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Abstract

Background: The generation and systematic collection of genome-wide data is
ever-increasing. This vast amount of data has enabled researchers to study relations
between a variety of genomic and epigenomic features, including genetic variation, gene
regulation, and phenotypic traits. Such relations are typically investigated by
comparatively assessing genomic co-occurrence. Technically, this corresponds to
assessing the similarity of pairs of genome-wide binary vectors. A variety of metrics
have been proposed for this problem in other fields like ecology. However, while several
of these metrics have been employed for assessing genomic co-occurrence, their
appropriateness for the genomic setting has never been investigated.

Results:. We show that the choice of metric may strongly influence results and
propose two alternative modelling assumptions that can be used to guide this choice.
On both simulated and real genomic data, the Jaccard index is strongly affected by
dataset size and should be used with caution. The Forbes coefficient (fold change) and
tetrachoric correlation are less affected by dataset size, but one should be aware of
increased variance for small datasets.

Availability: All results on simulated and real data can be inspected and
reproduced at https://hyperbrowser.uio.no/sim-measure
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1 Introduction

A reference genome provides a unified coordinate system to locate where genomic
features occur. Genomic tracks [11] indicate the base pair positions on a reference
genome where a specific genomic feature is observed. Several large consortia [2, 4, 12]
have contributed to the public domain with reference datasets of such genomic features
such as cell-specific chromatin states and protein binding regions. Such genomic tracks
are often compared against reference collections to identify proteins, chromatin marks,
or cell types of interest. These comparisons rely on relevant metrics of similarity
(co-occurrence), which should reflect the degree of biological association.

Many of the widely used binary similarity metrics, such as the Jaccard index and the
Forbes coefficient (also known as fold change), were initially developed in the context of
species presence/absence problems within ecology [5, 9]. Within ecology, there has been
a long debate on the properties of different similarity metrics. In the genomics field,
however, these metrics have been applied without a critical discussion of their suitedness
and typically without providing any reasoning for why a particular metric was chosen.
For instance, more than 300 papers on bioRxiv between 2010 and 2018, within a limited
selection of genomics literature, explicitly mention the Jaccard metric, while the
argumentation for such a choice is usually not provided. The Forbes coefficient is also
commonly used, but the extent of its usage is harder to quantify. It represents a ratio of
observed versus expected co-occurrence and is thus often simply termed enrichment or
fold change. Existing tools for genomic track analysis typically provide only a single
metric for the degree of co-occurrence between tracks, without any discussion of the
properties and suitedness of this chosen metric. As an example, the widely used
BEDTools [15] originally provided only raw overlap counts. Later, the Jaccard index
was also added, but without any user guidance on its suitability [14].

In this report, we provide a critical evaluation of the properties of three similarity
metrics in the context of genomics: the Jaccard index, the Forbes coefficient, and the
tetrachoric correlation. Specifically, we focus on how these metrics may be affected by
experimental variability (number of genome-wide annotations per genomic feature) or
technical variability (computational assessment of similarity). We introduce two
alternative modelling assumptions for how an underlying biological feature may give rise
to experimental datasets of varying size (number of base pairs covered by a track).
According to each of these assumptions, we carefully assess the robustness of these three
commonly used similarity metrics. By connecting the choice of metric to underlying
assumptions, we enable the genomics community to make reasoned choices of metrics in
particular settings. Furthermore, we perform a large-scale and systematic study on how
size variation of experimental datasets affect rankings of co-occurrence according to
each of the three similarity metrics.

2 Methods

In the present study, we refer to binary vectors or tracks as sets of occurrences anchored
to specific coordinates in a reference genome. Therefore, throughout the study, we
interchangeably use the terms similarity and co-occurrence when referring to relations
between genomic tracks. A reference track can be defined as a binary indicator R,
where rs = 1 if position s is covered by an occurrence for s ∈ 1, ..., N , with N being the
length of a reference genome. We refer to the coverage of a track (sum across the vector)
as the size of the track. A query track Q is a separate track against which reference
tracks are analysed.

We introduce two principled models for how an underlying genomic feature may give
rise to experimental datasets of varying size. The first model assumes that an

2/14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/479253doi: bioRxiv preprint 

https://doi.org/10.1101/479253


experimental dataset of binary events is the imperfect observation of an underlying
binary biological process. The second model assumes that an experimental dataset of
binary events corresponds to a particular thresholding of an underlying continuous
reality.

2.1 Model assumption 1: Binary underlying reality

Depending on the context, the underlying reality of a biological process can be
considered to be binary (see Supplementary Material for a formal definition). For
instance, this could correspond to a transcription factor (TF) either binding to the DNA
or not. Under this assumption, a track R represents an imperfect observation of the
underlying binary reality Y . The track R could denote the locations of called peaks of a
ChIP-seq dataset, where some peaks reflect true binding events (true positives, tp),
some peaks do not reflect any true binding event (false positives, fp) and some true
binding events remain undetected (false negatives, fn) [17]. A particularly interesting
case is when the rate of false positives in R is invariant to the dataset size. In the
context of a ChIP-seq dataset, this occurs if the false discovery rate has been properly
controlled when calling peaks, i.e. when a given proportion of occurrences in R reflects
true binding sites (the underlying reality Y ), regardless of the dataset size.

2.2 Model assumption 2: Continuous underlying reality

Alternatively, an observed binary dataset can represent the discretisation of an
underlying continuous reality. This corresponds to assuming that a TF has a varying
propensity to bind and that a dataset represents the set of genomic locations where the
binding propensity is above a given threshold.

When assuming a continuous underlying process, the similarity between the
underlying continuous features are estimated based on the observed binary occurrences.
A particular case is when two observed binary tracks Q and R represent thresholded
instantiations of one underlying bi-normal process [8]. Under this assumption, the
correlation of this bi-normal process is a natural similarity metric, and the goal is to
estimate the similarity between the latent continuous values based on the observed
binary values.

subsectionSimilarity metrics Currently, several metrics have been used to quantify
co-occurrence of (similarity between) genomic tracks. As mentioned, two commonly
used metrics are the fold enrichment (Forbes coefficient) [5] and the ratio of intersection
to union (Jaccard index) [9]. Using set notation, the Forbes coefficient is defined as
N∗|R∩Q|
|R|∗|Q| , where the notation | T | indicates the number of elements of a set T . The

Jaccard index is defined as |R∩Q||R∪Q| . Using the notation in Table 1, the two indexes can be

calculated as N∗a
(a+b)∗(a+c) and a

(a+b+c) respectively.

Table 1: Contingency table
Q = 1 Q = 0

R = 1 a b
R = 0 c d

Given our consideration of an underlying continuous reality, a third metric of
interest is the tetrachoric correlation, which is a classic measure of correlation [1]. To
our knowledge, it has not previously been used to assess similarity (co-occurrence) in a
genomic context. The tetrachoric correlation assumes that the two tracks Q and R are
generated by thresholding two underlying continuous processes that are bi-normally
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distributed, and is defined as the correlation (ρ) between these two underlying processes.
The thresholds and the correlation ρ can be estimated from Q and R using maximum
likelihood techniques [8]. In our study, we have used the polycor R package [6, 16] to
estimate ρ.

2.3 Tools

All plots and the information necessary for their reproduction can be found at
https://hyperbrowser.uio.no/sim-measure. Plots generated by GHB webtools can be
reproduced using the redo-functionality provided by the underlying Galaxy system.
Plots generated in R are accompanied by their respective R code and the data files used
to generate them. Plots generated by the UCSC Genome Browser are accompanied by
URLs and form inputs required to generate similar plots in the current version of UCSC.

3 Results

Here, we explore the implications of the two principled models (binary and continuous
underlying reality) on three different similarity metrics (Jaccard index, Forbes
coefficient, and tetrachoric correlation) using analytical derivations, simulations, and
real data. We show that the dataset size may strongly affect the expected similarity
value of a particular metric, as well as the uncertainty connected to this value. Further,
we investigate the robustness of these metrics by quantifying TF co-occurrence based on
a large collection of ChIP-seq peak datasets of variable size [3]. We first derive the
theoretical properties of the metrics in each scenario (see Supplementary Material) and
present experimental results on simulated and real data.

For the tetrachoric correlation, similarity values are based on methods using
maximum likelihood estimation, therefore deriving analytical properties is not feasible.

3.1 Theoretical properties of the metrics

Model assumption 1: Binary underlying reality
Assuming a binary model, we can show that if R is an imperfect observation of Y

with an expected false discovery rate (FDR) with respect to Y of q, i.e.

1− E( |R∩Y ||R| ) = q, then the expected Forbes coefficient of R and Q is a function of the

Forbes coefficient of Y and Q, given by:
E(Forbes(R,Q)) = q · Forbes((̄Y ), Q) + (1− q)Forbes(Y,Q) where

Forbes(Y,Q) = Forbes(Y = 1 and Q = 1), while Forbes((̄Y ), Q) = Forbes(Y = 0 and
Q = 1). This allows for the Forbes similarity of two tracks R1 and R2 to be comparable
with respect to Q, as long as the FDR of Y 1 and Y 2 (q) is the same. If the FDR is zero
(q = 0), E(Forbes(R,Q)) reduces to Forbes(Y,Q), meaning that the Forbes coefficient
of R and Q provides an unbiased estimate of the Forbes coefficient of Y and Q. We
show this does not hold for the Jaccard index (see derivation given in Supplementary
Material), since even for the case of no false positive E(FDR) = 0, the expected
Jaccard index of R and Q is dependent on the size of R (given the subsetting rate k):

E(Jaccard(R,Q)) = E( |R∩Q||R∪Q| ) = |Y ∩Q|
|Y ∪Q|+(1/k−1)|Q|
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Figure 1: The behaviour of the three considered similarity metrics on simulated datasets
with size varying according to Model assumption 1. Top panel: Simulation study
showing the mean Forbes coefficient between a fixed query track Q and reference tracks
Rs corresponding to varying sizes of a fixed base reference track (Y ). We set up three
simulations based on a GATA1 ChIP-seq track as query track and respectively a GATA2
(blue), a transcription factor (green), and an histone modification (grey) ChIP-seq track
as a base reference (details in Methods). The x-axis shows the proportion of occurrences
in R compared to the reference track Y , while the y-axis shows the resulting mean
Forbes coefficient against the query track (continuous line) and one standard deviation
from the mean Forbes coefficient (dashed lines). The middle and bottom panels show
the same for the Jaccard index and the tetrachoric correlation.

Model assumption 2: Continuous underlying reality
When binary vectors R are observed, R can represent a binary discretisation of an

underlying continuous reality Y ∗. Correspondingly, a query track Q represents the
discretisation of a continuous reality X∗. Assuming that such a continuous underlying
process exists, one is interested in the similarity between the latent continuous variables
Y ∗ and X∗, given the observed binary vectors R and Q, as well as the latent
discretisation thresholds t and t∗. Under these conditions, the Forbes coefficient would
give a systematic relative bias for small versus large observed tracks, since its values are
based on the conditional probabilities P (Q|R) (details provided in Supplementary
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Material). An explicit procedure of randomly subsetting occurrences (in order to scale a
set of tracks R to the same size) would give rise to the same systematic bias. The
reason is that the observed occurrences (R) of large tracks represent a range of
continuous values (Y ∗) that starts at lower values than for smaller tracks (since track
size variation is assumed to be due to different thresholds). Thus, the subset of
occurrences from a large track R represents (on average) lower continuous values of the
underlying track (Y ∗). The correlation between R and the query is therefore associated
with lower continuous values of X∗ and thus with lower frequency of occurrences at
these locations in Q. Thus, neither the use of a metric such as Forbes or the use of
explicit subsetting procedures are recommended in contexts where the observations
represent a thresholded version of a continuous underlying reality. As an example, TF
binding regions are typically determined by thresholding a signal that is based on the
depth of mapped reads (referred to as ChIP-seq peak calling). If this read depth-based
signal correlates with an underlying propensity to bind, then the variation in the
dataset size will have the above characteristics.

Under such assumptions, the similarity between the tracks can alternatively be
evaluated by the tetrachoric correlation, which assumes that the two tracks Q and R are
generated by thresholding two bi-normally distributed underlying (continuous)
processes. The tetrachoric correlation is defined as the correlation (ρ) between these
two underlying processes (details in Supplementary Material).

3.2 Experimental results

To further delineate the behaviour of the three similarity metrics under controlled
conditions, we performed a simulation study. Separately for Model assumptions 1 and 2,
we generated datasets of varying sizes based on a fixed underlying degree of similarity
according to a given model.

Simulated data under Model assumption 1
Figure 1 shows how the three considered metrics behave when the datasets are

simulated according to Model assumption 1. Datasets of varying sizes, but fixed
(expected) false discovery rate of 5%, were generated from the fixed base reference track
Y , representing the usually unknown underlying track, while a fixed query track Q was
used. Consistent with the analytical derivations, the Forbes coefficient seems to be less
dependent on track size, while the Jaccard index is highly influenced by track size. The
Jaccard index drops dramatically when the size of the reference track decreases.The size
effect dominates the underlying (biological) signal when large size differences are present.
The tetrachoric correlation is also affected by track size, but less than the Jaccard index.

As expected, the estimates have high uncertainty for small dataset sizes for the three
metrics (Figure 1). The expected Forbes coefficient is constant across dataset sizes and
the estimated similarity may take on extreme values (either low or high) for small
datasets. A similar tendency is observed for the tetrachoric correlation. Since the
Jaccard index is systematically low for small datasets, the effect is less pronounced.

Additionally, the same properties were found when simulating according to 50%
FDR (Supplementary Figure S1).

Simulated data under Model assumption 2 Figure 2 shows how the three considered
metrics behave when datasets are simulated according to Model assumption 2. Datasets
of varying sizes were generated by applying different thresholds on a fixed continuous
base reference track (Y ), while a fixed threshold was applied to the underlying
continuous underlying reality X resulting in the query track Q. The tetrachoric
correlation (bottom panel) provides a stable and unbiased estimate of the underlying
correlation even when applying stringent thresholds (tracks with few occurrences). In
contrast, the Forbes coefficient shows a systematic increase with stringent thresholds.
The Jaccard index shows a very strong systematic pattern. Interestingly, the threshold
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Figure 2: The behaviour of the three considered similarity metrics on simulated datasets
with size varying according to Model assumption 2. Top panel: Simulation study showing
the Forbes coefficient between a fixed binary query track Q and binary reference tracks
Rs corresponding to different thresholding of a fixed, continuous reference track (Y ). We
simulated under three different levels of covariance for the underlying bi-normal process
giving rise to Q and Y , with covariance set to 0.1 (green), 0.5 (grey) and 0.7 (blue).
The x-axis shows the number of occurrences in the resulting Rs after applying different
threshold levels for the discretisation of Y . The y-axis shows the Forbes coefficient on
the discretised Rs against the fixed query track Q. The middle and bottom panels show
the same for the Jaccard index and the tetrachoric correlation.

level that gives rise to the peak value of the Jaccard index is dependent on the threshold
used to construct the fixed query track (details in Supplementary Material).
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Figure 3: Large-scale empirical analysis of TF co-occurrence assessed by the three
considered metrics on ChIP-seq datasets of varying size. Top left panel: Empirical
analysis of the Forbes coefficient between 36,046 pairs of experimental (ChIP-seq)
datasets for 269 tracks representing binding occurrences for 15 different TFs. The y-axis
shows the rank of Forbes coefficient, while the x-axis gives the rank of the product of
track sizes for the two experimental datasets compared. The red line and areas show
rolling averages +/- rolling standard deviations with a window size of 1000. The top right
and bottom panels show the same for the Jaccard index and the tetrachoric correlation,
respectively.

Empirical analysis on a large collection of TF ChIP-seq peak datasets
In the simulation studies, we explored how the three considered metrics behave given

a particular assumption about the generation of the data. Although consideration of
these alternative assumptions helps in choosing an appropriate metric, the appropriate
underlying assumption is usually not obvious in real settings. To investigate the
behaviour of the different metrics on real data, we performed a large-scale study on
ChIP-seq datasets for different TFs. Specifically, we have assessed how the estimated

8/14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/479253doi: bioRxiv preprint 

https://doi.org/10.1101/479253


similarity for all pairwise combinations of TF ChIP-seq experiments is affected by the
size of the datasets. Figure 3 shows how each of the three considered similarity metrics
varies with respect to the size of the experimental datasets. The Jaccard index is
consistently low for small datasets and increases with the size of the dataset. The Forbes
coefficient and the tetrachoric correlation appear to be less influenced by the track size.
The Forbes coefficient shows a downward trend while the tetrachoric correlation shows
an upward trend as the track size increases. This suggests that neither Model 1 nor a
bi-normal version of Model 2 perfectly models the size variation of the ChIP-seq
datasets. Nevertheless, both model assumptions are close and the reality appears to be
somewhere in between the two models. For small tracks, the Forbes coefficient shows a
higher variability compared to the Jaccard index and to the tetrachoric correlation. The
different behaviours with respect to dataset sizes indicate that the choice of metric has
a substantial influence on the results. To directly address this question, we compared
the ranking of the 36,046 dataset pairs from 269 datasets by co-occurrence when
assessed by either the Jaccard index or the Forbes coefficient. Indeed, these two metrics
gave highly different rankings. The Spearman correlation for the ranks was 0.54, and 21
of the top 100 dataset pairs for one metric were among the top 100 for the other metric
(see Figure 4 for a scatter plot of ranks according to Forbes and Jaccard). Additional
figures on the agreement between Jaccard and the tetrachoric correlation, and Forbes
and the tetrachoric correlation, are provided as in supplementary Figures S3-S4).
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Figure 4: Scatter plot of rankings of large-scale empirical analysis of TF co-occurrence
assessed by the Forbes coefficient and Jaccard index on ChIP-seq datasets. The y-axis
shows the rank according to the Jaccard index, while the x-axis gives the rank (where a
rank equal to one is the least similar) according to the Forbes coefficient for 36,046 pairs
of experimental (ChIP-seq) datasets for 15 different TFs.
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Figure 5: Co-occurrence of Crohn’s disease-associated variants (GWAS SNPs) and DNase
hypersensitive sites (DHSs). The top panel, shows the co-occurrence of the SNPs with
DHS from different cell types by Forbes (fold enrichment), while the bottom panel shows
the same analyses by Jaccard.

To further illustrate how Jaccard and Forbes can result in a different conclusion
being made when applied on real data, we re-ran a previously published experiment on
the co-occurrence of Crohn’s disease-associated variants (GWAS SNPs) and DNase
hypersensitive sites (DHSs) [7]. In the original study by Maurano et al., Forbes was
used to measure the co-occurrence of the SNPs with DHSs from different cell types,
with the conclusion being that in the case of Crohn’s disease, T cell subtypes (therefore,
immune cells) show the most-significant GWAS variants in their DHSs (Fig 5, top
panel). When we apply Jaccard on the same dataset, we find the complete opposite
trend with similarity increasing with DHSs track size (Fig 5, bottom panel).

4 Discussion and conclusion

Here, we have performed an in depth assessment of a central, but often overlooked
component of genomic co-occurrence analyses: the similarity metric used to evaluate
and compare the degree to which different genomic features co-occur along the genome.
Since the number of occurrences may vary widely between experimental datasets, the
raw base pair overlap between genomic tracks must be normalised by means of a
similarity metric. Two commonly used metrics are the Jaccard index and the Forbes
coefficient. Through modelling considerations, we propose that the tetrachoric
correlation could also be employed to assess genomic co-occurrence.

We here show that the often overlooked choice of co-occurrence metric may lead to
highly disparate rankings of similarity. To better understand what distinguishes the
different metrics, we explore their behaviour with respect to datasets size variation
according to models assuming either a binary or continuous underlying reality. We show
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through analytical derivations and simulation that the Forbes coefficient is preferred if
the underlying biological feature is assumed to be binary. If an experimental dataset is
rather assumed to represent thresholded events from an underlying continuous reality,
the tetrachoric correlation may be preferred. A large-scale empirical analysis of TF
co-occurrence indicates that the tetrachoric correlation is the least affected by size
variation of experimental datasets, while the size variation is highly prone to dominate
biological signal if the Jaccard index is used. Nonetheless, one should beware that
estimates based on the Forbes coefficient or the tetrachoric correlation have high
uncertainty for small tracks. For the tetrachoric correlation, this effect is particularly
strong for tracks with mean correlation values close to zero.

While simulated datasets provide full control of the underlying truth, the resulting
biases are highly dependent on the models assumed for the simulation. In contrast, the
large-scale empirical study shows how the metrics behave under real data generation
processes of the considered genomic features (transcription factor binding to DNA).
However, for real biological features we only have access to the imperfect experimental
observations and have no way of isolating size-associated biases from the true
underlying similarity. The strong correlation between the dataset size and the Jaccard
index value observed in the TF study could thus, in principle, arise because large
datasets mostly represented TFs that were truly more similar (in terms of their true
binding locations). Although unlikely, we addressed this possibility in Supplementary
Figure S2 by normalising the similarity value for a given pair of experimental datasets
against the average similarity for all pairs of experimental datasets for the same pair of
TFs. This would thus cancel out any effect due to larger datasets representing more
similar TFs. The results after doing this correction were very well in line with those
observed in the main figures (for all three metrics). An even subtler point is that large
experimental datasets could represent contexts (cell type and cell condition) for which
the TFs were systematically behaving more similar to each other, so that even
correcting for the pair of TFs would not cancel out variation in true similarity. Since
such context would mainly be unspecified, it is not possible to control for. Nonetheless,
there is no a priori reason to believe that there would be such systematic associations,
and we consider it very unlikely that it could have a strong influence on the results. We
also note that the bias we see for the Jaccard index in the empirical study is in line with
what we see in the controlled simulations. Additionally, when applying the Forbes
coefficient and the Jaccard index to measure the similarity between Crohn’s disease
GWAS SNPs and DHSs of specific cell types, as published by [7], we obtain very
different results depending on which similarity metric is being used. When assessing
colocalization by the Forbes coefficient (as in Maurano et al.), DHS enrichment is
increasing with higher SNP significance in the presumably relevant immune cell types
(Fig. 5 top panel). In contrast, a corresponding assessment based on the Jaccard index
(Fig. 5 bottom panel) shows a strongly decreasing value of colocalization with higher
SNP significance. This non intuitive relation arises as an artifact due to the lower track
size when focusing only on highly significant SNPs.

Our analysis has specifically focused on how size variation of datasets affects
similarity metrics. While there are differences between metrics in terms of the range of
values they can take and their ease of interpretation, we see the behaviour with respect
to dataset size variation as their defining property. Indeed, in terms of ranking the
strength of relations, neither the range nor the interpretation of a metric matters; its
sole role is to define an ordering of the discrete points in a three-dimensional space,
where the size of the two datasets and their intersection make up the three dimensions.
Also when a metric is used as test statistic for Monte Carlo-based statistical testing of
genomic colocalization, it is only the resulting ordering that will affect significance [10].

While we have here focused on the setting of genomic co-occurrence, we believe our
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approach to be equally valuable also for other fields in which similarity metrics are used.
This includes questions related to species presence in ecology, which is the field in which
several of the considered metrics were originally proposed. The approach could also be
useful for other questions in genomics where similarity assessment is central, such as
gene set enrichment analysis (GSEA) or various applications of clustering to gene
expression or genomic location values. By considering the proposed model assumptions
in light of a particular analytical setting, a reasoned choice of a metric can be made. As
in our analysis, one should not expect a clear-cut answer, but rather a nuanced
conclusion of some metrics appearing more suitable than others.

In conclusion, we find that the choice of similarity metric is an important and often
overlooked aspect when analysing genomic co-occurrence. Interestingly, although
normalising for size variation is the primary purpose of a similarity metric, we find that
the Jaccard index is strongly affected by dataset size, both according to underlying
models of size variation and in an empirical investigation. The Forbes coefficient and the
tetrachoric correlation show less systematic association with dataset size, and can each
be connected to a reasonable underlying model of size variation. Both of these metrics
may work satisfactorily in a given context, though one should be aware that estimation
uncertainty may lead to extreme values for small datasets. Despite its limited current
usage in the field, the tetrachoric correlation indeed shows the most desirable behaviour
in our analyses. Ideally, we recommend to explicitly choose between similarity metrics
based on a consideration of which of the two underlying models of size variation appear
most reasonable for a given biological context. For tools that currently rely on the
Jaccard index to quantify genomic co-occurrence, we recommend to include an option of
using alternative metrics like the Forbes coefficient and the tetrachoric correlation.
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