
i
i

“main” — 2020/6/18 — 1:37 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Sequence Analysis

iPromoter-BnCNN: a Novel Branched CNN Based
Predictor for Identifying and Classifying Sigma
Promoters
Ruhul Amin 1,, Chowdhury Rafeed Rahman 1∗, Md. Habibur Rahman Sifat 1,
Md Nazmul Khan Liton 1, Md. Moshiur Rahman 1, Sajid Ahmed 1, and
Swakkhar Shatabda 1,∗

1Department of Computer Science and Engineering, United International University, Dhaka, 1207, Bangladesh

∗Swakkhar Shatabda

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Promoter is a short region of DNA which is responsible for initiating transcription of specific
genes. Development of computational tools for automatic identification of promoters is in high demand.
According to the difference of functions, promoters can be of different types. Promoters may have both
intra and inter class variation and similarity in terms of consensus sequences. Accurate classification of
various types of sigma promoters still remains a challenge.
Results: We present iPromoter-BnCNN for identification and accurate classification of six types of
promoters - σ24, σ28, σ32, σ38, σ54, σ70. It is a Convolutional Neural Network (CNN) based classifier which
combines local features related to monomer nucleotide sequence, trimer nucleotide sequence, dimer
structural properties and trimer structural properties through the use of parallel branching. We conducted
experiments on a benchmark dataset and compared with two state-of-the-art tools to show our supremacy
on 5-fold cross-validation. Moreover, we tested our classifier on an independent test dataset.
Availability: Our proposed tool iPromoter-BnCNN web server is freely available at
http://103.109.52.8/iPromoter-BnCNN. The runnable source code can be found here. Contact:
rafeed@cse.uiu.ac.bd
Supplementary information: Supplementary data (benchmark dataset, independent test dataset,
structural property information and model .h5 files) are available at Bioinformatics online.

1 Introduction
Promoters are small regions near gene containing 100 to 1000 base-
pairs. For transcription occurrence, RNA polymerase must bind near the
promoter. Bacteria with prokaryotic cell type has promoters consisting of
a purine at the transcription start site (TSS). It contains specific hexamers
centered at -10 and -35 (Busby and Ebright (1994), Feng et al. (2017)).
There are several sigma factors in the RNA polymerase of Escherichia
coli bacteria, which are dependent on environment and gene. As a result,
sigma factors are used as distinguishing elements of promoter sequences
found in DNA. Each of the six different types of sigma factors such as
σ24, σ28, σ32, σ38, σ54, σ70 has different functions. For example, σ70

factor is responsible for transcription of most of the genes under normal
condition (Gruber and Gross (2003)). On the other hand, σ24 factor
is responsible for heat shock response (Raina et al. (1995)). Similarly,
σ28, σ32, σ38 and σ54 are responsible for flagellar genes, heat shock
response, stress response during the transition from exponential growth
phase to the stationary phase of E. coli (Jishage and Ishihama (1995)) and
nitrogen metabolism, respectively (Janga and Collado-Vides (2007)).

Molecular techniques for promoter identification or classification is
costly in terms of time and money which is why computational methods
are more popular (Towsey et al. (2008)). Promoters normally differ from
the consensus at one or more positions. So, it is challenging to precisely
predict promoters through traditional methodology.

Recently, a few computational methods have been proposed to
classify DNA sequences as promoters or non-promoters, some aiming

1

ar
X

iv
:1

91
2.

10
25

1v
4

 [
q-

bi
o.

Q
M

]
 1

6
Ju

n
20

20

http://103.109.52.8/iPromoter-BnCNN
https://colab.research.google.com/drive/1yWWh7BXhsm8U4PODgPqlQRy23QGjF2DZ
name@bio.com

i
i

“main” — 2020/6/18 — 1:37 — page 2 — #2 i
i

i
i

i
i

2 R.Amin et al.

at identifying a certain class of sigma promoters. For instance, Coelho
et al. (2018) provided BacSVM+, a software package using LibSVM
library for promoter prediction in Bacillus subtilis. Work of Scheila de
Avila e Silva* (2014) integrated DNA duplex stability as feature of neural
network to identify σ28 and σ54 class of promoter in E. coli bacteria.
Lin et al. (2014) developed iPro54-PseKNC which performs the same
task using SVM classifier based on pseudo k-tuple nucleotide composition
(PseKNC). Li et al. (2015) applied a deep feature selection (DFS) model on
enhancer-promoter classification. Lin et al. (2017) used pseudo nucleotide
composition for feature extraction in order to identify σ70 promoters
in prokaryotes using SVM. He et al. (2018) used PSTNPSS(Position-
specific trinucleotide propensity based on single-stranded characteristic)
and PseEIIP(Electron-ion potential values for trinucleotides) features
while Rahman et al. (2019a) used multiple windowing and minimal
features for the same task. Rahman et al. (2019b) developed iPromoter-
FSEn for performing the same task using feature subspace based ensemble
classifier achieving an impressive accuracy of 86.32%. Umarov and
Solovyev (2017) trained CNN based architecture on the same promoter
type in E. coli. Liu et al. (2017) developed iPromoter-2L which can
identify promoter and can classify them into six types. They used random
forest PseKNC. Zhang et al. (2019) proposed MULTiPly for the same task
using both local (k-tuple nucleotide composition, dinucleotide based auto
covariance) and global information (bi-profile Bayes and KNN feature
encodings). They applied F-score feature selection method to identify
feature from each category giving the best prediction results.

Shahmuradov et al. (2017) worked on predicting transcription start
sites (TSSs) in five types of E. coli sigma promoters such as -
σ24, σ28, σ32, σ38 and σ70 though they did not work on E. coli sigma
promoter classification. Only Liu et al. (2017) and Zhang et al. (2019)
proposed computational methods (iPromoter-2L and MULTiPly) for
classifying sigma promoters into six classes in E. coli bacteria. The
sensitivity and specificity of promoter classification showed opposing
behavior for iPromoter-2L. For example, for σ28, σ32, σ38 and σ54,
iPromoter-2L showed specificity of higher than 99%, but the sensitivity
was lower than 54%. The promoter classification performances of the
binary sub-classifiers used in MULTiPly were impressive. For example,
the first sub-classifier showed 85.24% accuracy in σ70 promoter type
identification. The sensitivity and specificity was 87.27% and 86.57%,
respectively. We follow the stage by stage binary classification method
used in MULTiPly in this work. The main limitation of MULTiPly was
the selection of the basic features to work with. Different combination
of different heterogeneous features led to different prediction results.
Effective selection of basic and essential features for the classification
model is a difficult problem to solve. Through trial and error, the authors
selected features that achieved satisfactory prediction performance.

We propose iPromoter-BnCNN, a one dimensional CNN based
classifier which can identify sigma promoter and can classify sigma
promoter into the six specified classes in E. coli bacteria. Four parallel
branches of one dimensional convolution filters learn and and extract
important local features related to monomer, trimer nucleotide sequence
and dimer, trimer structural properties simultaneously. Dense layers at the
end of our designed model combine these extracted features and perform
the classification task. We use the same model architecture for all of
our binary classifiers. From the training samples, each classifier learns
weights and importance of features automatically. We compare our method
with state-of-the-art tools for E. coli sigma promoter identification and
classification and show the effectiveness of our method.

2 Materials and Methods
We followed Chou’s five-step rules (Chou (2011)) for more effective
presentation of our research work. A series of recent publications (Xu et al.
(2013), Xu et al. (2014), Liu et al. (2015), Jia et al. (2016a), Chen et al.
(2016), Feng et al. (2017), Liu et al. (2017), Zhang et al. (2019)) comply
with this standard. Briefly, the five steps are: (i) valid benchmark dataset
selection (ii) biological sequence sample formulation with mathematical
expression (iii) powerful algorithm introduction for prediction purpose (iv)
predictor performance evaluation using cross validation (v) public access
establishment to the constructed predictor. Our system overview has been
provided in Figure 1 in light of the five steps described. We describe each
of these steps in detail in the following subsections.

Fig. 1. System Overview of iPromoter-BnCNN

2.1 Benchmark Dataset

One benchmark dataset is good enough to prove the effectiveness of
a certain method when K-fold cross-validation is used, because such
evaluation takes into account the results obtained from K number of disjoint
training and validation sets (Chou and Shen (2007)). We have used the same
E. coli bacteria promoter dataset as of Liu et al. (2017) and Zhang et al.
(2019) for comparison purpose in terms of sigma promoter identification
and classification into sub types. All promoter samples of the used dataset
are experimentally verified (each has 81 bp). They have been collected
from the RegulonDB database (Version 9.3) (Gama-Castro et al. (2016)).
Lin et al. (2014, 2017) randomly extracted non-promoter sequences
from middle regions of long coding sequences and convergent intergenic
regions in E.coli K-12 genome, which are also 81 bp long. We include
these sequences in the non-promoter class. We have ensured redundancy
reduction (no two samples of same class with pairwise sequence identity
≥ 0.8) using CD-HIT software (Li and Godzik (2006)) on our dataset
following Liu et al. (2017) and Zhang et al. (2019). We use some recently
included promoter samples (experimentally verified) from RegulonDB
version 10.7 (Santos-Zavaleta et al. (2019)) as our independent test dataset.
Our benchmark dataset and test dataset are disjoint. The sample numbers
of promoter, its sub types and non-promoter used in 5-fold cross-validation
and in independent test purpose have been provided in Table 1.

2.2 Mathematical Formulation of DNA Sequence

The goal of formulating an effective mathematical expression which
represents a nucleotide sequence is feature extraction. It is challenging

i
i

“main” — 2020/6/18 — 1:37 — page 3 — #3 i
i

i
i

i
i

iPromoter-BnCNN 3

Table 1: Class-wise sample numbers in datasets used

Classes
Benchmark

Dataset
Independent
Test Dataset

Promoter 2860 256
Non-Promoter 2860 0
σ24-promoter 484 30
σ28-promoter 134 4
σ32-promoter 291 13
σ38-promoter 163 10
σ54-promoter 94 0
σ70-promoter 1694 199

to find an appropriate way of expressing a biological sequence such that
sufficient sequence-order information is kept. Computational methods
require vector representation for prediction or classification tasks (Chou
(2015)). We consider vector representation of two categories for our work.
We describe them in the following subsections.

2.2.1 Original Nucleotide Sequence
A DNA sequence can be expressed as follows:
D = N1, N2, N3, · · · , NL

where, L is the length of the DNA sequence and Ni ∈ {A, T,C,G}.
Although a DNA sequence comprising of nucleotides do not show any
distinguishing property when looked at visually, deep learning based
models are powerful enough to infer various distinguishing features
from local patterns if we can represent such sequence with appropriate
mathematical representation (Umarov and Solovyev (2017), Singh et al.
(2016), Xu et al. (2016)). In a DNA sequence, there can be four types of
monomers such as - A, T, C and G. So, our monomer representation of
each DNA sample is a 81×4 size two dimensional matrix (each sequence
is 81 nucleotide long in our dataset). Each nucleotide is represented by a
one hot vector (1 in one position, all other positions 0) of size four.

We also construct an overlapping trimer representation of each
DNA sequence. Each codon corresponding to a single amino acid is a
combination of three nucleotides. Full set of codons form the genetic
code. This is why trimers have special significance. In the L length DNA
sequence mentioned in this subsection, there are total L− 2 overlapping
trimers which are as follows:
N1N2N3, N2N3N4, N3N4N5, · · · , NL−2NL−1NL

There can be 43 = 64 kinds of possible trimers. We represent each trimer
with a one hot vector of size 64. Thus, each DNA sample is represented
by a 79× 64 size two dimensional matrix.

2.2.2 Structural Properties
Structural property refers to specific characteristics of DNA molecule such
as stability, rigidity or curvature (Meysman et al. (2012)). Conformational
properties are related to static DNA structure (geometrical property)
while physicochemical properties are related to dynamic DNA structure
(potential to change in conformation). These properties play an important
role in promoter prediction and classification (Abeel et al. (2008),
Bansal et al. (2014)). Chen et al. (2014b) constructed PseKNC-General
tool which can convert DNA sequence dataset into pseudo nucleotide
compositions providing many choices of physicochemical combinations.
This tool provides 90 physicochemical properties (role, twist, tilt etc)
for each of the 16 possible dimers and 12 physicochemical properties
(trinucleotide GC content, consensus role, consensus rigid etc) for each
of the 64 possible trimers. We implement physicochemical property
wise normalization (subtract mean and divide by standard deviation) so
that each property gets equal chance to act as distinguishing property.
In L length DNA sample, there are L − 1 overlapping dimers

such as N1N2, N2N3, N3N4, · · · , NL−1NL. We replace each of
these dimers with the 90 physicochemical properties and get a 80 ×
90 size two dimensional matrix for each 81 length DNA sequence
sample. Similarly, there are total L − 2 overlapping trimers such
as N1N2N3, N2N3N4, N3N4N5, · · · , NL−2NL−1NL. We replace
each of these trimers with the 12 physicochemical properties and get a
79 × 12 size two dimensional matrix for each 81 length DNA sequence
sample.

2.3 Model Architecture

We use four kinds of feature representations for our model - monomer
sequence matrix, trimer sequence matrix, dimer physicochemical property
matrix and trimer physicochemical property matrix (two dimensional) of
dimension (81, 4), (79, 64), (80, 90) and (79, 12), respectively as described
in Subsection 2.2. We provide our model architecture in Figure 2. Each of
these four unique representations of a sample sequence is passed through a
separate one dimensional convolutional neural network (1D CNN) branch
parallely as shown in the figure.

1D CNN has shown its potential and significance in recent studies
(Chen et al. (2017), Zhou et al. (2015), Oh et al. (2018)) related to local
feature extraction and sequence data classification when the positions of
the existing local features are not important. Each of the four branches
of 1D CNN works as automatic distinguishing feature extractors for our
classification task. The leftmost branch of Figure 2 gets us significant
local combinations of single nucleotides as distinguishing features. The
second branch learns locally important combination of codons. The third
branch provides us with structurally significant dimer combinations using
physicochemical properties. The fourth branch performs exactly the same
task but only this time on trimer combinations.

Each of the four different branches learns important distinguishing
features from local sequence patterns. In order to perform a successful
classification, we need to have a way to combine these independently
learnt and extracted features. Each of these four branches return a matrix
(two dimensional) of dimension mi × ni, where the branch number is
i. We flatten each of these matrices into a one dimensional vector and
concatenate all four of them. The resultant one dimensional concatenated
vector is of length

∑4
i=1mi × ni. This now works as a feature vector.

Instead of using this feature vector directly for classification, we pass this
vector through densely connected neural network layers so that our model
is able to learn successfully the importance of each feature and how to
combine them for the classification task at hand. These two dense layers
shown in Figure 2 coming just before the Softmax output dense layer are
the coordinator layers.

We use relu as activation function for each intermediate layer as
it has become very popular for its simplicity and effectiveness (Li and
Yuan (2017), Yarotsky (2017), Agarap (2018)). In the final layer, we use
Softmax activation function for binary classification purpose with two
nodes constituting the last dense layer. Neural networks when trained on
relatively small amount of data (similar to our case) has a good chance of
memorizing the training data instead of learning distinguishing features.
Dropout is a regularization method where some layer outputs are ignored in
a random manner. Such treatment changes the connectivity of a layer with
its previous layer on each epoch of training forcing the model architecture
to look different every time (Srivastava et al. (2014), Srivastava (2013),
Baldi and Sadowski (2013)). We use a high dropout rate of 0.5 (Output from
a particular layer node is ignored with 50% probability) after each of our
layers (except for the input layer and output layer) to prevent overfitting.

We use total six binary classifiers for sigma promoter identification
and classification into six classes. The details related to the six classifiers
have been discusses in Subsection 2.4. Each of these classifiers have the
same architecture as shown in Figure 2. But each of them have different

i
i

“main” — 2020/6/18 — 1:37 — page 4 — #4 i
i

i
i

i
i

4 R.Amin et al.

convolution filter and dense layer weights. We provide the .h5 files of each
of the six trained models as part of the supplementary information.

Fig. 2. Model Architecture

2.4 Model Selection and Performance Evaluation

Although promoter classification is a multi-class classification problem,
the dataset that we use has severe class imbalance problem. For example,
there are 1694 samples in σ70-promoter, the largest promoter subset while
only 94 samples belong to the smallest promoter subset σ54-promoter.
Our deep learning based model showed poor training performance when
we used the smart undersampling technique introduced for training
bTSSfinder tool by Shahmuradov et al. (2017). The probable reason is that
the minority classσ54 has only 94 samples and such low number of samples
from each class is not enough to train deep learning based models. We have
also tried out the popular Synthetic Minority Oversampling Technique
(SMOTe) in order to class balance our dataset in accordance with the
sample number of our majority class σ70. Although our model was able
to achieve high training performance, performance on validation set was
poor which indicates overfitting. The probable cause is that oversampling
techniques such as SMOTe fail to produce realistic samples when it comes
to high dimensional data (Lusa et al. (2013)).

To tackle this problem, we have used stage by stage binary
classification as shown in Table 2. The first binary classifier distinguishes
between promoter and non-promoter. Each class contains 2860 samples.
This number is larger than the largest promoter subset sample number. If
the DNA sequence is a promoter, the second binary classifier classifies
σ70-promoter and non σ70-promoter (σ24, σ28, σ32, σ38, σ54). The
next largest promoter subset belongs to σ24-promoter. If the promoter

is not σ70, then the third classifier classifies between σ24-promoter and
non σ24-promoter (σ28, σ32, σ38, σ54). This process goes on until we
reach a point while we only have two promoter subsets left - σ28 and σ54.
The last binary classifier distinguishes between these two classes, where
σ54-promoter is the smallest of promoter subsets.

All these six binary classifiers have the same architecture as of Figure
2. The only difference is the weights assigned to different network layers
because of the difference in training data. For example, the first classifier
is trained with promoter vs non-promoter training samples while the last
classifier is trained with σ28 vs σ54 training samples. The optimizer that
we have used to update the weight is Adam (Adaptive moment estimation)
while as loss function, we have used Categorical Crossentropy.

The hyperparameters to be tuned in our model architecture are of three
types.

• Layer: number of convolution filters in each convolution layer,
convolution filter size, number of dense layers, number of nodes in
each dense layer

• Function: choice of activation function in different layers, optimizer
and loss function

• Rate: learning rate, dropout rate

We use 5-fold cross-validation in order to tune our hyperparameters
such that we get the best validation performance. The final selected
hyperparameter values have been shown in Figure 2. We have also
experimented with our model after the inclusion of 4-mers as another input
branch. Such inclusion did not cause any improvement in result although it
caused computational overhead. So, we have not included any branch for
4-mers. We have used an extra layer of filter and kernel for di-nucleotide
structural property. This particular branch input has 90 columns which is
large compared to the column number of the other three input branches.
The extra layer assists the learning of such large number of features. It is
interesting to note that for all six of our binary classifiers, this particular
architecture shows the best performance. The reason may lie in the fact
that all binary classifiers deal with classification related to E. coli sigma
promoters.

We have used accuracy (acc), sensitivity (Sn), Specificity (Sp) and
Mathew’s Correlation coefficient (MCC) as metrics for performance
evaluation and comparison with other methods. The metrics are described
as follows:

Acc =
TP + TN

TP + TN + FP + FN

Sn =
TP

TP + FN

Sp =
TN

TN + FP

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

All symbols are directed towards binary classification. Here, TP, TN, FP
and FN denote the number of true positive, true negative, false positive
and false negative samples depending on model predicted label. Sn and
Sp are also known as true positive rate and true negative rate, respectively.
These four metrics are widely used for assessing the performance of works
related to genome analysis (Chen et al. (2014a), Chen et al. (2015), Ding
et al. (2014), Jia et al. (2016b), Jia et al. (2016c), Qiu et al. (2016), Liu
et al. (2017), Zhang et al. (2019)). Values related to accuracy, sensitivity
and specificity lie in the range [0, 1] while for MCC score, the range is
[-1, +1]. Higher value indicates better classification ability.

i
i

“main” — 2020/6/18 — 1:37 — page 5 — #5 i
i

i
i

i
i

iPromoter-BnCNN 5

Table 2: Multi Stage Classification Using Multiple Binary Classifiers

Binary
Classifier

Positive
Class

Positive
Class

Sample
No.

Negative
Class

Negative
Class

Sample
No.

Total
Sample

No.

Model 1 Promoter 2860 Non-promoter 2860 5720

Model 2 σ70 1694
σ24, σ28, σ32,
σ38, σ54 1166 2860

Model 3 σ24 484
σ28, σ32, σ38,

σ54 682 1166

Model 4 σ32 291 σ28, σ38, σ54 391 682
Model 5 σ38 163 σ28, σ54 228 391
Model 6 σ28 134 σ54 94 228

Fig. 3. Attention Mechanism Model Diagram

2.5 Potential Motif Identification

Specific local patterns frequently found in the samples of a class of
nucleotide sequences are often important for identifying that particular
class. Deep learning based classification models actively search for such
potential motifs. We have constructed an attention based model shown
in Figure 3 merging our branched CNN architecture with LSTM based
attention mechanism on the input sequence. The 81 size output vector of
the Softmax (81) layer of this trained model denote the activation of the
corresponding indexed nucleotide of the input sequence. A value greater
than 1

81
denotes activation of the corresponding nucleotide. Using this

model, we have identified potential motifs for identification of promoter,
σ28, σ38 and σ70 class shown in Table 3. For example, motif AAAAAA
can be found to be activated in 15% of the available promoter sequences
of the benchmark dataset.

2.6 Promoter Prediction in E. coli Genome Sequence

Umarov et al. (2019) used sequence-based deep learning models for
identifying TSS regions in long human genome. Although our work
is based on promoter classification on 81 length nucleotide sequences,

Table 3: Identified potential motifs using attention mechanism

Identified
Class

Motif
Sequence

Active
Occurrence
Percentage

AAAAAA 15
ATAAA 38Promoter
AAAAT 30
AAAAA 25
ATAAA 18Sigma28
TTAAA 13

Sigma38 CCGCT 10
ATATT 19
AATAT 13Sigma70
ATTTT 11

Fig. 4. Result of promoter classification model implementation on E. coli genome sequence
containing 12 genes and 8 TSSs. The large spikes of the graph denote probable promoter
regions and the red dots denote given TSS sites

we have tested our model on E. coli genome segment containing 14213
nucleotides and 12 genes obtained from RegulonDB version 10.7 (Santos-
Zavaleta et al. (2019)). We use sliding window approach on the long
genome where window size and stride are both 81. We make promoter
prediction on each 81 length window position. The high spikes in Figure
4 denote high probability of being promoter. The locations of the TSSs
show that our predictor model demonstrates moderate performance in
identifying promoter regions in long E. coli genome.

3 Results and Discussion
PCSF (Li and Lin (2006)), vw Z-curve (Song (2011)), Stability (Scheila
de Avila e Silva* (2014)) and iPro54 (Lin et al. (2014)) are some of the
state-of-art tools which can identify E. coli sigma promoters. But they do
not have the ability of sigma promoter classification. The only two tools
with promoter classification capability are iPromoter-2L (Liu et al. (2017))
and MULTiPly (Zhang et al. (2019)).

In order to compare our proposed method with the state-of-the-art
promoter identification and classification tools, a consistent benchmark
dataset and similar validation methods are required. So, we have used
the same training dataset and 5 fold cross-validation used by MULTiPly
(Zhang et al. (2019)) and iPromoter-2L (Liu et al. (2017)). Performance
comparison between the methods used for promoter identification has
been shown in Table 4. The superior performance of proposed iPromoter-
BnCNN tool can be seen in all four performance metrics for this particular
task.

We demonstrate performance comparison between MULTiPly,
iPromoter-BnCNN and iPromoter-2L in Table 5 on sigma promoter

i
i

“main” — 2020/6/18 — 1:37 — page 6 — #6 i
i

i
i

i
i

6 R.Amin et al.

Table 4: Promoter identification performance comparison using 5-fold
cross-validation on benchmark dataset

Method Sn Sp Acc MCC
PCSF 78.9% 70.7% 74.8% .498

vw Z-curve 77.8% 82.8% 80.3% .61
Stability 76.6% 79.5% 78.0% .562
iPro54 77.8% 83.2% 80.5 .61

iPromoter-2L 79.2% 84.2% 81.7% .634
MULTiPly 87.3% 86.6% 86.9% .739

iPromoter-BnCNN 88.3% 88.0% 88.2% .763

classification. Tool iPromoter-BnCNN shows superior performance over
MULTiPly for all the classification tasks. The sensitivity and specificity
of iPromoter-BnCNN for promoter identification and classification are not
only higher than MULTiPly but also the values show more consistency.
As a result, iPromoter-BnCNN shows considerably higher MCC score
than MULTiPly in all cases. Although iPromoter-2L achieved impressive
accuracy in σ32 and σ38 classification, there is a large imbalance in Sn
and Sp score which indicates class bias. The MCC score of this tool is
much lower compared to MULTiPly and iPromoter-BnCNN. It is to note
that all the tool results shown in Table 4 and Table 5 except for iPromoter-
BnCNN tool have been obtained from Zhang et al. (2019) and Liu et al.
(2017) articles.

We also show comparison of these three tools discussed above on an
independent test dataset obtained from RegulonDB version 10.7 (Santos-
Zavaleta et al. (2019)). The number of class based true positive and
false positive results have been provided in Table 6. Except for σ70
classification, iPromoter-BnCNN shows state-of-the-art performance on
independent test dataset as well. All independent test results have been
obtained through running the tools on the independent test dataset.

4 Conclusion
We have developed iPromoter-BnCNN in this research for sigma promoter
identification and classification in E. coli bacteria. Our architecture
combines four different kinds of features from each sample through the
use of four one dimensional convolution branches along with coordinator
dense layers at the end. Our proposed tool recognizes the specific
promoter types in a stage by stage manner with the goal of handling
the class imbalance problem. Extensive experiments using 5-fold cross-
validation on benchmark dataset and performance on independent test set
prove the effectiveness of our proposed method. We expect iPromoter-
BnCNN to act as a useful automation tool in the world of computational
biology. Constructing a species independent promoter identification and
classification model is a possible direction towards future research.

References
Abeel, T. et al. (2008). Generic eukaryotic core promoter prediction using

structural features of dna. Genome research, 18(2), 310–323.
Agarap, A. F. (2018). Deep learning using rectified linear units (relu).

arXiv preprint arXiv:1803.08375.
Baldi, P. and Sadowski, P. J. (2013). Understanding dropout. In Advances

in neural information processing systems, pages 2814–2822.
Bansal, M. et al. (2014). Role of dna sequence based structural features

of promoters in transcription initiation and gene expression. Current
opinion in structural biology, 25, 77–85.

Busby, S. and Ebright, R. H. (1994). Promoter structure, promoter
recognition, and transcription activation in prokaryotes. Cell, 79(5),
743–746.

Chen, T. et al. (2017). Improving sentiment analysis via sentence
type classification using bilstm-crf and cnn. Expert Systems with
Applications, 72, 221–230.

Chen, W. et al. (2014a). itis-psetnc: a sequence-based predictor for
identifying translation initiation site in human genes using pseudo
trinucleotide composition. Analytical biochemistry, 462, 76–83.

Chen, W. et al. (2014b). Pseknc-general: a cross-platform package
for generating various modes of pseudo nucleotide compositions.
Bioinformatics, 31(1), 119–120.

Chen, W. et al. (2015). irna-methyl: Identifying n6-methyladenosine sites
using pseudo nucleotide composition. Analytical biochemistry, 490,
26–33.

Chen, W. et al. (2016). irna-pseu: Identifying rna pseudouridine sites.
Molecular Therapy-Nucleic Acids, 5, e332.

Chou, K.-C. (2011). Some remarks on protein attribute prediction and
pseudo amino acid composition. Journal of theoretical biology, 273(1),
236–247.

Chou, K.-C. (2015). Impacts of bioinformatics to medicinal chemistry.
Medicinal chemistry, 11(3), 218–234.

Chou, K.-C. and Shen, H.-B. (2007). Recent progress in protein subcellular
location prediction. Analytical biochemistry, 370(1), 1.

Coelho, R. V. et al. (2018). Bacillus subtilis promoter sequences data set
for promoter prediction in gram-positive bacteria. Data in brief , 19,
264–270.

Ding, H. et al. (2014). ictx-type: A sequence-based predictor for
identifying the types of conotoxins in targeting ion channels. BioMed
research international, 2014.

Feng, P. et al. (2017). irna-psecoll: identifying the occurrence sites
of different rna modifications by incorporating collective effects of
nucleotides into pseknc. Molecular Therapy-Nucleic Acids, 7, 155–163.

Gama-Castro, S. et al. (2016). Regulondb version 9.0: high-level
integration of gene regulation, coexpression, motif clustering and
beyond. Nucleic acids research, 44(D1), D133–D143.

Gruber, T. M. and Gross, C. A. (2003). Multiple sigma subunits and
the partitioning of bacterial transcription space. Annual Reviews in
Microbiology, 57(1), 441–466.

He, W. et al. (2018). 70propred: a predictor for discovering sigma70
promoters based on combining multiple features. BMC systems biology,
12(4), 44.

Janga, S. C. and Collado-Vides, J. (2007). Structure and evolution of gene
regulatory networks in microbial genomes. Research in microbiology,
158(10), 787–794.

Jia, J. et al. (2016a). isuc-pseopt: identifying lysine succinylation sites
in proteins by incorporating sequence-coupling effects into pseudo
components and optimizing imbalanced training dataset. Analytical
biochemistry, 497, 48–56.

Jia, J. et al. (2016b). psuc-lys: predict lysine succinylation sites in proteins
with pseaac and ensemble random forest approach. Journal of theoretical
biology, 394, 223–230.

Jia, J. et al. (2016c). psumo-cd: predicting sumoylation sites in proteins
with covariance discriminant algorithm by incorporating sequence-
coupled effects into general pseaac. Bioinformatics, 32(20), 3133–3141.

Jishage, M. and Ishihama, A. (1995). Regulation of rna polymerase sigma
subunit synthesis in escherichia coli: intracellular levels of sigma 70 and
sigma 38. Journal of Bacteriology, 177(23), 6832–6835.

Li, Q.-Z. and Lin, H. (2006). The recognition and prediction of σ70
promoters in escherichia coli k-12. Journal of theoretical biology,
242(1), 135–141.

Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences. Bioinformatics,
22(13), 1658–1659.

i
i

“main” — 2020/6/18 — 1:37 — page 7 — #7 i
i

i
i

i
i

iPromoter-BnCNN 7

Table 5: Sigma promoter classification performance comparison between MULTiPly (MU), iPromoter-BnCNN (Bn) and iPromoter-2L (2L) using 5-fold
cross-validation on benchmark dataset
Performance

Metrics
sigma24 sigma28 sigma32 sigma38 sigma70

MU Bn 2L MU Bn 2L MU Bn 2L MU Bn 2L MU Bn 2L
Acc 91.2% 93.8% 94.5% 95.9% 96.1% 96.8% 85.7% 90.6% 94.4% 85.3% 91.6% 94.7% 84.9% 87.3% 80.7%
Sn 88.8% 93.3% 72.5% 95.9% 97.8% 42.5% 82.2% 91.7% 52.6% 83.3% 94.9% 15.3% 90.4% 91% 95.3%
Sp 92.9% 94.1% 96.9% 91.3% 93.6% 99.5% 88.4% 89.8% 99.1% 86.7% 89.3% 99.5% 76.9% 82.2% 59.4%

MCC .818 .873 .734 .876 .918 .571 .708 .9% .652 .699 .833 .296 .685 .737 .606

Table 6: Performance comparison between MULTiPly (MU), iPromoter-BnCNN (Bn) and iPromoter-2L (2L) for identifying promoters and their types
on the independent test dataset

Result
Promoter sigma24 sigma28 sigma32 sigma38 sigma70

MU Bn 2L MU Bn 2L MU Bn 2L MU Bn 2L MU Bn 2L MU Bn 2L
TP 238 245 238 19 28 18 0 1 1 5 10 10 4 3 2 180 179 187
FN 18 11 18 11 2 12 4 3 3 8 3 3 6 7 8 19 20 12

Li, Y. and Yuan, Y. (2017). Convergence analysis of two-layer neural
networks with relu activation. In Advances in Neural Information
Processing Systems, pages 597–607.

Li, Y. et al. (2015). Deep feature selection: Theory and application
to identify enhancers and promoters. In International Conference
on Research in Computational Molecular Biology, pages 205–217.
Springer.

Lin, H. et al. (2014). ipro54-pseknc: a sequence-based predictor for
identifying sigma-54 promoters in prokaryote with pseudo k-tuple
nucleotide composition. Nucleic acids research, 42(21), 12961–12972.

Lin, H. et al. (2017). Identifying sigma70 promoters with novel pseudo
nucleotide composition. IEEE/ACM transactions on computational
biology and bioinformatics, 16(4), 1316–1321.

Liu, B. et al. (2015). Identification of real microrna precursors with
a pseudo structure status composition approach. PloS one, 10(3),
e0121501.

Liu, B. et al. (2017). ipromoter-2l: a two-layer predictor for
identifying promoters and their types by multi-window-based pseknc.
Bioinformatics, 34(1), 33–40.

Lusa, L. et al. (2013). Smote for high-dimensional class-imbalanced data.
BMC bioinformatics, 14(1), 106.

Meysman, P. et al. (2012). Dna structural properties in the classification of
genomic transcription regulation elements. Bioinformatics and Biology
Insights, 6, BBI–S9426.

Oh, J. et al. (2018). Learning to exploit invariances in clinical time-
series data using sequence transformer networks. arXiv preprint
arXiv:1808.06725.

Qiu, W.-R. et al. (2016). iptm-mlys: identifying multiple lysine ptm sites
and their different types. Bioinformatics, 32(20), 3116–3123.

Rahman, M. S. et al. (2019a). ipro70-fmwin: identifying sigma70
promoters using multiple windowing and minimal features. Molecular
Genetics and Genomics, 294(1), 69–84.

Rahman, M. S. et al. (2019b). ipromoter-fsen: Identification of bacterial
σ70 promoter sequences using feature subspace based ensemble
classifier. Genomics, 111(5), 1160–1166.

Raina, S. et al. (1995). The rpoe gene encoding the sigma e (sigma 24)
heat shock sigma factor of escherichia coli. The EMBO journal, 14(5),
1043–1055.

Santos-Zavaleta, A. et al. (2019). Regulondb v 10.5: tackling challenges
to unify classic and high throughput knowledge of gene regulation in e.
coli k-12. Nucleic acids research, 47(D1), D212–D220.

Scheila de Avila e Silva*, Franciele Forte, I. T. S. T. A. G. J. G.
A. P. L. D. S. E. (2014). Dna duplex stability as discriminative

characteristic for escherichia coli σ54-and σ28-dependent promoter
sequences. Biologicals, 42(1), 22–28.

Shahmuradov, I. A. et al. (2017). btssfinder: a novel tool for the prediction
of promoters in cyanobacteria and escherichia coli. Bioinformatics,
33(3), 334–340.

Singh, S. et al. (2016). Predicting enhancer-promoter interaction from
genomic sequence with deep neural networks. bioRxiv, page 085241.

Song, K. (2011). Recognition of prokaryotic promoters based on a novel
variable-window z-curve method. Nucleic acids research, 40(3), 963–
971.

Srivastava, N. (2013). Improving neural networks with dropout. University
of Toronto, 182, 566.

Srivastava, N. et al. (2014). Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1), 1929–1958.

Towsey, M. et al. (2008). The cross-species prediction of bacterial
promoters using a support vector machine. Computational biology and
chemistry, 32(5), 359–366.

Umarov, R. et al. (2019). Promoter analysis and prediction in the human
genome using sequence-based deep learning models. Bioinformatics,
35(16), 2730–2737.

Umarov, R. K. and Solovyev, V. V. (2017). Recognition of prokaryotic and
eukaryotic promoters using convolutional deep learning neural networks.
PloS one, 12(2), e0171410.

Xu, W. et al. (2016). Sd-msaes: Promoter recognition in human genome
based on deep feature extraction. Journal of biomedical informatics, 61,
55–62.

Xu, Y. et al. (2013). isno-aapair: incorporating amino acid pairwise
coupling into pseaac for predicting cysteine s-nitrosylation sites in
proteins. PeerJ , 1, e171.

Xu, Y. et al. (2014). ihyd-pseaac: Predicting hydroxyproline and
hydroxylysine in proteins by incorporating dipeptide position-specific
propensity into pseudo amino acid composition. International journal
of molecular sciences, 15(5), 7594–7610.

Yarotsky, D. (2017). Error bounds for approximations with deep relu
networks. Neural Networks, 94, 103–114.

Zhang, M. et al. (2019). Multiply: a novel multi-layer predictor for
discovering general and specific types of promoters. Bioinformatics,
35(17), 2957–2965.

Zhou, X. et al. (2015). Icrc-hit: A deep learning based comment sequence
labeling system for answer selection challenge. In Proceedings of the
9th International Workshop on Semantic Evaluation (SemEval 2015),
pages 210–214.

	1 Introduction
	2 Materials and Methods
	2.1 Benchmark Dataset
	2.2 Mathematical Formulation of DNA Sequence
	2.2.1 Original Nucleotide Sequence
	2.2.2 Structural Properties

	2.3 Model Architecture
	2.4 Model Selection and Performance Evaluation
	2.5 Potential Motif Identification
	2.6 Promoter Prediction in E. coli Genome Sequence

	3 Results and Discussion
	4 Conclusion

