC and CAIC for some
representative values of n. It shows that CAIC always has the
strongest penalty function. BIC has a stronger penalty than AIC
for reasonable values of n. The ABIC has the property of usually
being stricter than AIC but not as strict as BIC, which may be
appealing to some researchers, but unfortunately it does not
always really ‘adjust’ for the sample size. In fact, for very small n,
ABIC has a nonsensical negative penalty encouraging needless
complexity. AICc is not shown in the table because its An depends
on p as well as n.

AIC versus Bayesian information criterion and the
concept of consistent model selection

BIC is sometimes preferred over AIC because BIC is ‘consistent’
(e.g. [17]). Assuming that a fixed number of models are available
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Table 2. An for common IC

n AIC ABIC BIC CAIC

10 2.0000 -0.6931 2.3026 3.3026
50 2.0000 0.7732 3.9120 4.9120
100 2.0000 1.4469 4.6052 5.6052
500 2.0000 3.0405 6.2146 7.2146
1000 2.0000 3.7317 6.9078 7.9078
5000 2.0000 5.3395 8.5172 9.5172
10000 2.0000 6.0325 9.2103 10.2103
100000 2.0000 8.3349 11.5129 12.5129

Note. An = penalty weighting constant. n = sample size (number of subjects).
AIC = Akaike information criterion. ABIC = adjusted Bayesian information crite-
rion. BIC = Bayesian information criterion. CAIC = consistent Akaike information
criterion.

and that one of them is the true model, a consistent selector
is one that selects the true model with probability approaching
100% as n → ∞ (see [1, 67, 33, 68, 69]).

The existence of a true model here is not as unrealistically
dogmatic as it sounds [40, 32]. Rather, the true model can be
defined as the simplest adequate model, that is, the single
model that minimizes KL divergence, or the one such model
with the fewest parameters if there is more than one [1]. There
may be more than one such model because if a given model
has a given KL divergence from the truth, any more general
model containing it will have no greater distance from the truth.
This is because there is some set of parameters for which the
larger model becomes the model nested within it. However, the
theoretical properties of BIC are better in situations in which a
model with a finite number of parameters can be treated as ‘true’
[33]. In summary, even though at first the BIC seems fraught with
philosophical problems because of its apparent assumption of
that one of the models available is the ‘true’ one, it is nonetheless
well defined and useful in practice.

AIC is not consistent because it has a non-vanishing chance
of choosing an unnecessarily complex model as n becomes large.
The unnecessarily complex model would still closely approx-
imate the true distribution but would use more parameters
than necessary to do so. However, selection consistency involves
some performance tradeoffs when n is modest, specifically, an
elevated risk of poor performance caused by underfitting (see
[70, 33, 71, 24]). In general, the strengths of AIC and BIC cannot
be combined by any single choice of An [72, 68]. However, in
some cases it is possible to construct a more complicated model
selection approach that uses aspects of both (see [30]).

Nylund et al. [17] seem to interpret the lack of selection
consistency as a flaw in AIC [17, p. 556]. However, we argue
the real situation is somewhat more complicated; AIC is not a
defective BIC, nor vice versa (see [70, 24]). Likewise, the other
ICs mentioned here are neither right nor wrong, but are simply
choices (perhaps thoughtful and perhaps arbitrary, but still tech-
nically valid choices).

Information criterion in simple cases
AIC and BIC differ in theoretical basis and interpretation [73,
1, 32, 74]. They also sometimes disagree in practice, generally
with AIC indicating models with more parameters and BIC with
less. This has led many researchers to question whether and
when a particular value of the ‘magic number’ An [5] can be cho-
sen as most appropriate. Two special cases—comparing equally

sized models and comparing nested models—each provide some
insight into this question.

First, when comparing different models of the same size
(i.e. number of parameters to be estimated), all ICs of the form
(1) will always agree on which model is best. For example, in
regression variable subset selection, suppose two models each
use five covariates. In this case, any IC will select whichever
model has the highest likelihood (the best fit to the observed
sample) after estimating the parameters. This is because only
the first term in Expression (1) will differ across the candidate
models, so An does not matter. Thus, although the ICs differ
in theoretical framework, they only disagree when they make
different tradeoffs between fit and model size.

Second, for comparing a nested pair of models, different
ICs act like different α levels on a likelihood ratio test (LRT).
For comparing models of different sizes, when one model is a
restricted case of the other, the larger model will typically offer
better fit to the observed data at the cost of needing to estimate
more parameters. The ICs will differ only in how they make
this bias-variance tradeoff [23, 6]. Thus, an IC will act like a
hypothesis test with a particular α level [1, 75, 76, 62, 70, 77–79,
24].

Suppose a researcher will choose whichever of M0 and M1 has
the better (lower) value of an IC of the form (1). This means that
M1 will be chosen if and only if −2�1+Anp1 < −2�0+Anp0, where �1

and �0 are the fitted maximized log-likelihoods for each model.
Although the comparison of models is interpreted differently in
the theoretical frameworks used to justify AIC and BIC [73, 32],
algebraically this comparison is the same as an LRT [70, 77, 78].
That is, M0 is rejected if and only if

− 2(�0 − �1) > An(p1 − p0). (4)

The left-hand side is the LRT test statistic (since a logarithm of
a ratio of quantities is the difference in the logarithms of the
quantities). Thus, in the case of nested models an IC comparison
is mathematically an LRT with a different interpretation. The
α level is specified indirectly through the critical value An; it is the
proportion of the null hypothesis distribution of the LRT statistic
that is less than An.

Implications of the LRT equivalence in the nested case

For comparing nested maximum-likelihood models satisfying
classic regularity conditions, including classical linear and logis-
tic regression models (although not necessarily including mix-
ture models; see [80, 81]), the null-hypothesis distribution of
−2(�0−�1) is asymptotically χ2 with degrees of freedom (df ) equal
to p1 − p0. Consulting a χ2 distribution and assuming p1 − p0 = 1,
AIC (An = 2) becomes equivalent to a LRT test at an α level
of about.16 (i.e. the probability of a χ2

1 deviate being greater
than 2). For example, in the case of linear regression, comparing
IC’s of otherwise identical models differing by the presence or
absence of a covariate can also be shown to be mathematically
equivalent to a significance test for the regression coefficient of
that covariate [75].

In the same situation, BIC (with An = ln(n)) has an α level
that depends on n. If n = 10 then An = ln(n) = 2.30 so α = .13.
If n = 100 then An = 4.60 so α = .032. If n = 1000 then
An = 6.91 so α = .0086, and so on. Thus, when p1 − p0 = 1,
significance testing at the customary level of α = .05 is often
an intermediate choice between AIC and BIC, corresponding
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Table 3. Alpha levels represented by common IC

n AIC ABIC BIC CAIC

Assuming p1 − p0 = 1

10 0.15730 1.00000 0.12916 0.06917
50 0.15730 0.37923 0.04794 0.02667
100 0.15730 0.22902 0.03188 0.01791
500 0.15730 0.08121 0.01267 0.00723
1000 0.15730 0.05339 0.00858 0.00492
5000 0.15730 0.02085 0.00352 0.00204
10000 0.15730 0.01404 0.00241 0.00140
100000 0.15730 0.00389 0.00069 0.00040

Assuming p1 − p0 = 10

10 0.02925 1.00000 0.01065 0.00027
50 0.02925 0.65501 0.00002 < 0.00001
100 0.02925 0.15265 < 0.00001 < 0.00001
500 0.02925 0.00074 < 0.00001 < 0.00001
1000 0.02925 0.00005 < 0.00001 < 0.00001
5000 0.02925 < 0.00001 < 0.00001 < 0.00001
10000 0.02925 < 0.00001 < 0.00001 < 0.00001
100000 0.02925 < 0.00001 < 0.00001 < 0.00001

Note. n = sample size (number of subjects). AIC = Akaike information criterion. ABIC = adjusted Bayesian information criterion. BIC = Bayesian information criterion.
CAIC = consistent Akaike information criterion. p1 = number of free parameters in larger model within pair being compared. p0 = number of free parameters in
smaller model.

to An = 1.962 ≈ 4. However, as p1 − p0 becomes larger, all
ICs become more conservative, in order to avoid adding many
unnecessary parameters unless they are needed. Table 3 shows
different effective α values for two values of p1 − p0, obtained
using the R [27] code 1-pchisq(q=An*df,df=df,lower.tail=TRUE)
where An is the An value and df is p1 − p0. AICc is not shown in
the table because its penalty weight depends both on p0 and on
p1 in a slightly more complicated way, but will behave similarly
to AIC for large n and modest p0.

Interpretation of selection consistency

The property of selection consistency can be intuitively under-
stood from this perspective. For AIC, as for hypothesis tests, the
power of a test typically increases with n because �1 and �0 are
sums over the entire sample. This is why empirical studies are
planned to have adequate sample size to guarantee a reasonable
chance of success [82]. Unfortunately rejecting any given false
null hypothesis is practically guaranteed for sufficiently large
n even if the effect size is tiny. However, the Type I error rate
is constant and never approaches zero. On the other hand, BIC
becomes a more stringent test (has a decreasing Type I error
rate) as n increases. The power increases more slowly (i.e. the
Type II error rate decreases more slowly) than for AIC or for
fixed-α hypothesis tests because the test is becoming more
stringent, but now the Type I error rate is also decreasing. Thus,
nonzero but practically negligible departures from a model are
less likely to lead to rejecting the model for BIC than for AIC [58].
Fortunately, even for BIC, the decrease in α as n increases is slow;
thus, power still increases as n increases, although more slowly
than it would for AIC. Thus, for BIC, both the Type I and Type
II error rates decline slowly as n increases, while for AIC (and
for classical significance testing) the Type II error rate declines
more quickly but the Type I error rate does not decline at all.
This is intuitively why a criterion with constant An cannot be

asymptotically consistent even though it may be more powerful
for a given n (see [1, 75, 68]).

Also, since choosing An for a model comparison is closely
related to choosing an α level for a significance test, it becomes
clear that the universally ‘best’ IC cannot be defined any more
than the ‘best’ α; there will always be a tradeoff. Thus, debates
about whether AIC is generally superior to BIC or vice versa, will
be fruitless.

Interpretation in terms of tradeoffs

For non-nested models of different sizes, neither of the above
simple cases hold; furthermore, these complex cases are often
those in which ICs are most important because an LRT cannot be
performed. However, it remains the case that An indirectly con-
trols the tradeoff between the likelihood term and the penalty
on the number of parameters, hence the tradeoff between good
fit to the observed data and parsimony.

Almost by definition, there is no universal best way to decide
how to make a tradeoff. Type I errors are generally considered
worse than Type II errors, because the former involve introducing
false findings into the literature while the latter are simply non-
findings. However, Type II errors involve the loss of potentially
important scientific discoveries, and furthermore both kinds of
errors can lead to poor policy or treatment decisions in practice,
especially because failure to reject H0 is often misinterpreted
as demonstrating the truth of H0 [83]. Thus, researchers try to
specify a reasonable α level which is neither too low (causing
low power) nor too high (inviting false positive findings). In this
way, model comparison is much like a medical diagnostic test
(see, e.g. [84]), replacing ‘Type I error’ with ‘false positive’ and
‘Type II error’ with ‘false negative’. AIC and BIC use the same data
but apply different cutoffs for whether to ‘diagnose’ the smaller
model as being inadequate. AIC is more sensitive (lower false-
negative rate), but BIC is more specific (lower false-positive rate).
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The utility of each cutoff is determined by the consequences
of a false positive or false negative and by one’s beliefs about
the base rates of positives and negatives. Thus, AIC and BIC
could be seen as representing different sets of prior beliefs in
a Bayesian sense (see [40, 31]) or, at least, different judgments
about the importance of parsimony. Perhaps in some examples
a more or less sensitive test (higher or lower An or α) would
be more appropriate than in others. For example, although AIC
has favorable theoretical properties for choosing the number
of parameters needed to approximate the shape of a nonpara-
metric growth curve in general [33], in a particular application
with such data Dziak et al. [85] argued that BIC would give more
interpretable results. They argued this because the curves in that
context were believed likely to have a smooth and simple shape,
as they represented averages of trajectories of an intensively
measured variable on many individuals with diverse individual
experiences and because deviations from the trajectory could be
modeled using other aspects of the model.

However, in practice it is often difficult to determine the
α value that a particular criterion really represents, for two
reasons. First, even for regular situations in which an LRT is
known to work well, the χ2 distribution for the test statistic is
asymptotic and will not apply well to small n. Second, in some
situations the rationale for using an IC is, ironically, the failure
of the assumptions needed for an LRT. That is, the test emulated
by the IC will itself not be valid at its nominal α level anyway.
Therefore, although the comparison of An to an α level is helpful
for getting a sense of the similarities and differences among
the ICs, simulations are required to describe exactly how they
behave. In the section below we review simulation results from a
common application of ICs, namely the selection of the number
of latent classes (empirically derived clusters) in a dataset.

The special case of latent class analysis
A common use of ICs is in selecting the number of components
for a latent class analysis (LCA). LCA is a kind of finite mixture
model essentially, a model-based cluster analysis; [22, 86, 81].
LCA assumes that the population is a ‘mixture’ of multiple
classes of a categorical latent variable. Each class has different
parameters that define the distributions of observed items, and
the goal is to account for the relationships among items by
defining classes appropriately. LCA is very similar to cluster
analysis, but is based on maximizing an explicitly stated likeli-
hood function rather than focusing on a heuristic computational
algorithm like k-means. Also, some authors use the term LCA
only when the observed variables are also categorical (as in
the cancer symptoms example described above), and use the
term ‘latent profile analysis’ for numerical observed variables
(as in the iris example), but we ignore this distinction here.
LCA is also closely related to latent transition models (see [22]),
an application of hidden Markov models (see, e.g. [87]) that
allows changes in latent class membership, conceptualized as
transitions in an unobserved Markov chain. LCA models are
sometimes used in combination with other models, such as in
predicting class membership from genotypic or demographic
variables, or predicting medical or behavioral phenotypes from
class membership (e.g. [88, 89, 90]).

For a simple LCA without additional covariates, there are
two kinds of model parameters: the sizes of the classes and the
class-specific parameters. For binary outcomes as in the cancer
symptoms study, there is a class-specific parameter for each
combination of class and item, giving the probability of endors-

ing this item given membership in this class. For numerical
outcomes, the means and covariance parameters of the vector of
items within each class constitute the class-specific parameters.
To fit an LCA model or any of its cousins, an algorithm such as EM
[91, 92, 81] is often used to alternatively estimate class-specific
parameters and predict subjects’ class membership given those
parameters. The user must specify the number of classes in a
model, but the true number of classes is generally unknown
[17, 66]. Sometimes one might have a strong theoretical reason to
specify the number of classes, but often this must be done using
data-driven model selection.

Information criterion for selecting the number
of classes

A naïve approach would be to use likelihood ratio or deviance
(G2) tests sequentially to choose the number of classes and to
conclude that the k-class model is large enough if and only if
the (k + 1)-class model does not fit the data significantly better.
The selected number of classes would be the smallest k that is
not rejected when compared to the (k+1)-class model. However,
the assumptions for the supposed asymptotic χ2 distribution in
an LRT are not met in the setting of LCA, so that the P-values
from those tests are not valid (see [23, 81]). The reasons for this
are based on the fact that H0 here is not nested in a regular
way within H1, since a k-class model is obtained from a (k + 1)-
class model either by constraining any one of the class sizes to
a boundary value of zero or by setting the class-specific item-
response probabilities equal between any two classes. That is,
a meaningful k-class model is not obtained simply by setting
a parameter to zero in a (k + 1) class model in the way that,
for example, a more parsimonious regression model can be
obtained by starting with a model with many covariates and
then constraining certain coefficients to zero. Ironically, the lack
of regular nesting structure that makes it impossible to decide
on the number of classes with an LRT has also been shown to
invalidate the mathematical approximations used in the AIC and
BIC derivations in the same way [81, pp. 202–212]. Nonetheless,
ICs are widely used in LCA and other mixture models. This is
partly due to their ease of use, even without a firm theoretical
basis. Fortunately, there is at least an asymptotic theoretical
result showing that, when the true model is well identified,
BIC (and hence also AIC and ABIC) will have a probability of
underestimating the true number of classes that approaches 0
as sample size tends to infinity [93, 81, p. 209].

Past simulation studies

Lin and Dayton [23] did an early simulation study comparing the
performance of AIC, BIC and CAIC for choosing which assump-
tions to make in constructing constrained LCA models, a model
selection task which is somewhat but not fully analogous to
choosing the number of classes. When a very simple model
was used as the true model, BIC and CAIC were more likely to
choose the true model than AIC, which tended to choose an
unnecessarily complicated one. When a more complex model
was used to generate the data and measurement quality was
poor, AIC was more likely to choose the true model than BIC or
CAIC, which were likely to choose an overly simplistic one. They
explained that this was very intuitive given the differing degrees
of emphasis on parsimony. Interpreting these results, Dayton
[94] suggested that AIC tended to be a better choice in LCA than
BIC, but recommended computing and comparing both.
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Other simulations have explored the ability of the ICs to
determine the correct number of classes. In [95], AIC had the
lowest rate of underfitting but often overfit, while BIC and CAIC
practically never overfit but often underfit. AIC3 was in between
and did well in general. The danger of underfitting increased
when the classes did not have very different response profiles
and were therefore easy to mistakenly lump together; in these
cases BIC and CAIC almost always underfit. Yang [96] reported
that ABIC performed better in general than AIC (whose model
selection accuracy never got to 100% regardless of n) or BIC
or CAIC (which underfit too often and required large n to be
accurate). Fonseca and Cardoso [46] similarly suggested AIC3 as
the preferred selection criterion for categorical LCA models.

Yang and Yang [47] compared AIC, BIC, AIC3, ABIC and CAIC.
When the true number of classes was large and n was small,
CAIC and BIC seriously underfit, but AIC3 and ABIC performed
better. Nylund et al. [17] presented various simulations on the
performance of various ICs and tests for selecting the number
of classes in LCA, as well as factor mixture models and growth
mixture models. Overall, in their simulations, BIC performed
much better than AIC, which tended to overfit, or CAIC, which
tended to underfit [17, p. 559]. However, this does not mean that
BIC was the best in every situation. In most of the scenarios
considered by [17], BIC and CAIC almost always selected the
correct model size, while AIC had a much smaller accuracy
in these scenarios because of a tendency to overfit. In those
scenarios, n was large enough so that the lower sensitivity of
BIC was not a problem. However, in a more challenging scenario
with a small sample and unequally sized classes, [17, p. 557], BIC
essentially never chose the larger correct model and it usually
chose one that was much too small. Thus, as Lin and Dayton [23]
found, BIC may select too few classes when the true population
structure is complex but subtle (for example, a small but nonzero
difference between the parameters of a pair of classes) and n
is small. Wu et al. [97] compared the performance of AIC, BIC,
ABIC, CAIC, naïve tests and the bootstrap LRT in hundreds of
simulated scenarios. Performance was heavily dependent on the
scenario, but the method that worked adequately in the greatest
variety of situations was the bootstrap LRT, followed by ABIC
and classic BIC. Wu [97] argued that BIC seemed to outperform
ABIC in the most optimal situations because of its parsimony,
but that ABIC seemed to do better in situations with smaller n or
more unequal class sizes. Dziak et al. [98] also concluded that BIC
could seriously underfit relative to AIC for small sample sizes or
other challenging situations. In latent profile analysis, Tein et al.
[66] found that BIC and ABIC did well for large sample sizes and
easily distinguishable classes, but AIC chose too many classes,
and no method performed well for especially challenging sce-
narios. In a more distantly related mixture modeling framework
involving modeling evolutionary rates at different genomic sites,
Kalyaanamoorthy et al. [10] found that AIC, AICc and BIC worked
well but that BIC worked best.

Difficulties of applying simulation results

Despite all these findings, is not possible to say which IC is uni-
versally best, even in the idealized world of simulations. What
constitutes a ‘large’ or ‘small’ n, for the purposes of the perfor-
mance of BIC, depends on the true class sizes and characteristics,
which by definition are unknown. For example, if there are many
small classes, a larger overall sample size is needed to distin-
guish them all. A smaller number of flowers might have been
needed in our flower example if there had been three genera

instead of three species, and a larger number might be needed
to distinguish three cultivars or subspecies. Thus, the point at
which the n becomes ‘large’ depends on numerous aspects of
the simulated scenario [98, 99]. Furthermore, in real data, unlike
simulations, the characteristics of the ‘true’ (data-generating)
model are unknown, since the data have been generated by a
natural or experimental process rather than a probability model.
For this reason it may be more helpful to think about which
aspects of performance (e.g. sensitivity or specificity) are most
important in a given situation, rather than talking about the
nature of a supposed true data-generating model.

If the goal of having a model which contains enough param-
eters to describe the heterogeneity in the population is more
important than the goal of parsimony, or if some classes are
expected to be small or similar to other classes but distinguish-
ing among them is still considered important for theoretical
reasons, then perhaps AIC, AIC3 or ABIC should be used instead
of BIC or CAIC. If obtaining a few large and distinctly inter-
pretable classes is more important, then BIC is more appropriate.
Sometimes, the AIC-favored model might be so large as to be
difficult to use or understand. In these cases, the BIC-favored
model is clearly the better practical choice. For example, in [100]
BIC favored a mixture model with five classes, and AIC favored at
least 10; the authors felt that a 10-class model would be too hard
to interpret. In fact, it may be necessary for theoretical or prac-
tical reasons to choose a number of classes even smaller than
that suggested by BIC. This is because it is important to choose
the number of classes based on their theoretical interpretability,
as well as by excluding any models with so many classes that
they lead to a failure to converge to a clear maximum-likelihood
solution (see [22, 101, 102]).

Other methods for selecting the number of classes

An alternative to ICs in LCA and cluster analysis is the use of
a bootstrap test (see [81]). Unlike the naïve LRT, Nylund et al.
[17] showed empirically that the bootstrap LRT with a given α

level does generally provide a Type I error rate at or below that
specified level. Both Nylund et al. [17] and Wu [97] found that
this bootstrap test seemed to perform somewhat better than
the ICs in various situations. The bootstrap LRT is beyond the
scope of this paper, as are more computationally intensive ver-
sions of AIC and BIC, involving bootstrapping, cross-validation
or posterior simulation (see [81, pp. 204–212]). Also beyond the
scope of this paper are mixture-specific selection criteria such as
the normalized entropy criterion [103] or integrated completed
likelihood [104, 105], or the minimum message length approach
of [106]. However, the basic ideas in this article will still be helpful
in interpreting the implications of some of the other selection
methods. For example, like any test or criterion, the bootstrap
LRT still requires the choice of a tradeoff between sensitivity and
specificity (i.e. by selecting an α level).

Discussion
Many simulation studies have been performed to compare
the performance of ICs. For small n or difficult-to-distinguish
classes, the most likely error in a simulation is underfitting, so
the criteria with lower underfitting rates, such as AIC, often seem
better. For very large n and easily distinguished classes, the most
likely error is overfitting, so more parsimonious criteria, such
as BIC, often seem better. However, the true model structure,
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parameter values, and sample size used when generating
simulated data determine the relative performance of the ICs in
simulations in a complicated way, limiting the extent to which
they can be used to state general rules or advice [98, 99, 107].

If BIC indicates that a model is too small, it may well be too
small (or else fit poorly for some other reason). If AIC indicates
that a model is too large, it may well be too large for the
data to warrant. Beyond this, theory and judgment are needed.
If BIC selects the largest and most general model considered, it
is worth thinking about whether to expand the space of models
considered (since an even more general model might fit even
better), and similarly if AIC chooses the most parsimonious.

AIC and BIC each have distinct theoretical advantages. How-
ever, a researcher may judge that there may be a practical
advantage to one or the other in some situations. For example,
as mentioned earlier, in choosing the number of classes in a
mixture model, the true number of classes required to satisfy
all model assumptions is sometimes quite large, too large to
be of practical use or even to allow coefficients to be reliably
estimated. In that case, BIC would be a better choice than AIC.
Additionally, in practice, one may wish to rely on substantive
theory or parsimony of interpretation in choosing a relatively
simple model. In such cases, the researcher may decide that
even the BIC may have indicated a model that is too complex
in a practical sense, and may choose to select a smaller model
that is more theoretically meaningful or practically interpretable
instead [22, 102]. This does not mean that BIC overfit. Rather,
in these situations the model desired is sometimes not the
literally true model but simply the most useful model, a concept
which cannot be identified using fit statistics alone but requires
subjective judgment. Depending on the situation, the number
of classes in a mixture model may either be interpreted a true
quantity needing to be objectively estimated, or else as a level
of approximation to be chosen for convenience, like the scale
of a map. Still, in either case the question of which patterns
or features are generalizable beyond the given sample remains
relevant (cf. [108]). In the iris example, there was a consensus
correct answer given by the number of recognized biological
species. However, in the cancer symptoms example, the latent
classes were more a convenient way of summarizing the data
than a reflection of distinct underlying syndromes. If a fifth class
had been included, it might have been something like ‘moderate
physical, moderate psychological’ which probably would not
have provided additional insights beyond those which could be
gained by comparing the four classes in the four-class model. Of
course, in some studies, classes or trajectories might represent
different biological processes of distinct clinical importance (e.g.
[109]), and then it might be very important not to miss any,
but in other cases they may simply be regions in an underlying
multivariate continuum.

One could use the ICs to suggest a range of model sizes
to consider for future study; for example, in some cases one
might use the BIC-preferred model as a minimum size and the
AIC-preferred model as a maximum. Either AIC or BIC can also
be used for model averaging, that is, estimating quantities of
interest by combining more than one model weighted by their
plausibility (see [40, 1, 60, 110, 111, 19, 15, 112]).

Although model selection is not an entirely objective process,
it can still be a scientific one (see [103]). The fact that there is
no universal consensus on a way to choose a model is not a
bad thing; an automatic and uncritical use of an IC is no more
insightful than an automatic and uncritical use of a P-value
[99, 107, 61]. Comparing different ICs may suggest what range
of models is reasonable. Of course, researchers must explain

their methodological choices and not pick and choose methods
simply as a way of supporting a desired outcome (see [114]).

A larger question is whether to use ICs at all. If ICs indeed
reduce to LRTs in simple cases, one might wonder why ICs are
needed at all, and why researchers cannot simply do LRTs. A
possible answer is flexibility. Both AIC and BIC can be used to
concurrently compare many models, not all of them nested,
rather than just a pair of nested models at a time. They can also
be used to weight the estimates obtained from different models
for a common quantity of interest. These weighting approaches
use either AIC or BIC but not both, because AIC and BIC are essen-
tially treated as different Bayesian priors. While currently we
know of no mathematical theoretical framework for explicitly
combining both AIC and BIC into a single weighting scheme, a
sensitivity analysis could be performed by comparing the results
from both. AIC and BIC can also be used to choose a few well-
fitting models, rather than selecting a single model from among
many and assuming it to be the truth [32]. Researchers have
also proposed benchmarks for judging whether the size of a
difference in AIC or BIC between models is practically significant
(see [40, 62, 58]). For example, an AIC or BIC difference between
two models of less than 2 provides little evidence for one over the
other; an AIC or BIC difference of 10 or more is strong evidence.
These principles should not be used as rigid cutoffs [62], but as
input to decision making and interpretation. Kadane and Lazar
[31] suggested that ICs might be used to ‘deselect’ very poor
models (p. 279), leaving a few good ones for further study, rather
than indicating a single best model.

Consider a regression context in which we are considering
variables A, B, C, D and E; suppose also that the subset with the
lowest BIC is {A,B,C} with a BIC of 34.2, while the second-best is
{B,C,D} with a BIC of 34.3. A naïve approach would be to conclude
that A is an important predictor and D is not, and then conduct
all later estimates and analyses using only the subset {A,B,C}. If
we had gathered an even slightly different sample, though, we
might be just as likely to make the opposite conclusion. What
should we do? Some researchers might just report one model
as being the correct one and ignore the other. However, this
seriously understates the true degree of uncertainty present [38].
Considering more than one IC, such as AIC and BIC together,
could make even more models seem plausible. A simple sequen-
tial testing approach with a fixed α = .05 would seemingly avoid
this ambiguity. However, the avoidance of ambiguity there would
be artificial—the uncertainty still exists but is being ignored.

In many cases, cross-validation approaches can be used as
good alternatives to IC’s. However, they are sometimes more
computationally intensive. Also, implementation details of the
cross-validation approaches can affect parsimony in an analo-
gous way to the choice of An [115].

Lastly, both AIC and BIC were developed in situations in
which n was assumed to be much larger than p. None of the ICs
discussed here were specifically developed for situations such
as those found in many genome-wide association studies pre-
dicting disease outcomes, in which the number of participants
(n) is often smaller than the number of potential genes (p), even
when n is in the tens of thousands. The ICs can still be practically
useful in this setting (e.g. [116]). However, sometimes they might
need to be adapted (see, e.g. [117, 118, 119, 120]). More research
in this area would be worthwhile.

Code appendix
The R code below performs the cluster analysis and model
selection described above for the iris data.
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library(mclust);
library(datasets);
n <- 150;
ll <- rep(NA,7);
bic.given <- rep(NA,7);
models <- list();
for (k in 1:7) {

temp.model <- Mclust(iris[,1:4],G=k,modelNames="VVV");
p[k] <- temp.model$df;
ll[k] <- temp.model$loglik;
bic.given[k] <- temp.model$bic;
models[[k]] <- temp.model;

}
aic.calculated <- -2*ll + 2*p;
caic.calculated <- -2*ll + (1+log(n))*p;
abic.calculated <- -2*ll + log((n+2)/24)*p;
bic.calculated <- -2*ll + log(n)*p;
print(cbind(aic.calculated,bic.calculated,abic.calculated,caic.

calculated));
table(predict(models[[2]])$classification,iris$Species)
table(predict(models[[3]])$classification,iris$Species)

Key Points
• Information criteria such as AIC and BIC are motivated

by different theoretical frameworks.
• However, when comparing pairs of nested models, they

reduce algebraically to likelihood ratio tests with differ-
ing alpha levels.

• This perspective makes it easier to understand their
different emphases on sensitivity versus specificity,
and why BIC but not AIC possesses model selection
consistency.

• This perspective is useful for comparisons, but it does
not mean that the information criteria are only like-
lihood ratio tests. Information criteria can be used in
ways these tests themselves are not as well suited for,
such as for model averaging.
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