CABIOS

Vol. 11 no. 2 1995
Pages 219-223

A compression mechanism for sequence
databases to improve the efficiency of
conventional tools

R.Doelz and F.Eggenberger’

Abstract

This paper describes a method to compress molecular
biology databases that are characterized by an increasing
proportion of data derived from genome projects. The
performance of our tool has been tested on various data files
of the EMBL nucleotide sequence database. The best
compression ratios were achieved on EST (Expressed
Sequence Tags) data, typically derived from large-scale
sequence projects. The compression of sequence database
updates was tested in combination with the common Unix
compression program ‘compress’. Our tool improved the
efficiency of ‘compress’ on average by 16%.

Introduction

Biological databases are comprehensive sources of
information that allow the correlation of new experi-
mental findings with already established results. In the
field of molecular biology, the first step in the analysis of a
new sequence is usually the search for homologies in a
sequence database. The majority of these databases are
organized as simple flat files which are distributed in
separate divisions based on taxonomic aspects. The status
of existing sequence databases is regularly published in
Nucleic Acids Research (e.g. Benson et al., 1993; Rice et al.,
1993). Currently, the collectively consumed volume of the
major nucleotide and protein sequence databases needed
for a fully functional search and retrieval service amounts
to ~ 4 Gbyte and is growing exponentially. New releases
of the major nucleotide sequence databases, the EMBL
Data Library (Rice et al., 1993) and GenBank (Benson et
al., 1993), are distributed four to six times per year. The
preferred medium to distribute the databases is currently
CD-ROM with magneto-optical media to be expected
soon (for a review, see Mewes et al., 1994). To meet the
need of more rapid access to the data, both the full
database releases and those entries that will be incorpo-
rated in the next release are also distributed over electronic
networks. However, making available entire databases on
the network causes a continuous growth of network

Biocomputing, Basel University, Biozentrum, Khngelbergstrasse 70,
CH-4056 Basel, Switzerland

'To whom correspondence should be addressed

traffic. Depending on format, the releases of the EMBL
and GenBank nucleotide sequence database currently
comprise 200-400 Mbytes of data and the volume of
updates typically range between 20 and 100 Mbytes. To
tackle the network load caused by the distribution of
sequence data over the network, the development of
efficient compression tools is gaining importance.

Data files with image information can efficiently be
shrunk using compression algorithms that irretrievably
discard part of the original data. Such methods are not
acceptable for text or database files where not a single bit
of information can be lost during compression or
decompression. Programs that meet that requirement,
so-called loss-free methods, can roughly be divided into
Huffman coding, arithmetic coding and substitutional
compression. The first two algorithms take into account
the probability of symbol occurrence and can produce
superior results than substitutional compression. Huffman
coding, however, makes assumptions on the distribution
of the probabilities of symbol occurrence. This is not the
case for compressors based on arithmetic coding, which
on the other hand consume rather large amounts of
computer resources. Since the performance of a compres-
sion program depends on both speed and efficiency,
generally used compressors are based on substitutional
compression. Such programs work by replacing strings of
the input file by references which are indexed in a
dictionary. There are several variants of substitutional
compressors that differ mainly in the principle how the
program manages the dictionary.

Specific compressors work better on some types of files
than on others and therefore should be optimized for
different data types. A characterization of the data to be
compressed, therefore, is essential. Each entry in a
biological sequence database is composed of sequence
data and accompanying descriptive information (annota-
tion) made up of different line types that begin with their
own line code. Whereas information was collected by
individual research groups in the past, today’s sequence
databases typically contain increasing numbers of entries
derived from genome projects which are automatically
processed and incorporated into the databases. These
data are of very different quality and can be characterized
by high redundancy in the annotation sections. The

© Oxford University Press

219



R. Doelz and F. Eggenberger

input File Buffer Output File
ID ENTRY1 ID ENTRY1 —l ID ENTRY1
DE GENE PSF1 DE GENE PSF1
AU SMITH, K. AU SMITH, K. hA >
SQ 14bp SQ 14bp SQ 1l4bp
gacagatagacgat gacagatagacgat gacagatagacgat
ID ENTRY2 \ | 1D ENTRY?2
DE GENE PSF1 - \[p 2
AU SMITH, K. 8Q 10bp
8¢ 10bp gacagatagt
gacagatagt ID ENTRY3
ID ENTRY3 DE FACTOR F
DE FACTOR F

Fig. 1. Flowchart of data processing. Building the output file is achieved by comparing two consecutive database entries.

differences between two successively submitted entries
derived from genome projects mostly concern only the
sequence data, whereas parts of the annotation sections
are often identical.

System and methods

In this paper we report on a compression tool for sequence
databases that has been developed to improve the
efficiency of conventional compressors by eliminating
identical parts of consecutive database entries. The main
benefit is the internal referencing of lines within a group of
entries collected in a single file. In contrast to incremental
updating of entries based on version control, the new
method does not require external standards, such as
defined versions of given entries. Further, as our program
accepts any input of entries, it specifically works on
independent entries, which implies its use for sequence
database compression in general rather than for only
updates to existing entries.

DBCOMP and its counterpart DBUNCOMP are part
of a set of sequence database tools developed at the
Biocomputing Laboratory in Basel. The code has been
written in ANSI C using the NCBI Vibrant windowing
system (Ostell, 1993) where applicable. DBCOMP and
DBUNCOMP have been tested on Unix (SGI Irix, DEC
Ultrix, DEC OSF/1, IBM AIX, Sun SunOS), VAX/VMS,
AXP/VMS, DOS/Windows and MacOS. EMBL database
quarterly entry statistics were based on data coliections
calculated with the DBTOOLS package (R. Doelz and
L. Rosenthaler, unpublished: available from nic.switch.ch).
Statistical analyses of heterogeneity among the observed
compression ratios were performed using Kruskal-Wallis
tests as implemented in the SAS program package (SAS
Institute Inc., 1990).

DBCOMP starts compression by putting each line of
the input file into a buffer until the beginning of the
following entry is encountered. The identification code of
the beginning of an entry is configurable in DBCOMP.
The first entry is written unchanged to the output file. In a
second step each line of the following entries is compared
with the corresponding line of the previous entry that is
stored in the buffer (Figure 1). Lines that are not identical
with the corresponding lines of the previous entry are put
into the buffer and then written to the output file. Lines
found already in the buffer are referenced by a token.
Having encountered the end of the input file, the program
attaches a file header to the compressed output file that
includes information about (i) the name of the original
sequence database file (input file), (ii) the number of
entries, lines, and characters of the input file, (iii) the
compression ratio (percentage saved), (iv) the token used
to recognize the first line of entry, and (v) the version of
DBCOMP used. In order to ensure the proper reassembly
of the processed input file, the program then writes
information about the program version to an external file
and finally prints a summary report on the screen.

DBUNCOMP is needed to decompress sequence
database files that have been compressed by DBCOMP.
In order to ensure the integrity of the processed output file,
DBUNCOMP starts processing by reading the file header
of the input file and checks the information provided by
the external file. After having successfully completed this
check, the program starts decompression by putting each
line of the input file into the buffer until the beginning
of the following entry is encountered. As in DBCOMP
the first entry is written unchanged to the output file. The
lines of the following entries are put into the buffer and
then written to the output file, with the exception of those
lines which have been replaced by a reference during

220



Compression of sequence databases in molecular biology

Table 1. The compression efficiency of DBCOMP in combination with ‘compress’ as tested using EMBL sequence database flat file sections (details see

text)
1988 1989 1990 1991 1992 1993 Heterogeneity"
. ESTs 593 (4.52) 7.28 (5.36) 8.40 (5.57) NSP

Viruses 2.48 (2.47) 2.71 (2.65) 3.46 (3.19) 3.60 (3.21) 4.15 (3.49) 3.99 (3.38) b
Primates 3.11 (2.85) 3.24(293) 3.47 (3.16) 3.63 (3.24) 3.94 (3.40) 3.99 (3.38) *
Unclassified 2.81 (2.60) 3.64 (3.10) 3.08 (2.61) 3.07(2.77) 3.39 (2.92) NS
Rodents 3.12(2.84) 3.12 (2.85) 3.41 (3.16) 3.51 (318) 3.82 (3.31) 3.75 (3.30) NS
Other mammals 2.77 (2.55) 3.05(2.81) 3.31 (3.04) 3.39 (3.10) 3.54 (3.18) 3.72 (3.25) NS
Synthetics 1.86 (1.96) 2.42 (2.23) 3.30 (2.81) 3.17 (2.87) 3.30 (3.049) 3.38 (3.00) NS
Other vertebrates 2.83(2.62) 3.04 (2.72) 3.36 (3.08) 339 (3.11) 3.54 (3.18) 3.50 (3.17) NS
Plants 2.98 (2.65) 2.99 2.74) 333 (3.10) 3.35 (3.10) 3.43 (3.15) 3.42 (3.18) NS
Invertebrates 2.90 (2.62) 2.84 (2.65) 3.51 (3.13) 341 (3.11) 3.53 (3.19) 3.45(3.21) NS
Organelles 2.80 (2.45) 2.88 (2.68) 3.18 (2.89) 358 (315) 3.16 (3.27) 3.52 (2.38) NS
Prokaryotes 2.86 (2.76) 2.97 (2.87) 3.19 (3.10) 3.30 (3.13) 331 (3.15) 3.29 (3.14) NS
Fungi 2.67 (2.63) 2.92 (2.77) 3.21 (3.08) 3.28 (3.16) 3.38(3.19) 3.26 (3.15) NS
Bacteriophages 2.23(2.24) 2.62 (2.59) 2.89 (2.79) 2.92 (2.85) 2.97 (2.92) 2.89 (2.86) NS

Compression ratios (input characters divided by output characters) of ‘compress’ alone are given in parentheses. The change in the performance of
DBCOMP on database divisions from 1988 onwards is given as heterogeneity among differences between compression ratios achieved with DBCOMP in

combination with ‘compress’ and ‘compress’ alone.
*Kruskal-Wallis test (chi-square approximation).
®Not significant.

*P < 0.005.

P < 0.01.

compression. Having encountered a reference, the program
puts the corresponding lines of the previous entry from the
buffer into the output file. When reading the end of the
input file, the integrity of the decompressed file is checked
by comparing the number of entries, lines and characters of
the decompressed file with those of the original database
file. The programs terminates after reporting a summary.

The sections of the EMBL database were calculated by
coliecting the new entries added in each quarter and
subdivision of the EMBL database in the years 1988 to
1993. Using the Date information of the entry creation,
the programs as available in the DBTOOLS package
(R. Doelz and L. Rosenthaler, unpublished) were used
with slight modifications to create quarterly incremental
EMBL database files in the original EMBL flat file format.
Weekly updates were collected from the EMBnet update
stream as provided by EMBL Heidelberg, after separation
for new entries showing up the first time in the current
release (named XEMBL set), and those entries which have
experienced changes in their contents but were available
already earlier (XXEMBL).

Implementation and discussion

The idea behind all substitutional compressors, including
DBCOMP, is to replace a particular piece of data with a
reference to a previous occurrence of that piece. Typical
substitutional compression schemes such as the LZW
method used in ‘compress’ (Sperry Corporation, 1983;
IBM, 1983), generate a dictionary of substrings that is
built up character by character. In contrast, DBCOMP is

line-oriented. By using a flexible wordsize of one line, the
program replaces identical lines with pointers to the previous
occurrence of those lines. Conventional substitutional
compressors, however, reduce redundant phrases of rather
small wordsize, but do not eliminate identical lines of
consecutive entries, which is a typical source of redun-
dancy of automatically acquired biological sequence data.

The previously simulated set of separate divisions of a
total of 21 partial data sets of the EMBL nucleotide
sequence database was compressed using DBCOMP and
then ‘compress’ and using ‘compress’ alone. The resulting
compression ratios are summarized in Table I. As
expected, DBCOMP performs better on database files of
divisions which contain rather large proportions of auto-
matically acquired data. The highest compression ratios
were observed with database files of the EST (Expressed
Sequence Tags) division. EST data are partial DNA
sequences derived from randomly selected cDNA clones
(Benson et al., 1993). ESTs are submitted in bulk and
annotated automatically, which results in high redundant
annotation section and explains the observed compression
ratios ranging from 5.9 to 8.4 (Table I). We observed a
similar performance with the recently introduced STS
division in the EMBL and GenBank nucleotide sequence
databases.

The change in the observed compression efficiency on
EMBL database divisions from 1988 onwards, as
calculated using Kruskal-Wallis tests on differences
between ratios achieved with DBCOMP in combination
with ‘compress’ and ‘compress’ alone, is given in Table I.
As a result of the constant proportion of the automatically

221



R. Doelz and F. Eggenberger

451

35 1

25 " — L
Dec 53 Jange Fob.g4 Mar 94

Fig. 2. The performance of DBCOMP in combination with ‘compress’.
Compression ratios achieved with new entries of weekly updates of the
EMBL nucleotide sequence database (XEMBL).

processed EST entries, there was no significant increase in
the compression efficiency on EST data collected since
1991. In contrast, the compression efficiency on database
files of the ‘primates’ and ‘viruses’ divisions increased
significantly from 1988 onwards (Table I). This might
reflect the growing importance of the automatically
acquired data in these divisions. Indeed, the incor-
poration into the database of sequence data derived
from large-scale genome projects is increasing and even
expected to become the major source of data for sequence
databases (Higgins et al., 1992). The EMBL Data Library,
for example, started the incorporation of data from
genome projects in 1991. Only two years later, release
34 of the nucleotide sequence database contained 20%
of automatically processed sequence data (Rice et al.,
1993).

The compression performance of DBCOMP and
DBUNCOMP could be increased by the use of several
buffers of a larger size. Similarly, a further increase of
compression efficiency can be achieved by a reduction of
the minimal wordsize of less than one line. We tried several
changes of parameters (data not shown), and measured
efficiency after compression with LZW-type compressors.
The resulting improvements proved to be minimal. This
can be attributed to the fact that smaller segments of lines
are well captured by the substitutional methods used in
the conventional type of compressor. As a drawback,
increased sophistication resulted in larger code and lower
processing speed. Data compression, however, should be a
reasonable compromise between efficiency and speed. To
meet this requirement, the resources used by DBCOMP
and DBUNCOMP were kept as minimal as possible. The
program allocate a single buffer with a size that has been
set to 49 Kbyts, the current DOS version even compiles
using the small memory model that produces the fastest
run-times. Moreover, DBCOMP and DBUNCOMP are
not intended to tackle the redundancy that can already be
eliminated by using established compression schemes. Our

Dec 93 Jan 94 Feb.94 Mar. o4

Fig. 3. The performance of DBCOMP in combination with ‘compress’.
Compression ratios achieved with updated entries of weekly updates of
the EMBL nucleotide sequence database (XXEMBL).

progams are rather intended to work together with
conventional compressors such as the Unix program
‘compress’, as mentioned above.

The performance of DBCOMP has been tested on
incremental updates of the EMBL nucleotide sequence
database. The EMBL database is updated every 3 months.
In Basel, the daily updates of the EMBL database that
contain new and updated entries are accessible as XEMBL
and XXEMBL database respectively. Since these data are
delivered to the end-user exclusively via a network, an
efficient compression scheme is indispensable. Thus, we
analyzed the efficiency of DBCOMP on weekly updates of
both the XEMBL and XXEMBL database. A set of 13
weekly updates collected since December 1993 were
compressed using ‘compress’ alone and using DBCOMP
and then ‘compress’. The observed compression perfor-
mance achieved with the two procedures is illustrated in
Figures 2 and 3. The average compression ratio (input
characters divided by putput characters) was 4.0 + 0.1 for
new entries (XEMBL) and 3.8 + 0.1 for updated entries
(XXEMBL). The difference between the compression ratio
of DBCOMP in combination with ‘compress’ and
‘compress’ alone is attributed to the compression
performance of DBCOMP. The average of this difference
was 0.65+0.05 for XEMBL and 0.43+0.06 for
XXEMBL updates (Figures 2 and 3), reflecting a higher
proportion of automatically generated sorted entries in
XEMBL than in XXEMBL, which is to be expected. The
large variations seen in both graphs reflect the hetero-
genous composition of weekly updates.

To summarize, the tools described in this paper provide
both a simple and efficient method to improve the
compression of nucleotide sequence databases distributed
over the network. Due to its reasonable compromise
between efficiency and speed, this new method could also
be adapted for real-time compression that could easily be
incorporated into molecular biological applications rely-
ing on large database input.

222



Compression of sequence databases in molecunlar biology

Availability

The source code of DBCOMP and DBUNCOMP suited
to run on most of the operating systems in use today can
be downloaded by anonymous FTP from nic.switch.ch in
the mirror/embnet-ch directory. Both text-driven versions
and code to link to the NCBI toolbox to obtain a graphical
user interface are provided.

Acknowledgements

Thanks to J.Epstein and J.Kans for providing help with the NCBI
toolbox and C.Wadley for improving the manuscript. This code has been
written at the Biocomputing Laboratory in Basel. Financial supported
has been provided by the University of Basel and the Swiss National
Science Foundation.

References

Benson,D., Lipman,D.J. and Ostell,J. (1993) GenBank. Nucleic Acids
Res., 21, 2963-2965.

Higgins,D.G., Fuchs,R., Stoehr,P.J. and Cameron,G.N. (1992) The
EMBL Data Library. Nucleic Acids Res., 20, 2071-2074.

IBM (1983) Software patent 4814746. Inventors Miller,V.S. and
Wegman,M.N.

Mewes,H W, Doelz,R. and George,D.G. (1994) Sequence databases: an
indispensable source for biotechnological research. J. Biotechnol , 35,
239-256.

Ostell,J. (1993) NCBI Software Development ToolKit Available by
anonymous FTP from the National Center for Biotechnology
Information at ncbi.nm.nih.gov.

Rice,C.M., Fuchs,R., Higgins,D.G., Stochr,P.J. and Cameron,G.N.
(1993) The EMBL Data Library. Nucleic Acids Res., 21, 2967-1971.

SAS Institute Inc. (1990) SAS/STAT User’s Guide, version 6. SAS
Institute Inc., Cary, NC.

Sperry Corporation (now Unisys) (1983) Software patent 4 558 302.
Inventor Welch,T.

Received on November 1, 1994, revised on November 11, 1994; accepted on
January 13, 1995

223



