
BIOINFORMATICS Vol. 18 no. 4 2002
Pages 529–535

Construction of optimal quality control for oligo
arrays

Charles J. Colbourn 1, Alan C. H. Ling 2 and Martin Tompa 3,∗

1Department of Computer Science and Engineering, Arizona State University,
Tempe, AZ 85287-5406, USA, 2Department of Computer Science, University of
Vermont, Burlington, VT 05405, USA and 3Department of Computer Science and
Engineering, Box 352350, University of Washington, Seattle, WA 98195-2350, USA

Received on June 13, 2001; revised on August 22 and November 2, 2001; accepted on November 7, 2001

ABSTRACT
Motivation: Oligo arrays are important experimental tools
for the high throughput measurement of gene expression
levels. During production of oligo arrays, it is important to
identify any faulty manufacturing step.
Results: We describe a practical algorithm for the con-
struction of optimal quality control designs that identify any
faulty manufacturing step. The algorithm uses hillclimbing,
a search technique from combinatorial optimization. We
also present the results of using this algorithm on all prac-
tical quality control design sizes.
Availability: On request from the authors.
Contact: tompa@cs.washington.edu

INTRODUCTION
An oligo array is a small chip containing tens of thousands
of spots, to each of which is attached its own synthesized,
short, single-stranded DNA molecule. Oligo arrays are
important experimental tools for the high throughput
measurement of gene expression levels by a given cell type
under given conditions. For more information on oligo
arrays see, for example, Lipshutz et al. (1999).

Our application is in the manufacture of oligo arrays
rather than their subsequent use. Hubbell and Pevzner
(1999) posed the quality control problem for oligo arrays,
and formulated an approach to its solution that utilizes
a small number of dedicated ‘quality control spots’ on
the array. Sengupta and Tompa (2002) then reduced the
problem to the design of good ‘balanced codes,’ but left
open the general question of how to achieve such designs.

We resolve this open problem for all practical quality
control design sizes, by producing not only good but
optimal balanced codes. Our solution employs a very
successful hillclimbing algorithm that can continue to be
used in the future as design sizes increase.

As one concrete example of our results, suppose the
manufacturer specifies that there are 100 manufacturing

∗To whom correspondence should be addressed.

steps and synthesized DNA molecules of length 20. Our
results then show, for any even d � 4, exactly how to
design 10d quality control spots that will allow the array
manufacturer or user to identify any failed manufacturing
step among the 100 steps, even if d − 1 of the quality
control spots fail in arbitrary ways. This example is just
one line from our Table 1.

The remainder of this section describes the quality
control problem and solution in more detail.

The quality control problem for oligo arrays
An oligo array is manufactured in a series of steps labeled
A, C, G, T, A, C, G, T, A, . . . The number of manufacturing
steps and the oligonucleotide lengths are fixed by the
manufacturer. Initially every spot is empty. In preparation
for any given step, an arbitrary subset of the spots can be
masked. If the step is labeled with the nucleotide σ , only
a spot that is unmasked will have σ appended to the end
of its oligonucleotide. By appropriate construction of the
masks, each spot can be designed to contain an arbitrary
DNA sequence.

The manufacturing process is subject to two different
sorts of faults: (1) several individual spots may be
unreliable; and (2) an entire manufacturing step may fail,
affecting all spots unmasked during that step. The goal of
quality control is to identify any single failed step, even if
e individual spots are unreliable, where e is a parameter
of the manufacturing process. A small number of spots
on the chip can be used for this quality control purpose,
to be tested by hybridization with fluorescently tagged,
complementary oligonucleotides.

Hubbell and Pevzner (1999) first investigated this prob-
lem. The clever idea underlying their approach is to man-
ufacture identical oligonucleotides at multiple spots, using
different schedules of steps. If no step fails, all such spots
should show very similar fluorescent intensities. If some
step fails, the spots with relatively low intensities hope-
fully provide a ‘signature’ that identifies the failed step.

The problem Hubbell and Pevzner left open was how

c© Oxford University Press 2002 529

C.J.Colbourn et al.

Table 1. Existence of optimal balanced codes ‘Y,’ ‘+,’ ‘=’ denote existence, ‘.’ denotes nonexistence, and ‘o,’ ‘?’ denote open

Discrimination d
v k 1 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890

9 8 +========= ========== ========== ==========

10 8 .++======= ========== ========== ==========

10 9 +========= ========== ========== ==========

11 8 .Y+Y====== ========== ========== ==========

11 9 .+Y======= ========== ========== ==========

11 10 +========= ========== ========== ==========

12 8 .++======= ========== ========== ==========

12 9 .++======= ========== ========== ==========

12 10 .++======= ========== ========== ==========

13 8 .Y.Y+Y=Y== ========== ========== ==========

13 9 .YY+====== ========== ========== ==========

13 10 .Y+======= ========== ========== ==========

14 8 ...YY+YY+= ========== ========== ==========

14 9 .YY=+Y==== ========== ========== ==========

14 10 .+Y======= ========== ========== ==========

15 8oY+YYY Y========= ========== ==========

15 9 ...+Y+Y=== ========== ========== ==========

15 10 .+.=+===== ========== ========== ==========

16 8+.+.+ .=.=+=?=+= ========== ==========

16 9 ...YYY+YYY ========== ========== ==========

16 10 .Y.YY+Y=+= ========== ========== ==========

17 8Yo+YY Y=Y=Y===== ========== ==========

17 9Yo+YY Y=Y=Y===== ========== ==========

17 10 ...YYY+=Y= ========== ========== ==========

18 8 ...+YYo=== Y========= ========== ==========

18 9+.+.+ .=.=.=+=?= ?========= ==========

18 10 ...+YYo=== Y========= ========== ==========

19 8 ...Y.YY+YY ==Y======= ========== ==========

19 9ooY+Y YYYYY===== ========== ==========

19 10ooY+Y YYYYY===== ========== ==========

20 8 ...+Y+Y=== ========== ========== ==========

20 9oYoY+Y YYY======= ========== ==========

20 10+.+.+ .=.=.=.=+= ?=?======= ==========

21 8 ...YYYY+Y= Y========= ========== ==========

21 9 ...Yo+YY+= Y========= ========== ==========

21 10oooo+ YYYYYYYYY= ========== ==========

22 8 ...+YYY=== ========== ========== ==========

22 9 ...YYYY=+= Y========= ========== ==========

22 10YoYo+ YYYY+=Y=Y= ========== ==========

to design the quality control molecules and schedules to
guarantee such signatures, even in the presence of e faulty
spots. Sengupta and Tompa reduced this problem to the
design of ‘balanced codes,’ defined below, and supplied
an initial collection of good balanced codes (Sengupta and
Tompa, 2002).

First Sengupta and Tompa abstracted the quality control
problem as that of designing a QC matrix Q, which is

Discrimination d
v k 1 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890

23 8 ...YYYY+YY Y========= ========== ==========

23 9 ...YoYYY+Y =Y======== ========== ==========

23 10 ...YoYYYY+ Y=Y======= ========== ==========

24 8 ...++++=== ========== ========== ==========

24 9 ...YY+Y=+= ========== ========== ==========

24 10 ...Y.Yo=Y+ YY==+=Y=== ========== ==========

25 8 ...YYYY+== ========== ========== ==========

25 9 ...YoYYY+Y Y==Y====== ========== ==========

25 10 ...+o+Y=Y= ========== ========== ==========

26 8 ...+YYY=== ========== ========== ==========

26 9 ...YYYY=+Y YY======== ========== ==========

26 10 ...Y.YYYY+ Y=Y=+===== ========== ==========

27 8 ...YYYY+== ========== ========== ==========

27 9 ...++++=== ========== ========== ==========

27 10 ...YYYY==+ ========== ========== ==========

28 8 ...+Y+Y=== ========== ========== ==========

28 9 ...YYYYY+= ========== ========== ==========

28 10 ...Y+YYY== ========== ========== ==========

29 8 .Y.YYYY+Y= Y========= ========== ==========

29 9 ...YYYY=+= ========== ========== ==========

29 10 ...YYYY==+ YYY======= ========== ==========

30 8 .Y.+Y===== ========== ========== ==========

30 9 ...YY+YY+= ========== ========== ==========

30 10 ...++++=== ========== ========== ==========

31 8 ...YYYY+YY Y========= ========== ==========

31 9 ...YYYY=+= Y========= ========== ==========

31 10 ...YYYYYY+ ========== ========== ==========

32 8 ...++++=== ========== ========== ==========

32 9 .Y.YYYYY+= ========== ========== ==========

32 10 ...Y+YY=== ========== ========== ==========

33 8 .Y.YYYY+== ========== ========== ==========

33 9 ...YY+Y=+= ========== ========== ==========

33 10 ...YYYYYY+ ==Y======= ========== ==========

34 8 .Y.+Y=Y=== ========== ========== ==========

34 9 ...YYYYY+= ========== ========== ==========

34 10 ...Y+YY=== ========== ========== ==========

a matrix of zeros and ones with a row for each quality
control spot, a column for each manufacturing step, and
Qi j = 1 if and only if spot i is unmasked during step
j . Given the spots with comparatively low fluorescent
intensities as a column vector I , identifying the failed
step corresponds roughly to finding the column of Q
that resembles I , with up to e exceptions. Although this
is similar to the familiar error-correcting code problem

530

Optimal quality control for oligo arrays

Fig. 1. A pair of 4 × 4 QC blocks. For ease of visualization, the
figure shows blanks instead of zeros, and the manufacturing step’s
label instead of a one.

(MacWilliams and Sloane, 1977), what makes it more
complicated is that (1) one cannot always reliably compare
the intensities of spots with different DNA sequences, and
(2) even for the spots with identical sequences, one cannot
always reliably distinguish between all such spots having
high intensity and all such spots having low intensity.

In terms that are beyond the scope of the present
discussion, but are detailed by Sengupta and Tompa
(2002), the resulting properties of a good QC matrix Q
are as follows:

(1) the set of DNA molecules manufactured at the
quality control spots hybridize poorly to themselves
and each other;

(2) Q has high ‘separation’ sep(Q), which ensures
sufficient coverage of each step, and sufficient
difference between steps to identify the failed step.
Sengupta and Tompa proved that sep(Q) � 2e + 1
is sufficient to identify any single failed step, even in
the presence of e arbitrarily faulty spots.

Sengupta and Tompa showed how to design QC matrices
with these properties using a product construction. First
they hand-crafted some QC blocks, which are small QC
matrices. An example of a pair of 4 × 4 QC blocks from
their paper is given in Figure 1. They then showed that a
certain cross product of any good balanced code and these
QC blocks yields a QC matrix with the desired properties
above. To understand this, we turn to a discussion of
balanced codes.

Balanced codes
A (v, b, k)-set system is a b × v matrix whose entries are
zeros and ones, with exactly k ones per row. For each
column j , we define the replication number of j to be the
number of ones in column j . The set system is said to be
r -equireplicate if every column has replication number r .
The set system is said to have discrimination d if:

(1) for every column j , the replication number r j
satisfies d � r j � b − d, and

(2) for every two distinct columns i and j , the number
of rows in which columns i and j differ (called the
Hamming distance between columns i and j) is at
least d.

Fig. 2. A (15, 10, 9, 4)-bbc.

A (v, b, k)-set system with discrimination d is
henceforth called a (v, b, k, d)-balanced binary
code, or (v, b, k, d)-bbc for short. An example of a
(15, 10, 9, 4)-bbc from Alon et al. (2001) is shown in
Figure 2.

Returning now to the product construction for QC ma-
trices, suppose B is a (v, b, k, d)-bbc, and one alternately
replaces the ones in each row of B by the two 4 × 4 QC
blocks of Figure 1, and replaces the zeros in B by 4×4 ma-
trices of zeros. Sengupta and Tompa proved that the result
is a 4b × 4v QC matrix Q for which each DNA molecule
has length 2k, the set of DNA molecules hybridizes poorly,
and sep(Q) = 2d (Sengupta and Tompa, 2002).

An example of this product construction is shown in
Figure 3, where the balanced code is the one from
Figure 2. The 40 rows in this example correspond to
40 quality control spots, and the 60 columns correspond
to 60 manufacturing steps. The oligonucleotide for each
quality control spot can be obtained by reading across the
corresponding row. For instance, the first spot contains the
oligo ACATACATACATACATAC, and this same oligo is
manufactured at nine other spots, each using a different
schedule of manufacturing steps. Analogous statements
are true for the oligos at spots two, three, and four.

Since the manufacturer specifies the number of steps
(4v) and the molecule lengths (2k), and the goal is
to minimize the number of quality control spots (4b)
and maximize separation (2d), the resulting balanced
code design problem is to minimize b and maximize
d for a given v and k. To make this precise, given v,
k, and d, we seek the smallest value of b for which
a (v, b, k, d)-bbc exists. (The dual problem of finding
the greatest value of d , given values of v, k, and b,
is equivalent.) Alon et al. established the following
lower bound on b: if a (v, b, k, d)-bbc exists, then
b � max

(⌈
vd
k

⌉
,
⌈

vd
v−k

⌉)
(Alon et al., 2001). We call

a (v, b, k, d)-bbc optimal when b has this minimum

531

C.J.Colbourn et al.

Fig. 3. The product of the (15, 10, 9, 4)-bbc of Figure 2 and the pair of 4 × 4 QC blocks of Figure 1, resulting in a 40 × 60 QC matrix Q with
minimum separation sep(Q) = 8.

possible value max
(⌈

vd
k

⌉
,
⌈

vd
v−k

⌉)
, because in this case

the manufacturer is devoting as few spots to quality control
as possible.

For the current photolithographic process, reasonable
ranges for the parameters are 16 � 2k � 20, 60 � 4v �
136, and 4b up to a few hundred. Although Sengupta and
Tompa supplied an initial collection of balanced codes, the
major open problem of their paper was the construction
of optimal balanced codes for arbitrary choices of v,
k, and d. The current paper and its companion (Alon
et al., 2001) resolve this open problem for the relevant
parameter ranges given above. The resulting constructions
are summarized in Table 1. This table can be used to
construct a spectrum of optimal quality control designs for
any choices of oligo length and number of manufacturing
steps, as in the example of 100 manufacturing steps
presented earlier.

One useful tool for combining balanced codes is
the following. Alon et al. (2001) proved that, if B1
is a (v, b1, k, d1)-bbc and B2 is a (v, b2, k, d2)-bbc,
then

[B1
B2

]
, the union of the rows of B1 and B2, is a

(v, b1 + b2, k, d1 + d2)-bbc. We call this operation addi-
tion. Unfortunately, the addition of two optimal balanced
codes need not be optimal. However, Alon et al. (2001)
proved that, when either balanced code is equireplicate,

the addition is optimal: if B1 is an optimal equireplicate
(v, b1, k, d1)-bbc and B2 is an optimal (v, b2, k, d2)-bbc,
then

[B1
B2

]
is an optimal (v, b1 + b2, k, d1 + d2)-bbc. For

this reason, critical ingredients in producing larger opti-
mal balanced codes are small ones that are equireplicate.
In a companion paper, Alon et al. (2001) used techniques
from combinatorial design theory to establish, for the
practical parameter ranges k ∈ {8, 9, 10} and k < v � 34,
the existence or nonexistence of optimal equireplicate
balanced codes in all but five cases, marked ‘?’ in Table 1.
In this paper, we therefore develop a practical technique
that is well suited to producing the companion optimal
nonequireplicate balanced codes. These are far more
common than optimal equireplicate balanced codes: by
a result of Alon et al. (2001), an optimal equireplicate
code can only exist under the stringent conditions that
v � 2k and vd is a multiple of k, or v < 2k and vd is a
multiple of v − k. All other optimal balanced codes must
be nonequireplicate, rendering the construction technique
of this paper the more practical.

ALGORITHM
We now describe the algorithm to produce an opti-
mal (v, b, k, d)-bbc. If v < 2k, we instead produce a
(v, b, v − k, d)-bbc, and then change all zeros to ones and

532

Optimal quality control for oligo arrays

ones to zeros to obtain the desired balanced code. We can
therefore assume that v � 2k.

The algorithm employs hillclimbing, a randomized
search technique that constrains the search to move closer
to a solution at each stage; see Gibbons (1996) and
Mathon (1991) for a discussion of the basic technique. The
method has been successful in a number of combinatorial
problems; see Dinitz and Stinson (1981, 1987); Elliott and
Gibbons (1992); Gibbons and Mathon (1993); Griggs and
Murphy (1993) and Stinson (1985) for examples.

Given v, k, and d, we first compute b = ⌈
vd
k

⌉
. We

next compute target replication numbers r1, r2, . . . , rv ,
satisfying

∑v
j=1 r j = bk and d � r j � b − d for 1 �

j � v. In general, there are numerous ways to satisfy these
constraints, so we employ one of three simple methods:

(1) the first bk − vd replication numbers are d + 1 and
the remainder are d, or;

(2) if bk − vd is even, the first 1
2 (bk − vd) replication

numbers are d + 2 and the remainder are d, or;

(3) if bk −vd is odd, the first 1
2 (bk −vd −1) replication

numbers are d + 2, the next is d + 1, and the
remainder are d.

We form an initial b × v matrix M of zeros and ones,
whose row sums are all k, and whose v column sums
are r1, . . . , rv . The matrix M can be constructed in many
ways in general. The simple method we use is as follows.
Each new row is constructed so that the position of the
k one entries are those whose current column sums are
farthest from their target values r j . When M is constructed
in this manner, it has the correct row and column sums to
be a (v, b, k, d)-bbc, but likely it is not, because any two
columns need not have Hamming distance at least d. We
call a matrix with the correct dimensions and correct row
and column sums a putative balanced code.

Consider two columns i and j . Let di j be the Hamming
distance between these two columns. Since the desired
distance is at least d, define the (i, j)-defect, defi j , to
be max(0, d − di j). The defect is 0 only when these
two columns have Hamming distance at least d. Then a
measure of the poorness of a putative balanced code M is
the defect of M , defined as def (M) = ∑

1�i< j�v defi j .
This provides a means to compare two putative balanced
codes for goodness: we define a putative balanced code M
to be closer to a solution than another putative balanced
code M ′ when the defect of M is less than that of M ′.
When the defect of M is 0, it is a valid solution.

The basic hillclimbing strategy follows. First we define
a set T of easily computed transformations that map
putative balanced codes to putative balanced codes. Our
goal is to select transformations from T that reduce the
defect, eventually to 0. A prototype hillclimbing algorithm
is as follows:

Select an initial putative balanced code M .
repeat

choose T ∈ T , and calculate M ′ = T (M).
if def (M ′) � def (M) then set M = M ′.

until def (M) = 0.

A strict hillclimbing algorithm might replace the test
def (M ′) � def (M) by def (M ′) < def (M), so that a
replacement is made only when actual progress towards
a balanced code occurs. However, we allow (indeed,
require) ‘lateral’ moves that leave def (M) unchanged.
Before filling in the details of this algorithm, we introduce
the transformations.

Ryser (1957) examined the following set of transforma-
tions. Let A be a b × v matrix of zeros and ones. Let
A[r1, r2; c1, c2] be the 2 × 2 submatrix indexed by rows
r1 and r2, and columns c1 and c2. (We do not assume here
that r1 < r2 or c1 < c2.) When A[r1, r2; c1, c2] is the
identity matrix

c1 c2
r1 1 0
r2 0 1

we define the transformation T [r1, r2; c1, c2] to be the
replacement of this submatrix by its complement

c1 c2
r1 0 1
r2 1 0

.

The set TM of allowed transformations is the set of
transformations of type T [r1, r2; c1, c2]. Ryser proved that
if A and B are binary matrices of the same dimension and
the same row and column sums, then there is a sequence of
transformations of this type producing B from A (Ryser,
1957).

Therefore, if the desired balanced code exists, it
can be obtained by some sequence of transformations
from any putative balanced code. Shaver (1973) used
Ryser’s transformations as the basis for a hillclimbing
technique for balanced incomplete block designs, which
are equireplicate balanced codes with equal Hamming
distance between every pair of columns. The success of
Shaver’s method was somewhat limited: it succeeded
typically only when exhaustive techniques such as back-
tracking (Gibbons, 1996) were also feasible. The first
very successful hillclimbing method for constructing
combinatorial designs was that of Dinitz and Stinson
(1981) for ‘strong starters;’ it and its successors adopted a
different set of transformations that are well suited to such
set systems. The limited success of Shaver’s approach
can be attributed in part to the very severe constraints
of balanced incomplete block designs on the Hamming
distance between pairs of columns. In the case of balanced
codes, the constraint is much less severe. Indeed, Ryser’s

533

C.J.Colbourn et al.

iterationcount = 0;
success = false;

while (iterationcount < I) and not success
choose an initial putative balanced code M;
lateralcount = 0;
while lateralcount < L and def (M) > 0

/* find suitable 2 × 2 submatrix */

choose r1 in {1, . . . , b} at random;
repeat

choose c1 in {1, . . . , v} at random
until M[r1,c1] = 1;
repeat

choose c2 in {1, . . . , v} at random
until M[r1,c2] = 0;
/* sequentially search for suitable second row */

r2 = (r1 mod b) + 1;
while r2 �= r1 and (M[r2,c1] �= 0 or M[r2,c2] �= 1)

r2 = (r2 mod b) + 1
endwhile;

/* accept transformation if it improves M */

if r2 �= r1 then
apply T [r1,r2;c1,c2] to M to produce N;
if def (N) < def (M) then

lateralcount = 0
else lateralcount = lateralcount + 1
endif;
if def (N) ≤ def (M) then

M = N
endif

endif

endwhile;
if def (M) = 0 then success = true endif

endwhile;

if success then output M else output ‘failure’ endif;

Fig. 4. Hillclimbing algorithm to produce optimal balanced codes.

set TM of transformations performed remarkably well for
balanced codes.

Given a putative balanced code M with nonzero defect,
there is no guarantee that any transformation in TM
reduces its defect. Hence we must incorporate a stopping
rule in the method other than waiting for success, if we
are to avoid searching forever. Since we may abandon
a particular search without success, we revise the basic
method to allow multiple restarts. From the standpoint of
efficiency, it is costly to generate all transformations in TM
and then select one to apply. Hence we also modify the
method to generate a transformation more efficiently. The
complete hillclimbing algorithm is given in Figure 4.

Two limits I and L are specified in the algorithm.
The first limits the number of restarts from an initial
configuration. The second limits the number of lateral

moves, that is, transformations that do not improve the
defect.

IMPLEMENTATION
For the quality control application described in the Section
Introduction, we are interested in the construction of opti-
mal (v, b, k, d)-bbcs with k ∈ {8, 9, 10} and k < v � 34.
We examined all parameter sets in this range. Initially we
set the iteration limit I to 1, and the lateral limit L to
10 000. Remarkably, this quickly settled existence affirma-
tively for 372 different parameter sets. We do not list them
all here. (These parameter sets included some later found
to be implied by addition.)

We next examined the parameter sets for which hill-
climbing with the specified limits failed to produce the
desired balanced code. While any explanation is specu-
lative, it appears that hillclimbing failed more frequently
when the discrimination d was large (and hence the
number b of blocks was also large), and also failed more
frequently when the balanced code was equireplicate, or
close to equireplicate. The former suggests that the lateral
limit was too low for the parameters chosen, causing
searches to be abandoned prematurely. We therefore
attempted further searches using iteration limit I = 10,
and raising the lateral limit to L = 750 000. Searches
with lateral limit 10 000 completed within 3–5 s, but
searches with lateral limit 750 000 consumed 10–15 h
on a 500 MHz Pentium system. Nevertheless, with these
extended limits, an additional 25 parameter sets were
settled affirmatively.

The failures on many equireplicate balanced codes are
more problematic. The explanation appears to be that the
success of hillclimbing depends critically on the presence
of a large number of different balanced codes, but when
the balanced code is equireplicate and v is close to
2k, the number of solutions is very small. Indeed, this
range of parameters is related to certain block designs
called Hadamard designs (Beth et al., 1986). Shaver
(1973) encountered difficulties with hillclimbing on these
types of designs, so our more frequent failures here are
not surprising. Fortunately, Alon et al. (2001) settled
almost all equireplicate cases by using combinatorial
constructions, and so the effective use of hillclimbing in
the nonequireplicate cases is sufficient.

DISCUSSION
In Table 1, we summarize our results for all parameter sets
with k ∈ {8, 9, 10} and k < v � 34. The encoding in this
table is as follows:

(1) ‘Y’ denotes the existence of an optimal nonequirepli-
cate balanced code found using the hillclimbing al-
gorithm described in this paper;

534

Optimal quality control for oligo arrays

‘+’ denotes the existence of an optimal equireplicate
balanced code described in the companion paper
(Alon et al., 2001);

‘=’ denotes the existence of an optimal balanced
code by addition of balanced codes with smaller
discrimination;

(2) ‘.’ denotes a parameter set for which Alon et al.
(2001) proved that no optimal balanced code can
exist;

(3) ‘o’ denotes an unsettled nonequireplicate case;

‘?’ denotes an unsettled equireplicate case.

To illustrate the application of this table, let us derive
the concrete example given in the Section Introduction.
Suppose the manufacturer is interested in designs with
100 steps and molecule length 20. Since the number of
steps is 4v and molecule length is 2k (see the Section
Introduction), this example corresponds to the row v =
25, k = 10 in Table 1. From this row, we see that optimal
balanced codes exist for every d � 4, with the possible
exception of d = 5. By definition of optimality, b =
�vd/k� = �25d/10� = �5d/2�. If d is even, b = 5d/2.
The number of spots for such a design is 4b = 10d, and
its separation is sep(Q) = 2d � 2e + 1, where e is the
maximum number of faulty spots that can be tolerated.
From this inequality, e = d −1. Thus, for any even d � 4,
there is a design using 10d quality control spots, up to d−1
of which may be faulty.

Table 1 presents the status only for 1 � d � 40, but it is
easily established that existence is implied for all d > 40
for all parameter sets in our range, using addition.

In addition to the five equireplicate cases left unsettled
(Alon et al., 2001), only 23 nonequireplicate cases were
not settled by hillclimbing, marked ‘o’ in Table 1. Given
the 397 cases that were settled by hillclimbing, this is a
remarkably good success rate. One of the frustrations of
using nonexhaustive search techniques such as hillclimb-
ing is that, if the search is unsuccessful, there is no way to
know whether the object being sought exists or not. While
it is tempting to speculate that the 23 unsettled parame-
ters correspond to nonexistent balanced codes, it is per-
haps more likely that these instead demonstrate the limita-
tions of the hillclimbing approach.

Despite these unsettled cases, we pursued hillclimbing
because of its simplicity and its remarkable success,
settling nearly 400 cases of practical interest. It is possible
that a more sophisticated optimization method such as
simulated annealing might succeed in resolving some of
the 28 unsettled cases.

We conclude by noting that hillclimbing provides a
useful method for producing not just one, but typically
many different balanced codes for a given setting of the
parameters. Thus we expect the method to be practical for

the construction of additional balanced codes as needed in
the quality control application.

ACKNOWLEDGEMENTS
We thank Noga Alon, Jeff Dinitz, Vic Klee, Rimli
Sengupta, and the anonymous referees for helpful sugges-
tions. This research was supported in part by ARO grant
DAAG55-98-1-0272, DOE grant DE-FG02-00ER45828,
and NSF grant DBI-9974498.

REFERENCES
Alon,N., Colbourn,C., Ling,A. and Tompa,M. (2001) Equireplicate

balanced binary codes for oligo arrays. SIAM J. Discrete Math.,
14, 481–497.

Beth,T., Jungnickel,D. and Lenz,H. (1986) Design Theory. Cam-
bridge University Press, Cambridge.

Dinitz,J.H. and Stinson,D.R. (1981) A fast algorithm for finding
strong starters. SIAM J. Algebr. Discrete Meth., 2, 50–56.

Dinitz,J.H. and Stinson,D.R. (1987) A hill-climbing algorithm for
the construction of 1-factorizations and Room squares. SIAM J.
Algebr. Discrete Meth., 8, 430–438.

Elliott,J.R. and Gibbons,P.B. (1992) The construction of subsquare
free Latin squares by simulated annealing. Aust. J. Combina-
torics, 5, 209–228.

Gibbons,P. (1996) Computational methods in design theory. In
Colbourn,C.J. and Dinitz,J.H. (eds), The CRC Handbook of
Combinatorial Designs. CRC Press, Boca Raton, FL, pp. 718–
740.

Gibbons,P.B. and Mathon,R. (1993) The use of hill-climbing to
construct orthogonal Steiner triple systems. J. Comb. Des., 1, 27–
50.

Griggs,T.S. and Murphy,J.P. (1993) 101 anti-Pasch Steiner triple
systems of order 19 (at least). J. Comb. Math. Comb. Comput.,
13, 129–141.

Hubbell,E. and Pevzner,P.A. (1999) Fidelity probes for DNA
arrays. In Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology. AAAI Press,
Heidelberg, Germany, pp. 113–117.

Lipshutz,R.J., Fodor,S.P.A., Gingeras,T.R. and Lockhart,D.J. (1999)
High density synthetic oligonucleotide arrays. Nature Genet.,
21 (Suppl.), 20–24.

MacWilliams,F.J. and Sloane,N.J.A. (1977) The Theory of Error-
correcting Codes. North-Holland, Amsterdam.

Mathon,R. (1991) Computational methods in design theory. In
Proceedings of the Thirteenth British Combinatorial Conference,
(London Math. Soc., Lecture Note 166). Cambridge University
Press, Cambridge.

Ryser,H.J. (1957) Combinatorial properties of matrices of zeroes
and ones. Canad. J. Math., 9, 371–377.

Sengupta,R. and Tompa,M. (2002) Quality control in manufacturing
oligo arrays: a combinatorial design approach. J. Comput.
Biol., in press.

Shaver,D.P. (1973) Construction of (v, k, λ)-designs Using a Non-
enumerative Search Technique, PhD Thesis, Syracuse University.

Stinson,D.R. (1985) Hill-climbing algorithms for the construction
of combinatorial designs. Ann. Discrete Math., 26, 321–334.

535

