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Abstract  

Copy number variation plays important roles in human complex diseases. The detection of 

copy number variants (CNVs) is identifying mean shift in genetic intensities to locate 

chromosomal breakpoints, the step of which is referred to as chromosomal segmentation. Many 

segmentation algorithms have been developed with a strong assumption of independent 

observations in the genetic loci, and they assume each locus has an equal chance to be a breakpoint 

(i.e., boundary of CNVs). However, this assumption is violated in the genetics perspective due 

to the existence of correlation among genomic positions such as linkage disequilibrium (LD). 

Our study showed that the LD structure is related to the location distribution of CNVs which 

indeed presents a non-random pattern on the genome. To generate more accurate CNVs, we 

therefore proposed a novel algorithm, LDcnv, that models the CNV data with its biological 

characteristics relating to genetic correlation (i.e., LD). To evaluate the performance of LDcnv, 

we conducted extensive simulations and analyzed large-scale HapMap datasets. We showed 

that LDcnv presents high accuracy, stability and robustness in CNV detection and higher 

precision in detecting short CNVs compared to existing methods. We also theoretically 

demonstrated the correlation structure of CNV data, which further supports the necessity of 

integrating biological structure in statistical methods for CNV detection. This new 

segmentation algorithm has a wide scope of application with next-generation sequencing data 

analysis and single-cell sequencing analysis. 
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Author Summary 

Copy number variants (CNVs) refers to gains or losses of the DNA segments in comparison to 

a reference genome. CNVs have garnered extensive interests in recent years as they play an 

important role susceptibility to disorders and diseases such as autism, schizophrenia and cancer 

[1-7]. Although innovation in modern technology is promoting the discoveries related to 

CNVs, the methodology for CNV detection is still lagging, which limits the novel discoveries 

regarding the role of CNVs in complex diseases. In this study, we are proposing a novel 

segmentation algorithm, LDcnv, to accurately locate the breakpoints or boundaries of CNVs 

in the human genome. Instead of utilizing an independent assumption of the signal intensities 

as has been used in traditional segmentation algorithms, LDcnv models the correlation 

structure in the genome in a change-point CNV detection model, which allows for accurate and 

fast computation with a whole genome scan. Our study showed strong theoretical evidence of 

the existence of correlation structure in real CNV data, and we believe that taking this evidence 

into consideration will improve the power of CNV detection. Extensive simulation studies have 

demonstrated the advantage of the LDcnv algorithm in stability, robustness and accuracy over 

existing methods. We also used high-quality CNV profiles to further support the superior 

performance of the LDcnv algorithm over existing methods. The development of the LDcnv 

algorithm provides great insights for new directions in developing CNV detection tools. 
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1. Introduction 

Copy number variants (CNVs), as a major source of genetic variation in the human genome, 

are gains or losses of the DNA segments in comparison to a reference genome. Recently, copy 

number variation has garnered considerable interest as it plays an important role in the 

susceptibility to disorders and diseases such as autism, schizophrenia and cancer [1-7]. It has 

been found that approximately 12% of the genome is subject to CNVs and nearly 80% of cancer 

genes harbor CNVs [8]. To date, CNV studies have been intensively conducted in many disease 

types which demonstrates that CNVs account for an abundance of genetic variation and play 

essential roles in the etiology of cancer [9-11], autoimmune diseases [12, 13] and neurological 

diseases [14, 15]. Specifically, about 200 CNVs have been found to be associated with breast 

cancer risk, among which 21 had prognostic potential [9]. Also, copy number gain of beta-

defensin genes has been revealed to be associated with increased risk of psoriasis in three 

independent cohorts of European origin [9, 14, 16]. Two recent reports also illustrated the 

possible roles of CNVs in lung cancer predisposition [17, 18]. In one of these two reports, an 

approximately 2-fold increased risk was observed among carriers with deletion of the gene 

coding region of WWOX compared to non-carriers [17]. 

      Although the potential clinical application of CNVs still remains uncertain, understanding 

the mechanisms underlying these influences will be instrumental for many basic research areas. 

Consequently, the detection and association of CNVs with quantitative traits and clinical 

phenotypes comprise critical steps toward a better understanding of disease etiology. However, 

due to the complexity of CNV genetics as well as numerous factors in the data generation and 

computational analyses that may lead to spurious associations, the discovery of CNVs in 

human diseases is still inadequate, which places obstacles in the path of utilizing CNVs as 

important biomarkers for clinical applications.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032680doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032680


 5 

      Technically, the detection of CNVs is the finding of breakpoints or boundaries of copy 

number regions from the genotyping signals, the step of which is called chromosomal 

segmentation. Change-point tests have been commonly used and implemented in many 

software and tools for chromosomal segmentation [19-21]. Among them, circular binary 

segmentation (CBS) is widely used and is based on an exhaustive test [22]. This segmentation 

algorithm has been widely utilized in whole exome sequencing data tools such as ExomeCNV 

[23] and CODEX [24]. In EXCAVATOR [25], a shifting level model segmentation algorithm 

was used to incorporate the distance between two genetic sites. More recently, a novel 

segmentation procedure was utilized in modSaRa that adopted a local search strategy and was 

demonstrated to be suitable for whole genome analysis with low computational complexity [26-

28]. Nevertheless, all of these algorithms were developed with a strong assumption of independent 

observations in the genetic loci and they assume each locus has an equal chance to be a breakpoint 

(i.e., boundary of CNVs). However, this assumption is violated in the genetics perspective given 

the existence of inter-correlation among genomic positions, which is referred to as linkage 

disequilibrium (LD). Dictated by the presence of recombination hotspots that segment the 

genome into separate LD blocks, LD describes the correlated transmission of the alleles at 

adjacent locations in the genome. Interestingly, it was demonstrated early on that CNVs are 

outcomes of evolution and they originated from recombination-based processes [29]. These 

relationships demonstrate the possibility of the existence of CNV breakpoints located at the 

recombination hotspots, which violates the assumption of previous segmentation methods that 

assume each genetic location has an equal chance to be a CNV breakpoint. This further implies the 

importance of integrating the biological characteristics (i.e., LD structure) into statistical modeling 

for CNV detection. 

      Motivated by this fact, we here developed an accurate and fast segmentation algorithm by 

modeling the genomic correlation structure with a local search strategy for optimized 
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computational efficiency. Early in 1996, Kim HJ. [30] explored a likelihood ratio test for non-

independent observations, yet its computational complexity with its exhaustive search largely 

limited its application. To investigate the performance of the newly proposed algorithm, we 

conducted simulation studies to investigate its performance in single nucleotide polymorphs 

(SNP) array studies in a variety of scenarios. In this study, we demonstrated the improved 

performance of the novel algorithm in array-based real data analysis by using a set of “gold 

standard validation sets” of CNVs from the HapMap projects [31-33]. Overall, the new 

algorithm presented high sensitivity and accuracy in CNV detection, especially single copy 

changes. This new segmentation algorithm has a wide scope of application so it can be 

implemented in CNV detection tools for next-generation sequencing data analysis and single-

cell sequencing analysis. 

2. Materials and Methods 

2.1  Notations and models 

We use 𝐘 = (𝑌!, … , 𝑌")# to denote the genetic intensities for a sequence with 𝑚 biomarkers 

(e.g., SNPs in array data, or exon in whole exome sequencing data). For example, 𝐘 may 

present the log R Ratio (LRR) intensities of a chromosome from SNP array data. The model 

we consider is a change-point method with the basic model as 

𝑌$ = 𝜇$ + 𝜀$ , 𝑖 = 1,2, … ,𝑚. (1) 

Its underlying mean 𝒖 = (𝑢!, … , 𝑢")# is a piecewise constant vector. A change-point method is 

to find change points defined as a position 𝜏 such that 𝜇% ≠ 𝜇%&!. The locations of the change 

points therefore indicate the location of breakpoints or boundaries of CNVs. We assume that there 

are 𝑀 change points in the sequence, 0 < 𝜏! < ⋯ < 𝜏' < 𝑚. Considering the sparsity of CNVs 

across the genome, we assume 𝑚 is large and 𝑀 is small. The goal is therefore to estimate the 

number of change points, 𝑀, and the location of the change points by the location vector, 𝝉 =
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(𝜏!, … , 𝜏')#. Many studies have worked on the problem of identifying the location of breakpoints 

when the Y’s are independent, such as CBS and screening and ranking algorithm (SaRa) [22, 26]. 

In this paper, to capture the biological characteristics in the process of copy number states 

inference, we assume the genetic intensities follow a multivariate normal distribution given the 

dependence structure of the genome (i.e., LD). 

𝑌~𝑀𝑉𝑁(𝜇, Σ),																	(2) 

where Σ is the covariance matrix with dimension 𝑚 ×𝑚. The covariance matrix (Σ) can be 

estimated by using the correlation matrix estimated from the samples or an exterior dataset 

such as samples from the 1000 Genomes project [34].  

      For a point 𝑥, a local diagnostic function 𝐷(𝑥) is defined as the average mean difference 

in the observations before and after the point. 

𝐷(𝑥,𝑤) = ∑ 𝑌(&!)*/𝑤+
*,! − ∑ 𝑌(&*/𝑤+

*,! , (3) 

where 𝑤 is the bandwidth. The quantity of 𝐷(𝑥,𝑤) depends on the local 2𝑤	data points 𝑌D  : 

𝑌%&!)+,......	𝑌% ,......	𝑌%&+ where 𝑌D~𝑀𝑉𝑁E𝜇F, ΣDG. 𝜇F is a sub-vector of 𝜇 with length 2𝑤; ΣD is a 

sub diagonal matrix of the covariance matrix Σ with dimension 2𝑤 × 2𝑤, respectively. Then 

𝐷(𝑥) can be rewritten as 𝐷(𝑥) = 𝑎⃗𝑌D . 𝑎⃗ is a 2𝑤 vector takes the form !
+
[𝕝+×!		−𝕝+×!].   By 

derivation with the linear property of multivariate normal distribution, we obtained 

𝐷(𝑥)~𝑁E𝑎⃗𝜇F, 𝑎⃗ΣD𝑎⃗#G. It turned out that the distribution of the local diagnostic function 

became a univariate normal with a covariance matrix depending on the local information, ΣD . 

Since both 𝜇F and ΣD are known or can be estimated, the mean and variance of 𝐷(𝑥) are 

functions of bandwidth	𝑤 and only depend on the local sequence. As such, we proposed the 

algorithm, referred to LDcnv, based on a multivariate normal assumption that systematically 

integrated the biological characteristics into statistical modeling of the genetic intensities.  

2.2 Copy number inference 
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After calculation of the local diagnostic statistic 𝐷(𝑥), hypothesis testing is needed to find 

change-point candidates by a local screening and ranking strategy [26, 35]. A similar strategy 

has been used in our previous work [28] which guarantees computational speed of the CNV 

detection method in a whole genome scan. 

      Providing the distribution of 𝐷(𝑥), we first define the 𝑤-local maximizer of a function. 

For any data point 𝑥, the interval (𝑥 − 𝑤, 𝑥 + 𝑤) is called the 𝑤-neighborhood of 𝑥. And, 𝑥 

is a 𝑤-local maximizer of function 𝑓(∙) if 𝑓 reaches the maximum at 𝑥 witin the 𝑤-

neighborhood of 𝑥. In other words,  

𝑓(𝑥) ≥ 𝑓(𝑥!)for	all	𝑥! ∈ (𝑥 − 𝑤, 𝑥 + 𝑤). (4) 

Then let ℒ be the set of all local maximizers of the function |𝐷(𝑥, 𝑤)| and we can select a 

subset ℳR = {𝜏̂! < 𝜏̂. < ⋯ < 𝜏̂'/ } ⊂ ℒ by setting a threshold |𝐷(𝜏̂, 𝑤)| > 𝛾, where ℳR  and 𝑀R  

are the estimators for the locations and the number of change-points, respectively. To set up 

the threshold 𝛾, we adopted a multiple comparison method using a false discovery rate 

approach (Supplementary Text A1). Empirical distribution of the local maximizers of the 

diagnostic statistic was generated mimicking the normal sequence with no change-points. As 

a result, the local maximizers ℳR  or, equivalently, local minimizers of p-values were selected.  

      Then we used the modified Bayesian Information Criteria (mBIC) to further eliminate 

false positives as proposed in [36]: 

𝑚𝐵𝐼𝐶8𝑀:; =
𝑛
2 𝑙𝑜𝑔8σC"#

$ ; + 𝐽E𝑙𝑜𝑔(𝑛) +
1
2 G 𝑙𝑜𝑔 H

𝑥(&)
𝑛 −

𝑥(&())
𝑛 I

"#*)

&+)

, (5) 

where 𝑀:  is all the possible values of 𝑀R  and σC"#
$  is the maximum likelihood estimator of the 

variance assuming 𝑥!, … , 𝑥'0  are change points. Then the final estimated number and the 

locations of change points are 𝑀R 1 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑚𝐵𝐼𝐶(𝑀\)) and ℳR = {𝜏̂! < 𝜏̂. < ⋯ < 𝜏̂'/!}, 

respectively. For copy number inference, Gaussian mixture model-based clustering was used 

for copy number state classification. Each segmented region will be classified using a five-
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state classification scheme (deletion of a single copy, deletion of double copies, 

normal/diploids, duplication of a single copy, and duplication of double copies) [37]. 

2.3 Numerical simulation studies 

With the new proposed algorithm, we conducted extensive simulations to evaluate the 

performance in practice. We simulated SNP array data for demonstration of its advantage over 

existing algorithms. 

      To simulate the correlated genomic intensities, we used the first-order autoregressive (AR1) 

process: 

𝑌$ = 𝑐 + ϕ𝑌$)! + 𝜀$ , 𝑖 = 1,2, … 	𝑛,																									(6) 

where 𝑌$ was the intensities for the i-th marker; 𝜀$ was a Gaussian white noise process with 

mean zero and variance σ2.; ϕ was a known coefficient that controlled the autocorrelation of 

the data series (for example, |ϕ | < 1 generates a stationary sequence); c was a constant and n 

was the total number of markers. The underlying mean 𝜇 , variance 𝑣𝑎𝑟(𝑌$)  and auto-

covariance 𝐵3 were given as: µ = 4
!)5

, 𝑣𝑎𝑟(𝑌$) =
6"#

!)5#
 and 𝐵3 =

6"#

!)5#
ϕ|3|. One advantage of 

using the AR1 process is that the change of the underlying distribution of the white noise term 

allows one to flexibly adjust the distribution of the data, especially when the normality is not 

satisfied. Also, with the AR1 process, we did not need to decompose the covariance matrix , 

which consequently generated data much faster than the multivariate normal distribution 

assumption-based process. 

      We randomly generated LRR and B Allele frequencies (BAF) intensities for 100 sequences 

(i.e., chromosomes) with 20,000 markers. For each sequence, 40 dispersed CNV segments 

were generated, the locations of which were randomly selected and were not overlapping with 

each other. The mean and variance were empirical values provided by the Illumina website 

(https://www.illumina.com/documents). We constructed different scenarios with different 
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combinations of CNV sizes, status and correlation coefficient. The CNV sizes varied from 

10~50 markers, 50~100 markers and 100~200 markers. The CNV status included deletion of 

a single copy (Del.s), deletion of double copies (Del.d), duplication of a single copy (Dup.s) 

and duplication of double copies (Dup.d). To investigate the CNV data with different levels of 

correlations, the value of ϕ. which was equivalent to the Pearson’s correlation coefficient in 

theory, was set to be 0.1, 0.3 and 0.5, respectively. With the generated CNV data, we compared 

the proposed method to the performance of an independence assumption-based method, CBS, 

and a hidden Markov model based method, PennCNV [22, 38]. The PennCNV assumes a 

Markov chain; however, the LD structure is not directly incorporated in the statistical modeling. 

The performance of these methods was demonstrated by computing the true positive rate (TPR) 

and false positive rate (FPR). 

2.4 Performance evaluation by application to HapMap datasets 

To further assess the proposed LDcnv algorithm, we analyzed 180 healthy individuals with 

CNV profiles having been validated experimentally or statistically by three previous 

microarray studies [31-33]. The HapMap project utilized stringent genotyping quality control 

(QC) and merged results from multiple calling algorithms, which finally produced 856 high-

quality CNV calls [33]. McCarroll et al. identified 1,320 high resolution CNV calls by joint 

analysis of multi-platforms data including Affymetrix SNP array, array CGH and fosmid end-

sequence-pair, whereas Conrad et al. used tiling oligonucleotide array to generate a map of 

11,700 CNVs, among which 8,599 were independently validated through stringent validation 

procedures such as quantitative PCR [31, 32]. The SNP array data were downloaded from the 

international HapMap 3 Consortium [33]. All individuals were Utah residents with Northern 

and Western European ancestry (CEU). Genotype data were generated by the genotyping 

platform Affymetrix Human SNP array 6.0. Specifically, a stringent QC procedure was 
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adopted (e.g., the CNV must overlap with 2 to 20 exons with less than 5% missing rate across 

all samples) to generate high-quality CNV profiles.  

      Using the final “gold standard validation sets”, we compared the performance of the LDcnv 

method against PennCNV and CBS [22, 38]. To obtain high-quality CNV profiles, we excluded 

CNVs with less than ten markers in the calling results. Besides, we used the database of 

genomic variants (DGV) [17] as a reference of common variants as a quality control step to 

keep the high-quality CNV profile.  DGV curates CNV records from 55 independent studies 

of clinically normal populations with 202,431 CNV regions.  

      These methods were assessed by the precision rate, recall rate and F1 score measures. The 

precision rate was defined as the ratio of identified true positives over the total number of 

identified CNVs. The recall rate was the ratio of identified true positives over the total number 

of “true CNVs” in the “gold standard validation sets”. The F1 score was defined as the 

harmonic mean of precision and recall rate which reflected the overall accuracy. Moreover, we 

also evaluated the performance in subsets of the validation sets of those that were less than ten 

markers to assess the performance in detecting short CNVs. 

2.5 Theoretical Derivation: Correlation Structure in CNV data 

In this study, we hypothesized that the integration of biological characteristics will increase the 

accuracy of CNV detection. In this section, we therefore provide theoretical evidence to 

support that the genetic intensity data are presenting a correlation structure that should be 

deliberated in statistical modeling for CNV detection.  

      We start from the generation of the two SNP array intensities, LRR and BAF, which has 

been introduced in Wang et al. [38] and summarized here. For one SNP with two alleles defined 

as A and a, the raw signal intensity values are measured for each allele and then are processed 

with a five-step normalization procedure using the information of all SNPs. X and Y values are 

produced for each SNP, representing the normalized signal intensity on the A and a alleles, 
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respectively. Two additional measures are then calculated for each SNP, where 𝑅 = 𝑋 + 𝑌 

representing the total signal intensity, and 𝜃 = 89:;83(=/?)
A/.

 referring to the relative allelic signal 

intensity ratio. As a normalized measure of total signal intensity, LRR measures the normalized 

total intensity of the possible alleles for a given marker, from which the magnitude of mean 

changes (or called jump size) are used for inference of the boundaries of CNVs (i.e., 

breakpoints). The LRR value for each SNP is calculated as 𝐿𝑅𝑅 = 𝑙𝑜𝑔.E𝑅BCDE9FEG/𝑅E(HE4;EGG 

where 𝑅E(HE4;EG is computed from linear interpolation of canonical genotype clusters [39]. 

      In our study, to present the correlation of two adjacent bi-allelic SNPs, we assume the 

reference allele and alternative allele were A and a for the first SNP, and B and b alleles for the 

second SNP. The total signal intensities for the two alleles are therefore 𝑋, + 𝑌, and 𝑋- + 𝑌-. 

We assume that we observe the two reference alleles A and B with frequencies 𝑝I and 𝑝J in 

the whole population. Under the Hardy-Weinberg equilibrium assumption, the joint probability 

for the nine genotypes can be calculated (shown in Table 1). For example, for the genotype 

AABB, the genotype frequency will be (𝑝I𝑝J + 𝐷IJ). where 𝐷IJ is the coefficient of linkage 

disequilibrium between the two SNPs. 

      First, to calculate the correlation of LRR between the two SNPs, we need to compute the 

correlation of the non-linear logarithm transformation of the observed total signal intensities  

𝑙𝑜𝑔.E𝑅BCDE9FEG/𝑅E(HE4;EGG. The observed total signal intensities, 𝑅BCDE9FEG, can be calculated 

from the dataset, and the value of 𝑅E(HE4;EG  is a fixed value. After applying the Taylor 

expansions [40], the correlation of the LRR intensities can be approximately represented by 

the correlation of 𝑅BCDE9FEG,Iand 𝑅BCDE9FEG,J, which is expressed by   

𝜌,- =
./0(1!*2!,1"*2")

4056(1!*2!)056(1"*2")
.                 (7) 

Derivation of the 𝜌,- will show the correlation structure of the LRR intensities, which will be 

further discussed in the results (Section 3.1). 
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3. Results 

3.1 Theoretical proof revealed the correlation structure in intensity signals 

First, to further demonstrate the necessity of integrating the correlation structure into the 

segmentation algorithm, we initiated a theoretical derivation to demonstrate the correlation 

structure of the genetic intensities (i.e., LRR) between two adjacent genomic loci. As a 

continued discussion of Section 2.5, we have the correlation coefficient of LRR between two 

loci expressed as 𝜌IJ =
4BF(?$&=$,?%&=%)

LF89(?$&=$)F89(?%&=%)
, in which X and Y are the normalized signal 

intensities of the two alleles in a SNP (e.g., A and a).  

      For 𝑐𝑜𝑣(𝑋I + 𝑌I, 𝑋J + 𝑌J), we obtained 

𝑐𝑜𝑣(𝑋, + 𝑌,, 𝑋- + 𝑌-) = 𝑐𝑜𝑣(𝑋,, 𝑋-) + 𝑐𝑜𝑣(𝑋,, 𝑌-) + 𝑐𝑜𝑣(𝑌,, 𝑋-) + 𝑐𝑜𝑣(𝑌,, 𝑌-). (8) 

As 𝑐𝑜𝑣(𝑋,, 𝑋-) = 𝐸(𝑋,𝑋-) − 𝐸(𝑋,)𝐸(𝑋-), the expected values of the normalized signal 

intensities 𝑋,, 𝑋- and the expected values of their product need to be derived. We assume the 

joint probability density function to be 𝑓1!,1"(𝑥,, 𝑥-) which are bivariate normal distributions 

conditional on the genotype 𝐺:	

𝑓1!,1"(𝑥,, 𝑥-) = G𝑓1!,1"(𝑥,, 𝑥-|𝐺)
7

8+)

𝑃(𝐺 = 𝐺8),								(9) 

where 𝐺 = [𝐴𝐴𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝑏]# is the vector of genotypes that contain alleles A and 

B. After mathematical derivation (detailed in Supplementary Text A2), the covariance 

between the two normalized signal intensities can be formulated as:  

𝑐𝑜𝑣(𝑋,, 𝑋-) = G𝐸(𝑋,|𝐺8)𝐸(𝑋-|𝐺8)[𝑃(𝐺 = 𝐺8) − 𝑞(𝐺 = 𝐺8)].
7

8+)

							(10) 

 𝑞(𝐺 = 𝐺*) is the genotype frequency under the condition that the two loci are in LD. For 

example, 𝑞(𝐴𝐴𝐵𝐵) = 𝑝I.𝑝J. . The expression of all the other genotype frequencies 𝑃(𝐺 = 𝐺*) 

can be found in Table 1. 
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      Similarly, we can derive the other three terms in equation (8) and then obtain 

𝑐𝑜𝑣(𝑋I + 𝑌I, 𝑋J + 𝑌J) as 

GG𝐸(𝑋,|𝐺&8)9#$𝐸(𝑋-|𝐺&8)9%$𝐸(𝑌,|𝐺&8))(9#$𝐸(𝑌-|𝐺&8))(9%$[𝑃(𝐺&8) − 𝑞(𝐺&8)]
7

8+)

7

&+)

,			(11) 

where	𝐺!. = [𝐴𝐴𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝑏]# , 𝐺.. = [𝐴𝐴𝐵𝑏, 𝐴𝐴𝑏𝑏, 𝐴𝑎𝐵𝑏, 𝐴𝑎𝑏𝑏]# , 𝐺N. =

[𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝐵, 𝑎𝑎𝐵𝐵, 𝑎𝑎𝐵𝑏]# 	and	𝐺O. = [𝐴𝑎𝐵𝑏, 𝐴𝑎𝑏𝑏, 𝑎𝑎𝐵𝑏, 𝑎𝑎𝑏𝑏]# .  𝐼!$ and 𝐼.$  are 

indicator functions of whether 𝑋I and 𝑋J contribute to the bivariate density in equation (9). 

𝐼!$ = 1, if 𝑖 = 1 or 2. 𝐼.$ = 1, if 𝑖 = 1 or 3. Otherwise, 𝐼!$ =	 𝐼.$ = 0. 

      Combining results from equation (11) and the expression of the denominator of 𝜌IJ  in 

equation (7) from Supplementary Text A3, the correlation of LRR between the two loci can 

be defined as: 

𝜌,- =
∑ ∑ 𝐸(𝑋,|𝐺&8)9#$𝐸(𝑋-|𝐺&8)9%$𝐸(𝑌,|𝐺&8))(9#$𝐸(𝑌-|𝐺&8))(9%$[𝑃(𝐺&8) − 𝑞(𝐺&8)]7

8+)
7
&+)

[𝜋)𝑣𝑎𝑟(𝑋,) + 𝜋$𝑣𝑎𝑟(𝑌,)[𝜋:𝑣𝑎𝑟(𝑋-) + 𝜋7𝑣𝑎𝑟(𝑌-)	
. (12) 

According to expression of Equation (12), the correlation of LRR depends on the correlation 

of the two SNPs which was measured by the LD coefficient 𝐷IJ . For example, 𝑃(𝐺𝑖𝑘) −

𝑞(𝐺𝑖𝑘) = E𝑝𝐴𝑝𝐵 + 𝐷IJG
2
− 𝑝𝐴

2𝑝𝐵
2  for genotype AABB (𝑖 = 1, 𝑘 = 1). 𝜌,- = 0 if 𝐷IJ = 0. 

      In summary of this section, we found that the correlation of LRR between two loci are 

related to the coefficient of LD measure, although the relationship does not admit a simple 

format. 

3.2 Real data shows that that CNV locations are related to the Genomic 

Structure 

To explore the relationship between CNV locations and LD structure, we utilized the high-

quality CNV profile from the international HapMap 3 Consortium which merged probe-

intensity data from both Affymetrix and Illumina arrays [33].  The CNV profile set contained 
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856 records for 1,184 individuals. We randomly selected 300 high-quality CNVs and mapped 

them to the LD block maps (Figure 1). Obviously, most of these CNVs are located outside of 

the LD blocks (across block, hybrid or random), with only 2.0% residing within LD blocks 

(inter-block) (Supplementary Table 1). Among the CNV types that do not involve LD structure 

(i.e., across block, inter-block and hybrid), there were only 10.7% of the CNVs were located 

within blocks. These results implicated that CNVs are not randomly distributed across the 

genome, and their distribution is closely related to the local LD structure. Such results 

motivated the development of the LDcnv algorithm and are consistent with the theory 

derivation of the correlations structure in SNP array data (Section 3.1). 

3. 3 Simulation studies show improved performance of LDcnv 

First, we used the simulated data to evaluate the performance of the LDcnv method in SNP 

array analysis under a variety of scenarios: (1) different correlation level; (2) different CNV 

sizes; and (3) different CNV status (see Methods). For data with moderate correlation 

coefficient (ϕ = 0.3) that is assumed to be close to real data, the LDcnv method presented a 

consistent power gain in detecting CNVs from single copy duplication/deletions (i.e., Dup.s 

and Del.s) to double copy changes (i.e., Dup.d and Del.d) (Table 2). The performance of the 

LDcnv method was obviously superior to the other two methods when the CNVs had small 

jump sizes (Dup.s and Del.s), especially for short CNVs (<200 markers). For example, when 

the CNVs had a length between 10-50 markers and the CNV status was single copy duplication 

(Dup.s), the LDcnv method had a TPR at 0.88, while the FPR was 0.12. The corresponding 

TPRs and FPRs for PennCNV were 0.84 and 0.11; and 0.69, 0.32 for CBS, respectively. When 

the CNV size increased from 10-50 markers to 100-200 markers, the LDcnv methods presented 

stable estimations of CNVs, whereas the other two methods had diminished power. A similar 

pattern was observed when the correlation increased from 0.1 to 0.5 (Table 3).  
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      In conclusion, the LDcnv method which integrated the correlation structure in the model, 

largely presented overall high accuracy, stability and robustness in CNV detection, especially 

for detection of CNVs with small jump sizes.  

3. 4 Application to the HapMap datasets 

We further applied the LDcnv method to a real data study in comparison with CBS and 

PennCNV [22, 38]. Using the DGV as a common variant reference database,  79.65% of the 

CNVs identified by LDcnv have been reported as common variants that are not diseases 

relevant which implicated the validity of the CNV calls from our method.  

      With the validation sets from the three datasets (including HapMap3, Conrad et al., and 

McCarrol et al.), the total number of “true” CNVs included in the three sets were 19,936, 

121,453 and 11,961, separately. Among them, 10,005, 98,387 and 5,277 were short CNVs with 

length less than ten markers. The overall accuracy of the LDcnv method was greater than that 

of the two other methods in all three validation sets (Table 4, Figure 2). Specifically, LDcnv 

presented higher recall rate or sensitivity that it detected more true positives. For detection of 

short CNVs (Table 5, Figure 3), the LDcnv method was comparable to the other methods in all 

three validation sets and it presented obviously higher precision or specificity in detecting short 

CNVs.  It is noteworthy that CBS was the most sensitive one that detected the highest number 

of variants which was consistent with previous findings showing that CBS was good at calling 

the exact boundaries of CNVs [44], but such high recall rate came at the expense of precision. 

CBS also has the lowest computational speed among these three methods. As expected, 

PennCNV was the most conservative one that detected the lowest number therefore presented 

the lowest prevision rate (Table 5). These results further demonstrated that the integration of 

correlation structure significantly improved the overall performance of CNV detection.  

4. Discussion 
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CNVs  play important roles in human complex diseases [1-7].While numerical CNV detection 

tools have been developed for modern genotyping technologies, current detection methods are 

using segmentation algorithms that mainly focus on detecting random signals and do not fully 

address the CNV-specific challenges. These challenges include the multiple natural features of 

a CNV, including dependent random noise signals and small jump sizes of the breakpoints. In 

this work, we introduce a correlation-based segmentation algorithm for CNV detection analysis 

that accommodates the non-independence nature of the genetic intensities. Simulation and real 

data analyses suggested that the LDcnv algorithm presented stable performance across 

different scenarios of CNV sizes, states and correlation coefficients, and it had a better or 

comparable accuracy compared to the independence assumption methods. The largest power 

gain tended to occur when CNVs were short and with small jump sizes, e.g., the duplication of 

a single copy.  

      This is the first report that demonstrates the promise of improved CNV detection by 

integrating the biological characteristics (i.e., LD structure) into statistical modeling. 

Utilization of these biological characteristics of CNVs improved accuracy and boosted power 

with the noisy and complex data. Instead of assuming equal weight on each chromosomal site, 

the LDcnv algorithm tends to put more weight on recombination hotspots which are more likely 

to be CNVs. For example, those CNVs with specific LD block structures missed by traditional 

algorithms will be identified by the new algorithms. This approach will also provide a valuable 

knowledgebase for CNV detection methodology development to integrate the genomic 

structure that delivers comprehensive information among genes. 

      In this study, we first presented the theoretical derivation of the correlation structure of the 

genetic intensity data from SNP array data. Well-developed array-based CNV analytical tools 

are usually based on segmentation and smoothing of LRR and BAF [38]. We found that the 

array-based LD structure, which was computed from the genotype frequencies, can be reflected 
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in the correlation structure of the genetic intensity data. We stated that the correlation between 

two loci in the genetic intensity will depend on the LD coefficient computed from SNP allele 

frequencies. This evidence provides strong evidence of the existence of genomic correlation 

structure in the CNV data. 

      By implementing the correlation structure in the statistical model, we showed that the 

LDcnv algorithm presented essential advantages over the other independence assumption 

methods (e.g., CBS and PennCNV). These advantages are demonstrated by the simulation 

studies and the HapMap project with the “gold standard validation sets”. The superiority of the 

LDcnv algorithm over PennCNV was further demonstrated, especially in detecting short CNVs, 

which is the most difficult copy number states to be detected due to the embedded undetectable 

signal in the random noises. A possible explanation for this phenomenon is that short CNVs 

tend to have more evident correlation structure when they are located within an LD block. Such 

a characteristic cannot be easily captured by the hidden Markov model adopted in PennCNV, 

which assumes a constant level of dependence across the genome.  

      Indeed, the clinical relevance of small CNVs has been demonstrated in many studies in 

recently years. For example, Reza et al. [41] investigated a cohort of 714 patients with 

neurodevelopment disorders and verified the diagnostic importance of small CNVs. However, 

due to the noise of genotyping data, small segments are usually very difficult to distinguish 

from the normal noise signals. As such, the LDcnv algorithm may serve as an important tool 

for detecting small CNVs. Our result in simulations and the analyses of the HapMap CEU 

samples showed that LDcnv was capable of capturing those signals. 

      With LDcnv, we address the non-independence noise signal assumption by introducing a 

covariance matrix in the statistical modeling. To retain the covariance structure in the model, 

we can either use the correlation matrix estimated from the samples in the data or LD-based 

computation from reference samples (i.e., samples from the 1000 Genomes project). The 
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advantage of the data-based estimation of the covariance relies on its feasibility and simplicity; 

however, the covariance might be data specific and the computational concerns will be 

encountered for large sample sizes. In contrast, the LD-based estimates with information 

coming from the population level might be more stable but be susceptible to a specific 

population substructure. As discussed in Mathew et al. [42], an alternative way is to use the 

map functions (e.g., the Haldane function) in an exponential function to estimate the covariance 

structure on each chromosome. 

      Moreover, the current study of the LDcnv algorithm is mainly focuses on its application to 

SNP array data, but it has great potential to be implemented in the whole exome sequencing 

(WES) or whole genome sequencing (WGS) data analysis. The main challenges for sequencing 

data come from the high level of biases and artifacts effects, which therefore require a well-

designed normalization procedure. Another difficulty is that the WES data are count data that 

requires discrete variable distribution. It has been suggested that read counts are not 

appropriately modeled by the normal assumption model, even after a commonly used log-based 

transformation is applied [43]. To allow the implementation of the LDcnv algorithm, the 

modelling framework and segmentation procedure need to be adjusted accordingly in NGS 

data analysis.  

      Through theoretical derivation, it is the first report in which we showed the relationship 

between the SNP-based LD coefficient and the correlation coefficient in the intensity data. We 

have demonstrated that the LD structure can be reflected in the genetic intensity data (i.e., 

LRR). However, the correlation structure of the other important source of information, the BAF 

intensities, was not clear and not easily constructed. The theoretical study of BAF and the 

implementation of this information requires future studies. In addition, we used 300 high-

quality CNV data from HapMap to demonstrate that CNVs were not randomly distributed 

across the genome. One possible explanation might be that the LD blocks under study were not 
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long enough to contain a CNV. Rigorous examinations of this assumption with shorter CNVs 

should be further studied in the future. Still, the LDcnv algorithm may open a door for 

integrating biological characteristics in CNV detection methodology development with 

change-point methods. 

Supporting Information 

Supplementary Text A1. This section includes the detailed information about the FDR 

approach that is used in the LDcnv algorithm. 

Supplementary Text A2-A3. This section includes the detailed derivation of components in 

the correlation structure in CNV data. 

Supplementary Tables. The supplementary tables are attached to support the study are 

attached. 
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Table 1: Joint genotype probabilities for two diallelic loci. The joint genotype probabilities 
were calculated under the Hardy-Weinberg equilibrium assumption. A and a are reference and 
alternate alleles in the first locus, pA is the probability of the reference allele; B and b are the 
reference and alternate alleles in the second locus, pB is the probability of the reference allele; 
𝐷IJ is the coefficient of linkage disequilibrium between two loci.  
 

Locus 1 Locus 2 Probabilities 
AA BB (𝑝,𝑝- +𝐷𝐴𝐵)$ 
AA Bb 2(𝑝,𝑝- +𝐷𝐴𝐵)(𝑝,(1 − 𝑝-) −𝐷𝐴𝐵) 
AA bb (𝑝,(1 − 𝑝-) −𝐷𝐴𝐵)$ 
Aa BB 2(𝑝,(1 − 𝑝-) −𝐷𝐴𝐵)8(1 − 𝑝,)𝑝- −𝐷𝐴𝐵; 
Aa Bb 2(𝑝,𝑝- +𝐷𝐴𝐵)8(1 − 𝑝,)(1 − 𝑝-) +𝐷𝐴𝐵; + 2(𝑝,(1 − 𝑝-) −𝐷𝐴𝐵)8(1 − 𝑝,)𝑝- −𝐷𝐴𝐵; 
Aa bb 2(𝑝,(1 − 𝑝-) −𝐷𝐴𝐵)8(1 − 𝑝,)(1 − 𝑝-) +𝐷𝐴𝐵; 
aa BB 8(1 − 𝑝,)𝑝- −𝐷𝐴𝐵;

$ 
aa Bb 28(1 − 𝑝,)𝑝- −𝐷𝐴𝐵;8(1 − 𝑝,)(1 − 𝑝-) +𝐷𝐴𝐵; 
aa bb 8(1 − 𝑝,)(1 − 𝑝-) +𝐷𝐴𝐵;

$ 
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Table 2: Summary of CNV calls on simulated data at ϕ =0.3 from all methods. True positive rates 
(TPRs) and false positive rates (FPRs) of LDcnv, PennCNV and CBS with different CNV 
states and CNV sizes, the autoregressive coefficient (ϕ) was fixed at ϕ  =0.3 which was 
corresponding to Pearson’s correlation coefficient at 0.3. Del.d: deletion of double copies; 
Del.s: deletion of single copy; Dup.s: duplication of single copy; Dup.d: duplication of double 
copies. 
 

CNV State Method 
CNV length (markers) 

 10~50 50~100  100~200 
TPR FPR TPR FPR TPR FPR 

Del.d 
LDcnv 0.99 <0.01 0.97 <0.01 0.99 0.01 

PennCNV 1.00 <0.01 1.00 <0.01 1.00 <0.01 
CBS 1.00 0.04 1.00 0.07 1.00 0.09 

Del.s 
LDcnv 0.99 0.02 0.99 0.02 0.99 0.03 

PennCNV 0.96 0.03 0.95 0.04 0.86 0.11 
CBS 0.98 0.03 0.98 0.04 0.98 0.05 

Dup.s 
LDcnv 0.97 0.03 0.94 0.03 0.93 0.05 

PennCNV 0.91 0.07 0.92 0.08 0.87 0.11 
CBS 0.85 0.11 0.88 0.12 0.88 0.13 

Dup.d 
LDcnv 1.00 <0.01 1.00 <0.01 0.99 <0.01 

PennCNV 1.00 <0.01 0.99 <0.01 0.99 0.01 
CBS 1.00 0.01 1.00 0.02 1.00 0.04 
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Table 3: Summary of CNV calls on simulated data at ϕ =0.5 from all methods. True positive rates 
(TPRs) and false positive rates (FPRs) of LDcnv, PennCNV and CBS with different CNV 
states and CNV sizes, the autoregressive coefficient (ϕ) was fixed at ϕ  =0.5 which was 
corresponding to Pearson’s correlation coefficient at 0.5. Del.d: deletion of double copies; 
Del.s: deletion of single copy; Dup.s: duplication of single copy; Dup.d: duplication of double 
copies. 
 

CNV State Method 
CNV length (markers) 

 10~50 50~100  100~200 
TPR FPR TPR FPR TPR FPR 

Del.d 
LDcnv 0.99 0.01 0.96 0.01 0.99 0.03 

PennCNV 0.99 0.01 0.99 0.01 1.00 <0.01 
CBS 1.00 0.23 1.00 0.44 1.00 0.64 

Del.s 
LDcnv 0.96 0.06 0.95 0.08 0.96 0.09 

PennCNV 0.89 0.05 0.88 0.09 0.83 0.14 
CBS 0.94 0.26 0.94 0.46 0.95 0.62 

Dup.s 
LDcnv 0.88 0.12 0.89 0.09 0.91 0.11 

PennCNV 0.84 0.11 0.86 0.13 0.83 0.18 
CBS 0.69 0.32 0.80 0.57 0.79 0.76 

Dup.d 
LDcnv 0.99 0.01 0.96 0.01 0.99 0.03 

PennCNV 0.99 0.01 0.99 0.01 1.00 <0.01 
CBS 1.00 0.23 1.00 0.44 1.00 0.64 
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Table 4. Overall assessment of CNV calling on the HapMap project dataset. Performance 
assessment of CNV calls from the HapMap Project 3 in the 180 HapMap samples by LDcnv, 
PennCNV and CBS on reports from (a) HapMap3 (b) Conrad et al. (c) McCarroll (MCC) et al. 
studies. The recall rate was defined as the ratio of identified true positives over the total number 
of “true CNVs”. The F1 score was calculated as harmonic mean of precision rate and recall 
rate. TP: True positives among the detected CNVs.  

 
 HapMap3 Conrad MCC 

 TP Precision Recall F1 TP Precision Recall F1 TP Precision Recall F1 
LDcnv 4463 52.72% 22.30% 31.42 5888 64.99% 4.84% 9.02 2861 63.53% 23.91% 34.75 
PennCNV 3760 53.23% 18.81% 27.85 4880 64.56% 4.01% 7.56 2640 66.48% 22.07% 33.14 
CBS 4044 55.41% 20.18% 29.69 5099 65.02% 4.19% 7.88 2572 64.94% 21.40% 32.30 
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Table 5. Assessment of calling performance in short CNVs on the HapMap project 
dataset. Performance assessment on detecting short CNVs (<10 markers) from the HapMap 
Project 3 in the 180 HapMap samples by LDcnv, PennCNV and CBS on reports from (a) 
HapMap3 (b) Conrad et al. (c) McCarroll (MCC) et al. studies. The recall rate was defined as 
the ratio of identified true positives over the total number of “true CNVs”. The F1 score was 
calculated as harmonic mean of precision rate and recall rate. TP: True positives among the 
detected CNVs.  

 HapMap3 Conrad MCC 
 TP Precision Recall F1 TP Precision Recall F1 TP Precision Recall F1 

LDcnv 963 10.40% 9.62% 10.00 1757 16.39% 1.78% 3.22 703 14.16% 13.32% 13.72 
PennCNV 177 2.65% 1.76% 2.12 698 8.78% 0.70% 1.31 206 5.33% 3.90% 4.51 
CBS 1279 8.48% 12.78% 10.19 2933 16.63% 2.98% 5.05 850 10.59% 16.10% 12.78 
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Figure legends 

Figure 1. Four classifications of the CNV locations in the LD genome map. The graphs 

summarized the frequency of CNV types with the existing high-quality CNVs from the 

HapMap phase 3 project. (a) Across block: CNVs spanning at least one LD blocks, (b) Inter-

block: CNVs locate within a LD block, (c) Hybrid: only one breakpoint locating within LD 

block, and (d) Random: CNVs locating in the area with weak or no LD structure. The black 

arrows in each plot note the start and end points of the CNV. 

Figure 2. Assessment of CNV calls generated by LDcnv, PennCNV and CBS with 

validation CNV calls. Performance of the LDcnv, PennCNV and CBS methods in detection 

validated CNVs from (a) HapMap 3 (b) Conrad et al (c) McCarroll et al. The grey contours are 

F1 scores calculated as the harmonic mean of precision rate and recall rate. 

Figure 3. Assessment of CNV calls calling performance in short CNVs on the HapMap 

project dataset. Performance assessment on detecting short CNVs (<10 markers) from the 

HapMap Project 3 in the 180 HapMap samples by LDcnv, PennCNV and CBS on reports from 

(a) HapMap3 (b) Conrad et al. (c) McCarroll (MCC) et al. studies. The grey contours are F1 

scores calculated as the harmonic mean of precision rate and recall rate. 
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