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Abstract

Motivation: Infection with strains of different subtypes and the subsequent crossover reading between the
two strands of genomic RNAs by host cells’ reverse transcriptase are the main causes of the vast HIV-1
sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms
(CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of
a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is
an emerging new subtype and if so, how to accurately identify the new components of the genetic source.
Results: We introduce a multi-label learning algorithm for the complete prediction of multiple sources of
a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by
a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and
position features of the sequences are both extracted to capture signature patterns of pure subtypes and
CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences
and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy
(reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong
predictions are actually incomplete predictions, very close to the complete set of genuine labels.
Availability: https:/github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction

Contact: yuzuguo@aliyun.com;jinyan.li@uts.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction strands of viral RNAs are very similar, millions of variants virions can be

. . - ST S : budded from the infected cells, because of the genome-wide substitutions
Genetic sources and mutation characteristics of human immunodeficiency

viruses (HIV) have been extensively studied to understand their origins and
evolution patterns for better drug design and disease treatment (Moutouh
et al., 1996; Rambaut et al., 2004; Zhang et al., 2010). HIV genome is
composed of two strands of RNAs (of about 9.7 thousand bases each)
packaged inside a cone-shaped capsid (Rajarapu, 2014). Although the two

or the crossover reading between the two RNA strands by the reverse
transcriptase in the host cells (Hu and Temin, 1990; Taylor et al., 2008).
These variant genomes have been classified into various types/groups and
subtypes according to the general principle that sequences within any
one subtype or sub-subtype should be more similar to each other than
to sequences from the other subtypes (Foley et al., 2018). Currently, HIV-
1 isclassified into M, N, and O groups, and the M group is further classified
into subtypes A, B, C, D, F, G, H, J and K.
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It has also been found that the two HIV RNA strands of a budded
virion can be quite different when the host cell is infected by two different
strains/subtypes of the virus (Taylor et al., 2008). In fact, some budded
virions have packed one RNA strand from each of the two different
strains/subtypes of the virus (i.e., co-packed). When the co-packed genome
enters a new cell, the crossover reading between this pair of RNAs by the
reverse transcription can generate an interweaved genomic RNA composed
of viral segments hopping cross the two co-packed subtypes (Hu and
Temin, 1990). This newly packed viral genome (the two copies of the
interweaved RNA) is termed as an inter-subtype recombinant genome.
If an inter-subtype recombinant virus is transmitted to many people, it
becomes one of the circulating strains in the HIV epidemic. The genome
is then termed as a “circulating recombinant form (CRF)” to distinct from
the pure subtypes.

Each CRF is labeled with an integer number and a combination
of pure subtypes to indicate its chronological information and multiple
genetic sources. These numbers follow a time order (chronological
order) in which the CRFs first reached a detectable level in the
population (Robertson et al., 2000). For example, CRFO5_DF means that
this CRF is the fifth-earliest confirmed CRF epidemic having genetic
sources from HIV-1 subtypes D and F, and there may be tens or
hundreds of slightly mutated genome sequences labeled the same as
CRFO5_DF in a database. So far, there are 98 CRF types (different
combinations of pure subtypes) documented at https://www.hiv.
lanl.gov/content/sequence/HIV/CRFs/CRFs.html. These
viral genomes not only recombine between viral RNAs from pure subtypes,
but also recombine between those from pure subtypes and CRFs, exhibiting
a high complexity of mutation and reproductive diversity. The virus is still
spreading in the form of more complex CRFs (Zhang et al., 2010). As
precise subtyping has a crucial role in HIV therapy, knowing the correct
subtypes of the patients can have a huge impact on the treatment outcome
(Riemenschneider et al., 2016b; Cashin et al., 2015).

It is a challenging computational problem to make accurate
identification for the genetic sources of a newly reported genome
sequence of HIV-1. Current algorithms for the classification or prediction
of HIV-1 subtypes and CRFs all focus on the prediction of one
label for a given sequence. These methods include the adaptive
context-based COMET (Struck et al., 2014), the restriction fragment
pattern-based CASTOR (Remita et al., 2017), the phylogeny-based
REGA (De Oliveira et al., 2005), SCUEAL (Pond et al., 2009), the k-
mer-based KAMERIS (Solis-Reyes et al., 2018), and the digital signal
processing-based MLDSP (Randhawa et al., 2019). These prediction
methods are not capable of adequately identifying the multiple genetic
sources of CRF sequences. Detailed comparative studies of these methods
for the classification of infectious diseases, especially for the HIV viruses
can be found in (Patifio-Galindo and Gonzalez-Candelas, 2018; Fabeni
et al., 2017). More recently, a recombination analysis tool was developed
to understand the status of viral recombination in the early stages of HIV
infection (Song et al., 2018). However, this tool does not provide automatic
prediction or machine learning functions.

Our work exploits the complementary fit between multi-label learning
and CREF label set prediction, and introduces a voting scheme to integrate
various multi-label learning algorithms to strengthen the prediction of
multiple genetic sources for a test sequence. The key idea of multi-
label learning is to capture the unique sequence patterns from every pure
subtype of genome sequences. When a test sequence contains multiple
of these signature patterns, the algorithm can predict multiple labels
for the test sequence. For example, the multi-label learning method
Breknna (Spyromitros et al., 2008) can predict multiple labels using
iterative binary relevance and neighborhood distance to capture signature
patterns. Another multi-label learning method MLKNN (Zhang and Zhou,
2007) adapts the traditional nearest neighbor approach to capture statistical

information from the label sets of the neighboring sequences of a test
sequence, and uses the maximum posteriori (MAP) principle to assign
multiple labels. Multi-label ARAM (Benites and Sapozhnikova, 2015)
uses neural networks for simultaneous prediction of multiple labels,
which has been implemented in a Python environment (Szymariski and
Kajdanowicz, 2017). As these multi-label learning methods can capture
the multiple signature patterns of CRF genomes from different angles, we
use a voting of these prediction results to significantly firm the decision
on the complete label set of a CRF genome. We note that multi-label
learning and multi-task learning had been used for HIV-related research
previously, for example to predict drug resistance (Gonen and Margoliny,
2014; Riemenschneider et al., 2016a; Heider et al., 2013), but not for the
prediction of CRF multiple labels.

We extract two kinds of sequence features to represent every HIV-1
genome. Specifically, the genetic information of k-mers in the sequences
are extracted using DLTree (Wu et al., 2017) and the position information
of k-mers in the sequences are extracted using PWKMER (Ma et al.,
2020). We select the most relevant features by assessing scores of the
strings from a set of standard HIV-1 sequences (Thomas et al., 2005)
calculated by DLTree under various k settings. Important genetic features
and the sequence position-related features (Ma et al., 2020) are merged
into a feature vector to describe the sequences for multi-label learning.
In addition, we compute the pairwise distances of these sequences to
form a distance matrix, and apply the classical Multi-Dimensional Scaling
method to plot Molecular Distance Maps (Kari et al., 2014) for better
understanding the sequence clustering behavior of HIV-1 genomes.

Our prediction problem also involves the prediction of the time-order
chronological number for a CRF sequence (e.g., the number “05” in
CRFO5_DF). The key idea is to calculate the chord distance between the
test sequence and sequences in a reference set. The reference set of a
pure subtype is defined as the whole set of the same pure subtype training
data; while the reference set of a CRF is defined as those representative
sequences from all the strains sharing the same CRF label set but having
different chronological numbers. The final prediction is made based on a
majority vote in the chord distance neighborhood of the test sequence.

2 Data sets

A genomic sequence data set of HIV-1 was downloaded from the Los
Alamos (LANL) database (https://www.hiv.lanl.gov/)onMay
12, 2019. The data set contains 7185 sequences, each labeled with the M
group subtypes A, Al, A2, A3, A5, A6, A7, B, C, D, Fl, F2, G, H,
J, and K, or labeled with CRFs, where Al, A2, A3, A4, A5, A6 and
AT are the sub-subtypes of subtype A; F1 and F2 are the sub-subtypes of
subtype F. The time-order chronological numbers of the CRFs are numbers
from CRFO1 to CRF98. The genetic source recombination in these CRF
sequences occurred not only between the pure subtypes but also between
the subtypes and partial CRFs. For example, CRF04_AGHKU is a very
complicated CRF combining viral genetic sources from 5 subtypes of HI'V-
1. Such a complicated form of genomic type combination is sometimes
shortened as CRF04_cpx.

The viral genome of HIV-1 consists of 9 genes: gag, pol, env, tat,
rev, nef, vif, vpr, and vpu. In this work, we used the whole genome
sequence or only the coding parts of the whole genome sequence (i.e.,
the coding sequences of all the 9 genes) to test the effectiveness of our
method. As Hue et al. (2004) reported that the HIV-1 pol gene contains
rich genetic information for distinguishing HIV-1 subtype sequences, we
also considered using only the pol gene data for pure subtype and CRF label
set prediction. The pol gene is located between positions 2000 and 5000 in
the HIV-1 genome sequences, but the length and the starting position of the
pol gene can be different in different genomes. In this work, we extracted
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the coding sequences of the pol gene using the annotation information
from all the genomes (i.e., from the *.gbk’ file).

For prediction performance evaluation, the 7185 sequences were
divided into a training set and a test set under a ratio 8:2. It is a random
label-stratified division, i.e., every type of sequences follows the ratio 8:2.
The training set contains 4431 pure-subtype sequences and 1362 CRF
sequences, and the test set contains 1099 pure-subtype sequences and
293 CRFs. The pure subtype prediction and CRF prediction models were
trained separately. The training set of the pure subtype prediction model
only included 4431 pure subtype sequences, and the remaining 20% pure
subtype sequences (i.e. 1099) were used as test set. Because most of the
CRF sequence components are derived from the pure subtypes, the training
set of the CRF prediction model contained both the 80% pure subtype
sequences and 80% CRF sequences. After the CRF prediction model was
constructed, the remaining 20% CRF sequences were used as test set.

All the sequences in the training set are of high sequence similarities.
In fact, the maximal similarity of every training sequence within its own
class of sequences is very close to its maximal similarity in the other
classes of sequences. For example, there are 848 CRF sequences whose
maximal similarity within their own class of sequences and whose maximal
similarity in the other classes of sequences are close in a 3.0% similarity
difference gap (such as 96.1% vs 94.1%, 94.7% vs 94.3%). Sometimes,
the maximal similarity within their own class is lower than their maximal
similarity in the other classes (such as 90.2% vs 90.4%, 95.7% vs 96.1%).
This fact implies that there are only tiny difference between these subtypes
of sequences. It is challenging for a learning model to capture the subtle
unique patterns characterising each pure subtype or each CRF of HIV-1
sequences.

Each of the sequences in the test set can align to a highly similar
sequence in its own training set and meanwhile can align to a highly similar
sequence in the other classes of training data. The two maximum-similarity
distributions of the CRF sequences (complete genome) from the test set
are listed in Table 1. More details can be found at Supplementary Tables
2-4.

Table 1. Maximum-similarity distributions of 293 CRF complete genome
sequences (from the test set which was obtained by random selection) with
the sequences of their own type in the training set or with the sequences in the

other types.
Max-similarity <80% 80%-85% 85%-90% 90%-95% >95%
with own type 3 0 2 66 222
in other types 4 0 64 223 2

In the performance evaluation, we removed 122 CRF complete genome
sequences from the test set which are identical or nearly identical (99%)
to a training sequence.

There is another way to remove the redundancy in this sequence set
through the CD-HIT method (Li and Godzik, 2006). We set 95% as
the similarity threshold for CD-HIT to cluster highly similar sequences.
From the 3503 clusters, we random chose one to keep and the rest were
removed. For these remaining sequences, we did a random selection of
training sequences and test sequences, and then trained the multi-label
learning model, and tested the model on the test data to get the accuracy
performance.

To understand more about the prediction capacity of multi-label
learning, apart from the random division of the data into a training set
and a test set, we also purposely split the data according to the sequence-
sampling year. In each CRF category, only those earlier-year sampled
sequences (80%) were chosen as the training data, and the later-year
sampled sequences (20%) were chosen as the test data set. The time
information of the sampling years of all the sequences were obtained

from https://www.hiv.lanl.gov/, and then they were sorted
according to the sequence-sampling time. The two maximum-similarity
distributions of these CRF sequences (complete genome) from the test set
are listed in Table 2. More details can be found at Supplementary Tables
5,6,and 7.

Table 2. Maximum-similarity distributions of 293 CRF complete genome
sequences (from the test set which obtained by sampling year) with the
sequences of their own type in the training set or with the sequences in the
other types.

Max-similarity <80% 80%-85% 85%-90% 90%-95% >95%
with own type 0 1 9 146 137
in other types 1 3 61 228 0

Again, those test sequences having a maximum similarity higher than
99% with the training set were excluded from the prediction performance
evaluation. For example, we removed 45 CRF complete sequences in this
case.

3 Method
3.1 Overview

We combine three multi-label classification methods to predict the label
set of a HIV-1 sequence. The method is able to predict one single label or
predict multiple labels simultaneously for any test sequence. In the case
when multiple labels are predicted, it means the virus is a CRF with genetic
components from multiple subtypes.

The 7185 virus sequences are described using our newly constructed
feature space. The feature space merges the frequency and position
information of k-mers to capture sequence characteristics. The features
underlining the frequency characteristics of k-mers are derived by DLTree
(Wu et al., 2017), and the feature information on the positions of k-mers
are obtained by PWKMER (Ma et al., 2020). In the process of acquiring
relevant features, so-called standard k-mers are determined from 44 HIV-1
reference sequences to narrow down the feature space.

The work flow of our method is depicted at Fig 1. Details of the multi-
label classification and feature space construction are presented in the
following subsections.

3.2 Multi-label learning methods and voting for CRF label
set prediction

Computational model construction of multi-label prediction is to obtain
outstanding signature patterns from the training data of various labels.
The prediction is to see how many signature patterns are contained in a test
sequence. We take two approaches for multi-label prediction/classification,
and vote their predictions for reliable decisions. The first approach for
multi-label prediction is to convert the multi-label problem into multiple
binary one-vs-other single-label prediction problem, e.g., Breknna
(Zhang and Zhou, 2007; Benites and Sapozhnikova, 2015). The other
is an algorithm-adaptive approach (Zhang and Zhou, 2007; Benites and
Sapozhnikova, 2015) — it is about the adaptation of an existing single-label
prediction method to deal with the simultaneous prediction of multiple
labels, e.g., MLKNN (Zhang and Zhou, 2007; Benites and Sapozhnikova,
2015) and MLARAM (Benites and Sapozhnikova, 2015).

3.3 One-vs-other binary relevance for multi-label learning

Binary relevance (BR) is a binary classification of each label I (I € L), i.e.
thedataz — {l, —l}. BR converts the original data into | L| number of data
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Fig. 1. Flowchart for analyzing HIV-1 sequences with multi-label learning, includes ‘Data
process’, ‘model training’, ‘prediction’ and ‘conversion’.

sets Dy, 1 = 1,...,|L|. Breknna (Spyromitros ef al., 2008) combines the
BR and & nearest neighbor to handle multi-label problems. The confidence
¢; of every label [ needs to be estimated in the process, by computing the
percentage of every label among the k neighbors N (k) of a given test
instances x,

1 k
a=3> vy ()
j=1

where y; (1) = 1,7 € Nz (k), if j contains label [; otherwise y; (1) = 0.
If at least half of the neighbors contain labels [ € L, the highest confidence
label is output as the label of x.

3.4 Adapted nearest neighbor classification for multi-label
learning

The traditional k nearest neighbor (KNN) method can only predict a single
label. MLKNN (Zhang and Zhou, 2007) adapts the KNN algorithm to
handle multiple labels. During the training process, it is assumed that
there are m data points in the training set and y is the label set. There
are two kinds of events: (1) H i: Contains the label [; (2) Hé: Does not
contain the label [, where ! € y. Lety, (1) be the label vector of an instance
x € m, such thatyz (1) = 1, if z has the label [, and y, (I) = 0 otherwise.
Then,

e Let the prior probabilities of the two events in the m training data
points be P(H!), P(H}), where P(H}) + P(HL) = 1;

e Find the k-nearest neighbours for a test instance ¢ in the training data
and calculate the posterior probability of the two events. First, finding
the k nearest neighbors of ¢, and calculating the number of the nearest
neighbor of ¢ containing label [, C¢ (1),

> w). @

a€N(t)

Ci(l) =

Then, estimating the posterior probability of the k£ neighbors of ¢ for the
two events based on the statistical inclusion of the number of labels [:

P(Eé\H{) and P(E;|H(l)), where Ej (4 € {1, -+, k}) means that
there are j points having the label [ in the k nearest neighbors;

e Use maximum posteriori principle to identify whether the test data ¢
contains label /.

ye(l) = arg maxbe{o,l}P(HmElct(z)) €)
Using the Bayesian rules, y; (1) can be derived as:
! i !
P(Hb)P(Ect(l)|Hb)
]
P(Ec, @) 4)

=arg maxbe{()’l}P(H,l,)P(Eét(l) |H})

y¢(l) = arg maTye{0,1}

MLARAM is another multi-label learning methods which adapts the
idea of neural learning. We refer to (Benites and Sapozhnikova, 2015) for
MLARAM’s complicated learning process and details.

3.5 Voting of predictions from various multi-label learning
methods

Given a test sequence newS, by the prediction of the above three multi-
label learning algorithms, three sets of predicted pure-subtype labels can
be obtained. Some of the sets may contain only one label, the other may
contain multiple labels, and some of the three sets may be the same. We
use majority voting to make a collective decision on the final labels of
the test sequence newS. The voting can effectively avoid possible poor
prediction performance by a single method.

Let label(newS,Breknna) be the set of labels predicted by
Breknna; label(newS,MLKNN) be the set of labels predicted by
MLKNN; and label(newS, MLARAM) be the set of labels predicted
by MLARAM. We define label(newS, voting) as the set of labels which
belongs to at least two of the three label sets: label(newS, Breknna),
label(newS, MLKNN), and label(newS, MLARAM). That is, only
when labels predicted by at least two models are exactly the same, they
are recommended as the final labels of the test sequence newsS.

3.6 Prediction of chronological number

Denote label(newS, voting) as cr f which is a subset of the pure subtypes
of HIV-1 genome sequences. Suppose in the training data, cr f-labeled
sequences have w chronological numbers n1,...,n,. From each of
these w groups of training sequences, randomly choose v number of
representative sequences, and combine them into a reference sequence
set REF. Calculate the chord distance of newS with every sequence in
REF, and identify those sequences in R E'F that have the closest distance
with newS. After this distance sorting, we use voting on the chronological
numbers in the tail part of the list of sequences to decide the chronological
number for new.S.

3.7 Feature space construction to describe HIV-1
sequences

3.7.1 Features based on genetic information of k-mers

A k-mer-based alignment-free method was first proposed by (Blaisdell,
1986) to compute the similarity among sequences. A dynamical language
based approach (called DLTree), which is also a k-mer-based method,
was applied in phylogeny reconstruction by (Wu et al., 2017). In the
process of molecular evolution, the genetic information contained in
molecular sequence is often masked by noise (Charlebois and Beiko,
2003). Therefore, we need to remove the random background for
accurately identifying the phylogenetic relationship between sequences.
DLTree simulates the random background of sequences using a dynamical
language model. The genetic information of s which is extracted
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by DLTree, is referred as g (s) (more details are provided in the
supplementary material). Hence we can convert a sequence into a vector
1 x 4% with the components g, (s), as derived by the DLTree method.

The position information of nucleotide bases is significant in genetics
as shown by (Ding et al., 2013; Ma et al., 2020), where phylogenetic
analysis were conducted using the information from the positions of k-
mers. These features are also used here together with the k-mer frequency
features to describe HIV-1 sequences for subtype prediction. We denote
the position information of s as F'(s), and provide the details in the
supplementary material. In summary, we use two different perspectives
to extract k-mer genetic information (i.e., F' and qg), and combine them
to form our feature space. However, if all k-mers are used directly, our
feature dimension is very large, so we attempted to reduce the dimension
of the feature space without losing much information.

3.7.2 Using standard k-mers to narrow down the feature space

To reduce the dimension of this vector, we use a HIV-1 reference sequence
set to narrow down the search space of k-mers and choose good ones
as outstanding features (Wu et al., 2007). The LANL sequence database
provides 44 reference sequences (Thomas et al., 2005) for our dimension
reduction. The detailed scoring criteria for selecting outstanding k-mers
are as follows:

o Combine the 44 sequences into one super-genome.
o Use relative entropy to score the k-mers:

S(a, )
S(a)

44
Z(a) = 3 1S(0, i) log, |

i=1

| (6]

a isak-mer (3 < k < kmaz), Z(«) is the score of «, S(c,1)
is g, (o) in the i-th reference sequence (¢ = 1,--- ,44) and S(«) is
gk () in the super-genome obtained by the DLTree method.

When k = 10, there are 410 = 1048576 k-mers. When k steps from
1 to 10, there are total 41 +42 4. .. 4+ 410 = 1398100 k-mer strings. We
sort all of these strings according to their Z scores into a descending order,
and select the first 5000 strings (the length & of which may be different)
as standard k-mers. We extract the evolution information for these 5000
standard k-mers only in order to reduce the dimension of the feature vector.

3.8 Visualization of clusters of HIV-1 genome sequences
by 3D MoDMaps

By our feature extraction methods, a sequence is converted into a vector
with 10,000 dimensions (i.e., 5000 g (s) and 5000 F(s) with regard
to the 5000 standard k-mers). We calculate pairwise cosine distances of
these vectors to form a distance matrix. The Molecular Distance Maps
(MoDMaps) (Kari et al., 2014; Randhawa et al., 2019) is applied to this
distance matrix to visualize these sequences in a 3D space, where every
dot represents a sequence. The distance between points in the 3D space is
almost identical to the elements in the corresponding distance matrix (Kari
etal.,2014) under the classical Multi-Dimensional Scaling. MoDMaps are
effective for understanding clustering behavior of the genome sequences.

4 Results

We show the high quality of the top-ranked features for the distinction
of HIV-1 genome sequences through the construction of phylogenetic
trees and 3D MoDMaps. We present detailed performance on CRF label
predictions achieved by the multi-label learning algorithms, especially
results from the majority voting. We also report the performance of two
state-of-the-art single-label prediction methods to illustrate the superiority
of multi-label learning to cope with the CRF label set prediction problem.

4.1 High quality of the top-ranked features for the
construction of phylogenetic trees

Distribution of k-mer features. According to the above Z scores of k-mers
(3 < k < 10), we sorted all these strings into a decreasing order. We
selected the first 500 and 5000 strings (their lengths may be quite different).
The proportions of the strings with different lengths in the first 500 or in the
first 5000 strings are showed in Table 3. The percentage of the k-mers with
k = 8in the first 500 or in the first 5000 strings is the highest, followed by
length-9 and length-7 k-mers. Length-5 and length-6 k-mers can be also
top-ranked, although their proportion is small. This statistics suggests that
top-ranked features can come from different k-mer slots. Single-length
k-mers as features may be inadequate for good classification.

Table 3. The distribution of top-ranked strings with & up to 10

k 5 6 7 8 9 10

Top500 02% 02% 194% 41% 29%  10.2%
Top 5000 0.08% 1.8% 15.96% 38.54% 30.96% 12.66%

Clear phylogenetic tree of HIV-1 sequences. To test the quality of
the genetic information possessed by these features, the 44 pure-subtype
reference sequences, 4 CRFO1 sequences, and 4 CRF02 sequences were
used as input to construct a phylogenenic tree. The g (s) vector of these
52 sequences was extracted with the 5000 standard k-mers. The distance
between two sequences was calculated by the definition of chord distance,
and the phylogenetic tree was built by Mega7 (Kumar et al., 2016). From
the tree structure (Fig 2), the different M, N and O groups are all clearly
and correctly distinguished. The subtypes B and D close in biology are
depicted in neighbourhood in the tree as well. The sequences belonging to
CRFO1 or to CRFO02 are clustered together respectively in the tree and are
close to subtype A. Overall, sequences belonging to different subtypes in
the M group are clearly separated in the tree. These results demonstrate
that our top-ranked features are of high quality; they separate different
types of sequences and keep the right phylogeny of the sequences.

4.2 Distinction of CRF sequences by 3D MoDMaps

We performed cluster analysis of the 10000-dimension feature vectors in
the test set using MoDMaps (Kari et al., 2014). Fig 3 (1) and (2) plot the
3D MoDMaps of the complete genomes and the pol genes of the pure
subtype sequences in the test set, respectively. Fig 4 (1) and (2) depict
the 3D MoDMaps of the complete genomes and the pol genes for the
CRF sequences in the test set, respectively. Due to the big variety of
CREF types, we only selected those types with a relatively large number
of sequences to plot 3D MoDMaps. As seen in Fig 3 (1) and (2), subtype
B and subtype D are closer together than with other subtypes, consistent
with the real situation. In Fig 4 (1) and (2), ‘07" and ‘08’ have the closest
distance, because they have the same labels (both ‘B’ and ‘C’). Overall, the
sequences of the same type are well clustered in 3D MoDMaps using the
10000-dimension feature vectors which we extracted. In addition, close
relationships between some CRFs and their pure subtypes can be observed
from the 3D MoDMaps (see details at the supplementary material).

4.3 Almost perfect label-set prediction by multi-label
learning

The first three rows of Table 4 are the prediction accuracies on the
test set (randomly selected sequences) achieved by Breknna, MLKNN,
and MLARAM. The ‘voting’ line is the accuracy achieved by our
voting approach. Symbols ‘cg_pure’ and ‘cg_crf” stand for the complete
genome pure subtype sequences and complete genome CRF sequences,
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Fig. 3. 3D MoDMaps visualization of the complete genomes and the pol genes of the HIV-1 pure subtypes. (1) is the complete genome pure sequence (cg_pure), and (2) is the pol gene

pure sequence (pol_pure).
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Fig. 4. 3D MoDMaps visualization of the complete genomes and pol genes of the HIV-1 CRF sequences. (1) is the complete genome CRF sequence (cg_crf), and (2) is the pol gene CRF

sequence (pol_crf).

respectively. Similarly, ‘pol_pure’ and ‘pol_CRF’ represent that the pure
subtype sequences and CRF sequences are limited to the pol gene coding
sequence, respectively. ‘Label’ means that the prediction is focused on
the pure label or multi-label prediction (e.g., simultaneous prediction
of A, D and F), while ‘Type’ means that the prediction is focused on
label-set prediction and chronological number prediction together (e.g.,
simultaneous prediction of A, D and F, and prediction of the chronological
number 05).

These multi-label learning methods have made almost perfect
prediction accuracies either when the feature space is generated from
the complete genome sequences or generated from the pol gene coding
sequences. Although the accuracies provided by some classifiers are
about 91.81%, by voting the predicted labels from the three models, the
prediction accuracy is stable and is always above 95.32%. These results
confirm that multi-label learning is the right choice of machine learning
approaches for CRF label-set prediction, signifying the contribution of this
research work. Our voting scheme combines the advantages of the three
methods which can effectively avoid the biased preferences made by an
individual model, for example, the Breknna’s prediction on cg_CRF.

Table 4. Prediction accuracies by multi-label learning algorithms Breknna,
MLKNN, and MLARAM as well as their voting performance for HIV-1
sequences.

classifier cg_pure cg_CRF pol_pure pol CRF

Breknna  0.9982 09181 0.9805  0.9667

Label MLKNN 09963 0.9766 0.9805  0.9867
MLARAM 0.9963 0.9474  0.9941 0.96
Voting 0.9963 0.9532  0.9824 0.98

Breknna  0.9982 09591 0.9883  0.9733
Type MLKNN 0.9963 0.9708 0.9922 0.98

MLARAM 0.9963 0.9708 0.9961  0.9667

Voting 0.9963 0.9708 0.9902  0.9733

For the redundancy-removed data set by CD-HIT, the number of
complete genomes is 3503 (CRF:866, pure subtype: 2637) and the
number of pol-gene sequences is 1474 (CRF:259, pure subtype :1215).
We randomly selected sequences as training and test under each type
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Fig. 2. A phylogenetic tree of the 44 reference sequences, 4 sequences from CRF0O1 and 4
sequences from CRFO02 using the top-ranked 5000 reference k-mer strings.

according to the ratio of 8:2. Table 5 shows the test performance which is
also excellent.

Table 5. Prediction accuracies by multi-label learning algorithms Breknna,
MLKNN, and MLARAM as well as their voting performance for the CD-HIT
clustered HIV-1 sequences.

classifier cg_pure cg_CRF pol_pure pol CRF
Breknna  0.9981 0.8963 0.8950  0.7826
Label MLKNN 0.9962 0.9778 0.9664  0.7826
MLARAM 0.9962 09852 0.9748  0.8696
Voting 0.9962 0.9778 0.9622  0.7826
Breknna  0.9981 09481 0.9034  0.9130
Type MLKNN 09981 0.9704 0.9664 08696
MLARAM 0.9962 0.9778 0.9790  0.8696
Voting 0.9981 0.9704 0.9748  0.9130

On the test set sorted according to the time information of the sequence-

sampling year, the prediction performance is even better than on the
randomly selected test sequences. See Table 6 for the almost perfect
prediction accuracies by the multi-label learning algorithms and their

voting scheme.

Table 6. Prediction accuracies by multi-label learning algorithms Breknna,
MLKNN, and MLARAM as well as their voting performance (on the test set
which was constructed according to the sequence-sampling year). The bold font
indicates the best prediction performance by this work.

classifier cg_pure cg_CRF pol_pure pol_CRF
BREKNNA 0.9990 0.9234 0.9827  0.9785
Label MLKNN 09990 0.9677 0.9798  0.9828
MLARAM 0.9962 09879 0.9990  0.9828
Voting 0.9990 0.9718 0.9866  0.9828
BREKNNA 0.9990 0.9677 0.9866  0.9914

Type MLKNN 1.0000 0.9839 0.9904 0.9914
MLARAM 0.9962 0.9919  0.9990  0.9914
Voting 1.0000 0.9839 0.9914  0.9914

4.4 Indirect comparison with state-of-the-art single-label
prediction performance

Two current methods COMET (Struck et al., 2014) and MLDSP (Randhawa
et al., 2019) are both single-label prediction methods for HIV-1 subtype
sequences (i.e., one label predicted for each test sequence). They label the
CRF sequences all with ‘crf’. But, we predict detailed genetic sources for a
CRF sequence. COMET is a web based tool which only accepts uploading
of test data, 800 sequences each time. The user is not allowed to re-train
the model. MLDSP is a stand-alone tool. We used the training data of the
current work to re-train the model, and evaluate the performance on the
test data.

Tables 7, 8, and 9 show the prediction accuracy of COMET and
MLDSP on the three test sets. Under an indirect comparison (COMET
and MLDSP predict the single label ‘crf” versus we predict the complete
label-set of each CRF sequence), our method is much superior to COMET
and MLDSP no matter the feature space is generated from whole genome
sequence or from the pol gene coding sequence for the CRF label set
prediction. As an additional analysis, we found that MLDSP’s performance
could be slightly improved when our feature vectors were used for the pol
gene sequences. See details at the Supplementary material.

Table 7. Indirect comparison with two single-label prediction methods based
on the randomly divided data.

method cg_pure cg_CRF pol_pure pol_CRF
COMET 0.9191 0.8070 0.9531 0.92
MLDSP 0.9596 0.7427 0.9492 0.7467
Our method 0.9963 0.9708 0.9902 0.9733

Table 8. Indirect comparison with two single-label prediction methods on the
test set after removing the redundancy by CD-HIT

method cg_pure cg_CRF pol_pure pol_CRF
COMET 0.9328 0.8444 0.9832 0.7826
MLDSP 0.9501 0.7704 0.9160 0.6957
Our method 0.9981 0.9704 0.9748 0.9130

Table 9. Indirect comparison with two single-label prediction methods on the
test set sorted by the time information of sequence-sampling years.

method cg_pure cg_CRF pol_pure pol_CRF
COMET 0.9428 0.7984 0.9702 0.9099
MLDSP 0.9552 0.7863 0.9597 0.8197
Our method 1.0000 0.9839 0.9914 0.9914

“v6-hiv_1_multi_label_prediction_revision” — 2020/9/29 — page 7 — #7



Tang et al.

5 Discussions on our wrong predictions

A small number of wrong predictions have been made by our multi-label
learning method for the labels of pure-type sequences or recombinant
sequences. This section provides details about which sequences are prone
of wrong prediction, whether the domain database is a gold standard, and
why CREF prediction is really a challenging problem.

Where we have made wrong predictions? In the label prediction for
pure subtype sequences, we found that most of the wrong predictions are
that subtype A was predicted as a sub-subtype of A, or the opposite. For
example, ‘A1_JQ403028" was predicted as ‘A’, and ‘A_DQ396400" was
predicted as ‘A1’ . A very small number of subtype D sequences were
predicted as subtype B, and some subtype B sequences wrongly predicted
as D. In the label set prediction of CRF sequences, a majority of the wrong
predictions is that the set of predicted labels is incomplete. Some of the
predicted label sets contains only one label, but the complete set of labels
of the sequence actually contains more than that. For example, the labels
of ‘CRF15_01B’ are ‘01’ and ‘B’, but our prediction result is ‘01’ (or a
combination of ‘01’ and a wrong label). Other wrong predictions include
the whole set of labels of a CRF sequence being correctly predicted, but its
chronological number was wrongly predicted. For example, in the actual
prediction, some *70_BF1’ sequences are predicted to be *71_BF1°.

Why HIV-1 CRF prediction is really difficult? When both of training
and test data sets contain only pure subtype sequences, the label prediction
problem is easy, and the prediction performance is excellent. But,
simultaneous and complete prediction of the multiple genetic sources of a
CRF sequence is really challenging, especially when the chronological
number is also required to be assigned. To understand this point, we
searched the accession numbers of those sequences which were wrongly
predicted by all of COMET, MLDSP and our multi-label voting method.
Fortunately, there are only two sequences in this list. They are CRF11_cpx
(with the accession number KP718935) and CRF15_01B (with the
accession number DQ354120). In other words, the predicted sets of labels
for these two sequences by all of the three methods are inconsistent with the
records in the HIV database. In fact, CRF11_cpx_KP718935 (Montavon
et al., 2002) has a complicated label set containing subtypes A, G, J
and CRFO1_AE. See Fig 5 for a schematic representation of the mosaic
structure of the CRF11_cpx genome, where 5 different subtypes of small
rectangles are indeed intricately composed to build CRF11_cpx.
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Fig. 5. Schematic representation of the mosaic structure of the CRF11_cpx genome,
download from LANL(https://www.hiv.lanl.gov/)

COMET could not predict its type; the predicted result by MLDSP
was ‘CRF01’; and the label set predicted by our multi-label voting method
contains ‘01’ and ‘B’ only. It is really sometimes difficult to predict the
complicated composition of a CRF sequence by machine learning methods
as indicated by this example.

Whether an expert-maintained domain database is a gold benchmark?
For the pol gene of sequence DQ354120 (CRF15_01B), all of the
three methods (COMET, MLDSP, and our voting) predicted it as
‘CRF_01". Although this prediction result is not consistent with the
database record (i.e. CRF15_01B), we downloaded the schematic
representation of the mosaic structure (Fig 6) of CRF15_01B from LANL
(https://www.hiv.lanl.gov/) to understand whether the database has an

error. As the mosaic structure clearly shows that only CRF_01 is on
the pol gene, we believe that all the predictions are consistent with the
mosaic structure. This implies that the database need to update the label
information for the pol gene of sequence to avoid confusion with the whole
sequence labels.
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Fig. 6. Schematic representation of the mosaic structure of the CRF15_01B genome,
downloaded from LANL (https://www.hiv.lanl.gov/)

6 Conclusion

Over time, HIV-1 genomes not only combine between viral RNAs from
pure subtypes, but also recombine between those from pure subtypes
and CRFs, exhibiting a high complexity of mutation and reproductive
diversity. We propose using multi-label learning to capture the patterns of
pure subtypes and use voting of various multi-label learning algorithms
to strengthen the prediction of complete multiple genetic sources of a
CRE. In the step of constructing the feature space, we extract both
genetic and position information of k-mers as a merged feature vector
to describe every HIV-1 genome sequence. This prediction problem also
involves the prediction of the time-order chronological number for a CRF
sequence. We solved the problem using a majority vote in the chord
distance neighborhood of the test sequence. Our extensive experiments
have demonstrated that the top-ranked features are very effective for
building clear phylogenetic trees of HIV-1 genomes and also excellent
for depicting clear 3D MoDMaps to understand the sequence clustering
behavior of HIV-1 genomes. The multi-label learning algorithms with
the top-ranked features have provided almost-perfect accuracies for the
complete prediction of multiple genetic sources of CRF sequences. The
performance is much superior to the best existing methods under an
indirect comparison. We have also conducted an analysis on which of
the sequences prone of wrong prediction are, and why the CRF label set
prediction is indeed challenging, and a more interesting question on how
to identify mislabeled record in the domain-expert maintained database
through machine learning. As a future work, we will conduct deep analysis
on the unique patterns and sequence motifs corresponding to each pure
subtypes of HIV-1 genomes.
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