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Abstract

We present an overview of diffusion models commonly used for quantifying the dynamics of intracellular particles (e.g. 
biomolecules) inside eukaryotic living cells. It is established that inference on the modes of mobility of molecules is central 
in cell biology since it reflects interactions between structures and determines functions of biomolecules in the cell. In that 
context, Brownian motion is a key component in short distance transportation (e.g. connectivity for signal transduction). 
Another dynamical process that has been heavily studied in the past decade is the motor-mediated transport (e.g. dynein, 
kinesin and myosin) of molecules. Primarily supported by actin filament and microtubule network, it ensures spatial 
organization and temporal synchronization in the intracellular mechanisms and structures. Nevertheless, the complexity 
of internal structures and molecular processes in the living cell influence the molecular dynamics and prevent the 
systematic application of pure Brownian or directed motion modeling. On the one hand, cytoskeleton density will hinder 
the free displacement of the particle, a phenomenon called subdiffusion. On the other hand, the cytoskeleton elasticity 
combined with thermal bending can contribute a phenomenon called superdiffusion. This paper discusses the basics of 
diffusion modes observed in eukariotic cells, by introducing the essential properties of these processes. Applications of 
diffusion models include protein trafficking and transport and membrane diffusion.

Key words: diffusion; Brownian motion; stochastic models; intracellular dynamics; microscopy.

1.  Introduction

As the interior of a eukaryotic living cell is a fluctuating envi-
ronment, we model the trajectories of particles with stochas-
tic processes with continuous paths. Diffusions belong to this 
class of processes and can model a large range of intracellular 
movements. In what follows, we focus on diffusion defined as 
solutions of a stochastic differential equation (SDE) and we study 
stochastic models used in biophysics that generalize Brownian 
motion.

In the literature [1, 2], biophysicians distinguish four main 
types of diffusions, namely Brownian motion (also referred

to as free diffusion), superdiffusion, confined diffusion and 
anomalous diffusion. Trajectories illustrating these four types of 
diffusion are represented in Figure 1. These different diffusions 
correspond to specific biological scenarios. If a particle evolves 
freely inside the cytosol or along the plasma membrane, motion 
is modeled by free diffusion and is due to the constant collisions 
with smaller particles animated by thermal fluctuations. Hence, 
the particle does not travel along any particular direction and 
can take a very long time to go to a precise area in the cell. 
Active intracellular transport can overcome this difficulty so 
that motion is faster and direct specific. The particles (called in 
this context cargo) are carried by molecular motors along the
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Figure 1. Representative trajectories from simulated data. The blue trajectory

is Brownian; the purple trajectory is from a Brownian motion with drift (67)

and illustrates superdiffusion; the red trajectory is from an fBm (22) (parameter

h > 1/2) and illustrates superdiffusion; the cyan trajectory is from an Ornstein–

Uhlenbeck process (62) and illustrates confined diffusion; the green trajectory is

from an fBm (22) (h < 1/2) and illustrates anomalous diffusion.

cytoskeleton meshwork. Superdiffusions model the motion of
molecular motors and their cargo in the viscoelastic cytosol
of living cells [4]. Confined or restricted diffusion [5, 6] is
characteristic of particles that either bind to a specific site for
a period of time before dissociating and moving away or are
trapped in subdomains such as cytoskeleton ‘cages’. Anomalous
diffusion includes particles which encounters dynamic or fixed
obstacles [7, 8] or particles slowed by the contrary current due to
the viscoelastic properties [9] of the cytoplasm. A classification
of protein trajectories into the three types of diffusion (Brownian,
superdiffusion and subdiffusion) is shown in Figure 2. This
classification is obtained with our three-decision test procedure
described in [3].

Mean square displacement

In biophysics, the different types of diffusions are characterized
by the mean square displacement (MSD) [1]. Given a particle
trajectory (Xt)t>0, the MSD is defined as the function

MSD(t) = E

(∥∥Xt+t0 − Xt0

∥∥2
)

, (1)

where ‖ · ‖ is the Euclidean norm and E is the expectation of
the probability space. The MSD function of Brownian motion
is linear (MSD(t) ∝ t), while the MSD function of subdiffusion
(respectively superdiffusion) grows slower (respectively faster)
than the linear function.

This property makes the MSD a popular criterion to analyze
intracellular motion as Brownian motion is the process of refer-
ence. The typical MSD curves of the different diffusion models
are represented in Figure 3. In practical imaging, we observe the
successive positions of a single particle Xt0 , Xt1 , . . . , Xtn in the two
or three dimensions at equidistant times, that is ti+1 − ti = �.

Figure 2. Classification of two-dimensional trajectories from the Rab11 protein

sequence in a single cell observed in TIRF microscopy (courtesy of UMR 144 CNRS

Institut Curie PICT IBiSA). We use the three-decision test procedure developed

in [3] at level α = 5%. The Brownian trajectories are in blue, the subdiffusive

trajectories in green and the superdiffusive trajectories in red.

The MSD is estimated at lag j by

M̂SD(j�) = 1
n − j + 1

n−j∑
k=0

‖Xtk+j
− Xtk

‖2. (2)

Computing the estimator (2) at different lag j gives an estimation
of the MSD function (1). Then the simplest rule to classify a
trajectory is based on a fit of the MSD function (1) to t → tβ .
Feder et al. [10] states that the trajectory is subdiffusive if β < 0.9,
superdiffusive if β > 1.1 and Brownian if 0.9 < β < 1.1. If β < 0.1
it states that the particle does not move, see Figure 4.

Limitations

First, the MSD function is a summary measure based on a 2nd
order moment and is not sufficient to characterize the dynam-
ics of the trajectory. Accordingly, several authors (e.g. [11, 12])
proposed other statistics which can be associated with MSD for
trajectory analysis. Lund et al. [13] propose a decision tree for
selection motion model combining MSD, Bayesian information
criterion and the radius of gyration. Lysy et al. [14] present
a likelihood-based inference as an alternative to MSD for the
comparison between two models of subdiffusions: fractional
Brownian motion (fBm) and a generalized Langevin equation
(GLE).

Secondly, the estimation of the MSD function (1) is tricky as
the variance of estimator (2) increases with the time lag. Figure 4
illustrates this problem in the case of Brownian trajectories.
It suggests that the classification of Feder et al. [10] based on
parameter β overdetects subdiffusion and superdiffusion while
it is Brownian motion. It is worth noting that MSD can vary with
the time scale (confined diffusion or diffusion with obstacles
is Brownian diffusion at short time scale but exhibits a MSD
exponent < 1 at longer time scale).

Moreover, the MSD variance is also severely affected at short
time lags by dynamic localization error and motion blur. Michalet
[15] details an iterative method, known as the Optimal Least
Square Fit for determining the optimal number of points to
obtain the best fit to MSD in the presence of localization uncer-
tainty. In order to take account of the variance of the MSD
estimate, several authors use a set of independent trajectories
rather than single trajectories. These trajectories may have dif-
ferent lengths but are assumed to have the same kind of motion.
For instance, Pisarev et al. [16] consider weighted-least-square
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Figure 3. Typical MSD curves of the different diffusion types.

Figure 4. A classification rule for motion modes from MSD. The dashdotted lines

are the bound defined by [10], t → tβ ,β = 0.9 and 1.1. The dashed lines are the

pointwise high probability interval of 95% associated to the empirical MSD curve

for a standard Brownian motion trajectory of length n = 30. The bounds of the

interval are the 2.5% and 97.5% empirical quantile of (2) and are computed by

Monte Carlo simulation from 10 001 Brownian trajectories of length n = 30.

estimate for β by estimating the variance of pathwise MSD. Their
motion model selection is then based on the modified Akaike’s
information criterion. Monnier et al. [17] propose a Bayesian
approach to compute relative probabilities of an arbitrary set of
motion models (free, confined, anomalous or directed diffusion).
In general, this averaging process can lead to oversimplication
and misleading conclusions about the biological process [12].

Finally, it is hard to interpret the MSD function. At short
time scale the MSD function of confined/anomalous diffusion is
approximately linear, which is characteristic of Brownian motion
and only exhibits a MSD exponent < 1 at longer time scale.
Moreover, the MSD function is not a reliable tool in case the
particle switches motion over time.

Paper organization

The remainder of the paper is organized as follows. In the 
next section, we present the probabilistic tools in order 
to define diffusion processes. Such processes are of great 
importance for modeling intracellular dynamics. To this end, 
we focus on d-dimensional processes with d = 2 or  d = 3. 
In Diffusion for Modeling Intracellular Trajectories section, we  
present the three main types of diffusion studied in biophysics 
to model intracellular motion, namely Brownian motion, 
subdiffusion and superdiffusion. We also described the different 
biological scenarios associated with each mode of diffusion.

In this paper, we compute the theoretical MSD (1) for each 
presented motion model and classify it as Brownian, superdiffu-
sion or subdiffusion accordingly. However (and even if it is out of 
the scope of this paper), we must emphasize that MSD has some 
limitations.

2.  Stochastic processes, Brownian motion and 
diffusions
It is worth noting that the biophysics literature uses the word 
diffusion in a very broad sense [18]. Here we introduce the 
probabilistic concept of diffusion presented in [19] and [20]. First, 
we define the notion of stochastic processes. Then, we put an 
emphasis on Brownian motion, the cornerstone process which 
allows to build all the diffusion processes. We describe diffusion 
processes driven by Brownian motion. Finally, we deal with an 
extension of Brownian motion, namely fBm [21]; we present 
quickly diffusion processes driven by fBm.

Stochastic process

Let (�, F , P) a probability space where � is the sample space, F 
a field and P a probability measure. A d-dimensional ‘stochastic 
process’ is a function

I × � → R
d

(t, ω) �→ X(t, ω),
(3)

where I is a time interval. We note this application (Xt)t∈I or
simply (Xt). We present briefly stochastic processes from two
angles.

Let t ∈ I, the application,

� → R
d

ω �→ X(t, ω)

(4)

is the random state of the process at time t. It is a random
variable defined on (�,F , P). Then a stochastic process can be
seen as the collection of random variables {ω �→ X(t, ω), t ∈ I}.

Let ω ∈ �, the application

I → R
d

t �→ X(t, ω)

(5)

is called a ‘trajectory’ or a ‘path’ of the stochastic process (Xt)t∈I.
A stochastic process may be seen as an application from � to

the set of functions from I = [0, T] toR
d. As previously mentioned,

we consider only the stochastic processes whose trajectories are
continuous, that is t → Xt(ω) is continuous for almost ω ∈ �.
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Finite-dimensional distribution

A stochastic process may be seen as a random variable from
(�,F , P) to the measurable space

(
F([0, T],Rd), ⊗t∈[0,T]Bd

)
,

where F([0, T],Rd) is the set of functions from [0, T] to R
d, Bd is the

Borelian sigma-algebra and ⊗t∈[0,T]Bd is the sigma-algebra gener-
ated by all the finite-dimensional cylindrical sets of F([0, T],Rd).
Then the stochastic process X induces a probability measure
on

(
F([0, T],Rd), ⊗t∈[0,T]Bd

)
which is defined through the finite-

dimensional distribution.
Now we define the concept of finite-dimensional distribu-

tion. Let J = {t0, t1, . . . , tn} such that ti ∈ I and t0 < t1 <, . . . , < tn. We
note,

XJ = (Xt0 , . . . , Xtn ), (6)

the random vector whose components Xti
∈ R

d. The distribution
μJ of XJ is the joint distribution

μJ(A) = P(Xt0 ∈ A0, . . . , Xtn ∈ An), (7)

where Ai ∈ R
d and A = A0 × · · · × An.

The ‘finite-dimensional distributions’ of X is the family of
distributions {μJ| J a finite set of I}. If the finite-dimensional dis-
tributions μJ satisfy a technical criterion called consistency then
the Kolmogorov extension theorem guarantees the existence of
a stochastic process X with finite-dimensional distributions μJ

on (�,F , P) [22, Chapter 1, Section 1.1].

Filtered probability space

We state previously that a stochastic process can be seen as a col-
lection of random variables defined on (�,F , P). More precisely
the random variable (4) is defined on (�,Ft, P) where Ft ⊂ F . This
reflects that the outcome of the random variable (4) depends on
what happened before t, that is on the historic of the process
until time t.

Then we define the concept of filtration. A ‘filtration’ F is a
family (Ft) of increasing fields on (�,F) that is Fs ⊂ Ft ⊂ F for
s < t. F specifies how the information is revealed over time. The
property that a filtration is increasing corresponds to the fact
the information is not forgotten. Finally, a stochastic process X
is called adapted to a filtration F if, for all t, the random variable
ω �→ X(t, ω) is Ft-measurable.

Brownian motion

The observation of the erratic motion of a pollen particle sus-
pended in a fluid by the botanist R. Brown in 1828 marks the
1st step in the development of the Brownian motion theory. In
1905, Einstein argued that the movement of the particle is due
to its bombardment by the particles of the fluid; he obtained
the equations of Brownian motion. The underlying probability
theory was derived by N. Wiener in 1923 that is why Brownian
motion is also known as the Wiener process. In this section, we
define the one-dimensional Brownian motion and characterize
it as a Gaussian process. Then, we define the d-dimensional
Brownian motion.

Definition

The ‘one-dimensional Brownian motion’ (Bt) is a stochastic pro-
cess with the following properties:

• (Bt) is a process with ‘independents increments’. For all t > s,
Bt −Bs is independent of the field Fs generated by the historic
of the process (Bu)u∈[0,s] until the time s.

• For all t > s, Bt − Bs has normal distribution with mean 0 and
variance t − s.

• The paths of (Bt) are almost surely continuous.

Gaussian process

A ‘Gaussian process’ is a process for which all the finite-
dimensional distributions are multivariate normal. We have the
following theorem.

Theorem 2.1. A Brownian motion started at zeros is a Gaus-
sian process with zero mean and covariance function min(t, s).
Conversely, a Gaussian process with zero mean and covariance
min(t, s) is a Brownian motion.

Multivariate Brownian motion

As we already stated, we are interested in modeling the tra-
jectories of particle in dimensions 2 and 3. We define the ‘d-
dimensional Brownian motion’ (d ≥ 1) as the random vector
Bt = (B1

t , . . . , Bd
t ) where all coordinates Bi

t are independent one-
dimensional Brownian motions.

Diffusion process

We present briefly the family of stochastic processes of interest
in this paper, namely the diffusion processes. First, we recall
the Markov property which is a central notion for defining the
diffusion processes. Then we give the definition of diffusions
and some characterizations of these processes.

Markov property

The Markov property states that if we know the present state of
the process, the future behavior of the process is independent
of its past. For instance, a simple model of weather forecast
assumes that the probability to have rain at day j given the infor-
mation of the weather on the previous days is the same as the
probability to have rain at day j given the restricted information
of the weather at day j − 1. Let note (Xi) the process giving the
weather at each day i and note k the modality corresponding to
rain. In this discrete set-up, the Markov property can be written
as

P(Xj = k|Xj−1, . . . , X0) = P(Xj = k|Xj−1). (8)

As we work with stochastic processes defined continuously in
time, the historic of the process given by Xj−1, . . . , X0 in the
discrete case is replaced by the field Ft at time t. Then a d-
dimensional continuous stochastic process (Xt) is Markovian if

P(Xt+s ∈ A|Ft) = P(Xt+s ∈ A|Xt), (9)

where A ∈ R
d. Then we have the following theorem.

Theorem 2.2. The Brownian motion (Bt) has the Markov
property.
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Remark 2.1. Another difference (apart from the conditioning)
between Equations (8) and (9) is the different nature of the events
{Xj = k} and {Xt+s ∈ A}. It is due to the fact that in Equation (8)
the state space of the stochastic process (modality of weather) is
countable while the state space of the stochastic process is the
whole space R

d (not countable) in (9).

Diffusions

A ‘diffusion process’ (Xt) is a continuous time process which
possesses the Markov property and for which the sample paths
are continuous. Moreover, every diffusion process satisfies three
key conditions see [19, Chapter 15, Section 1]. The 1st condition
states that large displacements of magnitude exceeding ε > 0
are very unlikely over sufficiently small intervals

lim
�→0

1
�

P(‖Xt+� − Xt‖ > ε|Xt = x) = 0, ∀ε > 0, ∀x ∈ R
d, (10)

where ‖·‖ denotes the Euclidean norm. In other words, condition
(10) prevents the diffusion process from having discontinuous
jumps. The two last conditions characterize the mean and the
variance of the infinitesimal displacements and affirm the exis-
tence of the limits

lim
�→0

E(Xt+� − Xt|Xt = x) = μ(x, t), ∀x ∈ R
d, (11)

lim
�→0

E((Xt+� − Xt)(Xt+� − Xt)
�|Xt = x) = σ 2(x, t), ∀x ∈ R

d, (12)

where � denotes the transpose operator; μ(x, t) : Rd × R
+ → R

d

is the drift parameter; σ 2(x, t) : R
d × R

+ → Sd
+ is the diffusion

coefficient where Sd
+ is the set of positive semi-definite matrix

of size d.
In particular, Brownian motion is a diffusion process: its drift

is the null function, and its diffusion coefficient is constant.

Stochastic differential equation

The most common approach for defining diffusion processes is
to see them as the solution of SDEs.

Physical model

Initially diffusion models were developed to describe the motion
of a particle in a fluid submitted to a deterministic force due to
the fluid and a random force due to random collisions with other
particles. That is why we model efficiently the motion of intra-
cellular particles with diffusion. Let Xt ∈ R

d be the position of
the particle at time t and (Bt) a d-dimensional Brownian motion;
assume that Xt = x. Then the displacement of the particle
between t and t + � is approximately given by

Xt+� − x ≈ μ(x, t)� + σ(x, t)(Bt+� − Bt). (13)

The component μ(x, t)� is the displacement due to the fluid
where the velocity of the fluid is given by the drift μ(x, t). The
term σ(x, t)(Bt+� − Bt) expresses the random component of the
motion due to random collisions. More specifically the collisions
increased with the temperature of the fluid; the influence of
temperature is modeled by the diffusion coefficient σ(x, t). We
note that the model (13) implies that, due to the normality of the
Brownian increment, the displacement of the particle Xt+� − x is

approximated by a Gaussian random variable of mean μ(x, t)�
depending on the drift and of variance σ(x, t)

√
� depending on

the diffusion coefficient.
Heuristically, an ‘SDE’ is obtained from Equation (13) by

replacing � by dt, (Bt+� − Bt) by dBt and Xt + � − Xt by dXt. Then
we have the following definition.

Definition 2.1. Let (Bt) be a d-dimensional Brownian motion.
Let μ : R

+ × R
d → R

d and σ(x, t) : R
+ × R

d → Md be given
functions (Md denoting the set of square matrix of size d). An
SDE is defined as

dXt = μ(Xt, t)dt + σ(Xt, t)dBt, (14)

where (Xt) is the unknown process. The function μ is referred
to as the drift while the function σ is called the diffusion coeffi-
cient.

Solution of SDE

There are two types of solutions respectively called ‘strong’ and
‘weak solutions’. A strong solution is a weak solution but the
reverse is false.

Definition 2.2. Let Ft the field induced by the initial condition
X0 and the Brownian motion (Bt) which drives the stochastic
differential (14). We say that Equation (14) has a strong solution
(Xt) on the probability space (�,F , P) with respect to (Bt) and
initial condition X0 if the stochastic process Xt satisfies (14), has
continuous paths and that Xt is Ft-measurable for all t.

The fact that Xt is Ft-measurable is crucial. It means that
Xt depends only on the historic of the Brownian motion which
drives the SDE and the initial condition. Then we can interpret
Xt as an output of the system parametrized by μ(x, t) and σ(x, t)
whose input is the Brownian motion (Bt). It reflects the principle
of causality of the system. If Xt could depend on the future, that
is on Bs with s > t, causality would fail.

The concept of strong solution relies on the fact that the
Brownian motion is given. A weak solution of an SDE consists
in building at the same time a couple of processes (Xt, Bt) where
(Xt) is a solution of the SDE driven by the Brownian (Bt). We will
not give the exact definition of weak solution as it has technical
points not of interest for the understanding of the concept.

Then the solution of the SDE is written as

Xt = X0 +
t∫

0

μ(Xs, s)ds +
t∫

0

σ(Xs, s) dBs. (15)

We note that the fact that the two integrals are defined is
equivalent to the fact that Xt is (strong or weak) solution. In
particular the integral with integrand dBt is a random variable
Ft-measurable. Details of the construction of such integrals are
given in [20, Chapter 4].

Fractional Brownian motion

fBm was introduced to model scale-invariant phenomenons
processes showing long-range dependence. Kolmogorov [23]
developed a turbulence theory based on two hypotheses of scale
invariance. In his study of long-term storage capacity and design
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of reservoirs, Hurst [24] observed hydrological events invariant
to changes in scale. Mandelbrot and Van Ness [21] defined the
fBM of exponent has a ‘moving average of dB(t), in which past
increments of B(t) are weighted by the kernel (t − s)2h−1.’ This
kernel is at the origin of the long-range dependence property
(for a certain choice of parameter h). The parameter h is known
as the Hurst index or Hurst parameter. In this section, we
define fBm and give its main properties. FBm is then defined in
dimension d.

Self-similarity and fBm

A real-valued stochastic process (Xt) is ‘self-similar’ with index
h > 0 (h − ss) if, for any a > 0 the processes (Xat) and (ahXt)

have the same finite dimensional distributions. Then a Gaussian
h − ss process (Bh

t ) with stationary increments and Hurst index
0 < h < 1 is an ‘fBm’.

Now we give some properties of the fBm. First, the fBm has
continuous paths. We have E(Bh

t ) = 0 for all t. It is said to be
standard if the variance of Bh

1 is equal to one. For the standard
fBm we have

Cov(Bh

t , Bh
s ) = 1

2
(|t|2h + |s|2h − |t − s|2h). (16)

Then we can show that an fBm with h = 1/2 is simply a (one-
dimensional) Brownian motion.

Long-range dependence

A stationary time series (Xn)n∈N exhibits ‘long-range dependence’
if Cov(Xn, X0) → 0 as n → ∞ but

∞∑
n=0

|Cov(Xn, X0)| = ∞. (17)

In other words the covariance between X0 and Xn tends to 0 but
so slowly that their sum diverges. Then we define the stationary
process known as fractional Gaussian noise

Xk = Bh

k+1 − Bh

k , k ∈ N, (18)

where (Bh

t ) is a standard fBm of Hurst index h. Due to the
properties of fBm the fractional Gaussian noise (Xn) is a
stationary-centered Gaussian process with auto-covariance
function

γ (k) = E(Xi+kXi) = 1
2

(|k + 1|2h + |k − 1|2h − 2|k|2h). (19)

Then for k �= 0 we can show that γ (k) = 0 if h = 1/2, γ (k) < 0
if 0 < h < 1/2 and γ (k) > 0 if 1/2 < h < 1. Now, for h = 1/2 we
have

γ (k) = h(2h − 1)|k|2h−1 + o(1), (20)

where o(1) → 0 as k → ∞. Consequently γ (k) → 0 as k → ∞ for
0 < h < 1. From Equation (20) we deduce

∞∑
k=0

γ (k) = ∞, 1/2 < h < 1,

∞∑
k=0

γ (k) < ∞, 0 < h < 1/2.

Consequently, if 1/2 < h < 1, fractional Gaussian noise (hence
fBm) (Xn) exhibits long-range dependence.

Stochastic integration and fBm

As stated in the introduction, [21] define the fBm as a moving
average of dBt. Decreusefond and Ustünel [25] shows that fBm
can be written as the following stochastic integral driven by
Brownian motion:

Bh

t =
t∫

0

Kh(t, s) dBs, (21)

where the properties and analytical form of function Kh(t, s)
(called kernel) are given in [25].

Multivariate fBm

Coutin and Quian [26] give the following definition of a d-
dimensional fBm.

Definition 2.3. An fBm in dimension d > 1 is the random vector
Bh

t = (Bh,1
t , . . . , Bh,d

t ) where all coordinates Bh,i
t are independent

one-dimensional fractional Brownian motions of Hurst parame-
ter 0 < h < 1.

Again a d-dimensional fBm reduces to a d-dimensional Brow-
nian motion in the case h = 1/2.

SDE driven by fBm

We can extend the SDE (14) to define a (d− dimensional) stochas-
tic differential driven by a (d-dimensional) fBm of Hurst index
0 < h < 1

dXt = μ(Xt, t)dt + σ(Xt, t)dBh

t . (22)

The same concepts of strong and weak solutions hold for the
SDE (22). The SDE driven by Brownian motion (14) is of the form
of the SDE (22) with h = 1/2.

In the remainder of this paper, we will call diffusion any
processes solution of (22). We note that it does not match
with the definition of [19, Chapter 15, Section 1] given in
Diffusion Process section, as the Markov property no longer
holds due to the correlations between the fBm increments.

Summary

In this section, we presented Brownian motion from a proba-
bilistic perspective. This process is of paramount importance
in mathematics, physics and biophysics. We also presented dif-
fusion as solutions of an SDE and introduced the fBm which
generalized Brownian motion adding correlations between its
increments.
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In the next section, we give the physical derivation of 
Brownian motion. We will also describe the motion models 
used in biophysics for describing intracellular dynamics, with 
a particular emphasis on the diffusion models defined in this 
section.

3. Diffusion for modeling intracellular 
trajectories
First, we present the physical models underlying Brownian 
motion. More specifically, we introduce the theory of [27] 
and the Langevin approach. Then, we present subdiffusion 
processes which is often split in two parts: anomalous and 
confined diffusion. Finally, we deal with superdiffusion. Also, 
we compute the MSD for each presented model as it is 
the criterion to classify the motion model as free diffusion, 
subdiffusion or superdiffusion. We note that we also exhibit 
motion models which are not diffusion in the sense of 
Stochastic Processes, Brownian motion, and Diffusions section, 
in particular in the case of subdiffusions. Another general 
presentation of theoretical transport models can be also found 
in [28].

Einstein’s approach

In this section, we present the approach of [27] introduced for 
modeling the motion of ‘small suspended particles’ in a liquid. 
We develop the concept of Brownian motion in the exact same 
way as [27]. First, we depict the related physical experiment. 
Secondly, we show that the concentration of suspended particles 
is governed by a diffusion in the sense of Fick. Finally, the motion 
of individual suspended particles is modeled by a process corre-
sponding to Brownian motion.

Physical context

Einstein considers a particular physical situation. In 1st place, he 
assumes that z moles of a chemical species are dissolved in a 
liquid of volume V. He also supposes that the solute is confined 
in a volume V
 separated from the pure solvent by a wall that is 
permeable to the solvent but not to the solute. In this situation, 
the solute produces a pressure on the wall called the osmotic 
pressure. Provided z/V
 is small enough, that is the solute 
concentration is low, we have

pV
 = RTz, (23)

where p is the osmotic pressure, R is the gas constant and
T is the temperature. Secondly, instead of the solute, Einstein
considers suspended particles. Now the wall is permeable to the
solvent but not to the particles. In this case, the theory of ther-
modynamics does not expect that the suspended particles will
produce an osmotic pressure on the wall. However, according
to the molecular-kinetic of heat, the only difference between a
dissolved molecule and a suspended body is their size. Then,
Einstein points out that both the dissolved molecules and the
suspended particles should produce the same osmotic pressure
as long as their number is equal. Then he assumes that ‘the
suspended bodies perform an irregular, albeit very slow, motion
in the liquid due to the liquids molecular motion’. This motion—
we will see later that it corresponds to Brownian motion—is at
the origin of the osmotic pressure. In fact, when the moving
particles bounce on the wall, they exert a pressure as in the case

of the solute. Then we can derive a similar equation as (23)

pV
 = RT
n
N

, (24)

where n is the number of suspended particles and N the Avo-
gadro number. Then n/N is the number of moles of the sus-
pended particles.

In [27], Einstein focused on the motion of particles subjected
to forces and moving along a single direction.

Fick’s diffusion

In this paragraph, we are interested in the evolution of the
concentration in space and time ν(x, t) = n(x, t)/dx, where n(x, t)
in the number of suspended particles at time t in the small
volume dx. Einstein [27] assumes that a force K, depending on
the position but not on the time, acts on each particle.

First, at the equilibrium we have

Kν − ∂p
∂x

= 0, (25)

that is the force K and the force induced by the pressure p
compensate each other. Using the definition of ν and Equation
(24), we can rewrite Equation (25) as

Kν − RT
N

∂ν

∂x
= 0. (26)

On the other hand, the concentration ν is governed by a
diffusion in the sense of [29]. In this case, diffusion refers to the
evolution of a macroscopic quantity as the heat in a metal or the
concentration of a chemical species in a liquid. It is characterized
by the two laws of [29]. Once combined, they give the diffusion
equation which is written in our case as

∂ν

∂t
= D

∂2ν

∂2x
, (27)

where D is the diffusion coefficient characterizing the diffusion.
Now, to fully determine the diffusion of ν we need to derive D

as a function of the parameters of the problem. To this end, we
use the 1st law of [29] stating that ‘the diffusion flux between two
points of different concentrations in the fluid is proportional to
the concentration gradient between these points’. In our case it
can be written as

J = −D
∂ν

∂x
, (28)

where J is the diffusion flux and D is the diffusion coefficient
characterizing the diffusion. Now we must derive the diffusion
flux J that is the number of particles going through an area
of unit one per unit of time. Einstein [27] assumes that the
suspended particles are spheric of radius a. Additionally, if the
liquid has coefficient of viscosity k, then the force K gives to each
particle the velocity,

νK
6πka

. (29)
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Figure 5. Scheme illustrating the transfer of particles from x − �x to x between

the times t and t + �. There are ν(x − �x, t)dx particles in [x − �x, x − �x + dx] at

time t. Among them a proportion of φ(�x)d�x jumps to [x, x + dx] between t and

t + �. Integrating over all the displacements �x, we obtain ν(x, t + �)dx particles

at time t in [x, x + dx].

Consequently the diffusion flux is

J = νK
6πka

. (30)

In fact, a dimension analysis reveals that the inverse of a volume
(ν = n/V
) multiplied by a velocity (Equation (29)) defines a flux.

Finally, the 1st law of [29] gives

νK
6πka

= −D
∂ν

∂x
. (31)

From Equations (26) and (31), the Fick’s diffusion governing ν has
for diffusion coefficient

D = RT
N6πka

. (32)

Brownian motion

Finally, Einstein [27] models the ‘disordered motions’ due to
thermal molecular agitation of the n suspended particles.
More importantly, Einstein links these individual motions
to the Fick’s diffusion examined in the previous paragraph.
He assumes that the motions of individual particles are
independent from each other. Moreover, he assumes that
the displacements of a same particle on consecutive time
intervals are independent as long as these time intervals
are not too small. Then in the following, we denote � the
length of the time interval which is small compared to the
observable time intervals but still satisfy the independence
property of displacements. We recall that the displacements
occur along the x-axis only. We denote �x the displacement
occurring during the period �. Einstein [27] assumes that �x is
a random variable whose distribution function φ is symmetric.
Then the probability that a particle experiences a displacement
lying between u and u + du is φ(u)du. The average number of
particles experiencing such a displacement during a period
� is

dn = nφ(u)du. (33)

Now, we can deduce the number of particles ν(x, t+�)dx from
the the numbers of particles at time t and φ. In Figure 5, we show
how the particles go from x − �x at time t to x at time t + � using
Equation (33). Integrating over all the possible displacements we
get

ν(x, t + �)dx = dx.
∫

R

ν(x − �x, t)φ(�x) d�x. (34)

As � is small we can expand ν(x, t + �) as

ν(x, t + �) = ν(x, t) + �
∂ν(x, t)

∂t
.

We also expand the left side of Equation (34) in Taylor series

∫

R

ν(x − �x, t)φ(�x) d�x = ν(x, t) × 1 + ∂ν(x, t)
∂x

× 0

+ ∂2ν(x, t)
∂2x

∫

R

�2
x

2
φ(�x) d�x,

where we use that
∫

φ(u)du = 1 as φ is a distribution function and∫
uφ(u)du = 0 as φ is symmetric. We can equalize the right side

of the two previous equations according to the equality given
in Equation (34). Then, we deduce that ν respects the diffusion
equation (27) predicted by the theory in [29] with diffusion
coefficient given by

D = 1
�

∫

R

�2
x

2
φ(�x) d�x. (35)

Therefore, with a specific definition of the individual motion of
n independent particles, Einstein [27] shows that the concentra-
tion of such particles follows the Fick’s equation.

At this step, he [27] shows only assumed that the displace-
ment of each particle over consecutive time intervals—for inter-
vals not too small—are independent random variables from
a symmetric distribution φ. Consequently, the particle motion
fulfills the independence property of the Brownian increment,
see Brownian motion section. For the moment, we cannot see
why the displacement of the particles should be Gaussian as for
Brownian particle. This link can be made by solving the diffusion
equation (27).

We need additional conditions to solve Equation (27). Until
this point, we have used the same coordinate system for all the
particles. As all the particles are independent, we can define one
coordinate system for each particle. Einsitein [27] states that the
center of gravity of each particle at time t = 0 is the origin of
their coordinate system. Then ν(x, t)dx now denotes the number
of particles whose displacements between the times 0 and t
are comprised between x and x + dx. In other words, x denotes
the displacement and not the absolute position in a common
coordinate system anymore. Function ν still verifies Equation
(27) under this new scheme. Now we have the straightforward
conditions

ν(x, 0) = 0, ∀x �= 0
∫
R

ν(x, 0) dx = n.
(36)

Finally, the solution of the diffusion equation (27) with condi-
tions (36) is

ν(x, t) = n
e

−x2
4Dt√

4πDt
, (37)

where x is interpreted as a displacement. With this meaning
of x, e−x2/(4Dt)/

√
4πDtdx is the probability that the displace-

ment of a single particle lies in [x, x + dx]. Therefore, the
particle displacement is Gaussian. We also know that the
displacements over consecutive time intervals are indepen-
dent. Then the motion of the suspended particles defined
by [27] corresponds to the Brownian motion defined in
Brownian motion section. Therefore, the physical derivation
of Brownian motion by [27] is equivalent to the so-called
Wiener process in mathematics. Due to the physical constraints,
the diffusion coefficient D has a particular value given by
Equation (32).
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We can extend this theory to the d-dimensional case (d =
2, 3). In this context, each component follows a one-dimensional
Brownian motion and the components are independent from
each other. Not surprisingly, it corresponds to the Definition 2.3
of multi-dimensional Brownian motion.

Remark 3.1. We note that, in this paper, in case of the one-
dimensional Brownian motion (Bt) the diffusion coefficient σ is
defined as σ = Var(B1). Then we have the relationship σ = 2D.

Remark 3.2. From Equations (33) and (37) and the definition of
φ we deduce that φ(x) = e−x2/(4D�)/

√
4πD�. It is coherent with the

equality (35).

Langevin’s approach

Physicists define the motion of suspended particles in another
way using the approach of [30] (see [31] and [32, Chapter 1]).
This motion is sometimes referred to as Brownian motion which
can be confusing. In this subsection, we present this alternative
approach. First, we introduce the underlying physical model
and the corresponding hypotheses about the particle motion.
Secondly, we show that, in this case, the particle movement
is governed by a well-known SDE. Thirdly, we explain why the
particle motion defined by Einstein [27] and by Langevin [30] is
mixed up. Finally, we explain which concept of Brownian motion
we will use in the paper. In this subsection, we derive the model
directly in dimension d.

Langevin quation

Langevin [30] characterizes the particle motion through the d-
dimensional (Langevin) equation

m
dv(t)

dt
= −ζv(t) + L(t), (38)

where v : R
+ �→ R

d is the velocity of the particle, m its mass,
ζ > 0 the friction coefficient and L : R

+ �→ R
d a random force

resulting from the collisions with the surrounding particles. In
case of spherical particles of radius a immersed in a liquid of
viscosity coefficient k, the friction coefficient is ζ = 6πka where
k is the viscosity coefficient of the surrounding liquid.

Uhlenbeck and Ornstein [33] constrained L(t) with two addi-
tional assumptions. First, the mean of L(t) over a large number of
independent colliding particles is 0, that is E(L(t)) = 0d, where 0d

is the null vector of Rd. In their physical model, [33] also assume
that the colliding particles are similar to the particle of interest
and have same initial speed v0. Secondly, the autocorrelation
function is given by

E(L(t)L(s)T) = σδ(t − s)Id, (39)

where σ > 0 is a constant, δ is the Kronecker function and
Id the identity matrix of size d. The idea is that each collision
is practically instantaneous and that successive collisions are
uncorrelated. Actually, Uhlenbeck and Ornstein [33] originally
model the autocorrelation function as a function of t − s with
a sharp peak of width equal to the duration of a single collision.
The autocorrelation (39) is preferred nowadays [34, Chapter 9].
Such a force L(t) is called a Langevin force.

Ornstein–Uhlenbeck process

We did not fully define the stochastic process L(t) as we provide
only information on its 1st and 2nd moment. Such a process is
known as white noise in statistics. If we further assume that
L(t) is Gaussian, we entirely define this process as a Gaussian
process is determined by its 1st two moments. Then L(t) is
called a Gaussian white noise. As explained in [19, Chapter 15,
Subsection 14], the Gaussian white noise L(t) can be informally
defined as the derivative of the Wiener process—equivalently
the mathematical Brownian motion defined in Section 2.2 –
L(t) = σdBt/dt. We use the word informally as in fact the Wiener
process is nowhere differentiable. Finally, we can rewrite the
Langevin equation (38) as the d-dimensional SDE

mdv(t) = −ζv(t)dt + σdBt. (40)

The solution of the stochastic equation (40) is known as the
Ornstein–Uhlenbeck process. It is a Gaussian process with

E(v(t)) = 0d, (41)

E(v(t)v(s)T) = σ 2

2ζm
e−(ζ/m)|t−s|Id. (42)

Waterston and Rayleigh [35] states that, at the equilibrium (that
is as t → ∞), the mean square velocity verifies

lim
t→∞E(‖v(t)‖2

2) = d
kBT
m

, (43)

where kB is the Boltzmann constant and T is the temperature.
Each component of the velocity vector has the same variance, so
that

lim
t→∞

E(vi(t)2) = kBT
m

, i = 1, . . . , d. (44)

Then equalizing the variances of vi(t) obtained with Equation
(42) with t = s and obtained with Equation (44), we have the
relationship

σ =
√

2ζkBT. (45)

Finally, the Brownian motion of [30] is defined as

Xt =
t∫

0

v(s) ds, (46)

where v(t) is the Ornstein–Uhlenbeck process solution of the SDE
(40). Due to the Gaussian nature of v(t), (Xt) is also a Gaussian
process.

Mean square displacement

One reason explaining the confusion between the particle
motion respectively defined in [27] and [30] is that they
both exhibit a linear MSD asymptotically. In the case of the
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d-dimensional Brownian motion of [27], we can easily show that
the MSD is

E(‖Xt − X0‖2) = d2Dt

= d
2RT

N6πka
t

= d
2kBT

ζ
t,

(47)

where kB = R/N is the Boltzmann constant and ζ = 6πka is the
friction coefficient.

In the case of the motion defined by [30] (assuming X0 = 0 for
simplicity) we have

E(‖‖Xt − X0‖‖2) =
d∑

i=1

E

⎛
⎝

t∫

0

t∫

0

vi(s)vi(u) ds du

⎞
⎠

= d

t∫

0

t∫

0

E(v1(s)v1(u)) ds du

= d
2kBT

ζ

(
t − m

ζ
(1 − e−(ζ/m)t)

)

= d
2kBT

ζ
t + o(t),

(48)

where o(t) → 0 as t → ∞.

Choice of the definition of Brownian motion

Each approach relies on different physical models. We empha-
size that the Brownian motion in [27] (corresponding to the
Wiener process) is nowhere differentiable and then has a rough
(but still continuous) path. On the other hand, the particle
motion defined in [30] is differentiable due to its definition as the
integration of the Ornstein–Uhlenbeck process (Equation (46)).
Then its path is smooth. Bressloff [36] argues that both processes
can be used to model intracellular dynamics in the case where
the particle evolves freely inside the cytosol or along the plasma
membrane.

In what follows, Brownian motion will refer to the motion
defined by Einstein [27]. It corresponds to the mathematical
Brownian motion defined in Brownian motion section called
also Wiener process in the mathematical literature.

Subdiffusion

Subdiffusion, which includes confined diffusion and anomalous
diffusion, is the translations of several biological scenarios [28,
37]. In this subsection, we present models associated with these
two types of diffusion. We note that certain models are called
diffusion even if they are not solutions of the SDE.

Anomalous diffusion

In biophysics, [2, 18], an ‘anomalous diffusion’ (Xt) is character-
ized by an MSD which is proportional to the monome tβ ,

E(‖Xt − X0‖2) ∝ tβ , (49)

with β < 1. The 1st two presented models are solutions of an SDE
driven by fBm (22) (the first being simply fBm). Then we present

other types of processes used in biophysics, also reported in
details in [37].

Fractional Brownian motion. As a particle moves through the
cytoplasm, the latter pushes it back, due to macromolecular
crowding and the presence of elastic elements generating
correlations in the particles trajectory [38]. An fBm with
Hurst index 0 < h < 1/2 is a good candidate to model
this situation. First, it is straightforward to show that its
MSD is given by (49) with β = 2h < 1 (see Equation (16)).
Secondly, we saw in Fractional brownian motion section that
fBm has its increments negatively correlated when 0 < h <

1/2. As an example, [39] study the mechanisms underlying
subdiffusive motion in live Escherichia coli cells thanks to flu-
orescently labeled chromosomal loci and RNA-protein particles.
They conclude that the observed motion was well modeled
by fBm.

Generalized Langevin equation (GLE). As we have just explained,
particles can be slowed by the contrary current due to the
viscoelastic properties of the cytoplasm (see also [9] for
details). This time we are interested in long-time correlations
(and not just correlations) in diffusive motion. Then Kou
[31] models such phenomenon with SDEs driven by the
fBm with Hurst index 1/2 < h < 1; in fact we saw in
Fractional brownian motion section that in this case fBm
exhibits long-range dependence. Then Zwanzig [40] and
Chandler [41] proposed the GLE

m
dv(t)

dt
= −ζ

t∫

−∞
v(u)K(t − u) du + G(t), (50)

where, in comparison with the Langevin equation (38), G(t) is
a noise having memory replacing the memoryless white noise
L(t); the velocity is convolved with a kernel K. These two features
make the solution of the Equation (50) a non-Markovian process.
Analogically to v(t) in Equation (43), both K and G must fulfill a
physical constraint called the fluctuation–dissipation principle
in [41]

E(G(t)G(s)T) = 2ζkBTK(t − s)Id. (51)

Not surprisingly, we observe that if we choose K = δ—the Dirac
function—we find that the GLE (50) is equivalent to the Langevin
equation (38) and the condition on the 2nd moment (51) is
equivalent to the condition (39). Kou [31] chooses to define G(t)
as fractional Gaussian noise (18) with Hurst index 1/2 < h < 1
for exhibiting long-range dependence. From condition (51), they
deduce the kernel K (noted now Kh)

Kh(t) = 2h(2h − 1)|t|2h−2. (52)

Then the related SDE is

mdv(t) = −ζ

⎛
⎝

t∫

−∞
v(u)K(t − u) du

⎞
⎠ dt + σdBh

t , (53)

where σ = 2ζkBT and (Bh

t ) is an fBm with 1/2 < h < 1. Finally, Kou
[31] shows that the integrated process Xt = ∫

v(u) du verifies as
t → ∞

E(‖Xt − X0‖2) ∝ t2−2h. (54)
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It fulfills the MSD condition (49) asymptotically with β =2−2h<1
for 1/2 < h < 1.

Continuous time random walk (CTRW). Intracellular particles can
also bind to molecular complexes. Then the particle motion
is a permanent switch between binding events and movement
toward another spot where it can bind again. Scher and Mon-
troll [42] introduce the CTRW to model anomalous transport
properties of charge carriers in amorphous materials. In their
framework, the electron dynamics are successively trapped in
different energy wells; the total time spent in the trapped states
is much larger than the time spent in free motion.

CTRW is a pure-jump stochastic process and formally it
cannot be considered as a diffusion process as defined in the
paper (since it is not continuous). Nevertheless, as CTRW gen-
eralizes random walks, it is considered as a process leading to
anomalous diffusion. In this model, a particle performs random
jumps whose step length is generated by a probability density
with finite 2nd moments. The waiting times between jumps are
assumed to be distributed according to a probability distribution
ψ(t). If ψ(t) has a finite 1st moment that is

∫
tψ(t) dt < ∞ then

the MSD of the CTRW is linear in time. For instance, we can use
the exponential distribution

ψ(t) = (1/τ)e−t/τ , t > 0, (55)

where τ > 0 is called the characteristic time. We note that, in
this case, the random walk has the Markov property (due to the
memoryless property of the exponential distribution). On the
contrary, if

∫
tψ(t) dt = ∞ the MSD of the CTRW is given by (49).

A typical choice is a power law distribution

ψ(t) = 1/(1 + t/τ)1+β , t > 0, (56)

with τ > 0 the characteristic time and 0 < β < 1.
In neurobiology, Zhizhina et al. [43] propose to investigate

CTRW to model the axon growth. The growth of an axon to its tar-
get is guided by chemical signals from the cellular environment.
The authors describe this interaction by a random waiting time
thereby defining a CTRW. They observe that ‘normal’ axons and
‘mutant’ axons are driven by CTRW with different waiting time
distribution.

Random walk on fractal. The inner environment of a cell is
crowded with small solutes and macromolecules which occupy
10–50% of the volume [45]. If the concentration of obstacles is
sufficiently high, the MSD of the particle is given by Equation (49)
[7, 44]. In that case, the MSD is ill-defined as Brownian diffusion
occurs locally, but the MSD exponent β is < 1 at larger time scale,
depending on obstacle density and size compared to the particle
(see [46]).

Since the domain has a fractal-like structure, a popular model
to represent the underlying dynamics of particles is to consider
random walks on percolation clusters [44]. Here we present the
model on a 2-dimension square lattice. Each vertex of the lattice
has probability 1 − p to be an obstacle, that is the particle cannot
go on this kind of vertex. The other vertices can be occupied by
particles. They form connected clusters on which particles are
assumed to undergo a random walk. In this particular case, there
exists a critical probability pc = 0.592745 below which there exist
only finite clusters, and above which there exists one infinite
cluster (see Figure 10 in [44]). When p = pc, the random walk on
the infinite cluster has its MSD given by Equation (49) [44]. In

the literature of diffusion on fractals, it is established that the
MSD (49) is a function of β = d/dw where d is the dimension
and dw is related to the fractional dimension of the random
walk. If d = 2, the fractional dimension of the random walk
on a square lattice with p = pc is dw = 2.8784 [47] leading to
β = 0.6948. Havlin and Ben-Avraham [44] also consider other
choices of p and random walks on both the finite and infinite
percolation clusters. However, in these cases, the MSD is not
a power function. As another two-dimensional example, the
fractional dimension of a random walk on the Sierpinski gasket
fractal gives dw = 2.32 (then β = 0.8621) [44]. Berry and Chaté
[8] argue that the exponents β observed from real experiments
span a wide range of values and that random walks on fractal
cannot model all these possibilities. Then several authors [7, 8]
prefer relying on Monte Carlo simulations with different designs
of obstacles (mobiles or not) to propose a model explaining the
observed power function form of the MSD.

Confined diffusion

The MSD of a confined diffusion is not a simple power law of
time as generally assumed for other diffusion processes. Actu-
ally, in biophysics [2, 17], a ‘confined diffusion’ (Xt) is character-
ized by a MSD of the form

E(‖Xt − X0‖2) = r2
c

a
(1 − be−cσ2t/(2r2

c )), (57)

where parameter rc is the characteristic size of the region of
confinement, a is a scale parameter and b and c depends on the
shape of the region. Parameter σ > 0 is the constant diffusion
coefficient. We present two models of confined diffusion and
give their MSDs. For the 1st model, the MSD (57) is a simplifica-
tion of the true MSD. Here we find the MSD (57) for a particular
case of the 2nd model. We note that parameter a does not
appear in [2, 17]. We use this extra scale parameter a to have
the common expression (57) for the MSD of the two presented
models.

Diffusion within confined geometries. The plasma membrane is
parceled up into compartments where proteins undergo short-
term confined diffusion. More specifically these compartments
are separated by the actin-based membrane skeleton [48]. Then
the motion can be modeled by the SDE (14) adding boundary
conditions. Equation (57) is based on the 1st term of the exact
series solution of the MSD of a Brownian particle trapped in
a square or circular corral (in dimension 2) or in a sphere (in
dimension 3) [49, 50]. As an example, Bickel [51] shows that, for
a certain type of boundary condition, the MSD of a Brownian
motion confined in a circular domain of radius rc is given by

E(‖Xt − X0‖2) = r2
c

(
1 − 8

∞∑
i=1

exp
[

− ι21i

t
τ

]
1

ι21i(ι
2
1i − 1)

)
, (58)

where 0 < ι1,1 < ι1,2 < . . . are the positive zeros of J′1, the 1st
derivative of the Bessel function of order one J1 and τ = 2r2

c /σ
2

is the characteristic time. We note that, as expected, the MSD
saturates to r2

c in the long-time limit t � τ . Then, Equation (57)
is the 1st term of the sum (58) with a = 1, b = 8/(ι211(1 − ι211)) and
c = ι211. Parameters σ and rc are unchanged in the two equations
(58) and (57).

Diffusion in a potential well. We can state that a particle is
attracted by an external force modeled by a potential well U.
Originally, Kramers [52] introduced such a model for describing
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chemical reactions. His model can be seen as the (d-dimensional)
Langevin equation (40) (written here as a SDE) with an extra term
depending on U

mdv(t) = −ζv(t)dt − ∇U(Xt) +
√

2ζkBTdBt, (59)

where ∇ denotes the gradient operator. Now we make other
assumptions on Equation (59) to obtain a process with the MSD
(57). First, we suppose that the viscosity is very large, that is
the friction coefficient ζ tends to infinity. Then the acceleration
term mdv(t) is negligible. This corresponds to the so-called over-
damped condition in physics [34]. The model reduces to

ζdXt = −∇U(Xt) +
√

2ζkBTdBt, (60)

where dXt = v(t)dt. Now, we assume that the potential U is
uni-modal; in other words the particle is trapped in a single
domain. In this case, U can be approximated by a polynomial of
order 2. For simplicity, suppose that the potential is given by the
following polynomial:

U(x1, . . . , xd) = (1/2)

d∑
i=1

ki(xi − θi)
2, (61)

where ki > 0, θi ∈ R and d is the dimension of the process. Then
the SDE (60) turns into

dXi
t = −λi(Xi

t − θi)dt + σdBi
t, i = 1, . . . , d, (62)

where σ = √
2kBTζ and λi = ki/ζ > 0. As in the case of Equation

(40), the solution of the SDE (62) is the Ornstein–Uhlenbeck
process (different parametrization compared to the SDE (40) with
the extra parameters θi though). The parameter ki measures the
strength of attraction of the potential (related to the potential
depth) while θ = (θ1, . . . , θd) is the equilibrium position of the
particle. As we already mentioned, the Ornstein–Uhlenbeck is
a Gaussian process with normal stationary distribution. In the
case of the Ornstein–Uhlenbeck, the mean and covariance of the
stationary distribution are

E(Xt) = θ , (63)

Cov(Xt, Xs) = σ 2

2

⎛
⎜⎜⎜⎜⎝

(1 − e−λ1 |t−s|)/λ1 0
.. .

0 (1 − e−λd |t−s|)/λd

⎞
⎟⎟⎟⎟⎠

. (64)

The MSD of the Ornstein–Uhlenbeck process (62) is given by

E(‖Xt − X0‖2) = σ 2(1 − e−λt)

d∑
i=1

(1/λi), (65)

when X0 is drawn with the stationary distribution. When λi = λ

for i = 1, . . . , d Equation (65) reduces to

E(‖Xt − X0‖2) = dσ 2(1 − e−λt)

λ
. (66)

Then, we obtain the MSD (57) with r2
c = σ 2/(2λ), a = 2/d and

b = c = 1.
As an example, Hozé [53] studies the postsynaptic AMPA-

type glutamate receptor (AMPAR), a protein involved in the fast
excitatory synaptic transmission. AMPAR plays a crucial part
in many aspects of brain functions including learning, mem-
ory and cognition. Aberrant AMPAR trafficking is implicated in
neurodegenerative process [54]. Hozé and Holcman [6] use the
overdamped Equation (60) with a polynomial of order 2 for the
potential U to model potential wells attracting AMPAR in the
synapses.

Superdiffusion

We note that less attention has been paid to superdiffusion in
biophysics. We present here the most popular models.

Brownian with drift

At the macroscopic level, the main type of active intracellu-
lar transport involves molecular motors which carry particles
(cargo) along microtubular filament tracks (see [4]). The molecu-
lar motors and their cargo undergo superdiffusion on a network
of microtubules in order to reach a specific area quickly. The
molecular motor moves step by step along the microtubules
thanks to a mechano-chemical energy transduction process.
A single step of the molecular motor is modeled by the so-
called Brownian ratchet [55, 56]. When we observe the motion
of the molecular motor along a filament on longer time-scales
(several steps), its dynamic can be approximated by a Brownian
motion with constant drift (also called directed Brownian) [57,
58]. In specific biological studies (e.g. virus trafficking [59]), the
drift term can be calibrated from local interactions with envi-
ronment, including cytoplasmic intermediate filaments, actin
filaments [60] and microtubule network [59, 61], which compose
the cytoskeleton.

The Brownian motion with drift is solution of the SDE

dXi
t = vidt + σdB1/2,i

t , i = 1, . . . , d, (67)

where v = (v1, . . . , vd) ∈ R
d is the constant drift parameter

modeling the velocity of the molecular motor. Then the MSD of
the directed Brownian motion is given by

E(‖Xt − X0‖2) = ‖v‖2
2t2 + dσ 2t, (68)

the linear component coming from the Brownian part while
the quadratic part is due to the constant drift. In absence of
the Brownian component the MSD is quadratic, the motion is
described as ballistic that is the particle goes straight.

Anomalous superdiffusion

Anomalous superdiffusions are the analogue to anomalous
subdiffusion. Then the MSD of an ‘anomalous superdiffusion’
(Xt) is characterized by an MSD which is proportional to the
monome tβ ,

E(‖Xt − X0‖2) ∝ tβ , (69)

with 1 < β < 2.

Fractional Brownian motion. Superdiffusion can also be modeled
by the fBm with Hurst parameter 1/2 < h < 1. In fact, we know
that the MSD of the fBm is given by Equation (69). However, we
note that in biophysics the use of the fBm is mainly related to
subdiffusion.
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Lévy walks. In this section the analytical form of the MSD is
given in one dimension only, the theory of Lévy walks being
essentially developed for one-dimensional problems. We note
that Zaburdaev et al. [62] state that the analysis can be formally
generalized to higher dimensions but raising some modeling
questions. First we must emphasize the difference between Lévy
flights and Lévy walks. The Lévy flight consists in a random walk
in which the displacements r are characterized by a power-fat
tail distribution:

lim
|r|→∞

p(r) ∝ |r|−1−α , 0 < α < 2. (70)

Very large displacements are likely to occur and more specif-
ically, the 2nd order moment of such distribution diverges.
Depending on the definition of Lévy flights, some resting times
can occur between each jump. In any case, the divergence of
the 2nd order moment of a single displacement leads to the
divergence of the MSD [63, Chapter 8]. The interest in Lévy
flights arose from Lévy’s theory that states that the sum of
these random independent displacements (equivalently the
last position of the particle) obeys a particular distribution as
the number of jumps tends to infinity. This property is the
counterpart of the central limit theorem when random variables
do no exhibit a finite 2nd order moment [62]. However, the
divergence of the 2nd order moment does not match with
experimental observations [62]. To overcome this difficulty,
the step lengths must depend on the time in order to penalize
long step lengths by higher time costs [63, Chapter 8]. Now, we
define the simplest example of Lévy walk. During one step of the
walk, the particle travels at a constant speed v during a random
time t before changing direction. In this model, the speed v is
constant all along the walk. Then the distance travelled in one
step is |v|t and depends on the time. Now the displacement
|r| over a period T is bounded by |v|T solving the issue of the
infinite 2nd order moment of displacements in the original Lévy
flight. We connect Lévy flights and Lévy walks by considering
that ψ(t) has a power-fat tail distribution (Equation (70)). Then
this process can be seen as a walker traveling at a constant
speed v between two locations visited by a Lévy flight [63,
Chapter 8]. When ψ(t) is the power law the MSD is (see [64])

lim
t→∞E(|Xt − X0|2) = t3−αfor 1 < α < 2, (71)

defining an anomalous superdiffusion. For extreme values of α

the MSD is asymptotically the same as either ballistic motion
(α < 1 heavy tails for ψ(t) leading to few switches of direction) or
Brownian motion (α > 2 small tails for ψ(t) leading to frequent
switches of direction). Another model includes random rests at
each turning points generated by a distribution ψr(t). Klafter
and Sokolov [63, Chapter 8] assume that ψ(t) (respectively
ψr(t)) has power-fat tail distribution (see Equation (70)) of
parameter α (respectively γ ). Then the competition between
parameters α and γ leads to different types of diffusion including
anomalous superdiffusion or Brownian motion asymptotically.
Finally, Zaburdaev et al. [65] propose a model with random
velocities which have a power law distribution. Again, the
competition between the distribution of velocity and ψ(t)
lead to different types of diffusions including anomalous
superdiffusion.

In recent experimental studies and modeling [66, 67],
the authors observed that active cargo transport tends to
self-organize into Lévy walks. More specifically it has been
established that the biomolecule moves along a microtubule

driven by motors with a global constant velocity for some 
random time and then detach from the microtubule and 
reattaches to a new microtubule moving along another direction 
[62]. Accordingly, Chen et al. [66] first defined the concept of 
memoryless self-reinforced directionality, which is helpful to 
justify the emergence of Lévy walks. In [67, 68], the authors 
recently studied this related non-Markovian transport of 
biomolecules (e.g. vesicles in RPE cells) and proposed a promising 
theoretical model involving non-Markovian detachment rate 
and superdiffusive Lévy-walk-like cargo movement.

4. Conclusion
In this paper, we presented three main classes of diffusions, 
namely Brownian motion, subdiffusion and superdiffusion, 
which are tractable microscopic and macroscopic models of 
biomolecule transport inside eukariotic cells. The diffusion 
phenomenon, described by Robert Brown in the early 19th, 
is mainly due to the thermal agitation in the medium. This 
agitation results from shocks between molecules and induces 
stochastic effects. For each diffusion type, we gave examples 
of models used in biophysics. Typically, we focused on the 
Ornstein–Uhlenbeck process and the fBm (with 0 < h < 1/2) 
for modeling subdiffusion. We used the Brownian with drift 
and the fBm (with 1/2 < h < 1) for modeling superdiffusion. 
However, there exists a wide variety of models for subdiffusion 
and superdiffusion. We emphasized that, in biophysics, some 
processes are considered as subdiffusive or superdiffusive 
even if there are not diffusions according to the probabilistic 
definition. As an example, CTRWs are not diffusions since 
their paths are not continuous. We gave mathematically 
detailed formulas and define the classification through the MSD 
criterion.

Meanwhile, an important challenge is to estimate model 
parameters [6] from image data obtained with experimental 
microscopy techniques [28] such as fluorescence correlation 
spectroscopy and fluorescence recovery after photobleaching 
and to classify tracks computed with dedicated algorithms [69]. 
In [3], we defined several test procedures to classify the observed 
trajectories into the three diffusion types. Another issue is to 
simulate more sophisticated models as presented in [36, 56, 70, 
71], including multi-scale models to take into account complex 
interactions, signaling pathways, properties of the cytoskeleton 
and of the viscoelastic cytosol of living cells [56], geometry of 
the cell and interaction with neighboring cells. If the dynamics 
of particles is governed by diffusions as presented in this paper, 
we should be able to reproduce the observed spatial patterns by 
simulations. However, here we presented models for describing 
individual particle motion, an approach which does not take 
into account interactions between particles. Combining models 
of individual dynamics and particle interactions should allow 
one to capture the complexity of the intracellular biological 
processes. Then agent-based modeling [72–74] allows a realistic 
simulation of a system of interacting diffusive particles with 
heterogeneous constraints, including interactions with actin fil-
aments and microtubules, cell organelles, cell geometry, cyto-
plasm viscosity, molecular affinity... This promising approach 
was used to investigate filopodia–lamellipodia interface [72], 
dynamics of protein aggragates in E. coli [73], enzyme kinetics 
[74], but is also known to be computationally demanding. New 
efforts are then required to be able to mimic realistic phenomena 
with reduced computation time.
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Key points
• We present an overview of diffusion models commonly

used for quantifying the dynamics of intracellular par-
ticles (e.g. biomolecules) inside living cells.

• This paper summarizes the mathematical definitions
of superdiffusion, free diffusion and subdiffusion, well-
grounded in Einstein’s and Langevin’s theories.

• Applications of diffusion models include protein traf-
ficking and transport, and membrane diffusion.
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Supplementary data are available online at https://academic.
oup.com/bib.

Funding

This work was supported by Inria and CREST-ENSAI. This
work was also supported by the French National Research
Agency (France-BioImaging infrastructure-ANR-10-INBS-04,
DALLISH-ANR-16-CE23-0005).

References
1. Qian H, Sheetz MP, Elson EL. Single particle tracking. Anal-

ysis of diffusion and flow in two-dimensional systems. Bio-
phys J 1991;60:910.

2. Saxton MJ, Jacobson K. Single-particle tracking: applications
to membrane dynamics. Annu Rev Biophys Biomol Struct 1997;
26:373–99.

3. Briane V, Kervrann C, Vimond M. Statistical analysis of par-
ticle trajectories in living cells. Phys Rev E 2018; 97: 062121.

4. Goychuk I, Kharchenko VO, Metzler R. Molecular motors
pulling cargos in the viscoelastic cytosol: power strokes beat
subdiffusion. Phys Chem Chem Phys 2014;16:16524–35.

5. Metzler R, Klafter J. The random walk’s guide to anomalous
diffusion: a fractional dynamics approach. Phys Rep 2000;
339:1–77.

6. Hozé N, Holcman D. Statistical methods for large ensembles
of super-resolution stochastic single particle trajectories in
cell biology. Annu Rev Stat Appl 2017;4:189–223.

7. Saxton MJ. Anomalous diffusion due to obstacles: a Monte
Carlo study. Biophys J 1994;66:394.

8. Berry H, Chaté H. Anomalous diffusion due to hindering by
mobile obstacles undergoing brownian motion or Ornstein–
Ulhenbeck processes. Phys Rev E 2014;89:022708.

9. Goychuk I. Viscoelastic subdiffusion: from anomalous to
normal. Phys Rev E 2009;80:046125.

10. Feder TJ, Brust-Mascher I, Slattery JP, et al. Constrained dif-
fusion or immobile fraction on cell surfaces: a new interpre-
tation. Biophys J 1996;70:2767.

11. Tejedor V, Bénichou O, Voituriez R, et al. Quantitative anal-
ysis of single particle trajectories: mean maximal excursion
method. Biophys J 2010;98:1364–72.

12. Gal N, Lechtman-GoldsteinD WD. Particle tracking in living
cells: a review of the mean square displacement method and
beyond. Rheologica Acta 2013;52:425–43.

13. Lund FW, Jensen MLV, Christensen T, et al. Spattrack: an
imaging toolbox for analysis of vesicle motility and distri-
bution in living cells. Traffic 2014;15:1406–29.

14. Lysy M, Pillai NS, Hill DB, et al. Model comparison and assess-
ment for single particle tracking in biological fluids. J Am Stat
Assoc 2016;111:1413–26.

15. Michalet X. Mean square displacement analysis of single-
particle trajectories with localization error: Brownian
motion in an isotropic medium. Phys Rev E 2010;
82:041914.

16. Pisarev AS, Rukolaine SA, Samsonov AM, et al. Numerical
analysis of particle trajectories in living cells under uncer-
tainty conditions. Biophysics 2015;60:810–7.

17. Monnier N, Guo SM, Mori M, et al. Bayesian approach to msd-
based analysis of particle motion in live cells. Biophys J 2012;
103:616–26.

18. Meroz Y, Sokolov IM. A toolbox for determining subdiffusive
mechanisms. Phys Rep 2015;573:1–29.

19. Karlin S. A Second Course in Stochasic Processes. San Diego,
New York, Boston, London, Sydney, Tokyo, Toronto:
Academic Press, 1981.

20. Klebaner FC. Introduction to Stochastic Calculus with Applica-
tions. London: Imperial College Press, 2012.

21. Mandelbrot BB, Van JW. Fractional brownian motions, frac-
tional noises and applications. SIAM Rev 1968;10:422–37.

22. Gallardo L. Mouvement brownien et calcul d’Itô: Cours et Exercices
corrigés. Hermann, 2008.

23. Kolmogorov AN. The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers. Dokl
Akad Nauk SSSR 1941;30:299–303.

24. Hurst HE. Long-term storage capacity of reservoirs. Trans
Amer Soc Civil Eng 1951;116:770–808.

25. Decreusefond L, Ustünel AS. Stochastic analysis of
the fractional brownian motion. Potential Anal 1999;10:
177–214.

26. Coutin L, Qian Z. Stochastic analysis, rough path analysis
and fractional brownian motions. Probab Theory Relat Fields
2002;122:108–40.

27. Einstein A. On the motion of small particles suspended in
liquids at rest required by the molecular-kinetic theory of
heat. Ann Phys 1905;17:549–60.

28. Höfling F, Franosch T. Anomalous transport in the
crowded world of biological cells. Rep Prog Phys
2013;76:046602.

29. Fick A. V. on liquid diffusion. Philos Mag Ser 4 1855;10:30–9.
30. Langevin P. Sur la théorie du mouvement brownien. C R Acad

Sci Paris 1908;146:530.
31. Kou SC. Stochastic modeling in nanoscale biophysics: subd-

iffusion within proteins. Ann Appl Stat 2008; 2:501–35.
32. Schuss Z. Theory and Applications of Stochastic Processes:

An Analytical Approach, Vol. 170. New York, Dordrecht,
Heidelberg, London: Springer Science & Business Media,
2009.

33. Uhlenbeck GE, Ornstein LS. On the theory of the brownian
motion. Phys Rev 1930;36:823.

34. Van Kampen NG. Stochastic Processes in Physics and Chemistry,
Vol. 1. Oxford: Elsevier, 1992.

35. Waterston JJ, Rayleigh L. On the physics of media that are
composed of free and perfectly elastic molecules in a state
of motion. Philos Trans R Soc Lond A 1892;183:1–79.

36. Bressloff PC. Stochastic Processes in Cell Biology, Vol. 41. Cham,
Heidelberg, New York, Dordrecht, London: Springer, 2014.

37. Sokolov IM. Models and anomalous diffusion in crowded
environments. Soft Matter 2012;8:9043–52.

https://academic.oup.com/bib
https://academic.oup.com/bib


15

38. Jeon JH, Tejedor V, Burov S, et al. In vivo anomalous diffusion
and weak ergodicity breaking of lipid granules. Phys Rev Lett
2011;106:048103.

39. Weber SC, Spakowitz AJ, Theriot JA. Bacterial chromosomal
loci move subdiffusively through a viscoelastic cytoplasm.
Phys Rev Lett 2010;104:238102.

40. Zwanzig R. Nonequilibrium statistical mechanics. Oxford Uni-
versity Press, 2001.

41. Chandler D. Introduction to modern statistical mechanics. Oxford
University Press, 1987.

42. Scher H, Montroll EW. Anomalous transit-time dispersion in
amorphous solids. Phys Rev B 1975;12:2455.

43. Zhizhina E, Komech S, Descombes X. Modelling axon grow-
ing using CTRW. arXiv preprint arXiv:1512.02603, 2015.

44. Havlin S, Ben-Avraham D. Diffusion in disordered media.
Adv Phys 1987;36:695–798.

45. Dix JA, Verkman AS. Crowding effects on diffusion in solu-
tions and cells. Annu Rev Biophys 2008;37:247–63.

46. Holcman D, Hozé N, Schuss Z. Narrow escape through a
funnel and effective diffusion on a crowded membrane. Phys
Rev E 2011;84:021906.

47. Grassberger P. Conductivity exponent and backbone
dimension in 2-D percolation. Physica A 1999;262:
251–63.

48. Kusumi A, Nakada C, Ritchie K, et al. Paradigm shift of
the plasma membrane concept from the two-dimensional
continuum fluid to the partitioned fluid: high-speed single-
molecule tracking of membrane molecules. Annu Rev Biophys
Biomol Struct 2005;34:351–78.

49. Kusumi A, Sako Y, Yamamoto M. Confined lateral diffusion
of membrane receptors as studied by single particle tracking
(nanovid microscopy). Effects of calcium-induced differenti-
ation in cultured epithelial cells. Biophys J 1993;65:2021.

50. Saxton MJ. Lateral diffusion in an archipelago. Single-
particle diffusion. Biophys J 1993;64:1766–80.

51. Bickel T. A note on confined diffusion. Physica A 2007;
377:24–32.

52. Kramers HA. Brownian motion in a field of force and
the diffusion model of chemical reactions. Phys Ther 1940;
7:284–304.

53. Hozé N. Modélisation et méthodes d’analyse de la diffu-
sion et agrégation au niveau moléculaire pour l’organisation
sous-cellulaire. PhD diss., Université Pierre et Marie Curie-
Paris 6, 2013.

54. Henley JM, Barker EA, Glebov OO. Routes, destinations and
delays: recent advances in ampa receptor trafficking. Trends
Neurosci 2011;34:258–68.

55. Reimann P. Brownian motors: noisy transport far from equi-
librium. Phys Rep 2002;361:57–265.

56. Goychuk I, Kharchenko VO, Metzler R. How molecular
motors work in the crowded environment of living cells:

coexistence and efficiency of normal and anomalous trans-
port. PLoS One 2014;9:e91700.

57. Peskin CS, Oster G. Coordinated hydrolysis explains the
mechanical behavior of kinesin. Biophys J 1995;68:202S.

58. Elston TC. A macroscopic description of biomolecular trans-
port. J Math Biol 2000;41:189–206.

59. Lagache T, Holcman D. Effective motion of a virus traf-
ficking inside a biological cell. SIAM J Appl Math 2008;68:
1146–67.

60. Ajdari A. Transport by active filaments. Europhys Lett 1995;
31:69–74.

61. Lawley SD, Tuft M, Brooks HA. Coarse-graining intermittent
intracellular transport: two-and three-dimensional models.
Phys Rev E 2015;92:042709.

62. Zaburdaev V, Denisov S, Klafter J. Lévy walks. Rev Mod Phys
2015;87:483–530.

63. Klafter J, Sokolov IM. First steps in random walks: from tools to
applications. Oxford University Press, 2011.

64. Zumofen G, Klafter J. Scale-invariant motion in intermittent
chaotic systems. Phys Rev E 1993;47:851.

65. Zaburdaev V, Schmiedeberg M, Stark H. Random walks with
random velocities. Phys Rev E 2008;78: 011119.

66. Chen K, Wang B, Granick S. Memoryless self-reinforcing
directionality in endosomal active transport within living
cells. Nat Mater 2015;14:589.

67. Fedotov S, Korabel N, Waigh TA, et al. Memory effects and
Lévy walk dynamics in intracellular transport of cargoes.
Phys Rev E 2018;98:042136.

68. Korabel N, Waigh TA, Fedotov S, et al. Non-Markovian
intracellular transport with sub-diffusion and run-
length dependent detachment rate. PLoS One 2018;13:
e0207436.

69. Chenouard N, Smal I, De Chaumont F, et al. Objective com-
parison of particle tracking methods. Nat Methods 2014;
11:281.

70. Bressloff PC, Newby JM. Stochastic models of intracellular
transport. Rev Mod Phys 2013;85:135.

71. Etoc F, Balloul E, Vicario C. Non-specific interactions govern
cytosolic diffusion of nanosized objects in mammalian cells.
Nat Mater 2018;17:740–6.

72. Azimi M, Jamali Y, Mofrad MRK. Accounting for diffu-
sion in agent based models of reaction-diffusion systems
with application to cytoskeletal diffusion. PLoS One 2011; 6:
e25306.

73. Coquel A-S, Jaciob J-P, Primet M, et al. Localization of protein
aggregation in Escherichia coli is governed by diffusion and
nucleoid marcromolecular crowdoing effect. PLoS Comput
Biol 2013;9:e1003038.

74. Pérez Rodriguez G, Gameiro D, Pérez-Pérez M, et al. Single
molecule simulation of diffusion and enzyme kinetics. J Phys
Chem B 2016;120:3809–20.

https://dx.doi.org/arXiv:1512.02603

	An overview of diffusion models for intracellular dynamics analysis
	Introduction 
	Mean square displacement
	Limitations
	Paper organization

	Stochastic processes, Brownian motion and diffusions
	Stochastic process
	Brownian motion
	Diffusion process
	Stochastic differential equation
	Fractional Brownian motion
	Summary

	Diffusion for modeling intracellular trajectories
	Einstein's approach
	Langevin's approach
	Subdiffusion
	Superdiffusion

	Conclusion
	Key points





