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Abstract

Knowledge on the relationship between different biological modalities (RNA, chromatin, etc.) can help further our
understanding of the processes through which biological components interact. The ready availability of multi-omics

datasets has led to the development of numerous methods for identifying sources of common variation across biological
modalities. However, evaluation of the performance of these methods, in terms of consistency, has been difficult because
most methods are unsupervised. We present a comparison of sparse multiple canonical correlation analysis (Sparse mCCA),
angle-based joint and individual variation explained (AJIVE) and multi-omics factor analysis (MOFA) using a cross-validation
approach to assess overfitting and consistency. Both large and small-sample datasets were used to evaluate performance,
and a permuted null dataset was used to identify overfitting through the application of our framework and approach. In the

large-sample setting, we found that all methods demonstrated consistency and lack of overfitting; however, in the
small-sample size setting, AJIVE provided the most stable results. We provide an R package so that our framework and
approach can be applied to evaluate other methods and datasets.
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Introduction

Multi-omics studies are often performed when there is interest
in understanding the relationship between different biological
modalities (RNA, chromatin, etc.). In some cases, it is useful to
determine the extent to which these relationships can help
develop classes of samples, while in other cases it is more
informative to examine the correlations across data modalities
in order to identify which modalities are strongly associated.
As data generation has become less expensive, investigators
are increasingly generating multiple -omics datasets from a
common set of biological samples, thus giving rise to demand
for statistical methods to analyze the data. Certain methods,
such as iCluster+ [1] and Similarity Network Fusion [2], classify

samples into groups. These methods use multiple -omics
platforms to find similarities and differences between samples
and across data types. For example, this type of analysis has been
applied to identify novel tumor subtypes. Supervised methods
such as iBoost [3] can be used to leverage multiple large-scale
data types to help predict survival time or other response
variables of interest. Other methods determine which features
or biological processes contribute to the common variation
across data types, as well as the magnitude of the relationships.
Examples include sparse multiple canonical correlation analysis
(Sparse mCCA) [4], angle-based joint and individual variation
explained (AJIVE) [5] and multi-omics factor analysis (MOFA)
[6]. Additionally, canonical correlation analysis (CCA) [7] can
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be modified for a high-dimensional setting by running the
analysis on the top principal components (PCs) of each matrix.
Unsupervised multi-omics methods, which do not consider a
primary outcome when detecting common variation across
data types, are useful for exploratory data analysis, including
assessment of data quality as well as hypothesis generation,
similar to applications of ordination methods such as principal
components analysis for experiments with a single data type.
Sample swaps may be detected with unsupervised multi-omics
methods as outlying points in various scatter plots described
below, in the case that different data types disagree in the place-
ment of individual samples in the space of common variation.

Several investigators have compared the performance
of multi-omics methods. For example, Meng et al. (2016)
[8] compared the mathematical properties of several multi-
omics methods. Pucher et al. (2018) [9] used simulated and
experimental cancer datasets to compare methods in terms
of classification and feature overlap with known biological
pathways. Additionally, Tini et al. (2017) [10] compared methods
for sample clustering. However, assessment of performance of
unsupervised methods, in terms of stability of output and degree
of overfitting on experimental datasets, can be challenging.

The goal of this paper is to identify the extent of overfitting
and the consistency of multi-omics methods. We do not attempt
to simulate multi-omics datasets, as it is extremely difficult to
propose realistic patterns of covariance among numerous multi-
omics assays. Instead, we aim to evaluate method performance
by examining the contribution of each sample in each data type
toward the common variation space and by utilizing a k-fold
cross-validation to assess stability and potential overfitting. All
of the published unsupervised multi-omic methods examined
here performed well on large sample-size datasets, but some
displayed some inconsistency on smaller sample-size datasets.
We provide an R package for reproducing the results here and
detailed R Markdown vignettes demonstrating software usage.
We suggest that researchers in the burgeoning field of multi-
omics consider the evaluation framework presented here, which
leverages the inherent properties of multi-omics datasets, for
assessing newly proposed methods or refinements of existing
methods.

Multi-omics methods
Criteria for method inclusion

We chose to evaluate three published unsupervised multi-omics
methods, Sparse mCCA [4], AJIVE [5] and MOFA [6], as well as a
simple approach for applying classical CCA to high-dimensional
data by first applying dimension reduction, discussed below.
These three published methods were chosen for their ability to
take three or more high-dimensional matrices as input, corre-
sponding to multiple data types measured on the same indi-
viduals, and to extract feature weights per data type, described
in more detail in the following section in our framework for
the evaluation of methods. In addition, methods were chosen
either for having a high citation count (hundreds of papers citing
the publications for Sparse mCCA and JIVE, an earlier algorithm
for which AJIVE is an improvement/refinement), or for evidence
of recent and ongoing development and community interest
(MOFA with dozens of citations since its publication in 2018, and
detailed documentation and tutorials). While numerous addi-
tional methods are available for unsupervised multi-omics inte-
gration and analysis, we attempted to choose a small number
that represent distinct geometric decompositions or statistical

models capturing common variation across samples for multiple
types of data. The approaches are further described below:

PC-CCA

CCA [7] was developed to assess relationships between linear
combinations of features of two separate matrices. If we let the
matrices themselves be X; and X,, then CCA can be applied to
identify g; and g, that maximizes Corr(8;X1, B,X2). The correla-
tion indicates how strongly related these two matrices are, and
the vectors of weights identify which features are closely related.
While estimates of the weights g; have a closed-form solution,
CCA relies on the number of subjects being larger than the
number of features. Additionally, CCA can only accommodate
two matrices, and thus, it is not appropriate for multi-omics
analyses with more than two assays. In analyses where the
datasets have a large number of features, CCA can be conducted
on the top PCs of each matrix. This method is often called PC-
CCA. The number of PCs to include must be decided beforehand,
and the number of PCs can be shown to affect how well the
weights generalize. With null datasets, correlations as high as 0.9
are possible when the number of PCs included in the analysis is
large (Supplementary Figure 1).

Sparse mCCA

Sparse mCCA [4] is an extension of CCA that allows for the inclu-
sion of multiple high-dimensional matrices. Sparse mCCA esti-
mates each f; by maximizing the sum of all pair-wise weighted
correlations. Additionally, Sparse mCCA imposes a sparsity
parameter on the weights through a lasso penalty, which forces
a larger proportion of the weights to be set equal to zero
and leaves only non-zero weights for features that are related
across data types. These two adjustments prevent a closed-form
solution from being obtained, and thus, an iterative procedure
is conducted to estimate the weights. Equation 1 provides
the objective function for sparse mCCA. P;(8;) corresponds to
any convex penalty function for the weights of matrix i with
the default penalty being a lasso. An estimate for the tuning
parameter is calculated using a permutation approach, in which
the tuning parameter that provides the smallest permutation
P-value for the sum of the correlations is selected. P-values are
calculated as the average number of permutations that provide
a sum correlation greater than the observed one. Sparse mCCA
can also be implemented in a supervised setting in which there
is an interest in the prediction of a separate response variable.

rrlﬁaxZﬁIXIX;ﬁj subject to [|8i* < 1,Pi(B) < ¢ )

i<j

AJIVE

AJIVE [5] classifies the variability of each matrix as being a
component of the variation across all data types, the variability
within one data type or the result of random noise. AJIVE uses an
extension of principal angle analysis and invokes perturbation
theory as a guide for variance segmentation. AJIVE requires the
user to specify an initial number of the signal ranks, and thus,
the user needs to examine the scree plot of each data type prior
to running the software in order to make this determination. The
specification of these ranks is subject to the judgment of the
user and AJIVE can provide different conclusions based upon this
decision.


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz070#supplementary-data
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Figure 1. Each method shown in the figure generates a set of weights for each data type. Our analysis only considers the first set of weights to avoid issues related to

a potentially complex set of mappings of factors across data splits.

MOFA

MOFA [6] is a factor analysis method that estimates a series of
latent factors to describe the variation across and within data
types. MOFA aims to classify variation as being common across
data types; however, unlike AJIVE, MOFA allows for the variability
to be across one, some or all data types. MOFA requires that
the user either specifies the total number of hidden factors to
estimate or a threshold for removing factors. MOFA also has the
ability to include samples for which data have not been collected
for all assays. This feature is particularly useful as the high cost
of collecting large sequencing data for samples may make it
difficult to collect complete data.

Framework for evaluation of methods
Contributions

The methods described in the previous section provide sets of
weights corresponding to the importance of each feature in each
data type. The larger the absolute value of the weight, the more
the corresponding feature contributes to the common variation.
Instead of examining results in the feature space, we instead
look on the sample space and observe relationships across data
types and samples. This is accomplished by constructing what
we call a contribution, which is calculated by multiplying the esti-
mated weights and the data to obtain an individual contribution
per subject. Let §; be the p; by one-dimensional vector corre-
sponding to the estimated weights for data type i, and let X; be
the p; by n matrix corresponding to data type i. The contribution
is then calculated as B{Xi. Contributions can be calculated for
any multi-omics method, as long as the output provides a list of
weights. We will demonstrate how this is done in PC-CCA, sparse
mCCA, AJIVE and MOFA. Because both PC-CCA and sparse mCCA
are modifications of CCA, the calculation of the contributions
is trivial. The weights f; in this case correspond to the solution
for each data type, and a simple matrix multiplication can be

performed to calculate the contributions. For AJIVE and MOFA,
the contributions are not difficult to calculate; however, because
these methods identify a multi-dimensional solution, we only
focus on the weights for one factor (Figure 1). In AJIVE, this
corresponds to the first column of the loadings matrix of the
joint space, and for MOFA, this corresponds to the weights for
the top factor. In the MOFA analysis, we restrict the method to
fit only one factor.

Once contributions are found for each data type, they can
be plotted against the contributions of another data type to
visualize the relationships identified by the multi-omics method
of interest. Additionally, samples that fall off of the diagonal in
a contribution plot may be biologically meaningful outliers, or
technical outliers for one of the assays. This plot is termed the
‘contribution plot’, and we can identify method overfitting using
a cross-validation analysis.

Cross-validation

The unsupervised nature of the multi-omics methods makes
it difficult to determine whether a method is overfitting or
identifying a true biological relationship. Data splitting and the
projection of estimated contributions were proposed by Sone-
son et al. (2010) [11] for parameter tuning and validation of
a multi-omics method. Other methods have assessed method
performance by using leave-one-out cross-validation and the
projection of learned factors on new datasets [12]; [13]. By omit-
ting a subset of the samples from the analysis and predicting
their contributions from each data type in the training set, we
can discern whether the relationships from the full analysis
suffer from overfitting or provide unstable results. Our analysis
pipeline is shown in Figure 2. We chose to divide the data into
training and test sets of approximately 80% / 20% of the total
samples. Using the 80% training set, analyses were done for
each method, and corresponding weights were generated for
each data type. Contributions were calculated for the test set by
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Figure 2. Pipeline for cross-validation analysis. Training data: Dataset is subset to 80% of the original data and will be used to train the model. Multi-omics methods:
The training data are analyzed using the specified method. Output: Weights are output from the multi-omics methods. Test data: The remaining 20% of the original
data are used as test data and multiplied by the subsequent weights. Contributions: The result of multiplying the output weights by the test set data. Each sample in

the test data yields one number that represents the contribution per data type.

multiplying the weights derived from the training set by the test
set data in the manner appropriate to each method, as defined
above. Critically, our cross-validation loop used for evaluation
of methods takes place ‘outside’ of any permutation or cross-
validation that a method may use during training or fitting of its
model parameters, such as the calculation of feature weights for
each data type.

The results of the methods may not be unique, which can
lead to slight alterations in scaling and sign. Due to this, the
results across folds may identify the same biological process, but
provide results of different magnitudes. To account for this, we
scale and change the sign of the cross-validated contributions
to ensure that they are positively correlated with the results
from the full analysis. This procedure is performed separately
for each fold. The sign is flipped if the correlation between the
cross-validated and full-analysis contributions is negative, while
scaling is achieved by subtracting the mean and dividing it by
either the standard deviation or the median absolute deviation.
If the contributions are not unimodal or contain outliers, we
recommend using the median absolute deviation for scaling.

To avoid difficulties in aligning weights across folds, in our
evaluation we only consider the set of weights corresponding to
the first factor. In MOFA, factors are arbitrarily labeled and thus
no formal ordering is defined for the ‘first’ or ‘second’ factor.
Repeating the analysis will yield a different labeling scheme for
each factor while factors are still describing the same biolog-
ical process. This necessitates the alignment of factors across
multiple folds and creates a computational challenge. For sparse
mCCA and MOFA, the first set of weights or first factor typi-
cally yields the strongest pair-wise correlations. As more sets
of weights are estimated, the correlations typically decrease
(see Figure 2B in [6]). Lower factors may be more susceptible to
fluctuations, such as sampling variability in the samples chosen
for the training set.

After the contributions are appropriately scaled, contribution
plots can be constructed for each pair-wise combination of the
assays in the test set. We will refer to these plots as the cross-
validation (CV) contribution plots and the contribution plots
from the full analysis as the full contribution plots. By examining
the change in correlations between the CV contribution plots
and the full contribution plots for each pair-wise data type pair,
we may observe the degree to which each method suffers from

overfitting. The full contribution plots reflect the typical results
that a user would observe when running a method on their
entire dataset, while the CV contribution plots reveal any issues
with the generalization of feature weights for new data, in that we
observe the correlations obtained on all samples in the dataset
when those samples are not used for training. It is important
to note that because the identified factor may only be a small
portion of the entire solution, the correlation of the contribution
plot should not be compared across methods, but rather within
one method by comparing the correlation in the full analysis
to the correlation in the cross-validated analysis. Methods like
AJIVE and MOFA identify a multi-dimensional solution, and thus,
a low correlation in the contribution plot may not indicate that
the method is performing poorly, but rather that the top factor
captures a low correlation between the two data types of interest.
Figure 3 provides examples of good and poor results for the
contribution plot generated using artificial data. Figure 3A shows
a strong correlation in both the full and CV contribution plots,
indicating that the method is not overfitting and that the two
data types are related. Figure 3B shows no correlation in the
full and CV contribution plots, which also indicates that the
method is not overfitting, but rather, that the two data types
are not related. Figure 3C shows a strong correlation in the full
contribution plot and no correlation in the CV contribution plot,
thus demonstrating that the method is overfitting on the data
and that there does not appear to be a relationship between
these two data types. We also generate ‘overfitting plots’, which
plot lines connecting the pair-wise correlations of the full and
cross-validated contribution plots to provide a useful overview
of the change in correlation between the full and CV analysis
for all pairs of assays. We also plot contributions from the cross-
validation analysis against contributions from the full analysis
within each data type. We call these the ‘comparison plots’, and
a strong linear correlation indicates method consistency.

Multi-omics datasets

Data from The Cancer Genome Atlas (TCGA) [3] [14] was used
to evaluate method performance for sparse mCCA, AJIVE and
MOFA. We applied these three methods to 558 breast cancer
samples using copy number variation (CNV), RNA expression
and micro RNA expression. CNV was summarized for 216
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Figure 3. The figure provides hypothetical scenarios for the contribution plot,
generated using artificial data. A. A strong correlation in both the full and CV
plots, indicating that the method accurately fits the data and that the two data
types are linearly related. B. A null correlation in both the full and CV plots,
indicating that the method did not overfit and that the two data types are not
related in terms of this factor. C. A strong linear relationship in the full plot and
a null relationship in the CV plots, indicating that the method overfit and that
the two data types are not associated with the top factor.

segments; RNA expression was measured for 12 434 genes; and
miRNA expression was measured for 305 miRNAs. Five folds
were selected for the analysis, and fold membership was fully
randomized. Contribution and comparison plots were generated
for each data type to evaluate the degree of overfitting and the
consistency of the results.

Data from Li et al. (2016) [15] were used as a second validation
dataset. This collection of datasets contained fewer samples and
thus was used to examine stability of methods with smaller
sample sizes. RNA expression, DNase and protein expression
were collected for lymphoblastoid cell lines from Yoruban indi-
viduals. DNase was measured for 699 906 peaks; RNA expression
was measured for 13 967 genes; and protein expression was
measured for 4375 proteins for 53 samples.

To demonstrate the ability of our framework to identify over-
fitting, we analyzed datasets with no relationship across assays,
referred to as null datasets, using PC-CCA, sparse mCCA, AJIVE
and MOFA. Permuted null datasets were generated by permuting
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Figure 4. Overfitting plot: Plots of the pair-wise correlations identified in the
full and CV contribution plots for each method. The left column (plots A-C)
corresponds to the large-sample analysis (n = 558; TCGA breast cancer), while the
right column (plots D-F) corresponds to the small-sample size analysis (n = 53; Li,
et al. 2016). Rows correspond to AJIVE, sparse mCCA and MOFA, respectively. Flat
lines indicate non-overfitting methods, while lines with a negative slope indicate
a large change in the results for the full and CV plots.

the samples for each data type in the TCGA breast cancer data.
Because PC-CCA can only accommodate two data types, we
used only RNA and miRNA for this analysis. Five folds were
selected for the analysis, with the fold membership being fully
randomized. For all datasets, contribution plots, comparison
plots and overfitting plots were generated to evaluate method
performance.

Evaluation of methods

We applied our evaluation framework to datasets with both
large (TCGA breast cancer) and small (Li et al) sample sizes,
as well as a permuted null dataset. Sparse mCCA, AJIVE and
MOFA all demonstrate consistency and a lack of overfitting
in the large-sample size analysis. The overfitting plots for the
large-sample size analysis (Figure 4A-C) have near zero slopes,
indicating that the relationships found in the training set gen-
eralize to the held out set. The difference in the magnitude
of the correlations across methods does not indicate a lack of
overfitting, but rather that the top factor indicated a strong
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or weak relationship between the specified data types. This
artifact is not necessarily a limitation of the method, but rather
might be explained by the fact that we are considering only the
first set of weights in our analysis. Side-by-side contribution
plots (Supplementary Figures 2-10) also demonstrate a lack of
overfitting and confirm that there are no sample outliers that
are overly influencing the results. Comparison plots (Supple-
mentary Figures 11-13) show that the contributions for the CV
analysis and full analysis are similar, indicating overall method
consistency. AJIVE was observed to have reduced pair-wise corre-
lations for contributions including the CNV assay, and this result
persisted after attempting with a higher pre-specified rank (Sup-
plementary Figure 14). Overall, for the large-sample size analysis,
we found that sparse mCCA and MOFA did not overfit and
found large pair-wise correlations between contributions from
all assays. AJIVE also showed a lack of overfitting; however, a
large pair-wise correlation was only found between RNA and
miRNA.

We further investigated the contributions for AJIVE, sparse
mCCA and MOFA. Contributions from Sparse mCCA are highly
correlated (r > 0.97, Pearson correlation coefficient) with MOFA
across all data types. AJIVE contributions have strong negative
correlations with both Sparse mCCA (r = -0.91) and MOFA
(r = —0.92) for mRNA (noting that the sign here is arbitrary),
while exhibiting a moderate negative correlation in miRNA (r ~
—0.77). AJIVE contributions for CNV are not correlated with
Sparse mCCA (r = —0.03) or MOFA (r = 0.05) (Supplementary
Figures 15-17). mRNA contributions for all methods were found
to be bimodal and highly correlated with the expression of the
estrogen receptor 1 (ESR1) gene (Supplementary Figure 18). Pre-
vious studies have found that the expression of the ESR1 gene is
amplified in a subset of breast cancers, providing some biological
validation for the top contribution—estimated without any prior
information about ESR1 gene expression—for all methods run on
this dataset [16].

Alternatively, in the small-sample size analysis, sparse mCCA
and MOFA appear to overfit in the full analysis, while AJIVE does
not overfit. Plot 4D shows a lack of overfitting with AJIVE in the
small-sample analysis, while plots 4E and 4F show a consistent
drop in the correlation for the CV analysis. Thus, sparse mCCA
and MOFA are able to identify strong linear relationships in the
full analysis, but the correlations are substantially reduced in
the CV analysis. This may reflect a reduced ability for consistent
detection of top factors for small-sample datasets. Side-by-side
contribution plots (Supplementary Figures 19-27) show more
clearly a decrease in correlation with sparse mCCA and MOFA,
but not with AJIVE, which maintains a relatively weak correlation
in both analyses. Comparison plots (Supplementary Figures 28-
30) show less consistency than in the large-sample analysis.

We assessed the degree to which the results were robust
when varying the number of folds. Sparse mCCA was used to
analyze the small-sample size dataset using both 3- and 10-folds.
The 3-fold analysis yielded small training set sizes, which led to
poor prediction for the test set samples (Supplementary Figure
31). Alternatively, in the 10-fold analysis, small test set sizes
made contribution scaling difficult, which also led to reduced
correlation of the cross-validated contributions with the full
set contributions (Supplementary Figure 32). Additionally, many
methods have extensive run times and thus conducting an
analysis with many folds can create a prohibitive computational
burden.

Analyses for the permuted null dataset showed that PC-
CCA using 100 PCs per data type identifies a strong relation-
ship between miRNA and RNA when no relationship exists
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Figure 5. Side-By-Side contribution plots for a) PC-CCA with 100 PCs and

b) Sparse mCCA with the null dataset: Left panels show the contribution plots
from the full analysis, while right panels show the contribution plots for the CV
analysis. Pair-wise correlations are reported on the figure.

(Figure 5A). Sparse mCCA correctly identifies no relationship
(Figure 5B) in the full analysis; AJIVE and MOFA also identify no
relationship (Supplementary Figures 33-34). These plots show
the ability of our framework to identify overfitting, as well as the
ability of sparse mCCA, AJIVE and MOFA to not overfit the null
dataset.

Discussion

In this paper, we have proposed a framework and approach for
the evaluation of unsupervised multi-omics methods. Sparse
mCCA, AJIVE, MOFA and PC-CCA were compared based on
consistency and the degree of overfitting in one large-sample
size dataset, one small-sample size dataset and one permuted
null dataset. All methods performed well with the large-sample
dataset, with AJIVE somewhat underperforming by failing
to detect a contribution from CNV to the top factor, which
other methods detected and which had stable correlation in
cross-validated contributions. However, both sparse mCCA and
MOFA showed some evidence of either overfitting or lack of
consistency with the small-sample dataset. PC-CCA overfit the
null dataset, while the other methods accurately identified a
null relationship. Previous work [9] looked at the sensitivity
and specificity of methods using simulated data. In contrast,
our framework examines the extent of overfitting and does not
make any simulation assumptions.

There are now dozens of methods for unsupervised multi-
omics data analysis, and the list continues to grow. Other
multi-omics approaches that we did not compare here use re-
formulations of partial least squares [17], or co-inertia analysis
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[18], and often make use of a lasso penalty or sparse thresholding
to induce sparsity on feature weights [19].

Future work may include investigation into the alignment of
weights across folds and replications and how to incorporate
more than one set of weights. Argelaguet et al. (2019) [20] propose
comparing the Pearson correlation coefficient between every
pair of factors as a way to address these concerns. Additionally,
classical CCA could be used to perform matching of factors
across folds or replicate runs, by running CCA on every pair of
contributions. We did not evaluate the sensitivity and specificity
of the methods we tested, as they are designed to describe vari-
ation, rather than classification, of samples. A separate analysis
similar to Pucher et al. (2018) [9] would be needed to evaluate
AJIVE and MOFA on the claims of accuracy. Here we examined
the biological meaningfulness of the top factor found in the
TCGA breast cancer dataset by plotting the mRNA contribu-
tions against expression of estrogen receptor 1, for which we
have, from literature, some external support of its relevance as
a primary axis of co-variation of molecular profiles of breast
tumors. In general, downstream assessment of the biological
meaningfulness of a factor can be achieved through gene set
analysis, by defining the observed gene set as the non-zero or
top weighted genes from the gene expression weights estimated
by the multi-omics methods. The MOFA R package includes a
function for performing this type of ‘Feature Set Enrichment
Analysis’. For non-gene expression features, non-zero or top
weights for features can be examined with respect to their co-
localization with weights from other data types on the genome,
or with various publicly available genomic tracks such as cell-
type specific regulatory regions [21][22].

We provide an R package called MOVIE (Multi-Omics VIsual-
ization of Estimated contributions) and documentation to assist
with the comparison of future methods and datasets using our
framework. Package source code is publicly available: https://
github.com/mccabes292/movie.

Key Points

® Cross-validation provides a useful framework for evalu-
ating unsupervised multi-omics methods in which the
true common variation across biological modalities is
not known.

Sample sizes of n = 50 or below may result in inconsis-
tent fitting of multi-omics methods, where correlations
found in training data do not generalize to held out
data.

The contribution plot, where contributions to the com-
mon variation space from two modalities are plotted
against each other, provides a useful visual summary
of the result of multi-omics methods.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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