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Abstract

Motivation: Despite widespread prevalence of somatic structural variations (SVs) across most tumor types, under-
standing of their molecular implications often remains poor. SVs are extremely heterogeneous in size and complex-
ity, hindering the interpretation of their pathogenic role. Tools integrating large SV datasets across platforms are
required to fully characterize the cancer’s somatic landscape.

Results: svpluscnv R package is a swiss army knife for the integration and interpretation of orthogonal datasets
including copy number variant segmentation profiles and sequencing-based structural variant calls. The package
implements analysis and visualization tools to evaluate chromosomal instability and ploidy, identify genes harbor-
ing recurrent SVs and detects complex rearrangements such as chromothripsis and chromoplexia. Further, it allows
systematic identification of hot-spot shattered genomic regions, showing reproducibility across alternative detection
methods and datasets.

Availability and implementation: https://github.com/ccbiolab/svpluscnv.

Contact: gonzalo.lopezgarcia@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Somatic structural variations (SVs) are a fundamental contributor to
cancer genetics and pathogenesis (Futreal et al., 2004). Historically,
copy number variants (CNVs) have been instrumental in cancer
diagnosis and classification. Genome-wide profiling via genotyping
or comparative genomic hybridization (CGH) arrays coupled with
tools such as GISTIC (Mermel et al., 2011) have facilitated identifi-
cation of oncogenic events. However, the surge of available large
whole genome sequencing (WGS) cancer datasets is expanding our
understanding of the role of SVs (Consortium, 2020; Grobner et al.,
2018; Ma et al., 2018) and has revealed widespread prevalence of
complex catastrophic events such as chromothripsis and chromo-
plexia (Cortes-Ciriano et al., 2020).

Recently, we integrated CNVs from genotyping arrays with
structural variant calls (SVCs) from WGS in a neuroblastoma co-
hort, showing that orthogonal data types allowed identification of
novel oncogenic alterations and revealed insights about the patho-
genic role of chromothripsis (Lopez et al., 2020). Here, we imple-
ment the methodological framework into an R package

incorporating multiple functionalities to integrate orthogonal data
types and characterize SVs in large cancer datasets.

2 Materials and methods

The svpluscnv R package operates with two input data types: (i)
CNV: segmentation profiles including logR (E.g. log2 of the ratio of
the signal between paired samples; e.g. tumor/normal). CNVs derive

from arrays (SNP, CGH) as well as sequencing read-depth data and
provide genome-wide gain/loss dosage information. (ii) SVC:
derived from WGS discordantly aligned reads. A plethora of avail-

able algorithms use different approaches to identify SVC (reviewed
in Kosugi et al., 2019). Variant classes include: duplication (DUP),

deletion (DEL), inversion (INV), insertion (INS), translocation
(TRA) and break-end (BND) for undefined SVCs.

2.1 Integrated analyses of CNV and SV datasets
Aneuploidy and CNV visualization: (i)‘cnv.freq.plot’ maps segments
with copy number logR 6¼ 0 across samples and plots a genome
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wide map of gain/loss frequencies (Supplementary Fig. S1); (ii)
‘chr.arm.cnv’ retrieves chromosome arm median CNV logR values.

Chromosomal instability measurements: (i) ‘percent.genome.-
changed’ measures the percentage of the genome’s CN with logR 6¼
0; (ii) ‘cnv.breaks’ identifies CNV breakpoints based on fold change
threshold of CN between contiguous segments and (iii) ‘svc.breaks’
reports per sample SVC breakpoints. Finally, ‘match.breaks’ identi-
fies colocalizing breakpoints between CNV and SVC for a set of
common samples.

Gene annotation functionalities: (i) ‘gene.cnv’ transforms seg-
mentation data into a gene-level CN matrix from which amplifica-
tions and deletions can be queried. (ii) ‘cnv.break.annot’ and
‘svc.break.annot’ provides genomic feature annotation tools for
CNV and SVC breakpoints such as overlapping genes and their up-
stream regions (Supplementary Fig. S2). Finally, ‘sv.model.view’ and
‘gene.track.view’ display genomic track visualizations overlaying
CNV and SVC for defined regions (Supplementary Fig. S2).

2.2 Chromosome shattering and hot-spot analyses
‘shattered.regions’ combines CNVs and SVCs to identify complex
rearrangements. The algorithm is highly parametrizable and follows
two major steps: (i) identification of High Breakpoint Density
(HBD) genomic bins: breakpoints are mapped into a default 10 Mb
sliding genomic windows calculated every 2 Mb, and (ii) shattered
regions are defined by collapsing contiguous HBDs. Next, further
testing for true likely catastrophic events uses information about
interleaved SVCs, links between distant regions and the dispersion
of breakpoints within regions (Supplementary Date). A simplified
‘shattered.regions.cnv’ algorithm, identifies catastrophic events
using CNV segmentation data only. It follows same approach as

shattered.regions, using only parameters derived from CNV. A
‘circ.chromo.plot’ function wraps circlize (Gu et al., 2014) function-
alities for circus plotting zooming into shattered regions (Fig. 1A).

‘shattered.map.plot’ generates a genome wide map of regions
with chromosome shattering and their frequencies (Fig. 1C and D).
Using a permutation test ‘freq.p.test’ assigns corrected P-values to
observed frequencies defining hot-spots regions above significance
threshold; such regions are deemed under selection pressure for
chromosome shattering.

3 Results

3.1 Integrated SV analysis of cancer datasets
In order to test svpluscnv tools, we compared the results obtained
from analyzing different breast cancer cell line and primary tumor
datasets including: 59 CCLE cell lines (Ghandi et al., 2019), 1088
primary tumors from TCGA and 198 breast adenocarcinomas
from PCAWG (Consortium, 2020). The three datasets presented
similar CNV gain/loss frequency profiles (Supplementary Fig. S1).
We mapped breakpoints to known genes and ranked altered
genes, again showing concordance across the three datasets
(Supplementary Fig. S2A–C); 35 of 59 breast lines had orthogonal
data from SNP (CNV) and WGS (SVC) profiles. We observed com-
plete overlap of CNV and SVC breakpoints in the most frequently
altered gene and fragile site, FHIT (Supplementary Fig. S2D).
Overall, 30.2–28.3% of all breakpoints colocalized across CNV and
SVC data types (Supplementary Fig. S3).

3.2 Analysis of shattered regions
In order to test the shattered.regions algorithm with other available
tools, we evaluated 2658 human cancer whole genomes, previously
analyzed with the algorithm ShatterSeek and manually curated
(Cortes-Ciriano et al., 2020). In addition, we obtained predictions
from ShatterProof (Govind et al., 2014) for the same set of samples
using default parameters. The three sets of predictions significantly
overlapped (P-value < 2.2e-16, Fig. 1B, Supplementary Data). We
then used the curated set (ShatterSeek) as the gold standard to test
for the precision/recall performance: shattered.regions achieved su-
perior results (pre¼0.34; rec¼0.83) compared to ShatterProof
(pre¼0.20; rec¼0.57) although the later allows additional input
data types (i.e. Loss of Heterozygosity) not included here (Fig. 1B).

svpluscnv introduces a novel tool to identify recurrently shat-
tered regions that could be under selection pressure in cancer histo-
types. We evaluated PCAWG breast dataset shattered regions
calculated using alternative algorithms (Fig. 1C); the three methods
returned a strongly similar landscape of genome-wide frequencies
(Pearson’s correlation P-value < 2.2�10�16, Supplementary Fig.
S5A–C); The same landscape was reproduced when tested across
two additional datasets including breast cancer derived cell lines
(CCLE) and primary tumors from TCGA (based on CNV data only)
(Fig. 1D, Supplementary Fig. S5D). Recurrently shattered regions
(FDR<0.05) were identified in chr8p11, chr8q24 (MYC locus),
chr11q13 (CCND1 locus), chr17q and chr20q in all three datasets;
highlighting their reproducibility and likely biological relevance
(Fig. 1C and D, Supplementary Fig. S4).

4 Conclusion

svpluscnv aims to become instrumental in the study of SVs in cancer
genomics, enabling the identification of recurrent complex rear-
rangements that may pinpoint disease driver events. This toolset
allows the research community to easily perform complex analysis
of high throughput SV profiling data and will support extensions to
further integrate analyses of other types of omics data.
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Fig 1. Identification of shattered chromosome regions. (A) Circos plot representing a

breast cancer sample (BRCA-UK: SA541850) shows shattered regions at 6, 9, 11

and 12 Chromosomes (purple band), CNVs (outer) and SVCs (inner) tracks. (B)

Venn diagram representing the overlap of shattered chromosomes detected by three

different methods across all PCAWG samples (top) and prediction performance(bot-

tom); (C, D) Genome wide shattered region frequency maps and their FDR<0.05

threshold (Supplementary Fig. S4) of (C) PCAWG breast cancer samples derived

from shattered.regions (top), ShatterProof (middle) and ShatterSeek (bottom); (D)

shattered.regions identified in breast cancer cell lines (top) and TCGA samples

(bottom)
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Data Availability

No new data were generated or analysed in support of this research.
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