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Abstract

Motivation: High-throughput RNA sequencing has revolutionized the scope and depth of transcriptome analysis.
Accurate reconstruction of a phenotype-specific transcriptome is challenging due to the noise and variability of
RNA-seq data. This requires computational identification of transcripts from multiple samples of the same pheno-
type, given the underlying consensus transcript structure.

Results: We present a Bayesian method, integrated assembly of phenotype-specific transcripts (IntAPT), that identi-
fies phenotype-specific isoforms from multiple RNA-seq profiles. IntAPT features a novel two-layer Bayesian model
to capture the presence of isoforms at the group layer and to quantify the abundance of isoforms at the sample
layer. A spike-and-slab prior is used to model the isoform expression and to enforce the sparsity of expressed
isoforms. Dependencies between the existence of isoforms and their expression are modeled explicitly to facilitate
parameter estimation. Model parameters are estimated iteratively using Gibbs sampling to infer the joint posterior
distribution, from which the presence and abundance of isoforms can reliably be determined. Studies using both
simulations and real datasets show that IntAPT consistently outperforms existing methods for the IntAPT.
Experimental results demonstrate that, despite sequencing errors, IntAPT exhibits a robust performance among
multiple samples, resulting in notably improved identification of expressed isoforms of low abundance.

Availability and implementation: The IntAPT package is available at http://github.com/henryxushi/IntAPT.

Contact: xuan@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing is an important biological process transforming
pre-mRNA into variant mRNA transcripts (Shi, 2017), more than
90% of which undergo alternative splicing in humans (Wang et al.,
2008). Reconstructing these transcripts, collectively termed the tran-
scriptome, is crucial for understanding complex biological systems
(Martin and Wang, 2011). High-throughput RNA sequencing
(RNA-seq) technologies have revolutionized transcriptome analysis.
By deep sampling of the transcriptome, RNA-seq can both quantify
each transcript and identify isoforms, alternative splice junctions
and gene fusions (Conesa et al., 2016). However, inference of RNA
transcripts from short-read technologies is difficult for many rea-
sons, one of which is the number of candidate isoforms due to alter-
native splicing. Even more challenging is the reconstruction of

isoforms with low coverage or with subtle structural differences due
to the high variability of RNA-seq read distribution and to noise
(McIntyre et al., 2011).

Two categories of transcriptome assembly algorithms, de novo
and reference-based (ab initio), currently address this problem. De
novo algorithms directly assemble the transcriptome from raw
RNA-seq reads (Holzer and Marz, 2019). Unlike de novo assem-
blers, reference-based assemblers take advantage of the existing
high-quality reference genome by first aligning the short reads to the
reference genome using RNA aligners, such as TopHat2 (Kim et al.,
2013) and STAR (Dobin et al., 2013). Compared with the de novo
strategy, reference-based assemblers lower the complexity of the
problem by first grouping the reads based on matching genomic
locations (Martin and Wang, 2011). Ideally, each group would rep-
resent the reads coming from a single gene. RNA-seq aligners
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identify splice junctions between exons in each gene based on splice
site-mapped reads. Reference-based assemblers construct splicing
graphs using exons as nodes and splice junctions as edges. Paths in
the splicing graph represent potential transcripts. The key challenge
is to first determine the relationship between observed reads and
(unobserved) transcripts and to then infer the existence and abun-
dance of each transcript. Current reference-based assemblers,
including Cufflinks (Trapnell et al., 2010), IsoLasso (Hah et al.,
2011), CEM (Li and Jiang, 2012), SLIDE (Li et al., 2011) and
SparseIso (Shi et al., 2018), apply sparsity-enforced methods to pro-
vide biologically plausible solution to the problem, which alleviates
overfitting due to the high complexity of the graph.

Although existing algorithms can effectively identify transcript
isoforms from a single RNA-seq sample, due to the variation of
splicing profiles between samples and the sampling bias of RNA-seq
technology (McIntyre et al., 2011), analysis of a single sample may
not capture the transcriptome comprehensively. Several research
projects, including ENCODE (Djebali et al., 2012) and TCGA
(Cancer Genome Atlas Network, 2012), have produced a large
amount of RNA-seq data. The sizes of these datasets now make it
possible to study the phenotype-specific transcriptome assembly
using multiple RNA-seq profiles. A simple way to identify tran-
scripts from multiple samples is to apply single-sample isoform iden-
tification methods to merged or pooled reads from multiple samples.
However, noisy reads accumulate during merging, thereby hindering
the identification of low abundance isoforms or junctions. An alter-
native approach is to identify single-sample isoforms prior to merg-
ing the samples. Within the Cufflinks package, the Cuffmerge
program uses a similar idea to assemble transcripts. Cuffmerge first
uses Cufflinks to assemble transcripts from each sample, and then,
treating the assembled transcripts as long reads, generates an artifi-
cial dataset. Finally, Cuffmerge uses Cufflinks again to process the
artificial data for transcript identification. As the number of samples
increases, erroneous isoforms identified from individual samples ac-
cumulate, thereby decreasing the accuracy of both isoform identifi-
cation and quantification (Niknafs et al., 2017; Tasnim et al.,
2015).

Recently, TACO (Niknafs et al., 2017) has been developed to ad-
dress Cuffmerge’s high false positive rate. TACO uses a change-
point detection strategy to accurately identify the transcript start
and end sites, which leads to improved assembly accuracy and to
significantly fewer false positives. However, this approach can filter
out many isoforms of low abundance. Several other methods, such
as Iterative Shortest Path (ISP) (Tasnim et al., 2015) and FlipFlop
(Bernard et al., 2015), have been developed for transcriptome as-
sembly from multiple RNA-seq samples. Unlike Cuffmerge, these
methods directly infer the isoform structure from multiple samples.
These methods first construct a multiple sample splicing graph
(MSSG) from the data with exons as nodes and junctions as edges.
Nodes and edges are then assigned weights based on their depth of
coverage. Finally, sparsity enforcing methods find the paths or iso-
forms on the graph with the highest weight. However, these
approaches tend to miss many isoforms of low abundance.

Here, we use a Bayesian approach, integrated assembly of
phenotype-specific transcripts (IntAPT), to infer phenotype-specific
isoforms from multiple RNA-seq profiles by developing a hierarch-
ical version of SparseIso. The key idea is to correctly predict
phenotype-specific isoforms given a consensus transcriptome for the
phenotype with the underlying consensus transcriptome profiles
helping to support transcript identification. The method experiment
would be more focused on the transcriptome profiles of this pheno-
type in general rather than on each individual cell, which should re-
duce noise and improve reproducibility. Bayesian inference is used
to predict those isoforms and their abundances most likely to have
generated the observed multiple-sample RNA-seq data; by avoiding
expression thresholds, this process allows detection of lowly
expressed isoforms. More specifically, we first build an MSSG using
the ISP algorithm and enumerate candidate isoforms corresponding
to maximal paths through the graph. We next use a two-layer
Bayesian model to infer isoforms from the observed reads. This cap-
tures the dependency of the abundance of isoforms (sample level) on

the presence of isoforms (group level). At the group level, we cat-
egorize candidate isoforms into ‘unexpressed’ and ‘expressed’
groups. Isoforms in the unexpressed group have expression levels
near zero. Reads from the unexpressed group are likely due to noise
generated by various errors, including sequencing or mapping
errors. Each isoform’s group state is modeled as a Bernoulli random
variable with a high prior probability for the unexpressed state,
which enforces the sparsity of isoforms. The sparsity constraint
helps alleviate overfitting of the observed reads. Model parameters
are estimated from the joint posterior distribution using Gibbs sam-
pling. We iteratively estimate the presence of each isoform at the
group level and the corresponding abundance at the sample level.
The final sets will only include isoforms estimated with high confi-
dence. To evaluate performance, we compared IntAPT with existing
methods using both simulated data and real data. The results show
that IntAPT consistently outperforms popular methods for
phenotype-specific transcriptome assembly.

2 Materials and methods

The flowchart of the IntAPT method is shown in Figure 1. We first
align sequence reads to the reference genome. Next, we identify
exons and introns using the coverage of reads along the genome and
the junctions between exons using spliced reads that map to multiple
exons. We then combine the identified exons and junctions from all
the samples to construct a MSSG. Candidate transcript isoforms are
enumerated as all maximal paths through the graph. We model the
expression values for each exon and junction in the graph using a
two-parameter negative binomial (NB) distribution. This NB model
addresses the over-dispersion problem observed for RNA-seq data
(Robinson et al., 2010; Robinson and Smyth, 2007). Expression of
exons and junctions is modeled in this way as mixtures of isoform
expressions.

We use a two-layer Bayesian framework (group layer and sample
layer) to model the observed reads from multiple RNA-seq samples.
At the group layer, we use a binary variable to indicate the presence
of each candidate isoform. Isoform expression in the sample layer
depends on the group-level presence. If an isoform is labeled as un-
expressed, its expression value will approach zero. Otherwise, the
expression value will be >0. The two-layer structure of the parame-
ters in the model helps estimate phenotype-specific isoforms and
their level of expression. When we evaluate a given isoform in one
sample, evidence for this isoform in other samples will increase the
probability of its occurrence. Because sequencing and mapping
errors are less likely to be replicated in all RNA-seq samples, this
also helps eliminate false positives. We use Gibbs sampling to esti-
mate the parameters of the posterior distribution; when the isoform
state is more accurately estimated in this way, weakly expressed iso-
forms are more likely to be detected. The confidence level of each
candidate isoform is estimated by the frequency with which it is
sampled as being expressed. Therefore, by providing both the abun-
dance of each candidate isoform and a corresponding confidence
level, IntAPT allows researchers to prioritize the selection of iso-
forms as assembled.

2.1 Splicing graph construction
Based on the genomic location of read alignments, we use the proc-
esssam program in the CEM package (Kimmig et al., 2012) to iden-
tify gene regions, by clustering single-sample reads, and splice
junctions, as reported by RNA-seq aligners. Within each gene re-
gion, exons and introns are identified based on read coverage. We
expect that the coverage of introns should be close to zero. Splice
junctions between exons are identified from the spliced reads. Due
to sequencing and mapping errors, the identified splice junctions in
each sample are filtered by the number of supporting reads. We
build a candidate set of phenotype-specific splice junctions as the
union of identified splice junctions from all samples, from which is
obtained the total number of supporting reads. Exons and junctions
with poorly supported samples are filtered out, since these likely
arise from sequencing or mapping errors.
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The MSSG, G ¼ V; Eð Þ; is built by connecting exons from the
identified phenotype-specific junctions. The node set V also includes

junctions. Junctions carry direct information about splicing, which
helps to assign reads to candidate transcripts (see Supplementary
Section S1.1). All candidate transcripts will be enumerated from the

graph. For a detailed description of splicing graph construction see
Supplementary Section S1.2.

2.2 Read count model
We use a two-parameter NB model to address the problem of

over-dispersion. As described in the step for candidate isoform
construction, we include junctions in our model to enhance
interpretation of isoforms. We define segments as the union of exons

and junctions. We assume that an observed read count Ri;m (from
segment i and sample m) was drawn from a NB distribution as
follows:

Ri;m � NB Ei;mli; s
2
i

� �
; (1)

with a mean of Ei;m and variance of Ei;mð1þ s2
i Þ. Ei;m is the expres-

sion of segment i in sample m. s2
i is a parameter controlling the

over-dispersion of read counts on segment i. When s2
i ¼ 0, the NB

distribution is equivalent to a Poisson distribution. li is the effective

length of segment i and represents the expected number of bases that
support reads mapped entirely within the segment (see

Supplementary Section S1.3 for details).

2.3 Hierarchical Bayesian model for transcript inference

from multiple samples
Just as the read counts observed at an exon can be modeled as a mix-
ture of counts generated from multiple transcripts, the segments
expressed across multiple samples can be modeled as a linear mix-
ture of expressed transcripts:

E ¼ Xeþ r2 �
Y

m
Nþ EmjXem; r

2
mI

� �
; (2)

where X is a matrix of binary indicator variables, such that
X i; tð Þ ¼ 1, when transcript t covers segment i, and Xði; tÞ ¼ 0,
otherwise. Nþ denotes the normal distribution truncated at 0. Xem

and r2
mI are the mean and variance of the normal distribution before

truncation. Em and em are the segment and transcript levels of ex-
pression, respectively, in sample m. I is an identity matrix. r2

m is the
sample-level variance following an inverse gamma distribution,
which is the conjugate prior for the variance of a normal
distribution.

Due to mapping uncertainty and transcriptome complexity, the
number of candidate transcripts obtained from the MSSG is usually
large. Therefore, we use a joint spike-and-slab prior (Ishwaran and
Rao, 2005; Mitchell and Beauchamp, 1988) in conjunction with the
two-layer Bayesian model to estimate the presence and expression of
isoforms. This approach alleviates the problem of overfitting by
enforcing sparsity. At the group layer, we introduce the binary vari-
able w ¼ ½w1;w2; . . . ;wT � to indicate whether or not each
phenotype-specific isoform is expressed and c2 ¼ ½c2

t ;c
2
t ;. . .;c2

T � to in-
dicate the variance of transcript expression across samples. If

Fig. 1. Flowchart of the IntAPT method for phenotype-specific isoform identification. (i) A MSSG is constructed from the splice junctions from all samples. The candidate iso-

forms are enumerated as the maximal paths of the MSSG. (ii) A two-layer Bayesian model is built to explain the observed reads as isoform group-level expression states and

corresponding sample-level expression values. (iii) Gibbs sampling estimates the model parameters iteratively. Due to interdependencies, the expression of isoforms in different

samples will support each other through the group layer. The final set of assembled isoforms is selected based on the estimated expression state
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transcript t is expressed, wt ¼ 1; otherwise wt ¼ w0, where w0 is a
constant close to 0. wt follows a Bernoulli distribution with
parameter w:

wt � pwt 1� pð Þwt�w0 ; t ¼ 1; 2; . . . ;T; (3)

where wt will have values of w0 or 1 and T is the number of candi-
date isoforms. p is the prior probability for an isoform to express.
Given the group-level variables, the prior distribution of the tran-
script expression across multiple samples are modeled jointly with
spike-and-slab prior

et jwteNþ et j0;wtc
2
t

� �
¼
Y

m

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pwtc2

t

p exp �
e2

t;m

2wtc2
t

 !
I et;m > 0ð Þ;

(4)

where et;m is the abundance of transcript t in sample m, c2
t models

the variability of isoform abundance at the group level and I xð Þ is an
indicator function. The truncated normal distribution of e guaran-
tees conjugacy, as a normal distribution is the conjugate prior distri-
bution of a normal distribution with known variance. Transcript
expressions in multiple samples are controlled by the same group-
level parameters wt and c2

t . For an unexpressed transcript
(wt ¼ w0), the corresponding variance of isoform expression will be
small, resulting in an expression value near zero for most samples.
For expressed transcripts (wt ¼ 1), expression values can be larger
than zero. If isoform t is expressed in some samples, wt and c2

t are
likely to be large, which will support the estimated abundance of
isoform t across all samples. For the conjugacy of the Bayesian
model, we let c2

t follow an inverse Gamma distribution. Examples of
the spike-and-slab prior can be found in Supplementary Section
S1.4. To further understand the two-layer model, the marginal prior
of et can be derived by integrating out nuisance variables:

et � p�t2a et j0;
b

a
I

� �	 
wt

1� pð Þ�t2a et j0;
w0b

a
I

� �	 
wt�w0

I et � 0ð Þ;

(5)

where t2a denotes the Student t distribution with degree of freedom
2a, and a and b are the shape and rate of the prior distribution of c2

t

(inverse gamma distribution). Transcript expressions in individual
samples are independent only if w0 ¼ 1, which is not the case here.
Therefore, expression variation dependencies among transcripts are
implicitly modeled through the two-layer Bayesian model. As
described in Supplementary Section S1.5, there are positive correla-
tions among individual transcript expressions, which govern the
consistency of the phenotype-specific expression pattern.
Specifically, we show that the joint distribution of isoform expres-
sions follows a mixture of Student’s t-distributions, which can be
mathematically derived based on an important property of the two-
layer Bayesian model: given the group-level presence and variance at
the group level, isoform expressions at the sample level are condi-
tionally independent.

2.4 Model parameter estimation using Gibbs sampling
We use Gibbs sampling to estimate the parameters of the Bayesian
model given segment expression E. The relationship between the
parameters of the model is shown in Figure 2. By iteratively drawing
samples from conditional distributions, we can infer the joint poster-
ior distribution of the model variables and parameters. The final
outputs of the Gibbs sampler are the confidence level of each iso-
form’s presence and its corresponding abundance. The full joint pos-
terior distribution can be described as follows:

P e; c2;w; r2; pjE;X
� �

� P EjX; e; r2
� �

� P ejc2;w
� �

� P c2
� �
� P r2ð Þ

� P wð Þ � P pð Þ:
(6)

In the sample layer, given the group layer parameters, M samples
and T candidate transcripts, we perform sampling of the isoform

expression in sample m independently from

P emjEm;X; c
2;w; r2

m

� �
� Nþ A�1XTEm;r

2
mA�1

� �
; (7)

where Em is the segment expression, A ¼ XTX þ r2
mD�1

c , and Dc is
a diagonal matrix whose diagonal elements are [w1c2

1; . . . ;wTc2
T ].

Here, XTX encodes the isoforms structural consistency, where more
shared segments among isoforms lower the probability that they are
expressed simultaneously. The group-level expression state w has an
effect on both mean and variance. If isoform t is expressed, its abun-
dance tends to be high with the support of wt. The truncated normal
distribution is simulated by the Gibbs sampler introduced in Damien
and Walker (2001) (see Supplementary Section S1.6 for more
details). Similar to the prior distribution, the conditional distribu-
tion of w is also a mixture of w0 and 1. The elements of w are
sampled independently from

P wtjc2
t ;p; et

� �epwt

1 1� p1ð Þwt�w0 ; (8)

where et is the expression of isoform t across all samples,
p1 ¼ k1=ðk1 þ k2Þ, k1 ¼ pexpð�

PM
m¼1 e2

t;m=2c2
t Þ and k2 ¼�

1� pÞ w0ð Þ�M=2expð�
PM

m¼1 e2
t;m=2w0c2

t Þ and et;m is the expression
of isoform t in sample m. Weights of the spike and slab of wt are
determined by fitting the estimated expression of isoform t to the
spike and slab in the group level. The iterative framework described
above further illustrates the connection between the sample layer
and group layer in our Bayesian model, which improves the estima-
tion of both the presence and abundance of isoforms. The noise
r2 in the sample layer and the variance c2 can be sampled from an
inverse Gamma distribution, with parameters derived from the cor-
responding conditional distribution. In the sampling framework, we
estimate p from its conditional distribution. Derivation of the condi-
tional distributions and a detail sampling procedure are given in
Supplementary Section S1.7.

2.5 Implementation and availability
The IntAPT algorithm is implemented as a Cþþ package, which is
made available to the research community at http://github.com/hen
ryxushi/IntAPT. Note that, the improved performance of IntAPT
was achieved without sacrificing computational time (see
Supplementary Section S1.8).

3 Results

3.1 Benchmarking for performance evaluation
We compared the performance of IntAPT with that of the most
widely used tools available: Cufflinks-pool (Cufflinks v2.1.1),

Fig. 2. Dependency graph of the IntAPT model. The known and unknown variables

are colored red and white, respectively. Variables in squares are hyperparameters

IntAPT: integrated assembly of phenotype-specific transcripts 653

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa852#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa852#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa852#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa852#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa852#supplementary-data
http://github.com/henryxushi/IntAPT
http://github.com/henryxushi/IntAPT
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa852#supplementary-data


Cuffmerge (in the package of Cufflinks v2.1.1), ISP (v0.3), FlipFlop
(v1.10), TACO (v0.6.3) and StringTie (v1.3.3b) under merge mode.
Cufflinks-pool is a simple, alternative way to identify isoforms from
multiple samples using the Cufflinks package. To run Cufflinks-
pool, we first merged the reads from all samples and then applied
Cufflinks to the pooled data (treated as a single RNA-seq sample)
for transcript assembly. All assemblers were run with default param-
eters, except for the mean and SD of fragment length distribution in
FlipFlop, which was set according to the results from Cufflinks. We
used Cufflinks assembled transcripts as the input for TACO.
Because the parameters of IntAPT are estimated using Gibbs sam-
pling, the results of different runs will undergo slight differences;
therefore, we used the median performance of five independent
runs.

Sensitivity and precision are widely used benchmarks to
evaluate the performance of transcript assemblers. Sensitivity is
defined as the fraction of successfully assembled isoforms in the ref-
erence set; precision is defined as the fraction of predicted isoforms
that are present in the reference set. Besides sensitivity and
precision, we also compute an F-score, the harmonic mean of preci-
sion and sensitivity [calculated as 2�precision�sensitivity/(preci-
sionþsensitivity)], to evaluate the overall performance of
assemblers. An identified isoform is considered to be assembled cor-
rectly if we can find an intron-chain match in the reference set. We
used the Cuffcompare tool in the Cufflinks package (Trapnell et al.,
2010) (which uses the same matching strategy) to find the intron-
chain matching between the predicted isoforms and the reference
set.

3.2 Performance evaluation using simulation data
For simulated data, we first generated expression profiles of iso-
forms annotated in RefSeq (Pruitt et al., 2014) [downloaded from
the UCSC Genome Browser (Rosenbloom et al., 2015)] using the
Flux Simulator (Griebel et al., 2012). Expression values of simulated
isoforms across multiple samples follow a Gamma distribution.
Sequence reads were then generated by RNASeqReadSimulator
(http://alumni.cs.ucr.edu/�liw/rnaseqreadsimulator.html) as used in
Djebali et al. (2012). For each sample, we generated 50 million
100 bp paired-end reads of simulated RefSeq isoforms from the
GRCh37/hg19 human reference genome. In total, we simulated six
samples in our dataset. Due to technical and sampling variability,
the same set of isoforms might not be expressed in all samples
(McIntyre et al., 2011). For each simulated sample, we randomly
assigned �11 000 transcripts as truly expressed, which is compar-
able to the number of transcripts identified in previous studies
(Pertea et al., 2015). In the expression profile from the Flux
Simulator, genes had different numbers of expressed isoforms
(labeled as Ne), as the isoforms were randomly selected from
RefSeq. The distribution of Ne is shown in Supplementary Figure
S2-1. Due to the complexity of the splicing graph, isoforms of genes
with a higher Ne are more difficult to assemble. For example, the
splicing graph of one gene will be a single chain if Ne ¼ 1. As Ne

increases, more edges will be added to make the graph more compli-
cated. Due to the large difference in splicing graph complexity, we
simulated the genes with Ne > 1 and Ne ¼ 1 separately.
Importantly, in this study, our main focus is to assemble the tran-
scripts of genes with Ne > 1, as they are among the most challeng-
ing to assemble. The results of genes with Ne ¼ 1 are described in
Supplementary Section S1.9.

Figure 3 shows the F-score, precision, and sensitivity of all
assemblers on genes with Ne > 1. Based on F-scores, IntAPT exhib-
ited a significant improvement over all competing methods.
Compared with the next two algorithms, StringTie and FlipFlop, the
performance of IntAPT had an increase in F-score of 4.82% (0.8248
versus 0.7869) and 9.68% (0.8248 versus 0.7520), respectively.
Specifically, IntAPT correctly assembled about 15.10% and 7.37%
more transcripts than Cuffmerge and StringTie, respectively.
IntAPT’s precision was similar to that of Cuffmerge, which was
11.88% (0.8062 versus 0.7206) higher than FlipFlop’s. Due to a dif-
ference in strategy, Cufflinks-pool focuses more on highly expressed
isoforms, which lowered its false positive rate. StringTie uses an

iterative approach to search for maximum flow in the splicing
graph, resulting in improved accuracy in predicting highly expressed
isoforms. TACO’s change-point detection strategy also lowered the
false positive rate compared to Cuffmerge. However, the improved
precision of Cufflinks-pool, StringTie and TACO also led to a rela-
tively large portion of transcripts unidentified (low sensitivity),
which affected the overall isoform identification performance as
measured by F-score. Importantly, IntAPT correctly identified
more transcripts than existing methods, independent of simulated
expression level (Fig. 3D), as quantified in reads per kilobase of
transcript per million mapped reads (RPKM). On highly expressed
isoforms (RPKM >50), most assemblers performed well, achieving
a sensitivity >0.8. Nevertheless, IntAPT and FlipFlop predicted
about 10–30% more of lowly expressed isoforms (RPKM<10) than
the other assemblers. Our Bayesian model was highly effective at
assembling lowly expressed isoforms. Among existing methods,
FlipFlop achieved the highest sensitivity, but this came with a rela-
tively low precision, as it tended to predict large numbers of
isoforms.

We also measured the Spearman’s rank correlation between the
simulated abundance and the predicted abundance of isoforms. Due
to the different numbers of true isoforms identified by different algo-
rithms, we used the isoforms correctly identified by all algorithms as
the evaluation set. Based on this criterion, IntAPT performed better
than existing methods in quantifying isoforms (Fig. 3E). To evaluate
the performance comprehensively, we set different thresholds of
abundance for each assembler to calculate a series of precisions and
recalls (sensitivities). Supplementary Figure S2-2 shows the
precision-recall curve and the corresponding area under the
precision-recall curve (AUC). This reveals that IntAPT achieved an
increase of 13.5% in terms of AUC compared with StringTie, a lead-
ing algorithm among the existing methods.

To demonstrate the effectiveness of transcriptome assembly
methods using multiple RNA-seq profiles, we further evaluated the
performance of all assemblers under different numbers of samples.
Figure 4 and Supplementary Figure S2-3 show the F-score, sensitiv-
ity and precision. IntAPT had consistently higher F-scores and sensi-
tivity when using different numbers of samples (ranging from 2 to
14). As the number of samples increased, the number of expressed
isoforms also increased. Thus, the structure of the splicing graphs
became more complex. With more samples, all assemblers identified
more transcripts and achieved higher sensitivity, while the precision
underwent a slight drop. Unlike the other methods, Cufflinks-pool
directly works on pooled data and aims to identify a small set of iso-
forms. Therefore, Cufflinks-pool had high precision but with no im-
provement in sensitivity.

Sequencing errors and imperfect library preparation ensure that
real data usually contain noisy reads. One screenshot of real cell line
data is shown in Supplementary Figure S2-4 (Supplementary section
S1.10), in which some noisy junction reads and intron reads are evi-
dent. To simulate RNA-seq data more realistically, we generated
random error reads carrying false junctions and parts of introns. We
evaluated the performance of all assemblers under different error
rates, defined as the fraction of error reads (shown in
Supplementary Fig. S2-5). As error reads increased, all assemblers
had lower precision and sensitivity. However, the two-layer struc-
ture of IntAPT’s Bayesian model tended to find consistent isoform
sets across multiple samples, thereby decreasing the selection of er-
roneous isoforms; hence, IntAPT performed more robustly than
existing methods (see Supplementary Fig. S2-5).

We further evaluated all assemblers on another realistic simu-
lated dataset generated from a MCF7 cell line dataset from
ENCODE (GEO accession number: GSM958745) using Polyester
(Frazee et al., 2015) (data generation is described in Supplementary
Section S1.11.) ISP was not included in this analysis, as we found
that it identified several thousands of erroneous isoforms that did
not match any simulated structures. Supplementary Figure S2-6
shows F-scores, precision and recall. IntAPT achieved a 67.93%
higher F-score than the second-best assembler, StringTie.
Specifically, IntAPT achieved a substantial improvement in
precision as the data generated by Polyester included more sequence
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errors; this is consistent with the results of our other simulation

studies with high error rates (Supplementary Fig. S2-5). IntAPT
lowers the probability of selecting erroneous isoforms by consider-
ing the level of support between samples under the two-layer

Bayesian framework.

3.3 Real RNA-seq data
To evaluate the ability of assemblers to identify phenotype-specific
transcript isoforms using real RNA-seq data, we applied them to

ENCODE datasets (Djebali et al., 2012) from three different cell
lines: human MCF-7 breast cancer cells, H1-hESC embryonic stem
cells and HepG2 cells. Information on these cell line datasets is given

in Supplementary Tables S2-1 and S2-2; preprocessing of the data is
described in Supplementary Section S1.12, and the numbers of tran-
scripts identified from these data are given in Supplementary Table
S2-3.

Because the true set of expressed isoforms is neither available
nor accessible for real RNA-seq data, there is currently no gold
standard for directly evaluating isoform prediction in terms of preci-
sion and recall. However, we can use current annotation and other
independent data sources to assess sensitivity and precision for
known isoforms. We constructed a comprehensive reference isoform
set by integrating known isoforms and Pacific Biosciences (PacBio)
sequencing (Gonzalez-Garay, 2016; Rhoads and Au, 2015) data (see
Supplementary Section S1.13 for details).

Fig. 3. Performance evaluation on simulated data of genes with Ne> 1. (A) Overall performance of isoform identification evaluated by F-score. (B) Sensitivity and (C) precision

of all assemblers. (D) Sensitivity on isoforms with different levels of abundance quantified in FPKM. (E) Spearman’s rank correlation between predicted abundance and simu-

lated abundance
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We first compared predicted isoforms with the reference set
using the number of matched transcripts to assess sensitivity.
Transcripts validated against the reference set were counted.
Figure 5A and B shows the number of valid transcripts and the preci-
sion, respectively, for MCF-7 cell line data. IntAPT identifies more
valid transcripts with comparable precision. With the support from
multiple samples, StringTie and Cuffmerge performed best in sensi-
tivity among the current methods. However, IntAPT identified 1738
(15 584 versus 13 846) and 1757 (15 584 versus 13 827) more iso-
forms than Cuffmerge and ISP, respectively. With respect to preci-
sion, IntAPT had an increase of 8.51% and 12.10% over ISP and
Cuffmerge, respectively. Noisy reads led FlipFlop to predict errone-
ously a large number of isoforms. TACO and StringTie tended to
predict fewer isoforms with very high precision. Nevertheless, given
the different schemes used, it is inappropriate to compare TACO
and StringTie directly with the other tools based on the number of
valid transcripts and precision.

To conduct a more comprehensive comparison, we calculated
the precision of the top 10 000 predictions for all assemblers
(Fig. 5C). IntAPT achieved a precision about 0.68, which is 11.24%
higher than StringTie, 24.17% higher than Cuffmerge, 46.44%
higher than Cufflinks-pool and 47.08% higher than TACO.

Supplementary Figures S2-7 and S2-8 show the performance of each
assembler on the H1-hESC and HepG2 data, respectively. Results
confirmed that IntAPT consistently identified more valid transcripts,
and with higher precision, than existing methods. Detailed results
are summarized in Supplementary Table S2-3. Among all competing
methods, only Cufflinks-pool and FlipFlop constructed the splicing
graph on pooled data from multiple replicates. However, the large
amount of noise accumulated could produce erroneous graphs,
largely degrading the performance of both Cufflinks-pool and
FlipFlop.

We further evaluated tool performance using a curve-based
method introduced in Maretty et al. (2014) to adjust for possible
transcript abundance bias between assemblers. We set different
thresholds for the estimated isoform abundance from high to low to
generate a curve between the number of predicted transcripts and
the number of valid transcripts. Curve slope and height estimate pre-
cision and sensitivity, respectively. As Cuffmerge and StringTie only
reported the isoform structure, we used Cufflinks to estimate the iso-
form abundance on the pooled data given the predicted isoform
structure. Figure 5D and Supplementary Figures S2-7D and S2-8D
show the curves of all assemblers on MCF-7, H1-hESC and HepG2
cell line data, respectively. As seen from the figures, the curve for

Fig. 4. Performance evaluation on simulation data of genes with Ne>1 under different number of samples in terms of (A) F-score and (B) sensitivity

Fig. 5. Performance evaluation on MCF7 cell line data using PacBio transcriptome and RefSeq annotation: (A) number of valid transcripts, (B) precision, (C) precision of top

10 000 isoforms and (D) curve-based evaluation
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IntAPT increased faster than the other curves and finally reached the
highest point among all assemblers. This curve analysis also showed
that IntAPT had a higher precision when generating different num-
ber of isoforms by drawing a vertical line crossing the line plot for
each method. Furthermore, drawing a horizontal line can also show
that IntAPT needed less number of predicted isoforms given the
same sensitivity level.

To demonstrate the effectiveness of the transcript assemblers on
real tumor tissue studies, we further conducted a case study using
TCGA Glioblastoma Multiforme (GBM) RNA-seq data. Analysis of
high-throughput expression profiles by Verhaak et al. (2010) has
discovered four molecular subtypes of GBM, namely Proneural
(PN), Neural (N), Classical (CL) and Mesenchymal (M). These data-
sets are described in Supplementary Section S1.14. Among existing
methods, only Cuffmerge and StringTie succeeded without runtime
errors; the other methods could not complete the analysis of the
data (error messages are described in Supplementary Section S1.15).
Supplementary Table S2-5 lists the total number of isoforms identi-
fied from each subtype.

Because the true isoforms are unknown, we analyzed the data
based on the subtype signatures assigned by Verhaak et al. who
reported 840 genes with distinct expression profiles across the four
subtypes. Gene ontology analysis identified 554 biologically mean-
ingful signature genes that are highly expressed. For each subtype,
we compared the genes corresponding to predicted isoforms with
the signature genes. Supplementary Table S2-6 shows the number of
signature genes identified by Verhaak et al., IntAPT, Cuffmerge and
StringTie. All assemblers had similar performances and identified
>88% of the signature genes reported by Verhaak et al. We then
compared the identified isoforms from the signature genes with the
ENSEMBL annotation on human GRCh38 genome assembly (ver-
sion 87) (Yates et al., 2015) using Cuffcompare (the details of
Cuffcompare codes of isoforms relationships are described in
Supplementary Section S1.16). The isoforms are categorized into
three groups: (i) intron-chain match (‘¼’ category), (ii) novel splicing
(‘j’ category) and (iii) false predictions (‘other’ category).
Supplementary Figures S2-9 and S2-10 show the categories of iso-
forms identified by IntAPT, Cuffmerge and StringTie, which all
identified a similar number of isoforms validated against the
assigned annotations for different subtypes. However, IntAPT and
StringTie had a much higher precision than Cuffmerge (as shown in
Supplementary Fig. S2-11). Supplementary Figure S2-11 also shows
that the low precision of Cuffmerge mainly came from a large num-
ber of isoforms in ‘j’ and ‘other’ categories, which, consistent with
our simulation study, are likely due to the accumulation of individ-
ual false positive junctions using Cuffmerge. We also studied the
genes with potential novel splicing isoforms identified by IntAPT
using the DAVID Functional Annotation Tool (Huang et al., 2009).
Table 1 shows the enriched signaling pathways and functions for
each subtype, which are closely related to the development of GBM.

In addition to evaluations at the gene level, we validated the
IntAPT-predicted isoforms in the ‘¼’ category using an independent
RT-qPCR dataset. Pal et al. (2014) performed RT-qPCR analysis on

an independent cohort of GBM samples from the University of
Pennsylvania tissue bank. The RT-qPCR data include the measured
expression of 164 isoforms (including 38 signature genes) across
226 samples. We found 11 isoforms of the 38 signature genes were
included in the ‘¼’ category identified by IntAPT; these 11 isoforms
(see Supplementary Table S2-8) were successfully validated by RT-
qPCR as the signature genes for GBM subtypes. For example, over-
expression of the Ras signaling pathway has been widely observed
in GBM, and is a potential target for glioma treatment (Mao et al.,
2012). Activation of NFkB signaling pathway is also related to the
initiation of cell proliferation in GBM. Furthermore, we compared
the novel isoforms of each subtype with the identified isoform sets
of the other subtypes. Supplementary Figure S2-12 shows the num-
ber of novel isoforms that only existed in one subtype
(Supplementary Fig. S2-13).

4 Discussion

We have developed a probabilistic approach to identify phenotype-
specific isoforms from multiple RNA-seq profiles. A key aspect of
our approach is two-layer Bayesian modeling of phenotype-level iso-
form presence and abundance across multiple samples. At the group
layer, we model each isoform’s presence as being expressed or unex-
pressed. Gibbs sampling iteratively estimates the presence and abun-
dance of isoforms. Compared with previously developed methods,
this sampling framework allows us to quantify isoform presence and
abundance concurrently. Based on sampling frequencies, IntAPT
reports, for each isoform, a confidence measure of its presence and
abundance. Another advantage of Gibbs sampling is improved iden-
tification of low abundance isoforms, which is also address by an-
other Bayesian assembler (Aguiar et al., 2018). IntAPT
demonstrated improved sensitivity for lowly expressed isoforms in
both our simulation and real data studies.

IntAPT can be applied to multiple samples sharing a consistent
phenotype, with the definition of phenotype varying according to
the experimental design. For example, as presented here, it can iden-
tify either subtype-specific isoforms or, by taking all samples from
the TCGA GBM dataset, more generic GBM-specific isoforms. To
demonstrate IntAPT’s ability to analyze datasets consisting of a
larger number of samples, we conducted a realistic simulation study
on chr1 of 51 samples. The expression profiles of these samples are
from CCLE breast cancer cell lines. In the realistic simulation shown
in Supplementary Figure S2-14, IntAPT achieved much higher preci-
sion due to its robustness to noise, which is consistent with our find-
ings on a small-scale realistic simulation (Supplementary Fig. S2-6).
We have demonstrated that our proposed model has improved per-
formance over datasets with various sample size by analyzing mul-
tiple samples simultaneously, but we would not suggest using our
package to analyze a huge number of samples because this will in-
crease the computational burden on the splicing graph construction.
For real applications, a dataset with <100 samples will be ideal for
our package, which should be enough for most biological studies
and databases with detailed phenotypes.
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